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Abstract
A new low-cost optimized hydrothermal process of direct synthesis of ZnO nanowires (NWs)/graphene
oxide (GO) hybrid on silicon substrates at a low growth temperature (∼60°C) is reported. The careful
optimization of the growth conditions and ZnO/GO relative ratios have resulted in high-density ZnO NWs
formation with homogenous density and size distributions directly on GO sheets. The fabricated
nanocomposites were intensively investigated by employing different structural, optical and electrical
characterization techniques such as SEM, EDX, XRD, FTIR, UV-VIS and I-V. SEM analysis showed a
formation of highly dense ZnO NWs on GO sheets with homogenous size di stributions with average
approximate diameter and length of 70 nm and 310 nm, respectively. The EDX combined with FTIR and
XRD measurements confirmed the exact chemical composition of the intended structure. The room-
temperature UV-VIS spectra revealed an enhance optical absorption of UV-light at an absorption band
centered at 370 nm. Under UV-excitation a significant photocurrent increase has been observed. This is can be
attributed to the large surface to volume ratio in ZnO-NWs structure, which is associated with oxygen
desorption at the large ZnO-NWs surfaces that reduces the recombination rate of photogenerated free charge
carriers. The optimum electrical and optical properties of the device have been observed at ZnO-NWs/Go
relative ratio of 1:5. These findings could be promising for potential enhanced UV-detectors and flexible
optoelectronics devices.
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Abstract: 

A new low-cost optimized hydrothermal process of direct synthesis of ZnO nanowires (NWs)/ 

graphene oxide (GO) hybrid on silicon substrates at a low growth temperature (~ 60 °C) is 

reported.  The careful optimization of the growth conditions and ZnO/GO relative ratios have 

resulted in high-density ZnO NWs formation with homogenous density and size distributions 

directly on GO sheets. The fabricated nanocomposites were intensively investigated by 

employing different structural, optical and electrical characterization techniques such as SEM, 

EDX, XRD, FTIR, UV-VIS and I-V. SEM analysis showed a formation of highly dense ZnO NWs on 

GO sheets with homogenous size distributions with average approximate diameter and length 

of 70 nm and 310 nm, respectively. The EDX combined with FTIR and XRD measurements 

confirmed the exact chemical composition of the intended structure. The room-temperature 

UV-VIS spectra revealed an enhance optical absorption of UV-light at an absorption band 

centered at 370 nm. Under UV-excitation a significant photocurrent increase has been 

observed. This is can be attributed to the large surface to volume ratio in ZnO-NWs structure, 

which is associated with oxygen desorption at the large ZnO-NWs surfaces that reduces the 

recombination rate of photgenerated free charge carriers. The optimum electrical and optical 

properties of the device have been observed at ZnO-NWs/Go relative ratio of 1:5. These 

findings could be promising for potential enhanced UV-detectors and flexible optoelectronics 

devices. 

  

 

      

 

 



 

1. Introduction  

ZnO is described as a functional, strategic, promising, low cost, and versatile inorganic material 

with a wide range of applications. It is known as II–VI semiconductor, since Zn and O are 

classified into second and sixth groups of the periodic table, respectively [1]. ZnO possesses a 

unique optical, chemical sensing, semiconducting, electric conductivity, and piezoelectric 

properties [2]. It is characterized by a direct wide band gap (3.3 eV) in the near-UV spectrum 

with high exciton binding energy of (60 meV) at room temperature, which has a significant 

effect on its properties, such as the electrical conductivity and optical absorption [3-7]. These 

characteristics enable ZnO to have remarkable applications in diverse fields such as electronic 

and optoelectronic devices, chemical sensors, and biosensors [8-11].  Due to its superior optical 

properties, ZnO has been highly used in ultraviolet (UV) photodetectors. Moreover, ZnO-based 

UV-detectors have the advantage to be insensitive to the visible light allowing for visible-blind 

detection without any additional filters compared to other semiconductor materials, which are 

used for these applications [12-16].  

