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Earliest known hominin activity in the Philippines by 709 thousand years
ago

Abstract
Over 60 years ago, stone tools and remains of megafauna were discovered on the Southeast Asian islands of
Flores, Sulawesi and Luzon, and a Middle Pleistocene colonization by Homo erectus was initially proposed to
have occurred on these islands. However, until the discovery of Homo floresiensis in 2003, claims of the
presence of archaic hominins on Wallacean islands were hypothetical owing to the absence of in situ fossils
and/or stone artefacts that were excavated from well-documented stratigraphic contexts, or because secure
numerical dating methods of these sites were lacking. As a consequence, these claims were generally treated
with scepticism. Here we describe the results of recent excavations at Kalinga in the Cagayan Valley of
northern Luzon in the Philippines that have yielded 57 stone tools associated with an almost-complete
disarticulated skeleton of Rhinoceros philippinensis, which shows clear signs of butchery, together with other
fossil fauna remains attributed to stegodon, Philippine brown deer, freshwater turtle and monitor lizard. All
finds originate from a clay-rich bone bed that was dated to between 777 and 631 thousand years ago using
electron-spin resonance methods that were applied to tooth enamel and fluvial quartz. This evidence pushes
back the proven period of colonization of the Philippines by hundreds of thousands of years, and furthermore
suggests that early overseas dispersal in Island South East Asia by premodern hominins took place several
times during the Early and Middle Pleistocene stages. The Philippines therefore may have had a central role in
southward movements into Wallacea, not only of Pleistocene megafauna, but also of archaic hominins.
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More than 60 years ago, stone tools and mega fauna remains were discovered on the Southeast 
 

Asian islands of Flores, Sulawesi and Luzon, and a Middle Pleistocene colonization by Homo 
erectus was initially proposed for these islands1-4. However, until the discovery of Homo floresiensis in 
2003, claims for the presence of archaic hominins on Wallacean islands were hypothetical due to 
the absence of in situ fossils and/or stone artefacts excavated from well-documented stratigraphic 
contexts, or because secure numerical dating methods of sites were lacking. As a consequence, these 
claims were generally treated with scepticism5. Recent excavations at Kalinga in the Cagayan Valley of 
northern Luzon in The Philippines have yielded 57 stone-tools associated with an almost complete 
disarticulated skeleton of Rhinoceros philippinensis showing clear signs of butchery, together with other 
fossil fauna remains attributed to stegodon, Philippine brown deer, fresh-water turtle and monitor 
lizard. All finds originate from a clayey bone bed dated to between 777 thousand and 631 thousand 
years ago using electron-spin resonance method applied on tooth enamel and fluvial quartz. This 
evidence pushes back the proven period of colonization6 of The Philippines by hundreds of thousands of 
years, and furthermore suggests that early overseas dispersal in Island South East Asia (ISEA) by 
premodern hominins took place several times during the Early and Middle Pleistocene1-4. The Philippines 
therefore may have played a central role in southward movements into Wallacea, not only of 
Pleistocene mega fauna7, but also archaic hominins. 

