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Strongly convex functions, Moreau envelopes and the
generic nature of convex functions with strong

minimizers

C. Planiden∗ X. Wang†

April 13, 2016

Abstract

In this work, using Moreau envelopes, we define a complete metric for the set of proper
lower semicontinuous convex functions in a finite-dimensional space. Under this metric, the
convergence of each sequence of convex functions is epi-convergence. We show that the set of
strongly convex functions is dense but it is only of the first category. On the other hand, it is
shown that the set of convex functions with strong minima is of the second category.

AMS Subject Classification: Primary 54E52, 52A41, 90C25; Secondary 49K40.

Keywords: Attouch-Wets metric, Baire category, complete metric space, convex function, epi-
convergence, epi-topology, generic set, meager set, Moreau envelope, proximal mapping, strong
minimizer, strongly convex.

1 Introduction
Minimizing convex functions is fundamental in optimization, both in theory and in algorithm de-
sign. For most applications, the assertions that can be made about a class of convex functions are
of greater value than those concerning a particular problem. This theoretical analysis is valuable
for the insights gained on the behaviour of the entire class of functions. Our main result in this
paper states that in Rn, the set of all proper lower semicontinuous (lsc) convex functions that have
strong minimizers is of second category. Studying strong minima is important, because numerical
methods usually produce asymptotically minimizing sequences, and we can assert convergence
of asymptotically minimizing sequences when the function has a strong minimizer. As shown in
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[25], the proximal mapping of a strongly convex function is a contraction, and the proximal point
method converges at a linear rate. The strongly convex function is also of great use in optimization
problems, as it can significantly increase the rate of convergence of first-order methods such as
projected subgradient descent [18], or more generally the forward-backward algorithm [5, Exam-
ple 27.12]. Although every strongly convex function has a strong minimizer, we show that the set
of strongly convex functions is only of the first category.

As a proper lsc convex function allows the value infinity, we propose to relate the function
to its Moreau envelope. The importance of the Moreau envelope in optimization is clear; it is a
regularizing (smoothing) function [20, 21], and in the convex setting it has the same local minima
and minimizers as its objective function [27, 30].

The key tool we use is Baire category. A property is said to be generic if it holds for a second
category set. We will work in a metric space defined by Moreau envelopes. In this setting, there
are many nice properties of the set of Moreau envelopes of proper, lsc, convex functions. This
set is proved to be closed and convex. Moreover, as a mapping from the set of proper lsc convex
functions to the set of Moreau envelopes of convex functions, the Moreau envelope mapping is bi-
jective. We provide a detailed analysis of functions with strong minima, strongly convex functions,
and their Moreau envelopes.

The organization of the present work is the following. Section 2 contains notation and defi-
nitions, as well as some preliminary facts and lemmas about Baire category, epi-convergence of
convex functions, strongly convex functions and strong minimizers that we need to prove the main
results. We show that the Moreau envelope of a convex function inherits many nice properties of
the convex function, such as coercivity and strong convexity. In Section 3, using Moreau envelopes
of convex functions, we propose to use the Attouch-Wets metric on the set of proper lsc convex
functions. It turns out that this metric space is complete, and it is isometric to the metric space of
Moreau envelopes endowed with uniform convergence on bounded sets. The main results of this
paper are presented in Section 4. We give some characterizations of strong minimizers of convex
functions, that are essential for our Baire category approach. We establish Baire category classifi-
cation of the sets of strongly convex functions, convex functions with strong minima, and convex
coercive functions. Our main result says that most convex functions have strong minima, which in
turn implies that the set of convex functions not having strong minimizers is small. Surprisingly,
the set of strongly convex functions is only of the first category. In addition, we show that a convex
function is strongly convex if and only if its proximal mapping is a down-scaled proximal mapping.
Concluding remarks and areas of future research are mentioned in Section 5.

A comparison to literature is in order. In [29], Baire category theory was used to show that
most (i.e. a generic set) maximally monotone operators have a unique zero. In [22], a similar track
was taken, but it uses the perspective of proximal mappings in particular, ultimately proving that
most classes of convex functions have a unique minimizer. The technique of this paper differs in
that it is based on functions. We use Moreau envelopes of convex functions, strong minimizers
and strongly convex functions rather than subdifferentials. While Beer and Lucchetti obtained a
similar result on generic well-posedness of convex optimization, their approach relies on epigraphs
of convex functions [7, 8, 9]. Our Moreau envelope approach is more accessible and natural to
practical optimizers, because taking the Moreau envelope is a popular regularization method used
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in the optimization community. We also give a systematic study of strongly convex functions, a
special subclass of uniformly convex functions, which is new to the best of our knowledge. In
[16], the definition of generic Tikhonov well-posedness of convex problems is given. There, it
is assumed that either the convex functions are finite-valued and the set of convex functions is
equipped with uniform convergence on bounded sets, or the convex functions are all continuous
on the whole space. See also [28] for generic nature of constrained optimization problems, and
[7, 16, 19, 24] for well-posedness in optimization. For comprehensive generic results on fixed
points of nonexpansive mappings and firmly nonexpansive mappings, we refer the reader to [23].

2 Preliminaries

2.1 Notation
All functions in this paper have their domains in Rn, where Rn is Euclidean space equipped with in-

ner product ⟨x, y⟩ :=
n∑

i=1

xiyi, and induced norm ∥x∥ :=
√

⟨x, x⟩. The extended real line R∪{∞}

is denoted R. We denote the set of natural numbers by N . We use dom f for the domain of f,
int dom f for the interior of the domain of f, bdry dom f for the boundary of the domain of f, and
epi f for the epigraph of f. We use Γ0(X) to represent the set of proper lsc convex functions on the
space X, with the terms proper, lsc, and convex as defined in [5, 27]. More precisely, f is proper
if −∞ ̸∈ f(X) and dom f ̸= ∅; f is lsc at x if xk → x implies lim inf

k→∞
f(xk) ≥ f(x), when this

is true at every x ∈ X we call f lsc on X; f is convex if

(∀x, y ∈ dom f)(∀0 ≤ α ≤ 1) f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

The symbol Gδ is used to indicate a countable intersection of open sets. The identity mapping or
matrix is Id : Rn → Rn : x 7→ x. We use Br(x) for the open ball centered at x of radius r, and
Br[x] for the closed ball. For a set C ⊆ Rn, its closure is denoted by C. The closed line segment
between x, y ∈ Rn is [x, y] := {λx + (1 − λ)y : 0 ≤ λ ≤ 1}. For a sequence of functions
{fγ} ⊆ Γ0(Rn), we use fγ

p→ f to indicate pointwise convergence, fγ
e→ f for epi-convergence,

and fγ
u→ f for uniform convergence to the function f.

2.2 Baire category
Let (X, d) be a metric space, where X is a set and d is a metric on X .

Definition 2.1. A set S ⊆ X is dense in X if every element of X is either in S, or a limit point of
S. A set is nowhere dense in X if the interior of its closure in X is empty.

Definition 2.2. A set S ⊆ X is of first category (meager) if S is a union of countably many nowhere
dense sets. A set S ⊆ X is of second category (generic) if X \ S is of first category.

The following Baire category theorem is essential for this paper.
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Fact 2.3 (Baire). ([32, Theorem 1.47] or [5, Corollary 1.44]) Let (X, d) be a complete metric
space. Then any countable intersection of dense open subsets of X is dense.

Fact 2.4. Finite-dimensional space Rn is separable. That is, Rn has a countable subset that is
dense in Rn .

2.3 Convex analysis
In this section we state several key facts about convex functions that we need in order to prove the
main results in subsequent sections.

2.3.1 Subdifferentials of convex functions

Let f ∈ Γ0(Rn). The set-valued mapping

∂f : Rn ⇒ Rn : x 7→
{
x∗ ∈ Rn | (∀y ∈ Rn) ⟨y − x, x∗⟩+ f(x) ≤ f(y)

}
is the subdifferential operator of f .

Fact 2.5. [5, Theorem 20.40] If f ∈ Γ0(Rn), then ∂f is maximally monotone.

Fact 2.6. ([27, Theorem 12.41], [3, Theorem 2.51]) For any maximally monotone mapping T :
Rn ⇒ Rn, the set domT is almost convex. That is, there exists a convex set C ⊆ Rn such that
C ⊆ domT ⊆ C. The same applies to the set ranT.

Definition 2.7. The Fenchel conjugate of f : Rn → R is defined as

(∀v ∈ Rn) f ∗(v) := sup
x∈Rn

{⟨v, x⟩ − f(x)}.

