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The influence of the N-terminal region proximal to the core domain on the
assembly and chaperone activity of αB-crystallin

Abstract
αB-Crystallin (HSPB5) is a small heat-shock protein that is composed of dimers that then assemble into a
polydisperse ensemble of oligomers. Oligomerisation is mediated by heterologous interactions between the
C-terminal tail of one dimer and the core "α-crystallin" domain of another and stabilised by interactions made
by the N-terminal region. Comparatively little is known about the latter contribution, but previous studies
have suggested that residues in the region 54-60 form contacts that stabilise the assembly. We have generated
mutations in this region (P58A, S59A, S59K, R56S/S59R and an inversion of residues 54-60) to examine
their impact on oligomerisation and chaperone activity in vitro. By using native mass spectrometry, we found
that all the αB-crystallin mutants were assembly competent, populating similar oligomeric distributions to
wild-type, ranging from 16-mers to 30-mers. However, circular dichroism spectroscopy, intrinsic tryptophan
and bis-ANS fluorescence studies demonstrated that the secondary structure differs to wild type, the 54-60
inversion mutation having the greatest impact. All the mutants exhibited a dramatic decrease in exposed
hydrophobicity. We also found that the mutants in general were equally active as the wild-type protein in
inhibiting the amorphous aggregation of insulin and seeded amyloid fibrillation of α-synuclein in vitro, except
for the 54-60 inversion mutant, which was significantly less effective at inhibiting insulin aggregation. Our
data indicate that alterations in the part of the N-terminal region proximal to the core domain do not
drastically affect the oligomerisation of αB-crystallin, reinforcing the robustness of αB-crystallin in
functioning as a molecular chaperone.
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Abstract  

αB-crystallin (HSPB5) is a small heat-shock protein that is composed of dimers that then 

assemble into a polydisperse ensemble of oligomers. Oligomerisation is mediated by 

heterologous interactions between the C-terminal tail of one dimer and the core “α-

crystallin” domain of another, and stabilised by interactions made by the N-terminal region. 

Comparatively little is known about the latter contribution, but previous studies have 

suggested that residues in the region 54-60 form contacts that stabilise the assembly. We 

have generated mutations in this region (P58A, S59A, S59K, R56S/S59R and an inversion of 

residues 54-60) to examine their impact on oligomerisation and in vitro chaperone activity. 

By using native mass spectrometry, we found that all the αB-crystallin mutants were 

assembly competent, populating similar oligomeric distributions to wild-type, ranging from 

16-mers to 30-mers. However, circular dichroism spectroscopy, intrinsic tryptophan and bis-

ANS fluorescence studies demonstrated that the secondary structure differs to wild-type, 

the 54-60 inversion mutation having the greatest impact. All the mutants exhibited a 

dramatic decrease in exposed hydrophobicity. We also found that the mutants in general 

were equally active as the wild-type protein in inhibiting the amorphous aggregation of 

insulin and seeded amyloid fibrillation of α-synuclein in vitro, except for the 54-60 inversion 

mutant, which was significantly less effective at inhibiting insulin aggregation. Our data 

indicate that alterations in the part of the N-terminal region proximal to the core domain do 

not drastically affect the oligomerisation of αB-crystallin, reinforcing the robustness of αB-

crystallin in functioning as a molecular chaperone. 
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Introduction 

The molecular chaperone αB-crystallin (also known as HSBP5) is a systemically expressed 

vertebrate small heat-shock protein (sHsp) that exists as an ensemble of large, dynamic, 

polydisperse oligomers that undergo continual subunit-exchange (Boelens 2014; Delbecq 

and Klevit 2013; Haslbeck et al. 2016; Hochberg and Benesch 2014). In conjunction with 

other sHsps, such as Hsp27 (HSPB1) and Hsp20 (HSPB6), αB-crystallin is an important 

component of the protein quality control network in cells, where it acts as a molecular 

chaperone (Balch et al. 2008; Ecroyd 2015; Kampinga et al. 2015; McHaourab et al. 2009; 

Treweek et al. 2015). Numerous neurodegenerative diseases are associated with 

malfunction of this quality control network, including Alzheimer’s disease and Parkinson’s 

disease (Balch et al. 2008; Hartl et al. 2011; Yerbury et al. 2016). Mutations in αB-crystallin 

are also associated with desmin-related cardiomyopathies and cataracts in the lens (Andley 

2009; Clark et al. 2012; Ecroyd and Carver 2009; Thornell and Aquilina 2015). Overall, these 

studies demonstrate that the chaperone function of αB-crystallin is a key contributor to the 

maintenance of protein homeostasis (proteostasis) in the cell. 

