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Abstract. In complex and urban environments, atmospheric
trace gas composition is highly variable in time and space.
Point measurement techniques for trace gases with in situ in-
struments are well established and accurate, but do not pro-
vide spatial averaging to compare against developing high-
resolution atmospheric models of composition and meteo-
rology with resolutions of the order of a kilometre. Open-
path measurement techniques provide path average concen-
trations and spatial averaging which, if sufficiently accu-
rate, may be better suited to assessment and interpretation
with such models. Open-path Fourier transform spectroscopy
(FTS) in the mid-infrared region, and differential optical ab-
sorption spectroscopy (DOAS) in the UV and visible, have
been used for many years for open-path spectroscopic mea-
surements of selected species in both clean air and in pol-
luted environments. Near infrared instrumentation allows
measurements over longer paths than mid-infrared FTS for
species such as greenhouse gases which are not easily acces-
sible to DOAS.

In this pilot study we present the first open-path near-
infrared (4000–10 000 cm−1, 1.0–2.5 µm) FTS measure-
ments of CO2, CH4, O2, H2O and HDO over a 1.5 km path
in urban Heidelberg, Germany. We describe the construction
of the open-path FTS system, the analysis of the collected
spectra, several measures of precision and accuracy of the
measurements, and the results a four-month trial measure-
ment period in July–November 2014. The open-path mea-
surements are compared to calibrated in situ measurements
made at one end of the open path. We observe significant dif-
ferences of the order of a few ppm for CO2 and a few tens of
ppb for CH4 between the open-path and point measurements

which are 2 to 4 times the measurement repeatability, but we
cannot unequivocally assign the differences to specific local
sources or sinks. We conclude that open-path FTS may pro-
vide a valuable new tool for investigations of atmospheric
trace gas composition in complex, small-scale environments
such as cities.

1 Introduction

The cycling of carbon between Earth’s surface and the atmo-
sphere is dominated by carbon dioxide (CO2) and methane
(CH4), which are also the two most important anthropogeni-
cally influenced greenhouse gases. The steady increases
in CO2 and CH4 concentrations in the global atmosphere
since industrialisation have been well documented by the
global network of surface in situ point measurements (e.g.
GLOBAL-VIEW-CO2, 2009). Such point-based in situ mea-
surements in clean baseline air are well suited to monitor-
ing long term global changes in atmospheric greenhouse
gases (also including nitrous oxide (N2O) and other minor
species), and have provided most of the data from which long
term global trends have been assessed. However, to charac-
terise and quantify individual sources and sinks of green-
house gases, measurements in regional, urban, agricultural
and industrial environments located near the sources and
sinks, combined with fine-resolution local and regional-scale
atmospheric transport modelling, are required. In a recent
modelling study, Turner et al. (2016) concluded that a dense
(2 km) fixed network of point sensors with only moderate
precision was sufficient to characterise CO2 sources with 5 %
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1550 D. W. T. Griffith et al.: Long open-path measurements of greenhouse gases in air

accuracy in the San Francisco Bay Area. Lee et al. (2017) tri-
alled a network of five mobile CO2 sensors in the Vancouver
urban area combined with an aerodynamic model to calculate
fluxes.

Point measurements are sensitive to the immediate local
environment, and may or may not adequately represent the
mean concentrations over the grid-scale of the relevant at-
mospheric models in non-background environments. open-
path (OP) measurements provide spatially averaged concen-
trations, by measuring an optical absorption spectrum along
a path between a light source and the measuring instrument
and retrieving component concentrations from the spectra.
Spatial averaging at similar scales to those of the finest
urban- and regional-scale models should be advantageous in
combining measurements and models to deduce the strengths
of localised sources and sinks of greenhouse gases. But how
accurately can we measure such spatially averaged trace gas
concentrations?

The longest established surface OP techniques (i.e. ex-
cluding satellite and ground based total column mea-
surements) are differential optical absorption spectroscopy
(DOAS), typically employing the UV and visible spectral re-
gions (Platt and Stutz, 2008), and open-path Fourier trans-
form spectroscopy (OP-FTS) in the mid-infrared (e.g. Tua-
zon et al., 1978; Russwurm and Childers, 2002; Griffith and
Jamie, 2006; Smith et al., 2011; Laubach et al., 2013; Flesch
et al., 2016; You et al., 2017). While DOAS can operate
over path lengths of several kilometres, suitable absorptions
for accurate and precise measurements of CO2, CH4 and
other greenhouse gases are not available in the UV–visible
spectrum. In the mid-IR suitable absorptions are available,
but when restricted to conventional broadband blackbody
sources such as a globar, low source brightness limits beam
collimation across the open path and restricts path lengths
to typically a few hundred metres. Until recently the near-
infrared (NIR) region had been little used. For broadband
studies, NIR allows the use of a high temperature, bright
white light source (such as quartz halogen or Xe lamp) allow-
ing good beam collimation over kilometre-scale path lengths,
but absorption strengths of the available overtone and combi-
nation vibrational spectral bands are much lower than for the
fundamental transitions in the mid-IR. Previous work to ex-
tend DOAS into the NIR region, using a conventional white-
light source, monochromator and detector array, was limited
by the weak absorptions and interfering spectral structures to
a repeatability of approximately 30 % and uncertain accuracy
for CO2 and CH4 (Sommer, 2012). More recently, DOAS –
type NIR measurements using broadband laser sources (Saito
et al., 2015; Somekawa et al., 2011), and frequency comb
spectroscopy (Rieker et al., 2014; Waxman et al., 2017) have
been described to measure CO2 and CH4 in the NIR over
path lengths of up to 5 km. These methods achieved a mea-
surement repeatability of 1–4 ppm with absolute bias of up
to 7 ppm for CO2 when compared to point in situ measure-
ments. Other recent developments include open-path tunable

Figure 1. Schematic drawing of the long open-path FT spectrometer
and optical system. Radiation from the source is fed close to the
focus of the telescope through the outer bundle of six fibres (blue)
and transmitted across the open path. The return beam is collected
by the central fibre (red) and focussed onto the input aperture of
the interferometer. The modulated beam from the interferometer is
detected by the InGaAs detector and the resultant interferogram is
Fourier transformed to provide the long open-path spectrum.

diode laser (TDL) systems (e.g. Dobler et al., 2013; Queisser
et al., 2016), and commercially available laser-based open-
path analysers (e.g. Boreal Laser Inc., Edmonton, Canada).
TDL systems are generally applicable only to a single target
gas.