Fact 2.8. [26, Corollary 23.5.1] If f ∈ Γ0(Rn), then ∂f ∗ is the inverse of ∂f in the sense of
multivalued mappings, i.e. x ∈ ∂f ∗(x∗) if and only if x∗ ∈ ∂f(x).

2.3.2 Convex functions and their Moreau envelopes

Definition 2.9. The Moreau envelope of a proper, lsc function f : Rn → R is defined as

(∀x ∈ Rn) eλf(x) := inf
y

{
f(y) +

1

2λ
∥y − x∥2

}
.

The associated proximal mapping is the (possibly empty) set of points at which this infimum is
achieved, and is denoted Proxλf :

(∀x ∈ Rn) Proxλf (x) := argmin
y

{
f(y) +

1

2λ
∥y − x∥2

}
.
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In terms of the subdifferential of f, the proximal mapping Prox1f = (Id+∂f)−1. In this paper,
without loss of generality we use λ = 1. The theory developed here is equally applicable with any
other choice of λ > 0.

Fact 2.10. ([5, Proposition 12.29] or [27, Theorem 2.26]) Let f ∈ Γ0(Rn). Then e1f : Rn → R is
continuously differentiable on Rn, and its gradient

∇e1f = Id−Prox1f

is 1-Lipschitz continuous, i.e., nonexpansive.

One important concept for studying the convergence of extended-valued functions is that of
epi-convergence, see, e.g., [1, 7, 27]. We first remind the reader of the concepts of limit inferior
and limit superior for a sequence of sets.

Definition 2.11. The distance from a point x to a set S ⊂ Rn is defined by the distance function
dS :

dS(x) := inf
y∈S

∥x− y∥.

Definition 2.12. The limit inferior of a sequence of sets {Sγ}∞γ=1 is denoted lim inf
γ→∞

Sγ, and is

defined
lim inf
γ→∞

Sγ := {x ∈ Rn : lim sup
γ→∞

dSγ (x) = 0}.

Similarly, the limit superior is denoted lim sup
γ→∞

Sγ, and is defined

lim sup
γ→∞

Sγ := {x ∈ Rn : lim inf
γ→∞

dSγ (x) = 0}.

Definition 2.13. The lower epi-limit of a sequence {fγ}∞γ=1 ⊆ Rn is the function having as its
epigraph the outer limit of the sequence of sets epi fγ :

epi(eliminf
γ→∞

fγ) := lim sup
γ→∞

(epi fγ).

Similarly, the upper epi-limit of {fγ}∞γ=1 is the function having as its epigraph the inner limit of
the sets epi fγ :

epi(elimsup
γ→∞

fγ) := lim inf
γ→∞

(epi fγ).

When these two functions coincide, the epi-limit is said to exist and the functions are said to epi-
converge to f. We denote this by using the following notation:

fγ
e→ f if and only if epi fγ → epi f.

Definition 2.14. Let {fγ} be a sequence of functions with the same domain D. The sequence
converges pointwise to a function f, denoted fγ

p→ f, if and only if

(∀x ∈ D) lim
γ→∞

fγ(x) = f(x).
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We refer the reader to [7, 9, 11, 27] for further details on epi-convergence, e.g., continuity,
stability and applications in optimization. The analysis of the limit properties of sequences of
convex functions via their Moreau envelopes is highlighted by the following fact.

Fact 2.15. ([27, Theorem 7.37], [1]) Let {fγ}∞γ=1 ⊆ Γ0(Rn), f ∈ Γ0(Rn). Then

fγ
e→ f if and only if e1fγ

p→ e1f.

Moreover, the pointwise convergence of e1fγ to e1f is uniform on all bounded subsets of Rn, hence
yields epi-convergence to e1f as well.

Remark 2.16. (1). Fact 2.15 would not be valid as it stands in infinite-dimensional space. A
uniform limit on bounded sets of Moreau envelopes will remain a Moreau envelope, but this can
fail to be true when considering pointwise convergence of Moreau envelopes, see, e.g., [1, Remark
2.71].

(2). When X is a Banach space, we refer to Beer [7, p. 263]: for {fγ}∞γ=1 ⊆ Γ0(X), one has
that fγ

aw→ f0 if and only if e1fγ → e1f0 uniformly on bounded subsets of X. When X is infinite
dimensional, Attouch-Wets convergence is a stronger concept than epi-convergence, see, e.g., [7,
p. 235] or [11, Theorem 6.2.14].

Two more nice properties about Moreau envelopes are the following.

Fact 2.17. [27, Example 1.46] For any proper, lsc function f : Rn → R, inf f = inf e1f.

Lemma 2.18. [26, Theorem 31.5] Let f ∈ Γ0(Rn). Then

(∀x ∈ Rn) e1f(x) + e1f
∗(x) =

1

2
∥x∥2.

For more properties of Moreau envelopes of functions, we refer the reader to [1, 5, 26, 27].

2.4 Strong minimizers, coercive convex functions and strongly convex func-
tions

We now present some basic properties of strong minimizers, strongly convex functions, and coer-
cive functions.

Definition 2.19. A function f : Rn → R is said to attain a strong minimum at x̄ ∈ Rn if

(i) f(x̄) ≤ f(x) for all x ∈ dom f, and

(ii) f(xk) → f(x̄) implies xk → x̄.
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In existing literature, a function f having a strong minimizer is also known as (Rn, f) being
well-posed in the sense of Tikhonov, as defined by Dontchev and Zolezzi in [16, Chapter I] and
used in [7, 13, 15, 17]. [16, Theorem 12] shows that f has a strong minimizer x̄ if and only if there
exists a forcing function c such that

f(x) ≥ f(x̄) + c(dist(x, x̄))

where c : 0 ∈ D ⊆ [0,∞) → [0,∞), c(0) = 0, and c(an) → 0 ⇒ an → 0. When f is convex, the
forcing function c can be chosen convex, [19, Proposition 10.1.9]. Chapter III of [16] also contains
several results on generic well-posedness. For further information on strong minimizers, we refer
readers to [12, 14, 19].

Definition 2.20. Following Rockafellar and Wets (see [27, p. 90]), we will call a function f ∈
Γ0(Rn) level-coercive if

lim inf
∥x∥→∞

f(x)

∥x∥
> 0,

and coercive if

lim inf
∥x∥→∞

f(x)

∥x∥
= ∞.

Definition 2.21. A function f ∈ Γ0(Rn) is σ-strongly convex if there exists a constant σ > 0 such
that f − σ

2
∥ · ∥2 is convex. Equivalently, f is σ-strongly convex if there exists σ > 0 such that for

all λ ∈ (0, 1) and for all x, y ∈ Rn,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− σ

2
λ(1− λ)∥x− y∥2.

Fact 2.22. ([10, Exercise 21 p. 83], [27, Theorem 11.8]) Let f ∈ Γ0(Rn). Then

(i) f is level-coercive if and only if 0 ∈ int dom f ∗, and

(ii) f is coercive if and only if dom f ∗ = Rn .

Lemma 2.23. The function f ∈ Γ0(Rn) is σ-strongly convex if and only if e1f is σ
σ+1

-strongly
convex.

Proof. By [27, Proposition 12.60], f is σ-strongly convex if and only if ∇f ∗ is 1
σ

-Lipschitz for
some σ > 0. Now

(e1f)
∗ = f ∗ +

1

2
∥ · ∥2, and

∇(e1f)
∗ = ∇f ∗ + Id .

Suppose that f is σ-strongly convex. Since ∇f ∗ is 1
σ

-Lipschitz, we have that ∇f ∗+Id is
(
1 + 1

σ

)
-

Lipschitz. Hence, ∇(e1f)
∗ is σ+1

σ
-Lipschitz. Then e1f is σ

σ+1
-strongly convex, and we have proved

one direction of the lemma. Working backwards with the same argument, the other direction is
proved as well.
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Lemma 2.24. Let f ∈ Γ0(Rn). Then

(i) f is level-coercive if and only if e1f is level-coercive, and

(ii) f is coercive if and only if e1f is coercive.

Proof. Since (e1f)
∗ = f ∗ + 1

2
∥ · ∥2, we have dom(e1f)

∗ = dom f ∗. The result follows from
Fact 2.22.

Lemma 2.25. Let f ∈ Γ0(Rn) be strongly convex. Then f is coercive.

Proof. Since f is strongly convex, f can be written as g+ σ
2
∥ · ∥2 for some g ∈ Γ0(Rn) and σ > 0.

Since g is convex, g is bounded below by a hyperplane. That is, there exist x̃ ∈ Rn and r ∈ R such
that

g(x) ≥ ⟨x̃, x⟩+ r for all x ∈ Rn .