αB-crystallin is made up of three key regions, a β-sheet rich core “α-crystallin” domain (αCD; 

residues 66-149), which dimerises and is conserved amongst sHsp family members and is 

flanked by unstructured N-terminal (NTR; residues 1-65) and C-terminal regions (CTR; 

residues 150-178) (Fig. 1a). The quaternary dynamics of αB-crystallin involves the exchange 

of monomers between oligomers (Hochberg and Benesch 2014), and is rate-limited by an 

interaction made between the CTR of one monomer with the αCD of another monomer in 

an adjacent dimer (Baldwin et al. 2011a; Baldwin et al. 2011c) (Fig. 1b). Several studies have 

shown how the CTR and, in particular, residues in and flanking the conserved IXI motif, 

impact on oligomeric assembly (Delbecq et al. 2012; Hilton et al. 2013) (Fig. 1b). 

The NTR has also been shown to mediate contacts between αB-crystallin subunits via 

residues 58-61 (Jehle et al. 2010; Jehle et al. 2011) (Fig. 1b), with a construct lacking the NTR 

having reduced oligomeric stability (Laganowsky et al. 2010). Furthermore, structures of 

sHsps from prokaryotes and plants in which this region is (at least partially) resolved 

indicate it forms contacts between NTRs (Hanazono et al. 2013; McHaourab et al. 2012; van 

Montfort et al. 2001). This evidence has been used in efforts to model the oligomeric 
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assembly of αB-crystallin (Baldwin et al. 2011b; Braun et al. 2011; Jehle et al. 2010; Jehle et 

al. 2011; Peschek et al. 2013). 

To gain further insight into the importance of these NTR interactions, we have examined the 

role of residues 54-60 in the NTR of αB-crystallin, which are proximal to the αCD. We 

generated a series of mutant forms of αB-crystallin in which we perturbed this region by 

introducing changes in localised charge (S59K), polarity (S59A), flexibility (S59A, R56S/S59R, 

Invert 54-60) and secondary structure (P58A to discourage formation of an α-helix) (Braun 

et al. 2011) and examined their impact on structure and function using a combination of 

biophysical methods, native mass spectrometry (MS) and in vitro aggregation assays. We 

found that these mutants did not significantly affect the ability of αB-crystallin to 

oligomerise, but did induce local structural changes. In addition, while most of these 

mutations did not impact noticeably on chaperone activity, inversion of the residues in this 

region caused a decrease in ability of the protein to inhibit insulin aggregation. We propose 

that this region of the NTR is not a major contributor to overall oligomer stability of αB-

crystallin, but instead may play a unique role in the recognition and sequestration of 

amorphously aggregating proteins.  
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Methods 

Protein expression and purification. The gene encoding human αB-crystallin (HSPB5; 

UniProt accession number P02511) was expressed in Escherichia coli BL21(DE3) using a 

plasmid kindly gifted by Dr. W. C. Boelens and Dr. W. W. de Jong, in which HSPB5 was 

cloned into pET24d(+) (Novagen). The NTR mutants of αB-crystallin (P58A, S59A, S59K, 

R56S/S59R and Invert 54-60) (Fig. 1a) were generated by site-directed mutagenesis of the 

WT gene by GenScript (USA) and these constructs were sequenced to confirm they coded 

for the desired mutation. Expression and purification of each recombinant protein was 

performed as described previously (Aquilina et al. 2013; Horwitz et al. 1998). 

Analytical size-exclusion chromatography (SEC). The average oligomeric size of αB-crystallin 

WT and NTR mutants was determined by analytical-SEC. Samples (50 μM) were loaded onto 

a Superdex 200 10/300 GL analytical-SEC (GE Healthcare), which had been equilibrated in 

either 50 mM phosphate buffer (PB; pH 7.4) or 200 mM ammonium acetate (NH4OAc; pH 

6.8) at a flow rate of 0.3 mL/min, at room temperature. The SEC column was calibrated 

using standards (Bio-Rad) containing bovine thyroglobulin (670 kDa), bovine γ-globulin (158 

kDa), chicken ovalbumin (44 kDa) and horse myoglobin (17 kDa). 