Enhancing the collection of incident photons thereby the generated photocurrent are key 

parameters in today UV-photodetectors design and development. ZnO-nanowires (NWs) are 

highly preferable in this direction due to its large surface-to-volume ratio compared with other 

reported nanostructures [17-19]. However, further improvement of UV-photodetectors internal 

parameters such as sensitivity, responsivity, detectivity, photocurrent gain, rise time and decay 

time are still remained a challenge in modern flexible optoelectronics devices.  

ZnO/carbon-based hybrid nanomaterials have attracted interest as a way to further improve 

the ZnO nanowires (NWs) based photodetectors performance [20-25]. Integration of graphene 

(G) into optoelectronic devices such as UV-light sensors have a strong impact on their 

performance and applications, due to it is high optical transmission property (97.7%), which in 

turns maximize the UV-light absorption in these devices [26-29]. In addition, graphene has a 

superior electrical conductivity, which can effectively prevent the recombination of the 

electron-hole pairs in the ZnO/G nanocomposites and thereby increase the photocurrent of the 

sensor for detection without requiring high-precision measurement [30-35].  Many methods 

have been employed for the synthesis of ZnO-NWs including Vapor liquid solid (VLS) growth 

[36], chemical vapor deposition (CVD) [37], metal organic chemical vapor deposition (MOCVD) 

[38], physical vapor deposition (PVD) [39], molecular beam epitaxy (MBE) [40], pulsed laser 

deposition (PLD) [41], and metal organic vapor phase epitaxy (MOVPE) [42]. However, all these 

methods are carried out at elevated growth temperatures (450 °C - 1500 °C) using very complex 

and expensive techniques. Further reduction in the growth temperature (< 80 °C) of ZnO-NWs 

based-devices can replace the expensive substrates by cheaper and more flexible substrates. 



Therefore, photodetectors synthesized at reduced temperatures methods play a key role in 

cost reduction and open more choices of flexible substrates selection, which are highly 

desirable in flexible optoelectronics technology.  

The hydrothermal process is one of the prime candidates that has attracted considerable 

attention due to its unique advantages such as simplicity, low cost, more controllable and low 

temperature (< 100 °C) compared with the previously discussed methods.  Despite of these 

research efforts, few reports have studied ZnO-NWs /graphene oxide (GO) sheets system using 

hydrothermal process, which is likely due to the absence of effective morphological and 

interfacial control between ZnO nanostructures and graphene [43-46].   The motivation of this 

work is to take advantage of the superior optical properties of ZnO nanowires combined with 

the flexible, transparent and ideal transport properties of graphene into a single device. As a 

result, leading to a remarkable enhancement of photodetector internal parameters. However, 

excellent flexible UV-photodetectors can be used in wide range of applications such as 

automobiles, fire detection, environmental studies, pharmaceuticals, robotics, medical and 

communication equipment, biosensors, chemical industry for the production, storage of 

chemicals, and recently in space exploration [47, 48]. 

In this paper, we report on exploring high performance, large-scale, cost effective UV- sensor, 

which is highly compatible with flexible electronics. This UV-detector is synthesized by ZnO 

nanowires/GO sheets hybrid using a low temperature hydrothermal process directly on silicon 

substrate.  

2. ZnO nanowires growth and UV detector design  

 

2.1 Hydrothermal Synthesis of ZnO-Nanowires/GO sheets: 

 

ZnO-NWs have been prepared by mixing ZnO-nanoparticles with a growth solution under a 

water path at a low temperature of (~ 60 °C). The detailed description of ZnO-NPs preparation 

has been already reported in our previous work [49]. The ZnO-nanoparticles serve as seeds and 

nucleation sites to initiate the growth of ZnO-NWs on GO sheets inside the growth solution. 

After preparing the zinc oxide nanoparticles, a solution of distilled water and graphene was 

sonicated for 30 min, then the ZnO-NPs solution was added to the graphene solution with 

different relative ratios (ZnO-NPs/GO) 1:25, 1:5, and 1:1, respectively. The used growth solution 

was prepared from 0.5488 g zinc acetate and 0.7437 g zinc nitrate in 100 ml of distilled water.  