The recent and rapid development of TCCON, the Total
Carbon Column Observing Network (Wunch et al., 2011)
has shown that the near-IR spectrum, with a ground based
FT spectrometer and the sun as a source, is suitable for
highly accurate and repeatable (< 0.2 %) measurements of
total column CO2, CH4, N2O and other trace gases. Smith et
al. (2011) assessed the performance of OP-FTS in the mid-
infrared, finding accuracies of a few percent without calibra-
tion against standards. In this work, drawing on our com-
bined experience in TCCON, mid-IR OP-FTS and DOAS,
we describe measurements of CO2, CH4, H2O, HDO, O2
and other gases with a Fourier transform spectrometer (FTS).
The FTS utilised in this study operates in the near-infrared
(4000–10 000 cm−1, 1.1–2.5 µm) using a simple broad-band
tungsten halogen light source combined with a long open-
path telescope and retro reflector system over a 1.5 km path
(one-way, 3.1 km total absorption path length) in urban Hei-
delberg, Germany. The spectroscopy is similar to that used in
TCCON, and in this pilot study we aimed to: (1) assess the
precision, accuracy and stability of such ground based long
open-path measurements; and (2) compare and test for biases
between open-path measurements and point measurements
made with a calibrated in situ analyser at one end of the open
path. The measurement system operated for 4 months from
July–November 2014 in urban Heidelberg, Germany.

Atmos. Meas. Tech., 11, 1549–1563, 2018 www.atmos-meas-tech.net/11/1549/2018/
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Figure 2. Aerial view of Heidelberg and the 1.5 km measurement
path. IUP is the Institute of Environmental Physics (FTS and tele-
scope, in situ measurements), PI is Physics Institute (retroreflector),
PS is power station. The measurement path is mostly over residen-
tial areas. There is an extensive small-agricultural area to the north
and northwest.

2 Experimental

2.1 FT spectrometer and long path optics

The optical system is shown schematically in Fig. 1. The
spectrometer and telescope were located in the rooftop ob-
servatory of the six-storey Institute of Environmental Physics
(IUP) building on the University of Heidelberg campus in
urban Heidelberg, (49.4172◦ N, 8.6745◦ E, 145 m a.s.l., 33 m
above ground). The associated retroreflector array was lo-
cated on the Institute of Physics (PI) building 1555 m east at
(49.4149◦ N, 8.6956◦ E, 169 m a.s.l.). The distance was mea-
sured with a laser rangefinder to ±1 m. The intervening path
is illustrated in Fig. 2 and crossed above a residential area
approximately 0.5 km north of the Neckar River and 1.5 km
northeast of the Heidelberg city centre. A 35 W tungsten–
quartz–halogen light source was focussed by a 25 mm focal
length, 25 mm diameter NIR-coated glass lens (Edmund Sci-
entific, not shown) into a 6× 200 µm fibre bundle (3 m long,
200/240 IRAN, Loptek GmbH) and directed to the primary
focus of a 300 mm diameter, 150 cm focal length Newtonian
telescope (aluminium primary mirror with SiO2 overcoat).
The collimated beam from the telescope was directed via fine
step-control alignment motors to an array of 17× 63 mm di-
ameter solid UV quartz corner cubes which acted as retrore-
flectors to return the beam to the telescope. The focussed re-
turn beam was collected by a single 200 µm fibre in the cen-
tre of the six-fibre bundle in the same sheath, which forked
to direct the single central fibre to the input of the FT spec-
trometer. The fibre coupling to the telescope is described in
detail by Merten et al. (2011). In practice the fibre end at
the telescope was slightly defocussed to maximise the light
throughput to the spectrometer.

Figure 3. Typical NIR long path spectrum, recorded 1 Octo-
ber 2014.

The return beam from the fibre was focussed by a 75 mm
focal length NIR-coated lens into the 1 mm entrance stop of
the FT spectrometer (IRcube, Bruker Optics, Ettlingen Ger-
many), which had a quartz beam splitter and InGaAs detector
optimised for the NIR spectral region (3800–10 000 cm−1).
A typical spectrum is shown in Fig. 3. The lower frequency
cutoff was determined by the transmission of the UV quartz
corner cubes, fibres and detector.

The rms spectral signal : noise ratio (SNR) was determined
at 6300–6500 cm−1 from the ratio of two successive 5 min
spectra, where atmospheric and fibre residual features mostly
cancel leaving only the instrument noise. The observed SNR
was typically 700–900 : 1 for such a ratio spectrum, corre-
sponding to 1000–1200 : 1 for a single spectrum.

Measurements reported here were continuously collected
from 10 July to 4 November 2014. Spectra were recorded
with a resolution of 0.55 cm−1 (maximum optical path dif-
ference 1.8 cm), each by coadding 84 scans over 5 min. Each
hour a background stray light spectrum was recorded by
blocking the source at the fibre input, and a short path ref-
erence spectrum was recorded by blocking the beam at the
telescope end of the fibre with an aluminium diffuse reflector
plate to return a small fraction of the intensity to the detector
without traversing the long open path. Over the 4 month mea-
surement period more than 26 000 spectra were collected, of
which approx. 3000 (11 %) were rejected due to poor visi-
bility and low signal or other, normally weather-related ef-
fects. In total, taking into account hourly background spec-
trum measurements, downtime due to maintenance and ex-
tended poor weather periods, we collected and analysed us-
able data for 68 % of the total time from 10 July to 4 Novem-
ber.