The most recent recoveries in Flores8,9 and Sulawesi10 (Indonesia) provide a unique documentation of over-
seas hominin dispersal during the early Middle Pleistocene. An early presence in The Philippine archipelago 
has been speculated since the 1950s, with the reporting of presumably Pleistocene mega-faunal remains and 
‘Palaeolithic’ industries consisting of chopping-tools and flakes (the ‘Cabalwanian’ and ‘Liwanian’ Industries 
respectively) from surface finds and excavations in the Cagayan Valley basin of northern Luzon3,4. Despite 
the fact that these early discoveries took place more than 60 years ago, no direct association between mega-
fauna and lithic industries has ever been documented since then, and no secure numerical dating of both 
fossil fauna and lithics has been available for this region11. To date, the discovery of a human metatarsal in 
Callao Cave in northern Luzon6, directly dated at 66.7 ± 1.0 ka, represented the oldest evidence for the 
peopling of The Philippines. 
In 2013, a survey of the Cagayan Valley near the Rizal Municipality (Kalinga Province) led to the discovery of 
a concentration of vertebrate bones and stone artefacts scattered on the surface near what became our new 
excavation site. The Kalinga site (17°33’45.0318"N; 121°33’35.7372"E) (Fig. 1,b) has been excavated 
annually since 2014 and has resulted in the discovery of in situ mega-fauna and associated stone artefacts. The 
substrate consists of the upper part of the Awidon Mesa Formation, a 400m thick sequence of alluvial stream 
deposits (mainly sandstones and claystones) intercalated with volcaniclastic and pyroclastic layers (Fig. 1a). 
These sediments were deposited on an alluvial fan system in braided streams of the paleo-Chico River as a 
consequence of uplift in the Central Cordillera to the west12,13. During a poorly constrained Pleistocene phase 
of folding in response to east-west compression, alluvial fan deposition in the Kalinga area came to a halt.  
We conducted the main 16m² excavation at the head of a modern, dry stream valley, north of a small hill and 
down to a maximum depth of 2m (Fig. 1c, see Supplementary Information: excavation methods and 
Sedimentology). A 25m x 1m slot trench was excavated down the hill to the Main Excavation. Together, 
these excavations revealed a total of 7.5m of stratigraphy comprising four main sedimentary units, in 
ascending order: Unit A, Unit F, Unit G and Unit J (Fig. 1d,e; Extended Data Fig. 1). An almost complete 
disarticulated skeleton of Rhinoceros philippinensis (Extended Data Fig.2) was found embedded in the 
basal sediments of Unit F lying across the base of an erosional channel surface that cuts down vertically 
into sandy Unit A. This channel was filled with an up to 3.25m thick mudflow (Unit F; see Extended Data 
Fig. 3 and 4), which covered the bones, along with an in situ tektite as well as 57 stone-tools and sparse fossils 
of other animals (Geoemydidae, Varanus cf. salvator, Stegodon cf. luzonensis and Cervus cf. mariannus) 
(see Supplementary Information: Faunal analysis). The archaeological layer (Unit F) is conformably overlaid 
by a ~1.15m thick, sterile, cross-bedded coarse sandy fluvial unit with silty lenses (Unit G), which is in 
turn conformably overlaid by Unit H, a 2.5m thick silty pedogenised layer with rhyzoliths. 
The 57 stone artefacts account for six cores, 49 flakes and two possible hammer stones, all originating from 
Unit F (Fig.2, see Supplementary Information: Lithic analysis). With the exception of the two possible 
hammer stones (Fig.2b), all artefacts lack a patinated lustre and have a fresh appearance, indicating that 
any transport was minimal. The knapping strategies were oriented towards short and unorganized core 
reduction, resulting in non-standardized flake morphologies and dimensions, and all artefacts were lacking 
any intentional retouch. The Kalinga lithic assemblage is diverse in its techniques, technology and final 
products, and appears similar to the chert industry described at Arubo 1 site14 (See Supplementary 
Information: Lithic technology). Also recovered from the Unit F excavation area was a 600g pebble among 
hundreds of pebbles all lighter than 200g, and which we interpret as a possible manuport. 