Native mass spectrometry (MS). MS was performed on a Synapt G1 HDMS (Waters) using a 

nanoelectrospray ionisation source. Instrument conditions and sample preparation for all 

MS analyses were performed as previously described (Aquilina et al. 2013). Oligomeric 

distributions were determined by calculating the relative abundance of oligomers as a 

percentage of all oligomers present for each mutant (Aquilina et al. 2003). 

Far-UV Circular Dichroism (CD) Spectroscopy. CD measurements were acquired as 

previously described (Kulig and Ecroyd 2012) using a J810 Far UV spectropolarimeter (Jasco). 

All proteins were prepared to a final concentration of 10 µM in 10 mM PB (pH 7.4). CD 

spectra were accumulated from 6 scans and smoothed using an in-built Savitzky-Golay 

algorithm.  

Dynamic light scattering (DLS). To determine the mean particle size (Z-average) and relative 

thermal stability of αB-crystallin in solution, DLS was performed. Proteins were prepared in 

50 mM PB (pH 7.4) at 50 µM and incubated at 37 °C for 1 h prior to measurement. Samples 

were plated (100 µL) into 96-well microwell plates and analysed using a Zetasizer Auto Plate 
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Sampler system (Malvern). Thermal stability was assessed by using a temperature gradient 

with 2.5 °C increments within the range of 25 °C to 95 °C. The melting temperature of each 

mutant was defined as the temperature at which there was a 2-fold increase in the 

hydrodynamic diameter compared to that measured for the protein at 25 °C. Experiments 

were repeated twice, and data shown are representative from these two experiments.  

Intrinsic tryptophan and bis-ANS fluorescence. Intrinsic tryptophan fluorescence was used 

to examine changes in the tertiary and quaternary structure of αB-crystallin (αB-crystallin 

contains two tryptophan residues; W9 and W60), and bis-ANS fluorescence was used to 

measure the relative level of exposed hydrophobic regions. Tryptophan fluorescence and 

bis-ANS fluorescence spectra were attained using a Cary Eclipse fluorescence 

spectrophotometer (Varian).  Proteins were prepared to a final concentration of 10 µM in 

50 mM PB (pH 7.4). Proteins were incubated at room temperature for 15 min prior to 

tryptophan fluorescence analysis. bis-ANS (final concentration 20 µM) was then added and 

the samples incubated for 3 min at room temperature prior to measurement of bis-ANS 

fluorescence. The excitation wavelength was set at 295 nm and 350 nm and emission 

wavelength was recorded from 300-400 nm and 400-600 nm for tryptophan fluorescence 

and bis-ANS studies, respectively. The slit widths for excitation and emission spectra were 

both set at 5 nm.  

Aggregation assays. The chaperone activity of the NTR αB-crystallin mutants was assessed 

via thioflavin-T (ThT) fluorescence (amyloid fibril) or light-scattering (amorphous 

aggregation) assays, using sealed 384-microwell plates and a FLUOstar Optima plate reader 

(BMG Lab Technologies). Amorphous aggregation of insulin (100 μM), incubated at 37 °C in 

50 mM PB (pH 7.4) was initiated by addition of DTT (20 mM). The αB-crystallin proteins 

were added at molar ratios of 1:1 and 1:0.75 (insulin:αB-crystallin). Aggregation was 

monitored by measuring the change in apparent absorbance due to light scattering at 340 

nm.  

To examine the ability of the NTR αB-crystallin mutants to prevent amyloid fibril formation a 

previously described (Buell et al. 2014) α-synuclein elongation assay was performed. The 

expression and purification of α-synuclein was performed as previously described (Grey et 

al. 2011; Hoyer et al. 2002). This assay measures the ability of chaperones to inhibit the 

elongation of α-synuclein fibrils using short, preformed α-synuclein seed fibril as seeds. 
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Fibril elongation was measured in situ by monitoring ThT binding. Chaperones were added 

at a molar ratio of 1:0.5 and 1:0.25 (α-synuclein:αB-crystallin) to the monomeric pool of α-

synuclein (50 μM) in 50 mM PB (pH 7.4) containing 50 µM ThT. Samples were incubated for 

60 min at 37 °C and then 10% w/w α-synuclein seed fibrils were added to each sample. The 

ThT fluorescence in each sample was monitored using a 440/490 nm excitation/emission 

filter set. 