   

All n-type Si (100) substrates underwent a wet etching cleaning for oxides removal using HCL 

for 2 min.  The nanocomposite mixtures solution prepared in the previous step was put on Si 

substrates and left to dry for 24 hours at room temperature.  After that, the holder that holds 



the silicon substrates was dunk in the growth solution in a water path at temperature of 60 Co 

for 7 hours.  

 

2.2 UV detector of ZnO-NWS/GO/Si design  

The holder together with the surface treated Si-substrates that submersed in the growth 

solution in the last step were lifted from the growth solution. At the end, all samples were 

cleaned using DI water and left to dry at room temperature.  After drying, a very thin layer of 

Ag was printed on the UV detector structure as shown in Fig. [1]. Subsequently, Cu electrodes 

were fixed over Ag contacts using heat and a duct tape. 

3. Results and discussion  

The successful formation of ZnO-NWs on GO sheets was evaluated using various structural, 

optical and electrical characterization tools. These investigations have been performed with the 

help of electron dispersive x-ray (EDX), scanning electron microscope (SEM), x-ray diffraction 

(XRD), Fourier transform infrared spectroscopy (FTIR), ultra violet-visible absorption 

spectroscopy (UV-VIS), and current-voltage (IV) measurements.  

3.1 Structural and compositional characterizations 

 

3.1.1 XRD studies   

Fig. 2 shows the XRD measurement of ZnO-NWs/GO/Si composite. The typical Si substrate peak 

(100) reflection was observed with highest intensity at a diffraction angle 2𝜃 of 26.7°. However, 

(002) GO reflection was detected at an angle 2𝜃 of 12.71° with relatively lower intensity, this 

confirms the partial reduction of GO to graphene sheets.  All ZnO major reflections are 

observed at 2𝜃 = 31.81°, 34.6°, 36.4°, 47.7°, 54.9°, 56.7°, 63.3°, 68.1° and 69.2°, which 

correspond, respectively, to the (100), (002), (101), (110), (102), (103), (200),(112) and (201) 

planes of ZnO (Joint Committee on Powder Diffraction Standards 36-1451). All peaks in the 

ZnO-NWs can be indexed to hexagonal wurtzite structure with space group P63mc and lattice 

parameters a = 0.3251 nm and c= 0.5208 nm, which indicates that ZnO nanowires are oriented 

to some extent [50, 51]. No extra diffraction peaks of other phases have been detected, 

indicating the phase purity of the nanocomposite. 

 
3.1.2 EDX for Chemical composition analysis 

 
The chemical compositions of the ZnO-NWs/GO nanocomposite (sample with ratio 1:5) was 
characterized by a scanning electron microscope SEM equipped with an energy dispersive X-ray 
(EDX). EDX analysis of the chemical composition as-prepared ZnO-NWs/GO nanocomposite on 



Si substrate shows that only Zn, O, C and Si substrate signals have been detected (Fig. 3), which 
indicate that the hybrid structure indeed made up of Zn, O, C and Si elements. No signal of 
secondary phase or impurity was detected, thus suggested the high-purity of the grown 
structure. 
 

3.1.3 Morphological studies  

SEM has been utilized for the purpose of morphological study of the grown ZnO/GO 

nanocomposites. Fig. [4] depicts the SEM images for different ZnO:GO relative ratios of 1:1, 1:5, 

and 1:25, respectively. A clear high dense ZnO-NWS with homogenous size and density is 

observed at relative ratio of 1:1 (Fig. 4-a).  

Fig.4-b with a relative ratio of 1:5 shows less dense ZnO-NWs formation compared to 1:1 ratio. 

However, no ZnO-NWs has been observed at a relative ratio of 1:25 (Fig.4-c). This might be 

attributed as a formation of ZnO nanoparticles instead on nanowires with kind of aggregation 

behavior that tend to form bigger islands with random growth directions. One possible reason 

for that growth structure is the less ZnO concentration compared to GO, which is not sufficient 

to initiate the growth of ZnO-NWs that observed to form at higher ZnO concentrations. 