Among the more than 400 bones recovered from Unit F, the most striking remains are a disarticulated, ~75% 
complete skeleton of a single Rhinoceros philippinensis individual (Fig. 3; Extended Data Fig. 2). The 
bones were found lying on top of the erosional surface down-cutting Unit A, and were embedded in the basal 
clayey sediments of Unit F along the deepest part of the paleo-channel bed (Extended Data Fig. 3). Although 
none of the rhinoceros bones were found articulated, the recovered skeletal elements occur within a 3m x 2m 
area, suggesting that disarticulation occurred sub-aerially and that transport prior or during deposition of 
mudflow Unit F was minimal. Thirteen of the excavated rhino bones, all of which in life had a thin cover of 
soft tissue (i.e. the ribs and metacarpals)15,16, display cut marks (Fig. 3; Extended Data Fig. 2). Both 
rhinoceros humeri have similar percussion marks on the anterior surface for the right humerus and on 
the posterior surface for the left humerus, and both were presumably made with the intention to smash the 
bones and gain access to the marrow17. This percussion action resulted in the breakage of the left humerus 
into five pieces, which is the only bone found fragmented – and yet the fragments were still clustered together 
within a small 1m2 area of the excavation. On the right humerus, however, percussion did not result in 
fragmentation of the bone (Fig. 3). 
To constrain the age of the bone-bed and the stone artefacts it contained, we applied three different dating 
methods to various materials (Fig. 1). Single crystal 40Ar/39Ar dating was applied to plagioclase crystals from 
the sandy units directly below and above the archaeological Unit F and yielded two statistically 
undistinguishable weighted mean ages of 1050 ± 28 ka and 1007 ± 29 ka, respectively (1σ confidence 
interval) (see Supplementary Information: 40Ar/39Ar dating and Extended Data Fig. 5). These 40Ar/39Ar dates 
yielded an age for the formation of the volcanic plagioclase crystals. Quartz grains from the same two 
sandy units were also dated using the Electron Spin Resonance (ESR) method18, and resulted in a maximum 
depositional age of 727 ± 30 ka for the deposition of Unit A, and a minimum depositional age of 701 ± 
70 ka for Unit G (1σ confidence interval) (see Supplementary Information: ESR dating). To directly 
constrain the age of the rhinoceros skeleton and the cut-marks, we applied ESR/uranium-series dating on the 
enamel of the rhinoceros’s right maxillary third premolar from the Unit F bone-bed. The tooth yielded an 
age of 709 ± 68 ka (1σ confidence interval), which is in agreement with the ESR results on quartz (Fig. 1; 
see Supplementary Information: ESR-uranium series dating, Extended Data Fig. 6, Extended Data Table 1 
and Supplementary Information Table 1). In addition, a palaeomagnetic sample was taken from a laminated 
silty lens in the lower part of Unit G and was found to have a normal magnetic polarity (see Supplementary 
Information: palaeomagnetic dating and Extended Data Fig. 7). The presence in Unit F of a reworked 
Australasian tektite (see Supplementary Information: Non-destructive characterization of the tektite, 
Extended Data Fig. 8), which was formed during a major meteoritic impact just before the onset of the 
Brunhes Normal polarity epoch at 781 ka19,20, also provides further support for these closely grouping dating 
results. These results further suggest that the volcanic plagioclase crystals from unit G on which the 40Ar/39Ar 
date was obtained were reworked from older volcanoclastic deposits, and therefore provide a maximum age 
for the sequence (see Supplementary Information: Sedimentology). Taken together with the ESR dating results, 
it follows that the rhinoceros skeleton was buried by a mudflow at least 631 thousand years ago. 
Our excavations at Kalinga and the numeric dating results clearly provide the first securely dated evidence 
for human colonization of The Philippines by the early Middle Pleistocene, and long before the appearance of 
modern humans in both the local context and wider ISEA region21. Although the identity of these archaic 
toolmakers remains unknown, it is likely that they dispersed over at least one sea barrier to reach Luzon 
Island22. The most likely points of origin are Borneo through Palawan to the west, or China through Taiwan to 
the north, this latter island being connected to mainland Asia during periods of low sea-level23. The Middle 
Pleistocene fauna from the Awidon Mesa Formation contains a wider range of vertebrates than the 
Pleistocene faunas from two islands to the south of The Philippines that have both yielded evidence for the 
occupation by premodern humans, Sulawesi9 and Flores26 (Extended Data Fig. 9). Overseas dispersal 
throughout Wallacea of land mammals, including hominins, could have been primarily but not exclusively in 
a north to south direction, following the major surface current flow patterns. 
Beyond the chronological gap yet to be filled, a question clearly linked to our discovery is the origin of the 
Callao Cave hominin dated at 66.7 ± 1 ka. This diminutive Callao hominin may represent a direct descendent 
from a Pleistocene migration stock related to these early Kalinga toolmakers – similar to what happened on 
Flores Island – or may be derived from a more recent migration wave of anatomically modern humans6,21,24,25. 
Despite the current evidence, it still seems too farfetched to suggest that Homo erectus, or another as yet 
unknown Pleistocene ancestral candidate for the Kalinga toolmakers (e.g.‘Denisovans’27), were able to 
construct some sort of simple watercraft and deliberately cross sea barriers to reach these islands28. 
However, considering evidence of over-seas dispersal during the Middle Pleistocene is increasing in 
number29,30, such a hypothesis cannot currently be rejected. 
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Figure 1 | Geology and sedimentology of the Kalinga Excavation site. a, Digital elevation map of 
 

the Cagayan Valley surrounding the Rizal municipality (located in b, Northern Luzon Island, east of 
 