The relative ability of each chaperone to prevent aggregation was evaluated by comparing 

the apparent absorbance or ThT fluorescence at the conclusion of each assay, as previously 

described (Ecroyd and Carver 2008). All assays were performed at least three times and data 

are reported as mean ± SEM of these independent assays. Data were analysed by one-way 

ANOVA and Dunnett’s multiple comparisons post-hoc test using Prism 5.0 (GraphPad) 

software. 
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Results 

Oligomerisation of αB-crystallin is robust to mutations in residues 54-60 of the NTR. 

In order to characterise the role of residues 54-60 in the NTR of αB-crystallin, we generated 

a series of point mutations (P58A, S59A, S59K, R56S/S59R) and one in which we inverted the 

sequence (“invert”, i.e. 54-60→60-54) (Fig. 1a). All of these proteins expressed and purified 

as per wild-type (WT) αB-crystallin, and were soluble. To assess their oligomeric state, we 

used analytical-SEC and native MS. SEC revealed that the αB-crystallin mutants have a near 

identical elution profile compared to WT, in both phosphate and ammonium acetate 

buffers. In each case, the αB-crystallin mutants elute as a large broad peak indicative of a 

large polydisperse assembly, with oligomeric masses ranging from 200 – 700 kDa, however 

they elute later in phosphate (used in other structural studies and aggregation assays) 

compared to ammonium acetate (used in native MS experiments) buffer (Fig. 2). Previous 

studies have shown that minor differences in both pH and buffer composition can 

significantly change the quaternary dynamics of αB-crystallin, which may be responsible for 

the differences in elution times of the proteins between these two buffer systems 

(Hochberg and Benesch 2014). 

Native mass spectra for all proteins were qualitatively similar, displaying a broad region of 

signal between 8,000 – 12,000 m/z (Fig. 3, left panels), which is typical of large polydisperse 

proteins, and consistent with previous data for WT αB-crystallin (Aquilina et al. 2004; 

Benesch et al. 2008). To obtain higher-resolution insight, we performed collision-induced 

dissociation (CID) which, under the conditions employed, strips highly charged monomeric 

subunits off the oligomers, and allows the identification and quantification of all individual 

oligomers present (Aquilina et al. 2003). In this way, we were able to extract the oligomeric 

distributions for each of the mutants (Fig. 3, right panels). All the NTR mutants displayed 

distributions that did not differ significantly from WT αB-crystallin, with oligomers ranging 

from 16-mers to 30-mers observed, and the 22-mer being the most abundant in all cases 

(Fig. 3, right panels). 
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NTR mutations confer changes in secondary and tertiary structure of αB-crystallin. 

To examine the structure of the NTR on a more local level, we employed a range of 

biophysical techniques. We first used far-UV CD spectroscopy to probe the secondary 

structure of these NTR mutants, and found that most of the αB-crystallin mutants, except 

for S59A, exhibited changes in secondary structure compared to the WT, with a shift 

towards more β-sheet content and concomitant loss of turns, whereas the S59A mutant was 

near-identical to WT (Fig. 4a). The invert mutation led to a dramatic change in the secondary 

structure of αB-crystallin compared to the WT protein, resulting in a significant increase in 

α-helical secondary structure and concomitant loss of random coil (Fig. 4a).  

In order to determine the relative thermal stability of these mutants, we measured the 

mean particle size (diameter; Z-average) as a function of temperature using DLS (Fig. 4b). 

The average size of the αB-crystallin mutants in solution began to increase dramatically at 

60 °C (Fig. 4b). All the mutant αB-crystallin mutants had a greater rate of increase in the 

average particle size than WT αB-crystallin, such that, at 75 °C, the average diameter of 

particles formed by all the mutants exceeded 250 nm, compared to 150 nm for the WT (Fig. 

4b). These data demonstrate that the mutants are less stable than WT αB-crystallin.  