Atmospheric pressure and temperature for the measure-
ment path are required for the spectrum analysis and to cal-
culate air density. These were measured and averaged over
the period of each spectrum measurement by an electronic
barometer (Vaisala PTB110) and LM335 diode, co-located

www.atmos-meas-tech.net/11/1549/2018/ Atmos. Meas. Tech., 11, 1549–1563, 2018
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with the FT spectrometer. The acquisition of spectral data,
pressure and temperature, shutter control and real-time spec-
trum analysis were executed automatically by the software
available for the Ecotech Spectronus in situ FTIR analyser
(Ecotech, Knoxfield, Australia). Initially the IUP weather
station temperature and height-adjusted pressure were used
in the spectrum analysis; the weather station temperature was
subsequently replaced by the path-averaged temperature de-
rived from the spectra themselves, as described below.

2.2 In situ trace gas measurements

At the IUP end of the open path, air from a roof-level inlet
on the IUP building was sampled and analysed continuously
with an in situ trace gas analyser described in detail by Grif-
fith et al. (2012), Hammer et al. (2013), and Vardag et al.
(2015). This analyser is based on an FTIR spectrometer op-
erating in the mid-IR and provided simultaneous high preci-
sion measurements of CO2, CH4, CO, N2O, δ13C and δ18O
in CO2 calibrated against standards used in the World Meteo-
rological Organisation Global Atmosphere Watch (GAW). It
provided calibrated point measurements for comparison with
the path averaged open-path measurements. The calibration
frequency (daily target tank, weekly calibration tanks) en-
sured that all measurements meet GAW compatibility re-
quirements. Measurements were made continuously, aver-
aged every 3 min, and the time series was interpolated to
the mean times of the open-path measurements for point-by-
point comparison.

Meteorological measurements

Standard measurements of pressure, temperature, humidity,
wind speed, wind direction and solar radiation were obtained
from the IUP weather station (located on the roof of the
building) as 5 min averages and interpolated to the times of
the open-path measurements.

2.3 Spectrum analysis and retrieval of trace gas
amounts

Path averaged trace gas mole fractions were retrieved from
spectra by iteratively best-fitting a calculated spectrum to
the measured spectrum. The forward model, MALT (Grif-
fith, 1996) calculates the transmission spectrum from a set of
input parameters including absorption line parameters, trace
gas amounts, pressure, temperature and path length as well
as instrument parameters including resolution, apodisation
function, line shape, spectral shift and a five-term polyno-
mial fit to the continuum, which in these single beam spectra
is generally not flat. The line parameters are based on Hitran
2008 (Rothman et al., 2009) updated by Toon and associates
for the GFIT software used throughout TCCON (Wunch et
al., 2015). The inverse model uses non-linear least squares
following the Levenberg–Marquardt algorithm (Press et al.,
1992) to retrieve the path averaged concentration of each

Table 1. Details of spectral windows used for fitting.

Species Interfering Spectral region Spectral region
fitted species co-fitted cm−1 µm

O2 H2O* 7790–7960 1.26–1.28
CO2 H2O 4800–5050 1.98–2.08
CH4 H2O 5885–6150 1.63–1.70
H2O, HDO CO2 4910–5080 1.97–2.04

* In O2 there is also a weak contribution from collision-induced continuum absorption
which is fitted with the overall continuum.

trace gas species. The path averaged concentrations are con-
verted to mole fractions by dividing them by the concentra-
tion of air determined from pressure and temperature. More
details are given by Griffith et al. (2012).

Details of the spectral windows used for the NIR long path
analysis are summarised in Table 1 and typical fits for spec-
tral regions used to retrieve O2, CO2 and CH4 are shown in
Fig. 4. The weaker bands near 6300 cm−1 (1.58 µm) used
in total column TCCON analyses were also analysed, but
are not included because their signal-to-noise ratio (SNR) is
much less than that of the stronger 4800–5000 cm−1 bands
used here. The contribution of the bands near 6300 cm−1

to an SNR-weighted mean CO2 retrieval is therefore negli-
gible. Note these spectral windows are quite different from
those used in the mid-IR in the in situ analyser (Griffith et
al., 2012).

The fibre optic coupling between telescope, source and de-
tector introduces repeatable fringing and interferences in the
measured spectra at about 1 % of the measured signal inten-
sity. These spectral structures can be seen in the residual plots
of Fig. 4 and are quite reproducible over periods of days to
weeks. They are larger than the underlying detector noise but
much less than the trace gas absorptions, at least for CO2 and
O2 (Fig. 4). Removing or co-fitting an average fibre residual
spectrum during the fit only makes a small (� 1 %) differ-
ence to the retrieved mole fractions, because the fibre resid-
ual spectrum is itself derived from the least squares fits to
real spectra and is approximately orthogonal to the target gas
spectrum.

Background spectra of stray light measured hourly by
blocking the source had intensities up to 1 % of those of
the open-path spectra, maximising in the early morning and
late evening when the solar elevation was low and direction
roughly parallel (east to west) to the open path. Scattered
solar stray light collected by the FTIR spectrometer has an
effective atmospheric path of > 8 km depending on zenith
angle, leading to stronger path-average trace gas absorption
and higher apparent column amounts of trace gases retrieved
from the spectra – for CO2 the enhancement can be up to
5 ppm at low sun elevations with an additional spike apparent
when the near-direct solar beam is captured (see example for
O2 below). The enhancement is typically less than 1–2 ppm
during the middle of the day and at night. The analyses were
not corrected for stray light because: (a) the stray light spec-

Atmos. Meas. Tech., 11, 1549–1563, 2018 www.atmos-meas-tech.net/11/1549/2018/
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Figure 4. Typical fits for (a) O2 band centred near 7880 cm−1 (b) CO2 bands centred near 4850 and 4980 cm−1 and (c) CH4 band centred
near 6000 cm−1. In each plot the target species is in red, and the remaining absorption is dominated by water vapour. See Table 1 for details
of all interfering and co-fitted species.

www.atmos-meas-tech.net/11/1549/2018/ Atmos. Meas. Tech., 11, 1549–1563, 2018
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Figure 5. Comparison of IUP meteorological station temperature
(red) and spectrum-derived path averaged temperature (blue) for an
illustrative period of 4 sunny days. The differences are plotted in
green and range from 0 to 6 ◦C.

tra were measured only once per hour, so they do not provide
an accurate measurement of the scattered light at the time of
each 5 min OP measurement; and (b) the stray light spectrum
is weak and noisy and adds noise to the retrieved trace gas
amounts from the measurements. Periods of high stray light
levels have been removed from the record. An improvement
to the optical configuration to avoid scattered light interfer-
ence is described in Sect. 4.3 under future improvements.

