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Engineering of lithium-metal anodes towards a safe and stable battery

Abstract
Currently, the state-of-the-art lithium-ion batteries (LIBs) are the most widely used energy storage devices
and have brought a great impact on our daily life. However, even many strategies have been reported to
improve the energy density, these LIBs still can not meet the rapidly growing demand from the many lately
emerged devices. During the pursue of higher energy densities, lithium-metal batteries (LMBs) have been the
most promising candidates of the next-generation energy storage devices. Unfortunately, the Li-metal anode
usually induces severe safety concerns and inferior cycle performance, because of the dendrite growth, high
reactivity, and infinite volume changes of Li metal. As a result, these problems limit the commercial
application of LMBs and must be resolved prior to the practical deployment of LMBs. In this review, we will
firstly discuss the failure mechanisms of Li-metal anodes and introduce latest characterization technologies to
study dendritic Li formation. The advances to improve the safety and performance of Li metal anode through
electrolyte modification, interfacial engineering, solid-state electrolyte incorporation, and host materials
design will then be comprehensively summarized and discussed. Lastly, we will conclude by summarizing the
challenges in the current research on LMBs and highlight the future perspectives as well. Through this review,
we hope to present the latest developments of the Li metal anode materials for the readers, and also shed light
on the possible solutions for the current issues in order to accelerate both fundamental research and practical
deployment of the various LMBs.
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Engineering of Lithium-Metal Anodes towards a Safe and Stable 

Battery 

Abstract 

Currently, the state-of-the-art lithium-ion batteries (LIBs) are the most widely used energy storage 

devices and have brought a great impact on our daily life. However, even many strategies have been 

reported to improve the energy density, these LIBs still can not meet the rapidly growing demand 

from the many lately emerged devices. During the pursue of higher energy densities, lithium-metal 

batteries (LMBs) have been the most promising candidates of the next-generation energy storage 

devices. Unfortunately, the Li-metal anode usually induces severe safety concerns and inferior cycle 

performance, because of the dendrite growth, high reactivity, and infinite volume changes of Li 

metal. As a result, these problems limit the commercial application of LMBs and must be resolved 

prior to the practical deployment of LMBs. In this review, we will firstly discuss the failure 

mechanisms of Li-metal anodes and introduce latest characterization technologies to study dendritic 

Li formation. The advances to improve the safety and performance of Li metal anode through 

electrolyte modification, interfacial engineering, solid-state electrolyte incorporation, and host 

materials design will then be comprehensively summarized and discussed. Lastly, we will conclude 

by summarizing the challenges in the current research on LMBs and highlight the future 

perspectives as well. Through this review, we hope to present the latest developments of the Li 

metal anode materials for the readers, and also shed light on the possible solutions for the current 

issues in order to accelerate both fundamental research and practical deployment of the various 

LMBs. 

Key Words: Li metal, surface protection, solid electrolyte, host materials, anode 



2 

 

  



3 

 

1. Introduction 

Energy storage, especially with high density and low-cost, is always a hot spot in both research 

and industry communities. It is the fundamental requirement for the current and future energy 

strategies, for example, for the utilization of various clean energies (mostly harvested in the form of 

electricity), for the electrification of the transportation tools, as well as for the development of 

various smart devices. Lithium-ion batteries (LIBs) are one of the most successfully 

commercialized rechargeable batteries since the early 1990s, due to their high energy density and 

superior cycle stability, and have been widely deployed in various applications, including personal 

electronics and electric vehicles.[1]  

For the LIBs, graphite is the most commonly used anode material, which can reversibly 

accommodate and release the Li ions that are extracted from the cathode materials (LiMO2, M=Ni, 

Co, Mn, etc., LiFePO4, and others) in its layered structure during charge/discharge processes 

(Figure 1a).[2] Unfortunately, even though many strategies, including modifying electrode 

materials and/or electrolytes, have been adopted to further improve the energy density of LIBs, they 

still can not meet the rapidly growing demands from the current devices, let alone the future ones, 

because these conventional battery materials are almost approaching their theoretical 

limitations.[2-4] Consequently, the next-generation energy storage materials/devices are in urgent 

needs of exploration.  
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Figure 1. Operational principles of a) a Li-ion battery and b) a Li-metal battery. 