3.1.4 FTIR spectroscopy  
 

The surface modifications of the functional groups of ZnO-NWs/GO after the hydrothermal 
process have been investigated by FTIR spectroscopy. Fig. 5 shows FTIR spectrum of the 
absorption bands of ZnO-NWs/GO nanostructure with a relative concentration of 1:5. 
 
All oxidized samples exhibit an absorption band centered at 442 cm-1, related to the stretching 
mode of Zn-O bond vibration [1]. The peaks at 3451, 1740, 1683 and 724 cm-1 are assigned to O-
H stretching vibration, C=O stretching, C=C bond stretch in alkenes and C-H rock, respectively 
[2-4]. The FTIR spectrum results are in a good agreement with ZnO-NWs/GO contents obtained 
by XRD and EDX analysis.  
 

3.2 Optical characterization via UV-VIS 
 
Fig. 6 shows the UV-VIS absorption spectra for a water solution of pure ZnO nanowires (ZnO-
NWs) and ZnO-NPs, pure graphene oxide (GO), and ZnO-NWs/GO with different relative ratios 
1:25, 1:5, and 1:1. The ZnO-NWs solution shows the characteristic UV sharp peak absorption 
centered at 370 nm (~ 3.35 eV) [50], which near to the energy gap of bulk ZnO, with an 
absorption of about 60 % of the incident UV-light. The peak found at about 260 nm, which is 
much below the energy gap of ZnO, is mostly because of the ZnO nanoparticles formation in 
this sample [51]. 
 
It can also be clearly seen that the UV light absorption with sharp peak cantered at 370 nm 
decreases with the decreasing of ZnO-NWs concentration in the solution. This explains that UV 



absorption is directly associated with the ZnO concentration in the sample, which confirms that 
ZnO-NWs acts as UV absorbing and charge carriers generating material. 
 

3.3  I-V characteristics of ZnO-NWs/GO/Si nanocomposite  
 

A UV light source with a wavelength of 365 nm and power density of 10 mW/cm2 at the bias of 
6 V has been utilized for the I-V measurements with UV illumination. Fig. 7a shows different 
photoresponse log scale I-V curves under dark and UV conditions for two different relative 
ratios of ZnO-NWs/GO 1:1 and 1:5, respectively. All I-V curves look quiet symmetric for all 
samples, indicating good ohmic contacts on both sides. Under UV excitation a clear reasonable 
photocurrent increase for both samples has been observed. The sample with 1:5 relative ratio 
exhibited a higher photocurrent increase compared to the one with 1:1 relative ratio. This could 
be attributed to the increase of ZnO-NWs density, which form closer NWs structure in 1:1 
sample. As a result, ZnO-NWs cover the entire graphene sheets and decrease the contacts 
between GO sheets themselves. This suggests the raise of the device resistivity and decrease in 
photocurrent compared to the sample with lower ZnO-NWs/GO ratio 1:5.  
 
The difference in the current behavior upon UV irradiation could be explained as follows; in the 
darkness with complete absence of UV radiation, oxygen molecules are adsorbed by ZnO NWs 
surfaces directly from ambient air. Free electrons from n-type ZnO are trapped by oxygen 
molecules and form negative ions − O2 on the surface of ZnO NWs. The oxygen adsorption 
process lowers the conductivity on the surface of ZnO NWs by forming a non-conducting 
depletion layer [51]. However, Under UV irradiation, electron-hole pairs are generated and 
negative oxygen ions (− O2) capture the free holes, which neutralized the oxygen ions and 
activate the desorption of oxygen molecules from the ZnO-NWs surface. This suggests the rise 
of the amount of free charge carriers and lower the surface depletion thickness in NWs, which 
enhances the photoconductivity of the device [52].  
 
The presence of graphene in contact with the metal electrodes improve the probability of 
conduction between the Ag electrode – graphene sheets by decreasing the electrical path of 
the photogenerated free charge carriers in the designed detector.  In addition, the transferred 
photogenerated free charge carriers from ZnO-NWs to graphene is enhanced due to the high 
transport mobility of graphene [53]. This reduces the recombination rate of the 
photogenerated free charge carries and increase the photocurrent in the ZnO-NWs/GO device. 
 