Hence,
f(x) ≥ ⟨x̃, x⟩+ r +

σ

2
∥x∥2 for all x ∈ Rn .

This gives us that

lim inf
∥x∥→∞

f(x)

∥x∥
= ∞.

Lemma 2.26. Let f : Γ0(Rn) → R be strongly convex. Then the (unique) minimizer of f is a
strong minimizer.

Proof. Let f(xk) → inf
x
f(x). Since f is coercive by Lemma 2.25, {xk}∞k=1 is bounded. By the

Bolzano-Weierstrass Theorem, {xk}∞k=1 has a convergent subsequence xkj → x̄. Since f is lsc, we
have that lim inf

k→∞
f(xk) ≥ f(x̄). Hence,

inf
x
f(x) ≤ f(x̄) ≤ inf

x
f(x).

Therefore, f(x̄) = inf
x
f(x). Since strong convexity implies strict convexity, argmin f(x) = {x̄}

is unique. As every subsequence of {xk}∞k=1 converges to the same limit x̄, we conclude that
xk → x̄.

Remark 2.27. See [32, Proposition 3.5.8] for a stronger and more general result regarding Lem-
mas 2.25 and 2.26.

In view of [32, Corollary 3.5.11(iii)], when f is strongly convex with strong minimizer x̄,
taking (x̄, 0) ∈ gr ∂f one has the existence of c > 0 such that

f(x) ≥ f(x̄) +
c

2
∥x− x̄∥2.
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From this, we have

∥xk − x̄∥ ≤
√

2

c
[f(xk)− f(x̄)] for all k ∈ N .

This ensures a bound on the rate of convergence of the minimizing sequence to the minimizer in
terms of function values.

Note that a convex function can be coercive, but fail to be strongly convex. Consider the
following example.

Example 2.28. Let f : R → R, f(x) = x4. The function f is coercive and attains a strong
minimum at x̄ = 0, but is not strongly convex.

Proof. It is clear that f is coercive. By definition, f is strongly convex if and only if there exists
σ > 0 such that g(x) := x4 − σ

2
x2 is convex. Since g is a differentiable, univariate function,

we know it is convex if and only if its second derivative is nonnegative for all x ∈ R . Since
g′′(x) = 12x2 − σ is clearly not nonnegative for any fixed σ > 0 and all x ∈ R, we have that g
is not convex. Therefore, f is not strongly convex. Clearly, zero is the minimum and minimizer
of f. Let {xk}∞k=1 ⊆ R be such that f(xk) → f(0) = 0. Then lim

n→∞
x4
k = 0 implies lim

n→∞
xk = 0.

Therefore, f attains a strong minimum.

The following additional counterexample is thanks to one of the referees.

Example 2.29. Let f : R → R, f(x) := |x|p, where p > 1. Then f is coercive for all such p, but
f is strongly convex if and only if p = 2.

Proof. It is elementary to show that f is coercive. Let σ > 0, and define g(x) := f(x) − σ
2
x2.

Then g′′(x) = p(p− 1)xp−2 − σ. In order to conclude that f is strongly convex, we must have

g′′(x) ≥ 0 for all x ∈ R . (2.1)

However, if p > 2 then inequality (2.1) fails for |x| small, specifically for |x| <
(

σ
p(p−1)

) 1
p−2

, and
if 1 < p < 2 then inequality (2.1) fails for |x| large. Only for p = 2 can we choose σ such that
inequality (2.1) is true for all x.

3 A complete metric space using Moreau envelopes
The principal tool we use is the Baire category theorem. To this end, we need a Baire space.
In this section, we establish a complete metric space whose distance function makes use of the
Moreau envelope. This metric has been used by Attouch and Wets in [3, page 38]. The distances
used in the next section refer to the metric established here. In Beer [7, p. 241], it is left as an
exercise to show that the space defined in this section is a complete metric space. For the purpose
of self-containment, we include a full proof here.

We begin with some properties on the Moreau envelope. Set

e1(Γ0(Rn)) := {e1f : f ∈ Γ0(Rn)}.
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Theorem 3.1. The set e1(Γ0(Rn)) is a convex set in Γ0(Rn).

Proof. Let f1, f2 ∈ Γ0(Rn), λ ∈ [0, 1]. Then e1f1, e1f2 ∈ e1(Γ0(Rn)). We need to show that
λe1f1 + (1 − λ)e1f2 ∈ e1(Γ0(Rn)). By [6, Theorem 6.2] with µ = 1 and n = 2, we have
that λe1f1 + (1 − λ)e1f2 is the Moreau envelope of the proximal average function P1(f, λ). By
[6, Corollary 5.2], we have that P1(f, λ) ∈ Γ0(Rn). Hence, e1P1(f, λ) ∈ e1(Γ0(Rn)), and we
conclude that e1(Γ0(Rn)) is a convex set.

On e1(Γ0(Rn)), define a metric by

d̃(f̃ , g̃) :=
∞∑
i=1

1

2i
∥f̃ − g̃∥i

1 + ∥f̃ − g̃∥i
, (3.1)

where ∥f̃ − g̃∥i := sup
∥x∥≤i

|f̃(x)− g̃(x)| and f̃ , g̃ ∈ e1(Γ0(Rn)).

Note that a sequence of functions in (e1(Γ0(Rn)), d̃) converges if and only if the sequence
converges uniformly on bounded sets, if and only if the sequence converges pointwise on Rn. The
latter fails in infinite-dimensional space.

Theorem 3.2. The metric space (e1(Γ0(Rn)), d̃) is complete.

Proof. Consider a Cauchy sequence {e1fk}k∈N in (e1(Γ0(Rn)), d̃) where fk ∈ Γ0(Rn) for k ∈ N.
Since fk ∈ Γ0(Rn), by Fact 2.10, e1fk is continuous and differentiable on Rn. Then e1fk

p→ g
where g : Rn → R is continuous and convex. Our objective is to prove that g is in fact the Moreau
envelope of a proper, lsc, convex function. Since (e1fk)k∈N and g are convex and full-domain, by
[27, Theorem 7.17] we have that e1fk

e→ g, and e1fk
u→ g on bounded sets of Rn. By [27, Theorem

11.34], we have that (e1fk)∗
e→ g∗, that is, f ∗

k + 1
2
∥ · ∥2 e→ g∗ and g∗ is proper, lsc, and convex.

Hence, f ∗
k

e→ g∗ − 1
2
∥ · ∥2 by [27, Exercise 7.8(a)]. As {f ∗

k}k∈N is a sequence of convex functions,
by [27, Theorem 7.17] we have that g∗ − 1

2
∥ · ∥2 is convex. Since g∗ − 1

2
∥ · ∥2 is proper, lsc, and

convex, there exists h ∈ Γ0(Rn) such that g∗ − 1
2
∥ · ∥2 = h∗. Applying [27, Theorem 11.34] again,

we obtain fk
e→ h. Finally, using Fact 2.15 or [27, Theorem 7.37] we see that e1fk

p→ e1h, and
e1fk

u→ e1h on bounded subsets of Rn as well. Therefore, (e1(Γ0(Rn)), d̃) is complete. 1

In view of Fact 2.15, we give the definition of the Attouch-Wets metric on Γ0(Rn) as follows.

Definition 3.3 (Attouch-Wets metric). For f, g ∈ Γ0(Rn), define the distance function d :

d(f, g) :=
∞∑
i=1

1

2i
∥e1f − e1g∥i

1 + ∥e1f − e1g∥i
.

1A referee points out that this can also be obtained by proving that the σ-strong convexity property is preserved
in the limit, using the characterization of the strong convexity in terms of the subdifferentials, and the corresponding
graphical convergence of the subdifferentials.
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In Γ0(Rn), there are other metrics that induce the same topology as the Attouch-Wets metric;
see Remark 3.6 below. In order to prove completeness of the space, we state the following lemma,
whose simple proof is omitted.

Lemma 3.4. Define a : [0,∞) → R, a(t) := t
1+t

. Then

a) a is an increasing function, and

b) t1, t2 ≥ 0 implies that a(t1 + t2) ≤ a(t1) + a(t2).

Proposition 3.5. The space (Γ0(Rn), d) where d is the metric defined in Definition 3.3, is a com-
plete metric space.

Proof. Items M1-M4 below show that (Γ0(Rn), d) is a metric space, and item C that follows shows
that it is complete.
M1: Since

∞∑
i=1

1

2i
= 1, and 0 ≤ ∥e1f − e1g∥i

1 + ∥e1f − e1g∥i
< 1 for all i,

we have that
1

2i
≥ 1

2i
∥e1f − e1g∥i

1 + ∥e1f − e1g∥i
for all i.