With an extremely high capacity (3860 mAh g
-1

), low density (0.59 g cm
-3

), and very negative 

electrochemical potential (-3.04 V vs. the standard hydrogen electrode),[5] Li metal has been 

considered as an ideal anode material for the future Li-metal batteries (LMBs, Figure 1b).[6] By 

coupling it with the high capacity cathodes, the as-formed Li metal batteries (LMBs) possess 

exceptionally high energy densities compared to the traditional LIBs (3500 Wh kg
-1

 for Li-O2 

batteries and 2600 Wh kg
-1

 for Li-S batteries).[7-10]  

In spite of these advantages, there are still some insurmountable obstacles that have greatly 

hindered the practical applications of these LMBs since their first emergence in 1970s.[11] Despite 

the different reaction mechanisms and respective cathode issues in these various LMBs (i.e. the 

sluggish oxygen reduction/evolution in Li-O2 batteries or the irreversible polysulfide migration of in 

Li-S batteries), the challenges in the anode section of these battery systems are almost identical, 

which are closely related with the nature of Li metal and mainly include the dendrite growth, high 

reactivity, and infinite volume changes of metallic Li anode, which inevitably induces severe safety 

issues and inferior cycling performance/coulombic efficiency to the batteries.[12]  
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Specifically, the growth of dendritic Li could cause the internal short circuit, generation of heat, 

or even explosion of battery. Moreover, it can also produce “dead Li” (i.e. the electrically detached 

Li dendrites),[13] which can compromise the coulombic efficiency and shorten the cycle life of 

LMBs. Meanwhile, Li metal is highly reactive, which will spontaneously react with the electrolytes, 

leading to uncontrollable solid electrolyte interface (SEI) formation on the surface of Li metal and 

resulting in the loss of active materials together with the increase of the cell impedance. Moreover, 

during the striping/plating of Li metal, the theoretically infinite volume change (i.e. ideally all the 

Li metal will be intercalated into the cathode upon fully discharge) would cause structural 

instability to the batteries, leading to a fast battery failure. Consequently, seeking effective strategies 

to stabilize the Li surface and bulky structure is essential to ameliorating the overall performance of 

LMBs for practical applications. 

The nucleation and growth mechanism of Li dendrites have been continuously studied during the 

past 40 years.[14] Various approaches to stabilizing the Li metal surface have been proposed, which 

focus on protecting the Li surface via coating layers, optimizing the organic electrolytes, modifying 

the separators, and constructing novel host materials for Li-metal anodes.[4, 15, 16] Recently, to 

fundamentally resolve the thermodynamically unstable issue of the Li metal in conventional organic 

liquid electrolytes,[17] new battery configurations with solid-state electrolytes (SSEs) have also 

been adopted for the LMBs with the expectations to block Li dendrites, extend the cycle life of 

Li-metal batteries, as well as enhance the safety of the LMBs.[18, 19] 
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Scheme 1. Illustration of the strategies for constructing a safer Li metal anode. 

In this review, we comprehensively summarize and discuss the recent scientific and 

technological strategies to construct the next generation Li-metal anodes for LMBs with higher 

energy density and better safety (Scheme 1). Firstly, we will firstly analyze the failure mechanisms 

of Li metal anodes and the fundamental principles for Li metal surface stabilization, and summarize 

the latest methodologies to achieve these in-depth understandings, such as cryo-electron microscopy 

technique. We will then follow up with the recent developments to enhance the safety and cycle 
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performance of LMBs by designing the electrolytes and the associated functional additives. After 

that, we will focus on the current progress on the solid-state electrolytes and artificial interface 

engineering to overcome their shortcomings, such as high interfacial impedance and low ionic 

conductivity. Then, we also include the latest developments of the advanced host materials for Li 

metals with the purpose of resolving the above-mentioned issues. Finally, we will conclude with the 

remaining challenges and possible research opportunities to facilitate the practical applications of 

the Li-metal batteries. By doing so, we hope we can draw a road map of the latest developments of 

the lithium metal anode materials for the readers, and shed light on the possible solutions for the 

currently existing issues in order to accelerate both fundamental research and practical deployment 

of the various LMBs. 

2. The Failure Mechanisms of Li Metal Anodes 

Over the past few decades, extensive research has been conducted to gain a deep and 

fundamental understanding on the failure mechanisms of the Li metal anodes. Generally, the failure 

of a Li metal anode is recognized to originate from three aspects: a) the high reactivity of Li metal, 

b) the infinite volume variation during cycling, and c) the dendrite growth caused by the first two 

factors.  