Huxley’s and north of Wallace’s Lines). The Kalinga site (red star) is located at the southern tip of the 
 

weakly folded Cabalwan Anticline. Geological units of the area bounded by the Cagayan River on the 
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East and the Chico River on the West are after Mathisen (1981)13. Stratigraphically, the site layers 

 

pertain to the upper part of the Awidon Mesa Formation, a Pleistocene sequence of alluvial stream 
 

deposits intercalated with volcaniclastic and pyroclastic deposits. The depositional environment of the 
 

Awidon Mesa Formation was characterized by braided rivers on an alluvial fan system that formed in 
 

12,13 
response to uplift in the Cordillera Central to the West . c, Contour map of the Main Excavation and 

 

the adjoining slot Trench H along the small valley where the Kalinga site is located. d, Detailed 
 

stratigraphy of the excavation with the absolute ages of the sedimentary units. Unit A constitutes a 
 

fining upward complex of sandy to silty cross-bedded fluvial sediments. The top of Unit A is eroded 
 

and cuts down vertically over at least 2.5 m. This erosive channel is filled with Unit F, a poorly sorted 
 

mudflow deposit with a maximum thickness of 3.25 m. The rhino skeletal elements and most of the 
 

stone artefacts were found lying directly above the erosional contact, and were found embedded in the 
 

clayey mud of Unit F. Unit F is conformably overlaid by a sequence of horizontally layered coarse 
 

sandy to silty layers (Unit G), which is in turn conformably overlaid by a thick sequence of silty 
 

deposits overprinted by paleosols (Unit H). e, Southward view of Trench H showing the lower and 
 

upper contacts between mudflow Unit F and sandy Unit G and between sandy Unit A and mudflow 
 

Unit F. 
 
 

Figure 2 | Lithic artefacts from Kalinga. a, Cortical flake on chert (II-2014-J1-362; L= 100, B= 55, 
 

Th=33mm); b, possible hammerstone on dacite (II-2014-J1-371), although its highly eroded aspect 
 

precludes any definitive conclusion; c, Siret kombewa flake on jasper (II-2014-J1-391; L=40, B=18, 
 

Th=8mm) having a longitudinal and oblique fracture on the inferior two-thirds of the left side resulting 
 

from a knapping accident while flaking; d, double-backed flake on flint (II-2014-J1-519); e, core on 
 

quartz (II-2014-J1-396) -showing clear marks of knapping on anvil- with its diachritic diagram. 
 



Figure 3 | Different types of marks at the surface of the bones. a, Left humerus (II-2014-J1-368) 
 

found broken into three fragments in the excavation with an anthropogenic conchoidal percussion 
 

mark (P) on its anterior surface most likely produced to get access to the marrow; b1, b2 and b3, sub- 
 

complete rib (II-2014-J1-475), having a diagnostic anthropogenic cutmark with V-shape cross-section 
 

(V), hertzian cones (H), asymmetrical profile (A) and shoulder effect (S) on its lateral surface resulting 
 

from defleshing. Black stains are also present inside the cutmark resembling the ones observed on the 
 

surface of the rib and are the result of taphonomic processes that occurred after this cutmark was made 
 

(see Fernández-Jalvo and Andrews, 2016: 156)17; c1 and c2, rib fragment (II-2014-J1-403) having a 
 

shiny surface on its lateral face resulting from multiple multidirectional striations, presumably due to 
 

trampling; d1 and d2, right metacarpal IV (II-2014-J1-282) with parallel and rectilinear anthropogenic 
 

cutmarks (R) on its medial surface presumably generated during disarticulation; e, right humerus (II- 
 

2014-J1-289) with an anthropogenic conchoidal percussion mark (P) similar in size and shape to the 
 

percussion mark on the left humerus, but located on its posterior surface and more distally and 
 

associated with a small adhered bone flake (F) (see Fernández-Jalvo and Andrews, 2016: 298)17; f, 
 

three-dimensional surface topography of another rib (II-2014-J1-466) showing a linear mark (on the 
 

left) with V-shaped cross-section (V) of anthropogenic origin, as well as hertzian cones (H) and a 
 

linear mark (on the right) with a base as broad as the heights of the walls of the grove, commonly 
 

attributed to trampling but also with assymetrical walls and possible microstriations in the bottom (M) 
 

of the groove, commonly attributed to anthropogenic marks. 
 