Fig. 7b depicts the influence of ZnO-NWs/GO/Si nanocomposite annealing on the I-V 
characteristics (sample with ratio 1:5). Under UV illumination, the obtained results show a slight 
photocurrent decrease in the sample annealed at 300 °C compared to the sample as grown and 
measured at room temperature. This suggests that the UV-photodetector is relatively thermally 
stable up to 300 °C. However, further annealing of ZnO-NWs (> 600 °C) has been proven to have 
a significant impact on ZnO-NWs diameters thus their density. ZnO-NWs diameters have been 
found to increase with the increase of annealing temperature above 600 °C [54-58]. Low 
density ZnO-NWs results in less photons harvesting due to the decrease of the ZnO-NWs total 



surface area which is exposed to UV-radiation. Therefore, this results in less photocharge 
carrier generation, which degrade the overall UV-photodetector performance.   
 

3.4 UV-Photodetector internal performance parameters analysis  
 
In this study, the spectral responsivity (Rs) of ZnO-NWs/GO nanocomposite device has been 
calculated using eq. 1.  Responsivity defined as the ratio of the photocurrent (𝐼𝑃ℎ = 𝐼𝑈𝑉 −
𝐼𝑑𝑎𝑟𝑘) to the incident excitation power density (Pin), where A is the effective device area of UV-
illumination [59, 60].  
 

                             𝑅𝑠 =
𝐼𝑃ℎ

𝐴 𝑃𝑖𝑛
                                                                                     (1) 

 
Fig. 8a (circular dots line) shows the calculated responsivity of ZnO-NWs/GO device at different 
bias voltages ranging from 1 to 5 volts. Maximum responsivity of 10.13 × 103 A/W has been 
obtained for ZNO-NWs/GO nanostructure at applied bias voltage of 5 V. This corresponds to an 
enhancement factor of about 14 times higher than similar recently reported structures [63]. 
This enhancement is attributed to the enhanced mobility of the photgenerted carrier due to the 
presence of graphene sheets and the improved interfacial morphology and contacts between 
the nanocomposites in this device compared to other devices [64,65].  A comparison study 
between the results of the present work versus other reported photodetectors is summarized 
in Table. 1. Fig. 8a (square dots line) illustrates the calculated photocurrent gain (G) as a 
function of the bias voltage. Assuming that no optical losses and all photons are absorbed by 
the device, the gain can be calculated by applying eq. 2. 
 

                                     𝐺 =
𝑅𝑠

𝑞/ℎ𝜈
                                                                          (2) 

 
It can be observed from fig. 8a that responsivity and photocurrent gain vary almost linearly with 
the bias voltage due to the increased drift velocity of the charge carriers. The maximum 
photocurrent gain obtained as high as 3.45 × 104   at a bias voltage of 5 volts. The sensitivity, 
which is defined as the ratio of photocurrent to the dark current is about 1.7. This value is 
comparable with the recent excellent reported photodetectors that are synthesized via 
expensive and complex techniques [45, 46, 65].   
 
Fig. 8b displays the time-dependent response photocurrent in GO/ZnO-NWs device for 3 min 
UV exposure at a bias voltage of 5 V. A sudden rise in photocurrent has been observed that 
quickly reaches its maximum value. This can be characterized by the rise time (𝜏𝑟), which is 
defined as the time needed to reach 90 % of the maximum current. Whereas the decay time 
(𝜏𝑑) defined as the time needed to drop to 10 % from the maximum current. Fig. 8b reveals a 
fast rise and decay times of about 11.2 s and 81 s, respectively.  This relatively fast response 
performance is in a good agreement to the previous reported experimental results (see table 
1). The outcomes of the prepared ZnO-NWs/GO photoconductor analysis exhibits a very good 



optoelectronics properties. These findings could be promising for potential enhanced UV-
detectors and flexible optoelectronics devices.    
 