2.4 Path averaged temperature measurement

Significant differences of up to 5 ◦C became apparent be-
tween measurements of temperature from the point sensors
located at the instrument and at the weather stations at each
end of the optical path. An effective path-averaged temper-
ature for each measurement is preferable to a point mea-
surement, and was therefore retrieved from the spectra them-
selves by allowing temperature to be an adjustable parameter
in the least-squares fit. The IUP station temperature was used
as the initial estimate for the fit. Temperature was retrieved
from the CO2 window at 4980 cm−1 (Fig. 4b), which has
good signal to noise ratio and absorption lines with a range
of temperature sensitivities. Figure 5 illustrates typical tem-
peratures and differences over a period of four sunny days
– there is a systematic offset, with the point measurement
always higher relative to the path average, and larger differ-
ences during daytime. This may be due to the thermal mass
of the building on which the weather station was located or
radiative heating of the sensor, while the open optical path
is typically 10–30 m above the ground and buildings in free
air. We expect the retrieved path averaged temperature to be
a better estimate of the true path averaged temperature; this
is confirmed when used to fit O2 as described further below,
as it led to less artefact diurnal variability in the retrieved O2.
The CO2-spectrum-derived path-average temperatures were

Figure 6. Retrieved instrument line-shape function for the IRcube
FTS at nominal 0.55 cm−1 resolution. The measured half width at
half height is 0.58 cm−1.

therefore used in all spectrum re-analyses in other spectral
regions.

2.5 Instrument line shape (ILS) characterisation

To check the instrument line-shape function (ILS) of the
FTS, we followed Frey et al. (2015), by measuring the spec-
trum of water vapour in a short-path reference spectrum over
a path length in air of approximately 3 m and fitting it using
both MALT and Linefit (Hase et al., 1999) programs. Assum-
ing the nominal field of view (FOV) of the FTS is 7.2 mrad,
we found a linear drop in modulation efficiency to 0.67 at the
maximum optical path difference. Alternatively, setting the
modulation to its nominal value of 1.0 and fitting the field of
view, we retrieved an effective FOV of 10.8 mrad. The effec-
tive ILS width is thus approximately 30 % broader than the
nominal value for a perfect optical system. This is consis-
tent with the short focal length optics and aberrations in the
compact optical system. The ILS is shown in Fig. 6. The full
width at half height is 0.58 cm−1, equivalent to 0.12 nm at
7000 cm−1 (1428 nm) and 0.24 nm at 5000 cm−1 (2000 nm).

3 Results

All raw mole fractions (except water vapour) were con-
verted to dry air mole fractions using the path-averaged water
vapour amount retrieved from the same spectrum:

xdry =
xwet

1− xH2O
.

3.1 Oxygen, O2

Retrieval of the O2 mole fraction from the 1.27 µm
(7880 cm−1) band (Fig. 4a) provides a system check since

Atmos. Meas. Tech., 11, 1549–1563, 2018 www.atmos-meas-tech.net/11/1549/2018/
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Figure 7. Measured O2 mole fractions for the measurement pe-
riod. The narrow spikes are artefacts due to stray solar radiation
near 18:00 on sunny days, as discussed in the text. The insert shows
details of the spike on 2 September 2014.

the O2 mole fraction is constant and well known, 0.2095 rela-
tive to dry air. Initial retrievals using the weather station pres-
sure and temperature displayed diel variations of measured
O2 of the order of 1–2 % that were reduced significantly us-
ing path-averaged temperatures derived from the CO2 spec-
trum fit, as described above. The O2 measurements for the
whole period are shown in Fig. 7. The positive spikes ob-
served regularly near 18:00–19:00 local time on clear sunny
days are due to direct sunlight scattered into the FTS and de-
tector as described in the previous section – when the solar
beam path is from the west at low elevation and approxi-
mately aligned with the optical path (Fig. 2), solar radiation
is back-reflected from the retroreflectors and captured by the
telescope. Corresponding spikes are also seen in CO2 and
CH4 records and have been filtered to remove all data where
the raw retrieved O2 mole fraction is greater than 0.225.

The mean mole fraction (excluding evening scattered sun-
light anomalies) is 0.217, a bias of +3.6 % (OP – in situ)
from the known value of 0.2095. This is larger than the
∼+2 % bias found consistently at all TCCON sites, where
it is attributed to inaccuracies in the spectroscopic line pa-
rameters (Wunch et al., 2010). Biases are discussed further
in Sect. 4.

3.2 Water vapour, H2O and HDO

Water vapour provides a further check of the FTS measure-
ments against weather station humidity. (The in situ analyser
does not measure ambient water vapour as the sample is dried
for measurement.) H2O and its deuterated isotopologue HDO
were co-fitted in a window 4910–5080 cm−1 (Fig. 4b, Ta-
ble 1) and results are shown in Fig. 8. δD was calculated as:

δD=
(

(HDO/H2O)air

(HDO/H2O)SMOW
− 1

)
· 1000‰,

where (HDO/H2O)air is the measured isotopologue ratio
and (HDO/H2O)SMOW is the corresponding reference ratio

Figure 8. Water vapour, δD and air temperature for the whole mea-
surement period. In the upper panel the FTIR retrieved water vapour
is in red and the IUP meteorological station absolute humidity in
blue (as mole fractions in %).

for Standard Mean Ocean Water. The spectroscopically mea-
sured water vapour amount is in excellent agreement with
the weather station record, with a 6 % high bias which may
be due in part to the humidity sensor itself. The uncalibrated
mean δD is −68± 59 ‰, somewhat higher than recent sum-
mer measurements near Zurich, 230 km south of Heidelberg,
−120 to −180 ‰ (Aemisegger et al., 2012). However the
precision of the δD measurements is not sufficient to distin-
guish any variability related to temperature, and we do not
analyse the δD results further here.