 
Extended data legends 

 

Extended Data Figure 1 | Geology and sedimentology of the Kalinga Excavation site. a, Detailed 
 

stratigraphic drawing of Trench H also showing the East wall of the S quadrant of the main 
 

Excavation. The sedimentary patterns are the same as in Figure 1. Representative logarithmic grainsize 
 

diagrams are shown for samples from each sedimentary unit; b, Detailed stratigraphic drawing of the 
 

Main Excavation walls; c, Overview towards the northwest of the quadrants N and NW of the Main 
 

Excavation in 2015. The concentration of faunal remains and stone tools lying at the base of Unit F is 
 

exposed, just above the eastward sloping erosional contact with Unit A; d, Detailed view of quadrant 
 

NW showing the position of a flake lying next to the rhinoceros left femur; e, Detail of quadrant N 
 

showing the piece of waterlogged wood fragment (yellow outline) recovered near a rhinoceros rib 
 

extremity (blue outline); f, Detail of quadrant NE showing the tektite recovered in Unit F along with 



 

the faunal and lithic remains. 
 

Extended Data Figure 2 | Faunal remains from Kalinga archaeological Unit F. a, Drawing 
 

showing the preservation of the rhinoceros and position of the taphonomical marks. A total of 97 
 

fragments of ribs of all sizes have been recovered and not all of them could be clearly positioned on 
 

the skeleton. We estimate that about 75% of the skeleton has been recovered. b, Fibula of Varanus 
 

salvator. c, Radius of a Cervidae. d, Molar of Cervus cf. mariannus. e, Molar fragment of Stegodon cf. 
 

luzonensis. 
 

Extended Data Figure 3 | Digital Elevation Model (DEM) of the Main Kalinga Excavation, 
 

showing the contact surface topography between Unit A and Unit F and the vertical projections (black 
 

squares) of the archaeological materials (coloured points) on this surface. This DEM has been 
 

produced by interpolation through a kriging method from 37 three-dimensional coordinates recorded 
 

in the Main Excavation with a Total station on the erosional surface that cuts down into Unit A. This 
 

surface of contact corresponds to an erosional channel cutting down into sandy Unit A. All the 
 

material has been recovered lying across the base of the clayey Unit F along this channel, between 
 

0.7m and 1.3m deep. 
 
Extended Data Figure 4 | X-ray diffraction pattern of powdered Unit F clays. CPS is counts per 

 

second. Cu K-alpha corresponds to the wavelength. Quartz corresponds to the bipyramidal quartz 
 

crystals, some of which are visible to the naked eye. Bipyramidal quartz, albite, hornblende, nontronite 
 

and saponite all have a volcanic origin. Albite are plagioclase feldspar frequent in pegmatites. 
 

Hornblende is a common silicate mineral in igneous and metamorphic rocks. Nontronite is an iron-rich 
 

smectite type of clays which can be produced by hydrothermal alteration. Similarly, the smectite 
 

mineral saponite results from alteration of volcanic glass. The mineral composition of Unit F supports 
 

the interpretation as a mudflow set in a volcanic environment. 
 

Extended Data Figure 5 | 40Ar/39Ar fusion ages of single potassium feldspar crystals for samples 
 

from Unit A and Unit G, presented as probability diagrams (a) that are correlated to the related 
 

inverse isochrones (b). 
 

Individual ages in a are ± 1σ. 
 

Extended Data Figure 6 | Measurements of dose rates (Da) and calculation of equivalent dose 
 

(De) to compute the ESR ages from quartz crystals and tooth enamel. a, Al and Ti centre ESR 
 



spectra of natural and bleached aliquots for Unit A quartz showing that Al signal is not totally reset 
 

although not measurable because extremely weak and covered by noise. b, ESR Dose-response curve 
 

obtained for the rhinoceros tooth (Archaeological number: II-2014-J1-095; sample code: CGY1501). 
 