Then
0 ≤ d(f, g) ≤ 1 for all f, g ∈ Γ0(Rn).

Hence, d is real-valued, finite, and non-negative.
M2: We have

d(f, g) = 0 ⇔
∞∑
i=1

1

2i
∥e1f − e1g∥i

1 + ∥e1f − e1g∥i
= 0,

⇔ ∥e1f − e1g∥i = 0 for all i,
⇔ e1f(x)− e1g(x) = 0 for all x,
⇔ e1f = e1g,

⇔ f = g [27, Corollary 3.36].

Hence, d(f, g) = 0 if and only if f = g.
M3: The fact that d(f, g) = d(g, f) is trivial.
M4: By the triangle inequality,

∥e1f − e1g∥i ≤ ∥e1f − e1h∥i + ∥e1h− e1g∥i for all f, g, h ∈ Γ0(Rn).

By applying Lemma 3.4(a), we have

∥e1f − e1g∥i
1 + ∥e1f − e1g∥i

≤ ∥e1f − e1h∥i + ∥e1h− e1g∥i
1 + ∥e1f − e1h∥i + ∥e1h− e1g∥i

.
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Then we apply Lemma 3.4(b) with t1 = ∥e1f − e1h∥i and t2 = ∥e1h− e1g∥i, and we have

∥e1f − e1g∥i
1 + ∥e1f − e1g∥i

≤ ∥e1f − e1h∥i
1 + ∥e1f − e1h∥i

+
∥e1h− e1g∥i

1 + ∥e1h− e1g∥i
.

Multiplying both sides by 1
2i

and taking the summation over i, we obtain the distance functions,
which yields d(f, g) ≤ d(f, h) + d(h, g) for all f, g, h ∈ Γ0(Rn).

C: Let {fk}∞k=1 be a Cauchy sequence in (Γ0(Rn), d). Then for each ε > 0 there exists Nε ∈ N such
that d(fj, fk) < ε for all j, k ≥ Nε. Fix ε > 0. Then there exists N ∈ N such that

∞∑
i=1

1

2i
∥e1fj − e1fk∥i

1 + ∥e1fj − e1fk∥i
< ε for all j, k ≥ N.

Then for any i ∈ N fixed, we have ∥e1fj−e1fk∥i
1+∥e1fj−e1fk∥i

< 2iε, so that ∥e1fj − e1fk∥i < 2iε
1−2iε

=: ε̂ > 0,

for all j, k ≥ N. Notice that ε̂ ↘ 0 as ε ↘ 0. This gives us that {e1fk}∞k=1 is a Cauchy sequence
on Bi(0) for each i ∈ N, so that e1fk

p→ g for some finite-valued convex function g. By the same
arguments as in the proof of Theorem 3.2, we know that g = e1h with h ∈ Γ0(Rn). Hence fk → h
in terms of metric d. Therefore, (Γ0(Rn), d) is closed, and is a complete metric space.

Remark 3.6. (1). This result can also be reached via [2, Theorem 2.1], using the ρ-Hausdorff
distance for epigraphs; and this result is also mentioned as an exercise in [7, p. 241]. We refer the
reader to [7, Chapter 7] for more details on the Attouch-Wets topology for convex functions.

(2). When X is infinite dimensional, on the set of proper lower semicontinuous convex func-
tion Γ0(X), a variety different topologies show up, such as Kuratowski-Painlevé convergence,
Attouch-Wets convergence, Mosco convergence, Choquet-Wijsman convergence, etc. See Beer [7],
Lucchetti [19], Borwein-Vanderwerff [11], Attouch [1]. However, when X is finite dimensional,
all these convergences coincide [11, Theorem 6.2.13].

On the set of Fenchel conjugates

(Γ0(Rn))∗ := {f ∗ : f ∈ Γ0(Rn)}

define a metric by d̂(f ∗, g∗) := d(f ∗, g∗) for f ∗, g∗ ∈ (Γ0(Rn))∗. Observe that Γ0(Rn) = (Γ0(Rn))∗.

Corollary 3.7. Consider two metric spaces (Γ0(Rn), d) and ((Γ0(Rn))∗, d̂). Define

T : (Γ0(Rn), d) → ((Γ0(Rn))∗, d̂) : f 7→ f ∗.

Then T is a bijective isometry. Consequently, (Γ0(Rn), d) and ((Γ0(Rn))∗, d̂) are isometric.

Proof. Clearly T is onto. Also, T is injective because of the Fenchel-Moreau Theorem [5, Theo-
rem 13.32] or [26, Corollary 12.2.1]. To see this, let Tf = Tg. Then f ∗ = g∗, so f = (f ∗)∗ =
(g∗)∗ = g. It remains to show that T is an isometry:

(∀f, g ∈ Γ0(Rn)) d(f, g) = d(f ∗, g∗) = d̂(Tf, Tg).
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To see this, using Lemma 2.18 we have

d(f ∗, g∗) =
∞∑
i=1

1

2i

sup
∥x∥≤i

|e1f ∗(x)− e1g
∗(x)|

1 + sup
∥x∥≤i

|e1f ∗(x)− e1g∗(x)|

=
∞∑
i=1

1

2i

sup
∥x∥≤i

∣∣1
2
∥x∥2 − e1f(x)− 1

2
∥x∥2 + e1g(x)

∣∣
1 + sup

∥x∥≤i

∣∣1
2
∥x∥2 − e1f(x)− 1

2
∥x∥2 + e1g(x)

∣∣
=

∞∑
i=1

1

2i

sup
∥x∥≤i

|e1g(x)− e1f(x)|

1 + sup
∥x∥≤i

|e1g(x)− e1f(x)|

= d(f, g).

By Theorem 3.2, (e1(Γ0(Rn)), d̃) is a complete metric space.

Corollary 3.8. Consider two metric spaces (Γ0(Rn), d) and (e1(Γ0(Rn)), d̃). Define

T : Γ0(Rn) → e1(Γ0(Rn)) : f 7→ e1f.

Then T is a bijective isometry, so (Γ0(Rn), d) and (e1(Γ0(Rn)), d̃) are isometric.

4 Baire category results
This section is devoted to the main work of this paper. Ultimately, we show that the set of strongly
convex functions is a meager (Baire category one) set, while the set of convex functions that attain
a strong minimum is a generic (Baire category two) set.

4.1 Characterizations of the strong minimizer
The first proposition describes the relationship between a function and its Moreau envelope, per-
taining to the strong minimum. Several more results regarding strong minima follow.

Proposition 4.1. Let f : Rn → R . Then f attains a strong minimum at x̄ if and only if e1f attains
a strong minimum at x̄.

Proof. (⇒) Assume that f attains a strong minimum at x̄. Then

min
x

f(x) = min
x

e1f(x) = f(x̄) = e1f(x̄).
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Let {xk} be such that e1f(xk) → e1f(x̄). We need to show that xk → x̄. Since

e1f(xk) = f(vk) +
1

2
∥vk − xk∥2

for some vk, and f(vk) ≥ f(x̄), we have

0 ≤ 1

2
∥xk − vk∥2 + f(vk)− f(x̄) = e1f(xk)− e1f(x̄) → 0. (4.1)

Since both 1
2
∥xk − vk∥2 ≥ 0 and f(vk) − f(x̄) ≥ 0, equation (4.1) tells us that xk − vk → 0 and

f(vk) → f(x̄). Since x̄ is the strong minimizer of f, we have vk → x̄. Therefore, xk → x̄, and e1f
attains a strong minimum at x̄.
(⇐) Assume that e1f attains a strong minimum at x̄, e1f(x̄) = min e1f. Then e1f(xk) → e1f(x̄)
implies that xk → x̄. Let f(xk) → f(x̄). We have

f(x̄) ≤ e1f(x̄) ≤ e1f(xk) ≤ f(xk).

Since f(xk) → f(x̄), we obtain

e1f(xk) → f(x̄) = e1f(x̄).

Therefore, xk → x̄, and f attains a strong minimum at x̄.

Proposition 4.2. Let f : Rn → R have a strong minimizer x̄. Then for all m ∈ N,

inf
∥x−x̄∥≥ 1

m

f(x) > f(x̄).

Proof. This is clear by the definition of strong minimizer. Indeed, suppose that there exists m ∈ N
such that inf

∥x−x̄∥≥ 1
m

f(x) = f(x̄). Then there exists a sequence {xk}∞k=1 with ∥xk − x̄∥ ≥ 1
m

and

lim
k→∞

f(xk) = f(x̄). Since x̄ is the strong minimizer of f, we have xk → x̄, a contradiction.