2.1 High Reactivity of Li Metal 

Li is a kind of alkali metal element, which has the smallest ion radius among all metal species. 

This characteristic renders Li with an ultra-high capacity (3860 mAh g
-1

),[6] and meanwhile, a very 

fast transfer kinetics. On the other hand, Li metal has the lowest potential among all the currently 

known electrode materials,[18] which also makes it highly reactive. Due to these characteristics, Li 

metal can easily react with various electrolytes (both the Li-containing salts e.g. LiAsF6, LiBF4, and 
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LiPF6 and the organic solvents e.g. propylene carbonate and ethylene carbonate) to form the 

so-called solid electrolyte interface (SEI).[20, 21] If this SEI is not chemically stable or 

mechanically strong enough to prevent the Li metal surface against further reactions, the electrolyte 

will be continuously consumed and Li metal will be corroded as well, which inevitably leads to the 

draining of the battery, losing of the active material, and eventually, fast death of the battery.[4, 22, 

23] 

2.2 Infinite Volume Variation during Cycling 

Actually, almost all types of anode materials experience volume changes in case of being 

charged and discharged (Table 1). Compared to these materials, the direct plating/stripping of 

host-less Li metal, however, will result in an infinite volume change in an ideal condition that all the 

Li metal in the anode will be striped and intercalated into the cathode, which will initiate cracks on 

the SEI.[18, 24] This causes a very high structural instability for the anode, the SEI, and the whole 

battery configuration. 

Table 1. Volume change during cycling of the different anode materials for Li-ion batteries 

Anode materials 
Volume change rate 

during cycling 
Ref 

Graphite ca. 10% [25] 

Carbon nanotubes 5% [26] 

TiOx 2-5% [27] 

Li4Ti5O12 <1% [28] 

Si 297-400% [29, 30] 

Ge 270-300% [31] 

Sn 257-300% [32, 33] 

SnO2 259% [34] 

Al 100% [35] 
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For example, in the practical applications, the minimum areal capacity of a single-sided 

commercial electrode is 3 mAh cm
-2

, corresponding to a thickness of ca. 14.6 μm for Li metal 

anode.[36] In the case that this amount of Li is fully stripped (i.e. an infinite volume decrease to 0), 

a void of at least this thickness will appear between the anode current collector and the separator, 

which can cause the instability to the electrode structures and significantly alter the actual battery 

configuration. 

2.3 Dendrite Growth on Li Metal Surface 

Li dendrites are generated by the local polarization during Li plating on the surface of Li metal 

or current collectors, which impose two major concerns: 1) possible piercing of the separator and 

leading to internal short circuit of the cell, which makes the battery unsafe (e.g. the “Moli” battery 

accident), and 2) the formation of the “dead Li”, which is caused by the detachment of Li dendrites 

from the substrate and will lead to the deterioration of battery capacity and efficiency.  

Generally, it has been recognized that the formation of Li dendrites is closely related with the 

uneven surface electrical field during Li plating. Specifically, in this process, a cation concentration 

gradient is formed in the electrolyte between the two electrodes. When a critical current density (J*, 

which is the maximum current density that can be carried by a given electrolyte) is reached, the 

number of cations in the electrolyte decreases, leading to the disruption of the electrical neutrality 

around the electrode surface. This causes an unbalanced current distribution on the electrode surface, 

resulting in the formation of Li metal dendrites at these sites. The concentration gradient (
𝜕𝐶

𝜕𝑥
) and J* 

in the battery can be described using the following equations:[37, 38]   

𝜕𝐶

𝜕𝑥
(𝑥) =

𝐽𝜇𝑎

𝑒𝐷(𝜇𝑎+𝜇𝐿𝑖+)
                                                             (1) 

𝐽∗ =
2𝑒𝐶0𝐷

𝑡𝑎𝐿
 with t𝑎 =

𝜇𝑎

𝜇𝑎+𝜇𝐿𝑖+
                                                     (2) 
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where C0 is the initial concentration, L is the inter-electrode distance, ta is the anionic transport 

number, μa and μLi
+
 is the anionic and Li

+
 nobilities, J is the effective electrode current density, D is 

the diffusion constant, e is the electronic charge.  