3.3 Carbon dioxide, CO2

As is the case for O2 the raw OP CO2 mole fractions re-
trieved from the spectra are systematically higher than the
calibrated in situ measurements at the IUP end of the open
path. We attribute this bias to a calibration-scale difference
between the SI-traceable WMO scale of the in situ mea-
surements and the uncalibrated OP measurements which are
derived from spectrum fitting based on Hitran line param-
eter data and a spectrum model. To estimate the bias, we
take the mean ratio of the OP to calibrated in situ measure-
ments at wind speeds above 6 m s−1 when the atmosphere is
most likely to be well mixed and real differences between
point and open-path measurements are minimal. The bias is
+2.5 % (∼ 10 ppm) and all raw OP data have been scaled
down by a factor of 1.025 in the following discussion.

The bias-corrected OP and calibrated in situ measure-
ments are shown in Fig. 9, together with their differences.
Fig. 10 shows the differences plotted (a) against wind speed,
(b) against wind direction and (c) as a histogram. The data
are discussed in Sect. 4.

3.4 Methane, CH4

Similar analyses for CH4 are shown in Figs. 11 and 12. The
mean difference between OP and in situ for wind speeds
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Figure 9. Open-path (blue), in situ (red) and difference (OP – in
situ, coloured by time) measurements of CO2. All raw OP data have
been reduced by a factor of 1.025 (∼ 10 ppm) to remove measure-
ment bias relative to the in situ data. In the corrected data, there is
zero bias for wind speeds> 6 m s−1 over the entire measurement
period (see text for detail). (a) shows the whole measurement pe-
riod. (b) illustrates a selected period with a consistent, real OP–in
situ difference relative to the well mixed average.

> 6 m s−1 is +3.0 % (∼ 60 ppb). In this case there is a sig-
nificant positive tail in the distribution of differences at all
wind speeds (Fig. 12) which increases the mean bias for
wind speed> 6 m s−1; for the bulk of the data with wind
speed< 2 m s−1, the bias is 0.7 % (17 ppb).

3.5 Carbon monoxide, CO

Absorption by the UV quartz retroreflectors below
4600 cm−1 in the region of the CO overtone band cen-
tred near 4300 cm−1 prevents analysis of CO from these
spectra. With more appropriate IR quartz, glass or hollow
mirror retroreflectors of higher transmission in this region,
a simulation of the resultant expected spectra based on the
performance achieved with the current system suggests CO
measurements with a 5 min measurement averaging time
would provide repeatability of the order of 5–10 ppb. This

Figure 10. CO2 mole fraction differences between open-path and in
situ measurements (OP – in situ) (a) vs. wind speed, (b) as a wind
speed rose and (c) as a histogram of the differences. The standard
deviation of the distribution is 6.3 ppm. (a, b) are coloured by time
to compare with Fig. 9.

would be sufficient precision to resolve real variability in
polluted urban environments.

3.6 Nitrous oxide, N2O

N2O absorbs only weakly in the NIR. Analysis of the spec-
tra in the strongest available band centred at 4730 cm−1 pro-
vides a mean and standard deviation of the N2O mole frac-
tion over the whole measurement period of 353± 680 ppb.
While the mean is realistic, the precision is not sufficient to
detect meaningful changes in N2O amounts, which are small
(a few ppb) due to the weak sources and sinks and long life-
time of N2O. A stronger band near 4415 cm−1 would become
accessible with glass retroreflectors, but would provide only
a factor of two improvement.
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Figure 11. Open-path (blue), in situ (red) and difference (OP – in
situ, coloured by time) measurements of CH4 for the whole mea-
surement period. The uncalibrated OP data have been reduced by
a factor of 1.030 (∼ 60 ppb) to fit the in situ data for wind speeds
> 6 m s−1 (see text). (a) whole measurement period. (b) expanded
period.

4 Discussion

4.1 Precision, accuracy and open path – in situ bias

4.1.1 Precision of measurements

Table 2 and Fig. 13 show Allan deviations (ADs, the square
root of Allan Variance, Werle et al., 1993) for open-path and
in situ CO2, CH4 and O2 measurements and the open path –
in situ differences. The ADs in Table 2 and Fig. 13 were cal-
culated from the period 11 August, 06:00 to 27 August, 18:00
when diurnal variation was minimal and short term repeata-
bility can be best estimated; they are presented for 5 min
(single measurements), 1 and 6 h averaging times. The 5 min
ADs for the raw data provide upper limits for the instrument
or measurement noise, since the variability over 5 min is
dominated by instrument noise but there is also the possibil-
ity of a small contribution from atmospheric variability over
5 min timescales. For comparison, a smoothed curve through
the raw data was subtracted from the raw data to remove

Figure 12. CH4 mole fraction differences between open-path and
in situ measurements (OP – in situ) (a) vs. wind speed, (b) as a
wind speed rose and (c) as a histogram of the differences. (a, b) are
coloured by time to compare with Fig. 11.

the gross atmospheric variation (2nd order Savitzky–Golay
smoothing, 15 points, approx 1 h smoothing) and ADs recal-
culated (hereafter called “smoothed-subtracted” data). Five-
minute ADs and the standard deviations of the smoothed-
subtracted data are similar to the ADs of the raw data at 5 min
and are also shown in Table 2 and Fig. 13; the smoothed-
subtracted ADs decrease with averaging time out to 6 h ap-
proximately as expected for random noise. The 5 min Al-
lan deviation values are ∼ 1.7 ppm (0.4 %) for CO2, 23 ppb
(1.2 %) for CH4 and 0.0016 (0.7 %) for O2. For in situ mea-
surements they are lower, reflecting the better repeatability of
the in situ analyser: 0.63 ppm (0.15 %) for CO2 and 2.1 ppb
(0.1 %) for CH4. We take these values as our best estimates
of the 1σ repeatability of the measurements due to the instru-
ment noise with minimum influence from atmospheric vari-
ability.