Corollary 4.3. Let f : Rn → R have a strong minimizer x̄. Then for all m ∈ N,

inf
∥x−x̄∥≥ 1

m

e1f(x) > e1f(x̄).

Proof. This follows directly from Propositions 4.1 and 4.2.

The next result describes a distinguished property of convex functions defined in Rn .

Theorem 4.4. Let f ∈ Γ0(Rn). Then f has a strong minimizer if and only if f has a unique
minimizer.
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Proof. (⇒) By definition, if f has a strong minimizer, then that minimizer is unique.
(⇐) Suppose f has a unique minimizer x̄. Because f ∈ Γ0(Rn), by [26, Theorem 8.7], all sublevel-
sets {x : f(x) ≤ α}, for any α ≥ f(x̄), have the same recession cone. Since the recession cone of
{x : f(x) ≤ f(x̄)} = {x̄} is 0, each sublevel set of f is bounded. Since f has a unique minimizer
x̄ and all sublevel sets of f are bounded, we have that x̄ is in fact a strong minimizer. Indeed, this
follows by applying [11, Fact 4.4.8], [11, Theorem 4.4.10], and [11, Theorem 5.23(e)(c)] in Rn

because ∂f ∗(0) = argmin f = {x̄}.

Remark 4.5. See also [11, Exercise 5.2.1 p. 234].

Remark 4.6. A more self-contained proof of Theorem 4.4, more in the style of that of Lemma 4.20,
is provided below.

Proof. Let f(xk) → f(x̄). We need to show that xk → x̄. Suppose the contrary, xk ̸→ x̄. Taking a
subsequence if necessary, we can assume that there exists m ∈ N such that

∥xk − x̄∥ ≥ 1

m
for all k ∈ N .

Select yk such that

yk ∈ [xk, x̄] ∩
{
x : m ≥ ∥x− x̄∥ ≥ 1

m

}
.

Then for all k, we have that ∥yk∥ ≤ m, and that there exists 0 ≤ λk ≤ 1 such that

yk = λkxk + (1− λk)x̄.

By the convexity of f, we have that for all k,

f(yk) ≤ λkf(xk) + (1− λk)f(x̄).

As {yk} is bounded, λk is bounded. Taking convergent subsequences if necessary, we may assume
that

yk → ȳ, and λk → λ̄.

Then

f(ȳ) ≤ lim inf
k→∞

f(yk)

≤ λ̄f(x̄) + (1− λ̄)f(x̄)

= f(x̄).

As f(ȳ) ≥ f(x̄), we have f(ȳ) = f(x̄). Since ∥ȳ − x̄∥ ≥ 1
m
, we have ȳ ̸= x̄, which contradicts

the fact that x̄ is the unique minimizer of f.
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Example 4.7. Theorem 4.4 can fail when the function is nonconvex. Consider the continuous but
nonconvex function f : R → R, f(x) = x2

x4+1
.

The function has a unique minimizer x̄ = 0, but the minimizer is not strong, as any sequence {xk}
that tends to ±∞ gives a sequence of function values that tends to f(x̄).

Example 4.8. Theorem 4.4 can also fail in infinite-dimensional space. Consider the continuous,
convex function

f : l2 → R : x 7→ f(x) :=
∞∑
k=1

1

k
x2
k.

This function has a unique minimizer x̄ = 0, but x̄ is not a strong minimizer because f(ek) = 1
k
→

0 and ek ̸→ 0. Here, ek = (0, . . . , 0, 1, 0, . . .), where the 1 is in the kth position. See also [7, p.
268, Exercise 2].

Using Proposition 4.2 and Corollary 4.3, we can now single out two sets in Γ0(Rn) which are
very important for our later proofs.

Definition 4.9. For any m ∈ N, define the sets Um and Em as follows:

Um :=

{
f ∈ Γ0(Rn) : there exists z ∈ Rn such that inf

∥x−z∥≥ 1
m

f(x)− f(z) > 0

}
,

Em :=

{
f ∈ Γ0(Rn) : there exists z ∈ Rn such that inf

∥x−z∥≥ 1
m

e1f(x)− e1f(z) > 0

}
.

Proposition 4.10. Let f ∈
∩

m∈N
Um. Then f attains a strong minimum on Rn .

Proof. The proof follows the method of [14, Theorem II.1]. Since f ∈
∩

m∈N
Um, we have that for

each m ∈ N there exists zm ∈ Rn such that

f(zm) < inf
∥x−zm∥≥ 1

m

f(x).
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Suppose that ∥zp − zm∥ ≥ 1
m

for some p > m. By the definition of zm, we have

f(zp) > f(zm). (4.2)

Since ∥zm − zp∥ ≥ 1
m

> 1
p
, we have

f(zm) > f(zp)

by the definition of zp. This contradicts inequality (4.2). Thus, ∥zp − zm∥ < 1
m

for each p > m.
This gives us that {zm}∞m=1 is a Cauchy sequence that converges to some x̄ ∈ Rn . It remains to be
shown that x̄ is the strong minimizer of f. Since f is lsc, we have

f(x̄) ≤ lim inf
m→∞

f(zm)

≤ lim inf
m→∞

(
inf

∥x−zm∥≥ 1
m

f(x)

)
≤ inf

x∈Rn \{x̄}
f(x).

Let {yk}∞k=1 ⊆ Rn be such that f(yk) → f(x̄), and suppose that yk ̸→ x̄. Dropping to a subse-
quence if necessary, there exists ε > 0 such that ∥yk − x̄∥ ≥ ε for all k. Thus, there exists p ∈ N
such that ∥yk − zp∥ ≥ 1

p
for all k ∈ N . Hence,

f(x̄) ≤ f(zp) < inf
∥x−zp∥≥ 1

p

f(x) ≤ f(yk)

for all k ∈ N, a contradiction to the fact that f(yk) → f(x̄). Therefore, x̄ is the strong minimizer
of f.

Theorem 4.11. Let f ∈
∩

m∈N
Em. Then e1f attains a strong minimum on Rn, so f attains a strong

minimum on Rn .

Proof. Applying Proposition 4.10, for each f ∈
∩

m∈N
Em, e1f has a strong minimizer on Rn . By

Proposition 4.1, each corresponding f has the same corresponding strong minimizer.

4.2 The set of strongly convex functions is dense, but first category
Next, we turn our attention to the set of strongly convex functions. The objectives here are to show
that the set is contained in both Um and Em, dense in (Γ0(Rn), d), and meager in (Γ0(Rn), d).

Theorem 4.12. Let f : Rn → R be strongly convex. Then f ∈ Um and f ∈ Em for all m ∈ N .

Proof. Since f is strongly convex, f has a unique minimizer z. By Lemma 2.26, z is a strong
minimizer, so that for any sequence {xk} such that f(xk) → f(x̄), we must have xk → x̄. We
want to show that

inf
∥x−z∥≥ 1

m

f(x)− f(z) > 0. (4.3)
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For any m ∈ N, equation (4.3) is true by Proposition 4.2. Therefore, f ∈ Um for all m ∈ N . By
Lemma 2.23, e1f is strongly convex. Therefore, by the same reasoning as above, f ∈ Em for all
m ∈ N .

We will need the following characterizations of strongly convex functions in later proofs. Note
that (i)⇒(iii) has been done by Rockafellar [25].

Lemma 4.13. Let f ∈ Γ0(Rn). The following are equivalent:

(i) f is strongly convex.

(ii) Prox1f = k Prox1g for some 0 ≤ k < 1 and g ∈ Γ0(Rn).

(iii) Prox1f = kN for some 0 ≤ k < 1 and N : Rn → Rn nonexpansive.

Proof. (i)⇒(ii): Assume that f is strongly convex. Then f = g+σq where g ∈ Γ0(Rn), q = 1
2
∥·∥2,

and σ > 0. We have

Prox1f = ((1 + σ) Id+∂g)−1 =

(
(1 + σ)

(
Id+

∂g

1 + σ

))−1

(4.4)

=

(
Id+

∂g

1 + σ

)−1(
Id

1 + σ

)
. (4.5)

Define g̃(x) = (1 + σ)g(x/(1 + σ)). Then g̃ ∈ Γ0(Rn), ∂g̃ = ∂g ◦
(

Id
1+σ

)
, so

Prox1g̃ =

(
Id+∂g ◦

(
Id

1 + σ

))−1

=

(
(1 + σ)

(
Id+

∂g

1 + σ

)
◦
(

Id

1 + σ

))−1

(4.6)

= (1 + σ)

(
1 +

∂g

1 + σ

)−1

◦
(

Id

1 + σ

)
(4.7)

= (1 + σ) Prox1f . (4.8)

Therefore, Prox1f = 1
1+σ

Prox1g̃.
(ii)⇒(i): Assume Prox1f = k Prox1g for some 0 ≤ k < 1 and g ∈ Γ0(Rn). If k = 0, then

f = ι{0}, and f is obviously strongly convex. Let us assume 0 < k < 1. The assumption
(Id+∂f)−1 = k(Id+∂g)−1 gives Id+∂f = (Id+∂g) ◦ (Id /k) = Id /k + ∂g ◦ (Id /k), so

∂f = (1/k − 1) Id+∂g(Id /k).