4. Conclusion  
 

High-dense ZnO nanowires have been successfully grown directly on graphene oxide sheets by 
simple cost-effective and low temperature hydrothermal method. EDX, XRD, FTIR 
measurements of the fabricated ZnO-NWs/GO nanocomposites confirmed the exact chemical 
compositions of the intended structure with high purity. All samples of ZnO-NWs/GO with 
various relative ratios of 1:1, 1:5, and 1:25 exhibited UV light absorption at a band centered at 
370 nm. The absorbed UV light has been observed to increase with the increase of the ZnO-
NWs concentration in the samples. The photocurrent under UV irradiation was considerably 
enhanced compared in the dark conditions. This enhancement is attributed to the adsorbed 
oxygen on ZnO-NWs surface and the photogenerated holes, which ultimately can neutralize the 
oxygen.  As a result, this can promote spatial separation of electrons and photogenerated holes, 
thereby decreasing their recombination rate. In addition, to the enhanced transport mobility in 
the presence of graphene, which increases the recombination life time of the photogenerated 
carriers and thereby increase the photocurrent in ZnO-NWs/GO based devices. 
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Figure Captions: 
 
 
Fig. 1: Schematic of UV-photodetector based on ZnO-NWs/Go/Si hybrid structure. 

 

Fig. 2: XRD of ZnO-NWs/GO nanocomposite on Si substrate sample with relative ratio of 1:5.   

 

Fig. 3: EDX measurement of ZnO-NWs/GO/Si with relative ratio 1:5. The inset shows SEM image 

of the same with high density ZnO-NWs on graphene sheets. 

 

Fig. 4: SEM images of ZnO-NWs/GO nanocomposites on Si substrate with different relative 

ratios. (a) 1:1, (b) 1:5 and (c) 1:25, respectively.  

 

Fig. 5: FTIR spectrum of ZnO-NWs/graphene nanocomposite with 1:5 relative ratios.  

 

Fig. 6: UV-VIS absorption spectra of zinc oxide nanowires ZnO-NWs and some ZnO 
nanoparticles (pink), graphene oxide (GO) (black), and ZnO-NWs/GO ratios of 1:1 (blue), 1:5 
(amber), and 1:25 (red). All solutions were in water. 
 
 
Fig. 7: (a) Current – Voltage (I-V) characteristics of ZnO-NWs/GO nanocomposite: (Black) I-V 
curve in dark, (blue) I-V curve under UV illumination for the sample with ratio 1:1. (red) I-V 
curve under UV illumination for the sample with ratio 1:5. (b) Current – Voltage (I-V) 
characteristics of ZnO-NWs/GO nanocomposite: (Black) I-V curve in dark, (red) I-V curve under 
UV illumination at 300 °C, (blue) I-V curve under UV illumination at 25 °C. 

 

Fig. 8: (a) ZnO-NWs/GO spectral responsivity and photocurrent gain as a function of bias 
voltage. (b) Time-dependent photoresponse current of ZnO-NWs/GO hybrid under UV-
illumination and dark conditions at 5 V bias.   

 

 



 

Table caption: 

 

Table. 1: Responsivity and time-dependent photocurrent response comparison 

between the present work and similar reported UV-photodetectors structures. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

UV-Sensor 
Structure 

Rise 
Time (s) 

Decay Time 
(s) 

λ 
(nm) 

Bais 
(V) 

Rs 
(A/W) 

Ref. 

 
ZnO Nanorods/Graphene  

 
n/a 

 
n/a 

 
370 

 
20 

 
22.7 

 
[43] 

ZnO NWs/Graphene foam 9.5 38 365 5 6 [44] 
ZnO Nanorods 3.7 63.6 325 n/a n/a [61] 
ZnO NWs 2 100 360 1 39 [62] 
ZnO NWs/G 269 139 352 3 728 [63] 
ZnO NWs 229 547 310 3 n/a [65] 
Graphene/ZnO NWs 11.9 240 365 5 32000 [45] 
Graphene/ZnO NW/Graph 3 0.47 365 5 23 [46] 
ZnO NWs/Graphene  11.2 81 370 5 10230 This work 
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