For both open-path and in situ CO2 the AD increases with
averaging time to ∼ 9–11 ppm at 6 h, reflecting the increased
atmospheric (mostly diurnal) variability over the longer time
periods of 20–40 ppm peak to peak. For open-path CH4 the
increase in AD with averaging time is not as pronounced for
OP data (23 to 40 ppb) because the measurement noise and
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Figure 13. Allan deviation plots for (a) OP CO2, (b) OP CH4, (c) smooth-subtracted OP CO2 and (d) smooth-subtracted OP CH4. See text
for details of subtraction of smoothed from raw time series.

atmospheric variability are of comparable magnitudes. Diur-
nal variability of CH4 is not as pronounced as for CO2. For
in situ CH4 data the AD increases from 2 to 13 ppb. For O2
there is no natural variability and the AD decreases with av-
eraging time (0.0016 to 0.001 mole fraction).

For CO2 the 5 min AD of OP – in situ differences is also
1.7 ppm but remains approximately constant over averag-
ing times up to 6 h, reflecting real (non-random) OP – in
situ differences over hourly timescales. Over the full dataset
10 July–4 November that includes periods of greater atmo-
spheric variability, the 6 h AD increases to 3.0 ppm. The
distribution of the differences across all data appears near-
normal with standard deviation 6.3 ppm (Fig. 10c), but over
shorter timescales can be seen not to be simply random

(Fig. 9). These ADs and standard deviations taken together
reflect that the actual variations of OP – in situ differences
are 2 to 4 times larger than the 5 min OP measurement noise
of 1.7 ppm. For such a normal distribution of differences with
standard deviation 6.3 ppm and a 1σ measurement repeata-
bility of 1.7 ppm, approximately 40 % of the measured dif-
ferences lie more than two measurement standard deviations
from the mean and may be considered atmospherically sig-
nificant.

For CH4 the 5 min AD of OP – in situ differences increases
slightly with time due to real atmospheric variability. The
distribution of differences also appears near-normal over the
whole dataset but with short term non-random variations and
a positive tail due to two significant enhancements in OP CH4
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Table 2. Allan deviations for open-path and in situ measurements and their differences. The Allan deviation analysis is taken over the period
11 August, 06:00–27 August, 18:00 when diurnal variations were least.

Allan deviation CO2/ppm CH4/ppb O2

OP in situ diff OP in situ diff OP

Raw data 5 min 1.7 0.63 1.7 23 2.1 23 0.0016
1 h 3.0 3.4 1.5 22 7.0 23 0.00092
6 h 9.2 11 1.9 30 13 40 0.00097

Smooth subtracted data* 5 min 1.7 0.54 22 1.8
1 h 0.21 0.15 2.5 0.51
6 h 0.032 0.038 0.59 0.068

SD* 1.6 0.82 21 2.3

* In the “smooth-subtracted” and standard deviation rows, a smoothed curve through all the data has been subtracted from the raw data to
remove the gross atmospheric variability and approximates the measurement noise. See text for further details.

in August and September; the standard deviation of the dis-
tribution is 90 ppb (Figs. 11, 12); as for CO2, 2 to 4 times the
1σ measurement repeatability.

4.1.2 Open path – in situ bias

Raw OP measurements are biased high relative to WMO-
calibrated in situ measurements at the IUP (western) end of
the path, +2.5 % for CO2, +3 % for CH4 and +3.6 % for
O2. Quantifying these biases relies on the assumption that
the atmosphere is well mixed along the open path for wind
speeds> 6 m s−1 and that there are no actual mole fraction
differences under these conditions. For comparison, TCCON
measurements of total columns over much longer atmo-
spheric paths (typically> 10 km) have consistent network-
wide biases of approximately −3 % for CO2, −4.4 % for
CH4, and +2 % for O2. (The TCCON network wide bias for
O2 is derived from the comparison of retrieved column O2
amount with atmospheric pressure). The network wide biases
for XCO2(= column CO2 / column O2 ·0.2095) and XCH4 (=
column CH4 / column O2 · 0.2095), which include and par-
tially cancel the biases in both target species and O2, are−1.0
and −2.4 % respectively relative to in situ measurements
over the atmospheric column with WMO-scale calibrated
analysers (Wunch et al., 2010, updated 2014). The biases are
also similar in magnitude to those seen in uncalibrated mid-
IR OP and in situ FTIR studies (Smith et al., 2011; Griffith
et al., 2012). Thus the observed biases in this study are gen-
erally consistent in magnitude with, though not the same as,
other comparisons of FT spectroscopy with WMO-calibrated
in situ measurements. As shown in the next paragraph, they
are also consistent with an assessment of systematic errors in
the retrievals of path-averaged mole fractions from open-path
infrared spectra.

Table 3 presents the sensitivity of mole fraction retrievals
from the spectra to realistic uncertainties in input parame-
ters and choices in the retrieval. Details are given in the cap-
tion to Table 3. There is no dominant single source of uncer-

tainty; the main contributors are derived from uncertainties in
spectroscopic data, the instrument line shape, stray radiation,
and details of the fitted spectral window. A simple quadrature
sum of the estimated systematic errors (4.5 % for CO2, 3.3 %
for CH4 and 5.9 % for O2) is larger than the observed system-
atic biases relative to calibrated in situ measurements; thus
the observed biases are consistent with our a priori estimates
of systematic errors. Although the open-path measurements
in this work and TCCON measurements use the same gen-
eral spectral region, NIR, there is no reason to expect that the
biases would be the same in both cases. The measurements
differ in spectral bands analysed, spectral resolution and in-
strumentation, and most input parameters listed in Table 3.