Since 1/k > 1 and ∂g ◦ (Id /k) is monotone, we have that ∂f is strongly monotone, which implies
that f is strongly convex.

(ii)⇒(iii): This is clear because Prox1g is nonexpansive, see, e.g., [5, Proposition 12.27].
(iii)⇒(ii): Assume Prox1f = kN where 0 ≤ k < 1 and N is nonexpansive. If k = 0, then

Prox1f = 0 = 0 · 0, so (ii) holds because Prox1ι{0} = 0. If 0 < k < 1, then N = 1/k Prox1f . As

Prox1f = (Id+∂f)−1 = ∇(q + f)∗ = ∇e1(f
∗),
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we have N = ∇(e1(f
∗)/k). This means that N is nonexpansive and the gradient of a differentiable

convex function. By the Baillon-Haddad theorem [4] or [5, Corollary 18.16], N = Prox1g for some
g ∈ Γ0(Rn). Therefore, Prox1f = k Prox1g, i.e., (ii) holds true.

Theorem 4.14. The set of strongly convex functions is dense in (Γ0(Rn), d). Equivalently, the set
of strongly convex functions is dense in (e1(Γ0(Rn)), d̃).

Proof. Let 0 < ε < 1 and f ∈ Γ0(Rn). It will suffice to find h ∈ Γ0(Rn) such that h is strongly
convex and d(h, f) < ε. For 0 < σ < 1, define g ∈ Γ0(Rn) by way of the proximal mapping:

Prox1g := (1− σ) Prox1f = (1− σ) Prox1f +σ Prox1ι{0} .

Such a g ∈ Γ0(Rn) does exists because g is the proximal average of f and ι{0} by [6], and g is
strongly convex because of Lemma 4.13. Define h ∈ Γ0(Rn) by

h := g − e1g(0) + e1f(0).

Indeed, some calculations give

h = (1− σ)f

(
·

1− σ

)
+

σ

1− σ
q + σe1f(0). (4.9)

Then e1h = e1g − e1g(0) + e1f(0), so that

e1h(0) = e1f(0), (4.10)

and Prox1h = Prox1g . Fix N large enough that
∞∑

i=N

1
2i
< ε

2
. Then

∞∑
i=N

1

2i
∥e1f − e1g∥i

1 + ∥e1f − e1g∥i
≤

∞∑
i=N

1

2i
<

ε

2
. (4.11)

Choose σ such that
0 < σ <

ε

2− ε

1

N(N + ∥Prox1f (0)∥))
. (4.12)

This gives us that
σN(N + ∥Prox1f (0)∥)

1 + σN(N + ∥Prox1f (0)∥)
<

ε

2
. (4.13)

By equation (4.10) and the Mean Value Theorem, for some c ∈ [x, 0] we have

e1h(x)− e1f(x) = e1h(x)− e1f(x)− (e1h(0)− e1f(0))

= ⟨∇e1h(c)−∇e1f(c), x− 0⟩
= ⟨(Id−Prox1h)(c)− (Id−Prox1f )(c), x− 0⟩
= ⟨−Prox1h(c) + Prox1f (c), x− 0⟩
= ⟨−(1− σ) Prox1f (c) + Prox1f (c), x⟩
= ⟨σ Prox1f (c), x⟩.
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Using the triangle inequality, the Cauchy-Schwarz inequality, and the fact that Prox1f is nonexpan-
sive, we obtain

|e1h(x)− e1f(x)| ≤ σ∥Prox1f (c)∥∥x∥
= σ∥Prox1f (c)− Prox1f (0) + Prox1f (0)∥∥x∥
≤ σ(∥Prox1f (c)− Prox1f (0)∥+ ∥Prox1f (0)∥)∥x∥
≤ σ(∥c∥+ ∥Prox1f (0)∥)∥x∥
≤ σ(∥x∥+ ∥Prox1f (0)∥)∥x∥
≤ σN(N + ∥Prox1f (0)∥),

when ∥x∥ ≤ N. Therefore, ∥e1h − e1f∥N ≤ σN(N + ∥Prox1f (0)∥). Applying equation (4.13),
this implies that

∥e1f − e1g∥N
1 + ∥e1f − e1g∥N

≤
σN(N + ∥Prox1f (0)∥)

1 + σN(N + ∥Prox1f (0)∥)
<

ε

2
. (4.14)

Now considering the first N − 1 terms of our d function, we have

N−1∑
i=1

1

2i
∥e1f − e1g∥i

1 + ∥e1f − e1g∥i
≤

N−1∑
i=1

1

2i
∥e1f − e1g∥N

1 + ∥e1f − e1g∥N

=
∥e1f − e1g∥N

1 + ∥e1f − e1g∥N

N−1∑
i=1

1

2i

<
∥e1f − e1g∥N

1 + ∥e1f − e1g∥N
. (4.15)

When inequality (4.12) holds, combining inequalities (4.11), (4.14), and (4.15) yields d(h, f) < ε.
Hence, for any arbitrary f ∈ Γ0(Rn) and 0 < ε < 1, there exists a strongly convex function
h ∈ Γ0(Rn) such that d(h, f) < ε. That is, the set of strongly convex functions is dense in
(Γ0(Rn), d). Because (Γ0(Rn), d) and (e1(Γ0(Rn)), d̃) are isometric by Corollary 3.8, it suffices to
apply Lemma 2.23. The proof is complete.

Remark 4.15. A shorter proof can be provided by approximating f ∈ Γ0(Rn) with f + ε∥ · ∥2.
One can use either [7, Theorem 7.4.5], or the fact that f + ε∥ · ∥2 converges uniformly to f on
bounded subsets of dom f. When ε ↓ 0, clearly f + ε∥ · ∥2 converges epigraphically to f , which
gives the Attouch-Wets convergence because we are in a finite dimension setting. To quantify the
epigraphical convergence in terms of the distance d based on Moreau envelopes (Definition 3.3),
one has

e1(f + ε∥ · ∥2) = (2ε+ 1)e1

(
f

2ε+ 1

)(
·

2ε+ 1

)
+

ε

2ε+ 1
∥ · ∥2,

which indeed converges to e1f uniformly on bounded sets of Rn.

Theorem 4.16. The set of strongly convex functions is meager in (e1(Γ0(Rn)), d̃) where d̃ is given
by (3.1). Equivalently, in (Γ0(Rn), d) the set of strongly convex function is meager.
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Proof. Denote the set of strongly convex functions in e1(Γ0(Rn)) by S. Define

Fm :=

{
g ∈ e1(Γ0(Rn)) : g − 1

2m
∥ · ∥2 is convex on Rn

}
.

We show that

a) S =
∪

m∈N
Fm,

b) for each m ∈ N, the set Fm is closed in e1(Γ0(Rn)), and

c) for each m ∈ N, the set Fm has empty interior.

Then S will have been shown to be a countable union of closed, nowhere dense sets, hence first
category.

a) (⇒) Let f ∈ S. Then there exists σ > 0 such that f − σ
2
∥ · ∥2 is convex. Note that this

means f − σ̃
2
∥ · ∥2 is convex for all σ̃ ∈ (0, σ). Since σ > 0, there exists m ∈ N such that

0 < 1
m

< σ. Hence, f − 1
2m

∥ · ∥2 is convex, and f ∈ Fm. Therefore, S ⊆
∪

m∈N
Fm.

(⇐) Let f ∈ Fm for some m ∈ N . Then f − 1
2m

∥ · ∥2 is convex. Thus, with σ = 1
m
,

we have that there exists σ > 0 such that f − σ
2
∥ · ∥2 is convex, which is the definition of

strong convexity of f. Therefore, Fm ⊆ S, and since this is true for every m ∈ N, we have∪
m∈N

Fm ⊆ S.

b) Let g ̸∈ Fm. Then g − 1
2m

∥ · ∥2 is not convex. Equivalently, there exist λ ∈ (0, 1) and
x, y ∈ Rn such that

g(λx+ (1− λ)y)− λg(x)− (1− λ)g(y)

λ(1− λ)
> −∥x− y∥2

2m
. (4.16)

Let N > max{∥x∥, ∥y∥}. Choose ε > 0 such that when d̃(f, g) < ε for f ∈ e1(Γ0(Rn)),
we have ∥f − g∥N < ε̃ for some ε̃ > 0. In particular,

f(λx+ (1− λ)y)− λf(x)− (1− λ)f(y)

λ(1− λ)
=
g(λx+ (1− λ)y)− λg(x)− (1− λ)g(y)

λ(1− λ)

+
(f − g)(λx+ (1− λ)y)− λ(f − g)(x)− (1− λ)(f − g)(y)

λ(1− λ)

>
g(λx+ (1− λ)y)− λg(x)− (1− λ)g(y)

λ(1− λ)
− 4ε̃

λ(1− λ)
.