To interrogate the tertiary structure of the αB-crystallin mutants, we performed intrinsic 

tryptophan- and bis-ANS-fluorescence. The S59K and R56S/S59R mutants exhibited greater 

intrinsic fluorescence intensity compared to WT, but no observable shift in emission 

maximum (Fig. 4c), suggestive of an abatement of fluorescence quenching (particularly 

considering these mutations are immediately adjacent to W60). The other mutants had a 

similar intrinsic tryptophan fluorescence profile to the WT αB-crystallin, also with no 

observable shift in emission maximum (Fig. 4c). Interestingly, all αB-crystallin mutants 

showed a substantial decrease and red shift (≈10 nm shift from 488 nm to 499 nm) in the 

bis-ANS fluorescence emission maximum compared to WT αB-crystallin (Fig. 4d) indicative 

of a substantial decrease in exposed hydrophobicity of the αB-crystallin NTR mutants. 
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Chaperone activity of αB-crystallin is perturbed by inversion of residues 54-60 in the NTR. 

We next investigated the influence of these structural changes on the ability of the αB-

crystallin mutants to prevent amyloid fibril formation and amorphous aggregation in vitro. 

We used α-synuclein as a model protein for fibrillar aggregation and insulin for amorphous 

aggregation. Moreover, the aggregation of α-synuclein, an intrinsically disordered protein, 

has been extensively characterised (Buell et al. 2014; Wordehoff et al. 2017) and is 

associated with Parkinson’s disease and dementia with Lewy bodies. In the absence of α-

synuclein or insulin, no increase in ThT fluorescence or light scatter was observed (Fig. S1). 

In the absence of chaperone, α-synuclein seeds were observed to elongate through addition 

of monomeric α-synuclein such that, after ≈16 h, the change in ThT fluorescence associated 

with fibrillar aggregation had plateaued (Fig. 5a). In the presence of αB-crystallin, there was 

a decrease in ThT fluorescence indicative of the inhibition of α-synuclein fibril elongation. 

However, there was no significant difference in the ability of the αB-crystallin mutants to 

prevent seeded α-synuclein aggregation (Fig. 5a).  

In the absence of chaperone, insulin was observed to aggregate rapidly upon reduction with 

DTT such that, after ≈15 min, the light scatter associated with its aggregation into large 

insoluble particles had plateaued (Fig. 5b). Whereas in the presence of αB-crystallin, there 

was a decrease in light scatter, indicative of insulin aggregation inhibition. There was no 

significant difference in the ability of the αB-crystallin mutants to prevent the amorphous 

aggregation of insulin, with the exception of the 54-60 invert mutant, which showed a 

significant decrease in ability to prevent insulin aggregation compared to WT αB-crystallin at 

both 1:1 and 1:0.75 molar ratios (insulin: αB-crystallin) (Fig. 5b). Taken together, these 

results suggest that modification of the 54-60 region of the NTR affects the activity of αB-

crystallin to inhibit amorphous, but not fibrillar, aggregation. 
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Discussion 

Here we have investigated the role of the region encompassing residues 54-60 in the NTR of 

αB-crystallin in relation to its structure and chaperone function. This region had previously 

been identified as making inter-dimer contacts (Braun et al. 2011; Jehle et al. 2011), and to 

affect the oligomerisation (Ghosh et al. 2006) and polydispersity (Sreelakshmi and Sharma 

2006) of αB-crystallin. Our results reveal that mutations in this region do not drastically 

affect the oligomeric distribution populated by αB-crystallin. Instead, we found that 

mutation led to a reduction of random coil and, in particular for the invert mutant, an 

increase in α-helix. These changes in secondary structure were associated with decreases in 

exposed hydrophobicity and thermostability of the oligomers. 

Our data demonstrates that residues 54-60 of the NTR are not necessary for 

oligomerisation, but rather stabilise the oligomeric forms that are mediated by associations 

between the CTR and the αCD. This is consistent with the observation that a construct of 

αB-crystallin, truncated of the NTR, is still assembly competent (Laganowsky et al. 2010). 