Data from recent work using broadband DOAS and laser-
based long open-path techniques are shown for comparison
in Table 4. Compared to conventional DOAS with a grat-
ing monochromator, array detector and the same long path
fibre-telescope optics (Sommer, 2012; Saito et al., 2015;
Somekawa et al., 2011), the FTS system achieves greatly
improved repeatability. Compared to more recent work with
dual frequency comb laser spectroscopy (Rieker et al., 2014;
Waxman et al., 2017), the repeatability is less by about a fac-
tor of two. The frequency comb was operated over a longer
path length with shorter measurement times and achieved
lower bias when compared to co-located in situ measure-
ments, but at this stage of development is less portable for
remote field measurements and applicable only to a narrower
range of species. The FTS setup has advantages in terms of
mobility and costs.

4.2 Comparison of open-path and in situ
measurements

From the preceding discussion, measured differences be-
tween open-path and in situ measurements are only ∼ 2 to 4
times the OP measurement repeatability. Actual differences
are thus not well distinguished from measurement noise, and
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Table 3. Sensitivity of retrieved mole fractions to retrieval inputs in the OP-FTIR measurements. Each input parameter or choice was varied
by an estimate of its uncertainty in the MALT spectrum analysis and its effect on retrieved mole fractions calculated.

Quantity 1 1% CO2 CH4 O2

ppm % ppb % molfrac %

Temperature/◦C1
+3 +1 % +6.04 1.4 % +24.7 1.3 % +0.0032 1.5 %

Pressure/mb1
+1.0 +0.1 % −0.69 0.2 % −2.0 0.1 % −0.0002 0.1 %

Pathlength/m2
+3 +0.1 % −0.4 0.1 % −1.8 0.1 % −0.0002 0.1 %

Line strengths3
+2 % −8.0 2 % −36 2 % −0.002 2 %

Line widths3
+2 % −4.88 1.2 % +5.4 0.3 % −0.0004 0.2 %

Zero offset4 +0.01 +1 % +10.5 2.5 % +21.0 1.1 % 0.0029 1.4 %
ILS width5

+5 % +5.0 1.2 % 0.0079 3.8 %
Window selection6 2 % 2 % 2 %
Continuum polynomial6 1 % 0.1 % 3 %
Fibre residual7 � 1 % � 1 % � 1 %

Quadrature sum 4.5 % 3.3 % 5.9 %

1 Temperature and pressure errors affect retrieved mole fractions in two ways – proportionally through the dilution of air to calculate mole
fraction from concentrations, and through the temperature and pressure sensitivities of line strengths and line shapes. From the net
sensitivities, it can be seen that the errors are dominated by the dilution effects. 2 Pathlength error propagates proportionally into the path
average mole fraction, since the spectrum analysis retrieves the concentration- path-length product. 3 We estimate for a 2 % error on Hitran
line strengths and line widths – these errors are not well characterised (Toth et al., 2008). 4 Adding a zero offset of 1 % to the spectrum
simulates the effect of 1 % stray sunlight added to the spectrum, and can be taken as an estimate of the maximum effect due to stray light.
5 The Instrument Line Shape (ILS) is fitted for every spectrum by allowing the FTIR field of view (FOV), phase error and frequency shift to
vary in the least squares minimisation. The quoted error is calculated by forcing the width to increase by 5 % above the best-fit value to
estimate the effect of a non-ideal ILS. 6 The selection of spectrum window to be fitted, and the number of terms in the polynomial used to fit
the continuum, is somewhat subjective – the selections are based on visual assessment of the spectral residual and the minimum mean residual
achieved. The sensitivity taken from the variation in retrieved concentrations across a range of “acceptable” window and baseline choices.
Note the continuum choice for O2 is more sensitive because the polynomial is effectively used to fit the unstructured pressure-induced
continuum in the O2 spectrum. Although we measured short path spectra every hour, in principle to characterise the continuum spectrum,
using these spectra to define the continuum rather than fitting it did not improve fits, but added noise and an extra source of variability. All
results were thus obtained with the continuum fitted with a five-term polynomial. 7 The fibre optic coupling between telescope, source and
detector introduces repeatable fringing and interferences in the measured spectra at about 1 % of the measured signal intensity. These
structures can be seen in the residual plots of Fig. 4 and are quite reproducible over periods of days to weeks. They are larger than the
underlying detector noise but much less than the trace gas absorptions, at least for CO2 and O2. Removing or co-fitting an average fibre
residual spectrum during the fit makes only a small (� 1 %) difference to the retrieved mole fractions because the fibre residual spectrum is
itself derived from the least squares fits to real spectra and is approximately orthogonal to the target gas spectrum.

difficult to assign unequivocally to specific sources. The dis-
cussion of differences is therefore brief.

4.2.1 CO2

For bias-corrected CO2 there is a mean OP – in situ differ-
ence of −3.2 ppm (in situ>OP) at low wind speeds relative
to assumed well mixed conditions at wind speeds > 6 m s−1.
This difference is larger at night (−4.5 ppm) than during
the day (−2.0 ppm), with a slight tendency to be larger for
winds from the southeast. This diurnal dependence of CO2
difference could, in principle, be partly due to time-of-day-
dependent changes or errors in systematic temperature mea-
surement (see Sect. 2.4 and Fig. 5), but in practice there is no
correlation between OP – in situ CO2 difference and the dif-
ference between weather station and path-averaged tempera-
ture (R2

= 0.0003, 0.1 ppm ◦C−1). The corresponding local
source of CO2 leading to higher CO2 amounts at the IUP end
of the path is unlikely to be local traffic from the nearby main
road, Berliner Straße, with most traffic and activity occurring
during daytime. The more distant Heidelberg city centre is
distributed along the south bank of the river, and would be

expected to affect both OP and in situ measurements more
equally. The most likely CO2 contribution which is higher at
night but lower during the day is the biosphere, with respi-
ration at night and photosynthetic drawdown during the day,
but it is not immediately clear why this would be more preva-
lent in the in situ measurements than the open path, as trees
and plants in the local area are quite evenly distributed. Agri-
cultural areas to the northwest may play some role. To sum-
marise, we find that the measured differences are probably
significant at a level of a few ppm, but not sufficiently clear
above the measurement noise to be able to draw any defini-
tive conclusions or to assign to any specific sources or sinks.