Hence, when ε̃ is sufficiently small, which can be achieved by making ε sufficiently small,
we have

f(λx+ (1− λ)y)− λf(x)− (1− λ)f(y)

λ(1− λ)
> −∥x− y∥2

2m
.

This gives us, by equation (4.16), that f − 1
2m

∥ · ∥2 is not convex. Thus, f ̸∈ Fm, so
e1(Γ0(Rn)) \ Fm is open, and therefore Fm is closed.
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c) That intFm = ∅ is equivalent to saying that e1(Γ0(Rn)) \ Fm is dense. Thus, it suffices
to show that for every ε > 0 and every g ∈ e1(Γ0(Rn)), the open ball Bε(g) contains an
element of e1(Γ0(Rn)) \ Fm.
If g ∈ e1(Γ0(Rn)) \ Fm, then there is nothing to prove. Assume that g ∈ Fm. Then g is
1
2m

-strongly convex, and has a strong minimizer x̄ by Lemma 2.26. As g ∈ e1(Γ0(Rn)),
g = e1f for some f ∈ Γ0(Rn). We consider two cases.

Case 1: Suppose that for every 1
k
> 0, there exists xk ̸= x̄ such that f(xk) < f(x̄) + 1

k
. Define

hk := max
{
f, f(x̄) + 1

k

}
. Then

minhk = f(x̄) +
1

k
, f ≤ hk < f +

1

k
,

so that e1f ≤ e1hk ≤ e1f + 1
k
. We have gk := e1hk ∈ e1(Γ0(Rn)), and ∥gk − g∥i < 1

k

for all i ∈ N . Choosing k sufficiently large guarantees that d̃(gk, g) < ε. We see that
gk does not have a strong minimizer by noting that for every k, f(x̄) < f(x̄) + 1

k
,

f(xk) < f(x̄) + 1
k
, and hk(x̄) = hk(xk) = f(x̄) + 1

k
. Thus, hk does not have a strong

minimizer, which implies that gk = e1hk does not either, by Proposition 4.1. Therefore,
gk ̸∈ Fm.

Case 2: If Case 1 is not true, then there exists k such that f(x) ≥ f(x̄)+ 1
k

for every x ̸= x̄. Then
we claim that f(x) = ∞ for all x ̸= x̄. Suppose for the purpose of contradiction that
there exists x ̸= x̄ such that f(x) < ∞. As f ∈ Γ0(Rn), the function ϕ : [0, 1] → R
defined by ϕ(t) := f(tx + (1 − t)x̄) is continuous by [32, Proposition 2.1.6]. This
contradicts the assumption, therefore,

f(x) = ι{x̄}(x) + f(x̄).

Consequently,

g(x) = e1f(x) = f(x̄) +
1

2
∥x− x̄∥2.

Now for every j ∈ N, define fj : Rn → R,

fj(x) :=

{
f(x̄), ∥x− x̄∥ ≤ 1

j
,

∞, otherwise.

We have fj ∈ Γ0(Rn), and

gj(x) := e1fj(x) =

f(x̄), ∥x− x̄∥ ≤ 1
j
,

f(x̄) + 1
2

(
∥x− x̄∥ − 1

j

)2
, ∥x− x̄∥ > 1

j
.

Then {gj(x)}j∈N converges pointwise to e1f = g, by [27, Theorem 7.37]. Thus, for
sufficiently large j, d̃(gj, g) < ε. Since gj is constant on B 1

j
(x̄), gj is not strongly

convex, so gj ̸∈ Fm.
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Properties a), b) and c) all together show that the set of strongly convex function is meager in
(e1(Γ0(Rn), d̃). Note that (e1(Γ0(Rn), d̃) and (Γ0(Rn), d) are isometric by Corollary 3.8. The
proof is complete by using Lemma 2.23.

Remark 4.17. (1). Theorem 4.16 shows that the set S of strongly convex functions is first category,
but what about the larger set U of uniformly convex functions to which S belongs? (See [5, 31, 32]
for information on uniform convexity.) It is clear that U is bigger than S, for example [5, Definition
10.5] shows that f ∈ S ⇒ f ∈ U, and [5, Exercise 10.7] states that f : R → R, f(x) = |x|4
is uniformly convex but not strongly convex. So is U generic or meager? This is a question for
which the authors have no answer as of yet; it remains an open question. We refer the reader
in particular to [32, Proposition 3.5.8, Theorem 3.5.10] for properties and characterizations of
uniformly convex functions.

(2). Strongly convex functions are important in optimization [5]. In [25], Rockafellar showed
that the proximal point method associated to every strongly convex function converges at least at
a linear rate to the optimal solution.

Corollary 4.18. In (Γ0(Rn), d)) the set

D := {f : f is differentiable and ∇f is c-Lipschitz for some c > 0}

is first category.

Proof. We know that (Γ0(Rn), d) → ((Γ0(Rn))∗, d̂) is an isometry, and that f is strongly convex
for some c > 0 if and only if f ∗ is differentiable on Rn with ∇f ∗ being 1

c
-Lipschitz [32, Corollary

3.5.11(i)⇔(vi)]. Since the set of strongly convex functions is first category in ((Γ0(Rn))∗, d̂), the
set of differentiable convex functions with ∇f being c-Lipschitz for some c > 0 is a first category
set in (Γ0(Rn), d).

4.3 The set of convex functions with strong minimizers is second category
We present properties of the sets Um and Em, and show that the set of convex functions that attain
a strong minimum is a generic set in (Γ0(Rn), d).

Lemma 4.19. The sets Um and Em are dense in (Γ0(Rn), d).

Proof. This is immediate by combining Theorems 4.12 and 4.14.

To continue, we need the following result, which holds in Γ0(X) where X is any Banach space.

Lemma 4.20. Let f ∈ Γ0(Rn), m ∈ N, and fix z ∈ dom f. Then

inf
∥x−z∥≥ 1

m

f(x)− f(z) > 0 if and only if inf
m≥∥x−z∥≥ 1

m

f(x)− f(z) > 0.
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Proof. (⇒) Suppose that for z fixed, inf
∥x−z∥≥ 1

m

f(x)− f(z) > 0. Since

inf
m≥∥x−z∥≥ 1

m

f(x)− f(z) ≥ inf
∥x−z∥≥ 1

m

f(x)− f(z),

we have inf
m≥∥x−z∥≥ 1

m

f(x)− f(z) > 0.

(⇐) Let inf
m≥∥x−z∥≥ 1

m

f(x)− f(z) > 0, and suppose that

inf
∥x−z∥≥ 1

m

f(x)− f(z) ≤ 0.

Then for each 1
k

with k ∈ N, there exists yk with ∥yk − z∥ ≥ 1
m

such that f(yk) ≤ f(z) + 1
k
. Take

zk ∈ [yk, z] ∩
{
x ∈ Rn : m ≥ ∥x− z∥ ≥ 1

m

}
̸= ∅. Then

zk = λkyk + (1− λk)z

for some λk ∈ [0, 1]. By the convexity of f , we have

f(zk) = f(λkyk + (1− λk)z) ≤ λkf(yk) + (1− λk)f(z)

≤ λkf(z) + (1− λk)f(z) +
λk

k

= f(z) +
λk

k
≤ f(z) +

1

k
.

Now inf
m≥∥x−z∥≥ 1

m

f(x) ≤ f(zk) ≤ f(z) + 1
k
, so when k → ∞ we obtain

inf
m≥∥x−z∥≥ 1

m

f(x)− f(z) ≤ 0.

This contradicts the fact that inf
m≥∥x−z∥≥ 1

m

f(x)−f(z) > 0. Therefore, inf
∥x−z∥≥ 1

m

f(x)−f(z) > 0.

Lemma 4.21. The set Em is an open set in (Γ0(Rn), d).