The equivalent dose (DE) was extrapolated using a single saturating exponential function (Origin 
 

Microcal software) following the recommendations of Duval and Grün9 (DE< 500 Gy, so Dmax< 
 

5000Gy for this sample). Vertical bars account for the standard deviation around the mean for each 
 

measurement. The red curve is for the dose-response curve. The blue curves account for the 95% 
 

confidence interval of the dose-response curve. c-f, ESR Dose Response curves, for Aluminium (Al) 
 

and Titanium-Lithium (Ti-Li) centers of layers G1 and A4. Vertical bars account for the standard 
 

deviation around the mean for each measurement. The red curve is the dose-response curve. The blue 
 

curves account for the 95% confidence interval of the dose-response curve. 
 
Extended Data Figure 7 | Progressive demagnetization curves (lower left of each panel), equal 

 

area projection stereoplots (upper left) and Zijderveld diagrams (right) for the six analysed 
 

specimens from Layer G2. a-e: specimens treated by alternating field demagnetization; f, specimen 
 

HT-1E treated by thermal demagnetization. Open circles in the Zijderveld diagrams represent the 
 

inclination while closed circles represent declination. Open and closed circles in the equal area 
 

projection (stereoplot) represent the upper and lower hemisphere, respectively. Equal-area projections 
 

of the mean ChRMs directions of all analysed specimens, g, before and h, after demagnetization. Solid 
 

squares represent the upper hemisphere. Black cross indicates the mean ChRMs direction of the six 
 

specimens combined, surrounded by the α95circle. Red cross represents the present-day magnetic 
 

direction. 
 

Extended Data Figure 8 | Analysis of the Kalinga tektite recovered from the archaeological layer 
 

Unit F. a, picture of the tektite: b, µXRF spectra (un-indexed peaks correspond to the Rh source) 
 

showing its composition: c, comparison of the Kalinga tektite glass composition through µXRF with 
 

an australasite tektite from China measured in the same conditions (red squares) and with an average 
 

australasite composition (blue diamonds) following Koeberl50. 
  



Extended Data Figure 9 | Fauna diversity of the Kalinga site as compared to contemporaneous 
 

faunas from other islands in the region. Contemporaneous to those faunas are ‘classic’ Homo 
 

erectus faunas on Java Island97, the Mata Menge Fauna of Flores Island, which includes the putative 

ancestor of Homo floresiensis98, and the Walanae Fauna on the southwestern branch of Sulawesi99,100
 

 
Extended Data Table 1 | ESR/U-series results for the rhinoceros tooth. a, U-series data for the 

 

tooth CGY1501. b, ESR/U-series data and age. 
 

Eventual radium and radon losses from the dental tissues were estimated from cross-checked γ and α data101. Dose 

conversion factors of Guérin and co-authors25 were used. Water contents of 0±0%, 7±5% and 10±5% were used for enamel 

(fixed), dentine (fixed) and sediments (difference in mass between the natural sample and the same sample dried for a week 

in an oven at 50°C) respectively. 
 

1 A k-value of 0.13 ± 0.02 was used following Grün and Katzenberger-Appel102. 



2 The enamel thickness removed during preparation process was taken into account in the beta contribution calculation103. 

The following values were used for the age calculation: 1505±376µm, 351±88µm and 45±12µm for the initial thickness, 

thickness after preparation on the dentine side and on the sediment side respectively. 
 

3 Cosmic dose was estimated from depth using the Prescott and Hutton’s formulae30. Because we have at present no means 

to know precisely when the erosion took place and since when the archaeological material became buried under less than 7m 

of sediment, a depth of 2.75m was used for the cosmic dose rate estimation as an intermediate value between the 7m of 

sediments that once covered the archaeological layer and the present 70cm to 1.20m depth at which the archaeological 

material was recovered, and as an average between the once full thickness of the archaeological layer and its present 

thickness where the archaeological material was recovered. A cosmic dose estimated from a depth of 7m would result in a 

10% older age for the Unit F and a cosmic dose estimated from a depth of 1m would result in a 7% younger age for the Unit 

F. 
 

4 Uncertainties on the ESR/U-series ages were calculated using Monte-Carlo approach following Shao and co-authors104 
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