Similarly, deletion of the NTR has been shown not to abolish oligomeric assembly of 

archaeal sHsps (Shi et al. 2006; Usui et al. 2004) and deletion of residues 61-70 (analogous 

to 51-60 in αB-crystallin) in the NTR of Hsp20 (HSPB6) does not induce drastic changes to 

the structure and chaperone function compared to the WT protein (Heirbaut et al. 2014; 

Heirbaut et al. 2017). Moreover, the NTR is the location for the major phosphorylation sites 

of vertebrate sHsps, including αB-crystallin and Hsp27, whereby modification promotes the 

dissociation of oligomers (Jovcevski et al. 2015; McDonald et al. 2012; Peschek et al. 2013). 

It therefore appears that the role of the NTR in assembly is secondary to the CTR and the 

αCD, providing a means for regulating the oligomerisation of sHsps. 

Our in vitro aggregation assays revealed that, in almost all cases, the αB-crystallin mutants 

were able to prevent amorphous aggregation of insulin and amyloid fibrillation of α-

synuclein with comparable efficiency to WT. The exception was the invert mutant, which 

had a significantly reduced capacity to inhibit the amorphous aggregation of insulin. While 

these data did not readily correlate with differences in hydrophobicity, interestingly, the 

invert mutant was distinguished from the others by its different CD spectra, which 

suggested a shift in equilibrium from random coil structure to α-helix. This structural shift is 

compatible with the observation of heterogeneous αB-crystallin NTR conformations (Braun 
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et al. 2011; Jehle et al. 2011) and raises the possibility that changes in secondary structure in 

the NTR regulate interactions with aggregation-prone proteins. This hypothesis is consistent 

with data on archaeal sHsps, that shows a disorder to order transition (Takeda et al. 2011) 

and a propensity to form multiple helical configurations (Liu et al. 2015), particularly in its 

chaperone-active state. 

Notably, while being less active in protecting against the aggregation of insulin, the invert 

mutant had a similar ability to prevent the amyloid formation of α-synuclein compared to 

WT αB-crystallin. This is suggestive of different regions of αB-crystallin being responsible for 

interacting with fibril-forming and amorphously aggregating proteins. Given that the 

mutation lies in the NTR, our data indicate that this region is important for the latter type of 

interaction, in line with chemical cross-linking data for interactions with different plant 

sHsps (Jaya et al. 2009; Lambert et al. 2013). Conversely, our data also suggests that the NTR 

is not the primary interaction site involved in inhibiting α-synuclein amyloid formation. This 

is also apparent with our previous data which showed that the isolated αCD is a potent 

inhibitor of amyloid formation, including that of α-synuclein (Cox et al. 2016; Hochberg et al. 

2014). These observations add to emerging evidence that αB-crystallin forms differential 

interactions, depending on the morphology of aggregation-prone proteins (Kulig and Ecroyd 

2012; Mainz et al. 2015).   

In summary, our results suggest that residues 54-60 of the NTR have a subtle but discernible 

impact on the structure and chaperone function of αB-crystallin. The data align with the 

hypothesis that conformational changes in the NTR impact on inter-dimer contacts, as well 

as the interaction with aggregating proteins. However, the data also reflect the robust 

ability of αB-crystallin to oligomerise into polydisperse assemblies, despite significant 

changes in the lower levels of the structural hierarchy. This observation is line with the 

importance of αB-crystallin remaining oligomeric in the eye lens and thereby maintaining 

lens transparency (Tardieu 1998), despite the numerous post-translational modifications it 

accumulates over the life-time of the organism (Thornell and Aquilina 2015). 
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Figure Legends 

Fig. 1: The NTR proximal to the αCD is involved in forming intra-dimer contacts in αB-

crystallin. a The structured αCD (grey) which contains the heterogenous region 1 (HR1; 

underlined) (Jehle et al. 2009) is flanked by unstructured N-terminal (NTR, red) and C-

terminal (CTR, green) regions. Several mutations were incorporated into αB-crystallin 

proximal to the αCD (residues 54-60) to investigate their impact on structure and function. b 

Previous solid-state NMR studies on αB-crystallin dimers (pdb entry: 2klr) (Jehle et al. 2010) 

implicate NTR residues 52-62 (β2a; red) in forming intra-dimer contacts with the β3-sheet, 

whilst the CTR (via. the IXI motif; residues 156-163; green) binds to the β4-8 groove in 

adjacent monomers to provide stability to αB-crystallin oligomers.   