Proof. Fix m ∈ N, and let f ∈ Em. Then there exists z ∈ Rn such that inf
∥x−z∥≥ 1

m

e1f(x)−e1f(z) >

0. Hence, by Lemma 4.20,
inf

m≥∥x−z∥≥ 1
m

e1f(x)− e1f(z) > 0.

Choose j large enough that Bm[z] ⊆ Bj(0). Let g ∈ Γ0(Rn) be such that d(f, g) < ε, where

0 < ε <

inf
m≥∥x−z∥≥ 1

m

e1f(x)− e1f(z)

2j

(
2 + inf

m≥∥x−z∥≥ 1
m

e1f(x)− e1f(z)

) <
1

2j
. (4.17)
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The reason for this bound on ε will become apparent at the end of the proof. Then

∞∑
i=1

1

2i
∥e1f − e1g∥i

1 + ∥e1f − e1g∥i
< ε.

In particular for our choice of j, we have that 2jε < 1 by inequality (4.17), and that

1

2j
∥e1f − e1g∥j

1 + ∥e1f − e1g∥j
< ε,

∥e1f − e1g∥j < 2jε(1 + ∥e1f − e1g∥j),
sup
∥x∥≤j

|e1f(x)− e1g(x)|(1− 2jε) < 2jε,

sup
∥x∥≤j

|e1f(x)− e1g(x)| <
2jε

1− 2jε
.

Define α := 2jε
1−2jε

. Then sup
∥x∥≤j

|e1f(x)− e1g(x)| < α. Hence,

|e1f(x)− e1g(x)| < α for all x with ∥x∥ ≤ j.

In other words,

e1f(x)− α < e1g(x) < e1f(x) + α for all x with ∥x∥ ≤ j.

Since Bm[z] ⊆ Bj(0), we can take the infimum over m ≥ ∥x− z∥ ≥ 1
m

to obtain

inf
m≥∥x−z∥≤ 1

m

e1f(x)− α ≤ inf
m≥∥x−z∥≥ 1

m

e1g(x) ≤ inf
m≥∥x−z∥≥ 1

m

e1f(x) + α. (4.18)

Using inequality (4.18) together with the fact that |e1g(z)− e1f(z)| < α yields

inf
m≥∥x−z∥≥ 1

m

e1g(x)− e1g(z) ≥

(
inf

m≥∥x−z∥≥ 1
m

e1f(x)− α

)
− (e1f(z) + α)

= inf
m≥∥x−z∥≥ 1

m

e1f(x)− e1f(z)− 2α.

Hence, if

α <

inf
m≥∥x−z∥≥ 1

m

e1f(x)− e1f(z)

2
, (4.19)

we have
inf

m≥∥x−z∥≥ 1
m

e1g(x)− e1g(z) > 0. (4.20)
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Recalling that α = 2jε
1−2jε

, we solve equation (4.19) for ε to obtain

ε <

inf
m≥∥x−z∥≥ 1

m

e1f(x)− e1f(z)

2j

(
2 + inf

m≥∥x−z∥≥ 1
m

e1f(x)− e1f(z)

) .

Thus, inequality (4.20) is true whenever d(f, g) < ε for any ε that respects inequality (4.17).
Applying Lemma 4.20 to inequality (4.20), we conclude that

inf
∥x−z∥≥ 1

m

e1g(x)− e1g(z) > 0.

Hence, if g ∈ Γ0(Rn) is such that d(f, g) < ε, then g ∈ Em. Therefore, Em is open.

We are now ready to present the main results of the paper.

Theorem 4.22. In X := (Γ0(Rn), d), the set S := {f ∈ Γ0(Rn) : f attains a strong minimum} is
generic.

Proof. By Lemmas 4.19 and 4.21, we have that Em is open and dense in X. Hence, G :=
∩

m∈N
Em

is a countable intersection of open, dense sets in X , and as such G is generic in X. Let f ∈ G.
By Corollary 4.11, f attains a strong minimum on Rn . Thus, every element of G attains a strong
minimum on Rn . Since G is generic in X and G ⊆ S, we conclude that S is generic in X.

Remark 4.23. This result is stated as Exercise 7.5.10 in [7, p. 269]. However, the approach taken
there uses the Attouch-Wets topology defined by uniform convergence on bounded subsets of the
distance function, associated with epigraphs of convex functions.

Theorem 4.24. In X := (Γ0(Rn), d), the set S := {f ∈ Γ0(Rn) : f is coercive} is generic.

Proof. Define the set Γ1(Rn) := Γ0(Rn) + x∗, in the sense that for any function f ∈ Γ0(Rn),
the function f + ⟨x∗, ·⟩ ∈ Γ1(Rn). Since any such f + ⟨x∗, ·⟩ is proper, lsc, and convex, we have
Γ1(Rn) ⊆ Γ0(Rn). Now, since for any f ∈ Γ0(Rn) we have that f − x∗ ∈ Γ0(Rn), this gives us
that f ∈ Γ0(Rn) + x∗ = Γ1(Rn). Therefore, Γ1(Rn) = Γ0(Rn). By Theorem 4.22, there exists
a generic set G ⊆ Γ0(Rn) such that for every f ∈ G, f attains a strong minimum at some point
x, and hence 0 ∈ ∂f(x). Then, given any x∗ fixed, there exists a generic set Gx∗ that contains a
dense Gδ set, such that 0 ∈ ∂(f + x∗)(x). Thus, for each f ∈ Gx∗ there exists x ∈ Rn such that
−x∗ ∈ ∂f(x). By Fact 2.4, it is possible to construct the set D := {−x∗

i }∞i=1 such that D = Rn .

Then each set Gx∗
i
, i ∈ N, contains a dense Gδ set. Therefore, the set G :=

∞∩
i=1

Gx∗
i

contains a dense

Gδ set. Let f ∈ G. Then for each i ∈ N, −x∗
i ∈ ∂f(x) for some x ∈ Rn . That is, −x∗

i ∈ ran ∂f.

So D :=
∞∪
i=1

{−x∗
i } ⊆ ran ∂f, and D ⊆ ran ∂f. Since D = Rn, we have Rn = ran ∂f. By

Facts 2.5 and 2.6, ran ∂f is almost convex; there exists a convex set C such that C ⊆ ran f ⊆ C.
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Then C = Rn . As C is convex, by [26, Theorem 6.3] we have the relative interior riC = riC, so
riC = Rn . Thus, Rn = riC ⊆ C, which gives us that C = Rn . Therefore, ran ∂f = Rn . By
Fact 2.8, ran ∂f ⊆ dom(f ∗). Hence, dom f ∗ = Rn . By Fact 2.22, we have that lim

∥x∥→∞

f(x)
∥x∥ = ∞.

Therefore, f is coercive for all f ∈ G. Since G is generic in X and G ⊆ S, we conclude that S is
generic in X.

Theorem 4.25. In (Γ0(Rn), d), the set S := {f ∈ Γ0(Rn) : dom f = Rn} is generic.

Proof. Note that (Γ0(Rn))∗ = Γ0(Rn). In ((Γ0(Rn))∗, d), by Theorem 4.24, the set

{f ∗ ∈ (Γ0(Rn))∗ : f ∗ is coercive}
is generic. Since f ∗ is coervcive if and only if f has dom f = Rn by Fact 2.22, the proof is
done.

Combining Theorems 4.22, 4.24 and 4.25, we obtain

Corollary 4.26. In (Γ0(Rn), d), the set

S := {f ∈ Γ0(Rn) : dom f = Rn, dom f ∗ = Rn, f has a strong minimizer}
is generic.

5 Conclusion
Endowed with the Attouch-Wets metric, based on the Moreau envelope, the set of proper lower
semicontinuous convex functions on finite-dimensional space forms a complete metric space. In
this complete metric space, the topology is epi-convergence topology. We have proved several
Baire category results. In particular, we have shown that in (Γ0(Rn), d) the set of strongly convex
functions is category one, the set of functions that attain a strong minimum is category two, and the
set of coercive functions is category two. Several other results about strongly convex functions and
functions with strong minima are included. In future work that has already commenced, we will
continue to develop the theory of Moreau envelopes, providing characterizations and illustrative
examples of how to calculate them, and extend results in this paper to convex functions defined on
Hilbert spaces and to prox-bounded functions on Rn. A natural question to ask here, as a referee
did, are these genericity results sharp? According to [32, Proposition 3.5.8, Theorem 3.5.10], a
uniformly convex function is coercive, has a strong minimizer, and its Fenchel conjugate f ∗ is
differentiable with ∇f ∗ being uniformly continuous. Can more conclusions be drawn, for instance
about the set of uniformly convex functions of which the set of strongly convex functions is a
subset? The authors do not have the answer, and will consider the question in future research.
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