4.2.2 CH4

For bias-corrected CH4, there is also a mean negative dif-
ference OP–in situ difference at low wind speeds relative
to wind speed> 6 m s−1 (−44 ppb) which is also larger at
night (−53 ppb) than during the day (−32 ppb). There is no
dominant wind direction for these negative differences, and
as for CO2 the source is unclear. For CH4 there are two
distinct episodes of positive differences where OP measure-
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Table 4. Comparison of repeatability and bias of long path techniques in the NIR region.

CO2/ ppm CH4/ ppb

Open path OP – Open path OP –
repeatability in situ repeatability in situ

(Allan dev. 5 min) difference (Allan dev. 5 min) difference

Repeatability Bias Repeatability Bias
(Allan dev., 5 min) (uncorrected) (Allan dev., 5 min) (uncorrected)

FTS (this work) 1.6 1.7 10 12 23 60
DOAS1 2–4 – – > 200 – > 200
Freq. comb2 < 1 – 3–6 < 5 – 4–20

1 Sommer (2012), Saito et al. (2015), Somekawa et al. (2011), 2 Rieker et al. (2014), Waxman et al. (2017).

ments are significantly higher than in situ, around 9 August
and 5 September. The August period corresponds to winds
from northwest of the IUP, while for the September period
the enhancements are broadly distributed from the eastern
sector. In both periods the enhanced differences occur mainly
at night. The observed differences in OP CH4 relative to in
situ measurements are only marginally greater than the OP
measurement stability and repeatability and are difficult to
quantify or assign with any certainty to specific atmospheric
conditions or local sources or sinks. CH4 relative precision
is lower than for CO2 because of both the absolute strength
of the CH4 absorption features and their strength relative to
overlapping water vapour absorption (Fig. 4). There is no
correlation between the OP–in situ differences and coinci-
dent water vapour amounts derived from the same spectra,
suggesting that the CH4 differences are not an artefact due
to spectral overlap. There are numerous possible small, local
point sources, such as natural gas or wastewater piping leaks,
that may impact the observed differences, but with this level
of precision, detailed interpretation can only be speculative.

The OP–in situ differences and geographical scales of
these measurements approach the accuracy and resolution
of developing regional-scale models, such as the Weather
Research and Forecasting model (WRF) in high-resolution
mode (Viatte et al., 2017). A detailed high-resolution mod-
elling analysis of the measurements presented here might
help in interpreting the observed OP–in situ differences, but
is beyond the scope of this paper.

4.3 Future improvements

This study was made with available instrumentation in a re-
stricted timeframe as a pilot study of the open-path FTS tech-
nique in the NIR and did not optimise some aspects of the
measurements. Several options are available to improve the
accuracy and precision of the OP-FTS-NIR measurements:

– Interferences from stray radiation: especially at low so-
lar elevations, background (stray) radiation is modu-
lated and detected by the interferometer and leads to

broad enhancements and spikes in measured concentra-
tions. This can be almost entirely removed by reversing
the source and detector in the optical system shown in
Fig. 1, first modulating the source in the interferometer
before transmission over the open path. With this option
stray environmental radiation such as direct or scattered
sunlight is viewed directly by the detector and not mod-
ulated by the interferometer; it does not contribute to
the Fourier-transformed infrared spectrum. This option
was not possible with the available optics and spectrom-
eter for this pilot study, but will be incorporated in the
next build. With the present system, increasing the fre-
quency of the background stray light measurements (1
per hour in this work) would allow better correction for
stray light interferences due to short term variations in
stray radiation, but at the cost of lower precision, mea-
surement time and duty cycle.

– Increased optical throughput: using a brighter source
and/or larger telescope and retroreflector area will
translate directly into lower measurement noise and
improved repeatability. This is particularly true of
the retroreflectors, which had a total area of around
510 cm2 compared to the telescope primary mirror area
of 700 cm2. A close packed retroreflector array large
enough to capture the (slightly divergent) open-path
beam could thus improve precision by a factor of about
two for the same primary telescope aperture.

– Extension to include CO: for urban studies the measure-
ment of CO is advantageous, both for its intrinsic in-
terest and as a tracer for combustion sources of other
trace gases. In this work we used available UV quartz
retroreflectors optimised for UV/vis DOAS measure-
ments. The transmission of UV quartz cuts off below
4500 cm−1, precluding CO measurement in the over-
tone band around 4300 cm−1. The use of corner cube
retroreflectors with transmission to 4000 cm−1 (for ex-
ample hollow mirror, BK7 glass or IR quartz) will allow
measurements to extend to CO. A simulation with the

www.atmos-meas-tech.net/11/1549/2018/ Atmos. Meas. Tech., 11, 1549–1563, 2018



1562 D. W. T. Griffith et al.: Long open-path measurements of greenhouse gases in air

measurement noise realised in this work suggest a CO
measurement repeatability of a few ppb, which should
be sufficient for studies in urban areas.

5 Conclusions and final comments

We have introduced a long open-path Fourier transform spec-
trometer operating in the near-infrared over a 3.1 km return
path in open air. The system is able to make measurements
of several species simultaneously by virtue of the broadband
nature of the spectroscopy. We have demonstrated measure-
ments of CO2, CH4, O2, H2O and HDO; with a minor vari-
ation of optics CO is also possible, which would be of ad-
vantage in urban environments. The spectrometer is reason-
ably portable, able to be tripod mounted, and requires power
(∼ 150 W) and shelter at only one end of the path, with a
passive retroreflector array at the far end of the path.

We observe significant differences of the order of a few
ppm for CO2 and a few tens of ppb for CH4 between the
open-path and point measurements which are 2 to 4 times the
measurement repeatability. In the context of fine scale atmo-
spheric models, which now provide kilometre-scale resolu-
tion, open-path measurements have the potential to bridge the
gap between high accuracy point measurements and spatially
averaging atmospheric models. With improvements in preci-
sion and accuracy to be expected in both broadband (FTS)
and laser based techniques, open-path spectroscopy provides
a valuable new tool for urban- and regional-scale studies.
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