 

Fig. 2: Analytical-SEC shows no significant change in quaternary structure between αB-

crystallin mutants.  Analytical-SEC of NTR αB-crystallin mutants in 50 mM PB (pH 7.4) (top 

panel) and 200 mM ammonium acetate (NH4OAc) (pH 6.8) (bottom panel) which illustrates 

the presence of large oligomers in solution. Elution volume of molecular weight standards 

are indicated above the chromatograms (in kDa).  

 

Fig. 3: Native MS reveals no significant change in oligomeric distribution between αB-

crystallin mutants. Spectra were acquired at both low (20 V; grey) and high (200 V; black) 

activation conditions (left panels) where signal in the overlapping n-2 and n-3 regions 

(13,000 – 30,000 m/z) were substantially resolved by the sequential dissociation of 

monomers from an oligomer (schematically illustrated above). The charge state 

distributions in this region were used to identify and determine the relative abundance of 

each αB-crystallin mutant. Oligomeric distributions of αB-crystallin mutants (right panels), 

with large oligomers ranging from 16-mers to 30-mers present, with a preference of even- 

(darker tone) over odd-stoichiometries (lighter tone). Protein samples (50 µM) were 

prepared in 200 mM NH4OAc (pH 6.8) for the MS experiments. 

 

Fig. 4: NTR αB-crystallin mutants are less thermostable and display differences in local 

structure compared to WT αB-crystallin. a Proteins (10 µM in 10 mM PB, pH 7.4) were 

incubated at room temperature for 30 min. Far UV-CD spectra were obtained and the 

results shown are representative of two independent experiments and spectra were 
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normalised to protein concentration. All variants, with the exception of S59A, exhibited 

greater negative ellipticity than αB-crystallin WT. The 54-60 inversion mutant exhibited the 

greatest negative ellipticity compared to WT. b Thermal denaturation curves of αB-crystallin 

mutants (50 µM in 50 mM PB, pH 7.4). The change in average particle size (Z-average) was 

measured by DLS with increasing temperature (ramp rate 2.5 °C per 15 min). c Intrinsic 

tryptophan fluorescence reveals differences in tertiary structure of some αB-crystallin 

variants, whereby the R56S/S59R and S59K αB-crystallin mutants have greater tryptophan 

fluorescence emission compared to WT. d bis-ANS fluorescence of αB-crystallin variants 

reveal that mutations results in decreased hydrophobic exposure compared to WT. Proteins 

(20 µM)  for intrinsic tryptophan and bis-ANS fluorescence studies were incubated in 50 mM 

PB (pH 7.4) at room temperature for 15 min prior to measurement. Spectra in c and d were 

normalised to protein concentration and results shown are representative of two 

independent experiments. 

 

Fig. 5: The ability of the NTR αB-crystallin mutants to inhibit the amorphous and fibrillar 

aggregation of insulin and α-synuclein. a The fibrillar aggregation of α-synuclein (10% seed 

relative to α-synuclein monomer concentration) was measured by the change in ThT 

fluorescence emission at 490 nm (excitation at 440 nm). All αB-crystallin variants showed no 

significant difference in their ability to inhibit α-synuclein seeded aggregation. b Inhibition 

of the reduction-induced amorphous aggregation of insulin was monitored by the change in 

light scatter at 340 nm. The 54-60 invert mutant showed a significant decrease in the ability 

to inhibit insulin aggregation at various stoichiometric ratios compared to WT αB-crystallin. 

Amorphous and fibrillar aggregation assays were performed in 50 mM PB (pH 7.4) at 37 °C. 

Data in a and b are mean ± SEM (n = 3) (*p < 0.05; **p < 0.01). 
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Supporting Figures 

 

 
 

Fig. S1: The aggregation propensity of the NTR αB-crystallin mutants in the absence of 

fibrillar and amorphous aggregation-prone proteins. a In the absence of α-synuclein (10% 

w/w seed relative to α-synuclein monomer) there was no observable increase in ThT 

fluorescence at 490 nm, including when the αB-crystallin mutants (25 µM) were incubated 

alone. Amorphous and fibrillar aggregation assays were performed in 50 mM PB (pH 7.4) at 

37 °C. b In the absence of insulin there was no observable increase in light scatter at 

360 nm, including when the αB-crystallin mutants (75 µM) were incubated alone.  
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