It has been observed that the growth of Li dendrites is self-enhanced, which means the large 

dendrites are more prone to become even larger compared with the smaller ones, due to the stronger 

electric field at the tip of large dendrites with larger curvatures.[35] Thus, Li metal deposits 

preferentially on the surface with larger curvatures (e.g. on the tip of an existing dendrite or on the 

cracks of the metal surface), causing the continuous growth of Li dendrites.[36] 

 

Figure 2. Correlations among the different challenges in the Li metal anode, originate from its high 

reactivity and infinite relative volume change.[36]  

Specifically, during the repeated Li metal striping/plating as described in Figure 2, the volume 

changes of Li metal initiate cracks on the SEI film.[36] Then, Li starts to preferentially deposit on 

the cracks, where Li is unprotected and exposed to the electrolyte. Due to the curvature-induced 

self-enhancing effect of the Li dendrite growth, the dendrites keep growing at these sites and 

eventually detach from the substrate Li metal, to form “dead Li”. After repeated cyclings, a porous 



11 

 

Li metal electrode covered by a thick layer of accumulated dead Li will be formed, causing sluggish 

ion transportation and decreased capacity. To make it even worth, the long Li dendrites may 

penetrate through the separator and short-circuit the battery, causing severe safety issues, as 

mentioned above.  

2.4 Advanced Characterizations of Li Metal Anodes 

For a long time, it is a big challenge to study the actual growth process of the Li dendrites or to 

uncover their detailed formation mechanism during the operation of a LMB, especially at high 

charge-discharge rates, due to the high sensitivity of the battery components to air. To solve this 

issue, advanced characterization methods have been recently exploited, such as using a special 

system, which allowed the transfer of the unpackaged battery components from a glove box into the 

scanning electron microscopy (SEM) without exposure to ambient environments;[39, 40] directly 

observing the morphological change of Li metal surface using in-situ atomic force microscopy 

(AFM);[41, 42] and carrying out an in-situ charge-discharge of the electrodes inside the 

transmission electron microscopy (TEM).[43, 44] Such progresses in characterizing Li dendrites 

growth have greatly helped us better figure out the failure mechanisms of batteries.  
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Figure 3. a) Schematic illustration of Li deposition on a copper grid and the freezing process by 

liquid N2; b) schematic illustration of placing the specimen onto a cryo-TEM holder; c) cryo-TEM 

images of Li metal dendrites growing along the <211> (red) and <110> (blue) directions and 

atomic-resolution TEM images resolving individual Li atoms along the [111] and [001] zone axes; 

d) standard SEM image of Li metal dendrites after brief exposure to air, with unobservable facets 

because of the oxidation/corrosion in air; e) cryo-SEM image of Li metal dendrites, showing the 

dendrite morphology preserved by the cryo-transfer method.[45]  

For example, at ambient environments, Li metal can rapidly react with humid air. Besides, due to 

its low melting point and weak atomic bond, Li atoms are extremely unstable under electron beam 

irradiation, causing difficulties for characterizations and observations. To overcome these two 

challenges, researchers have developed a cryo-transfer method and successfully observed the Li 
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metal in their native states from different facets at an atomic resolution under cryo-TEM (Figure 

3a-c).[45] When conducting the cyro-SEM/TEM observation, Li dendrites are grown on a TEM 

copper grid directly and then plunged into liquid N2 under Ar atmosphere to achieve flash-freezing. 

The specimen is then placed onto the cryo-TEM holder, which is immersed in liquid nitrogen to 

maintain the delicate structure of Li dendrite. A closed shutter is employed to prevent Li from 

exposing to air and maintain the fine structure of Li dendrite. Only by using cryo-SEM/TEM, rather 

than the conventional ones, can we found the facets on the dendrites (Figure 3d, e),[45] which 

show the unit cell type of the dendrite and the crystal orientation of dendrite growth. The 

development of these novel characterization technologies has led to much more insightful 

understandings on the formation mechanisms of Li dendrite in LMBs, the actual Li striping/plating 

process on the Li metals, as well as many new and rational solutions to the above-mentioned issues 

associated with the Li metal anodes.  

To briefly summarize, due to the high reactivity, the Li metal anode can react with the electrolyte 

to form SEI films on the metal surface, which can, to certain extend, protect the Li metal from being 

further consumed. On the other hand, the extremely large volume changes of the Li metal anode 

during cycling result in repeated breaking-apart and re-formation of SEI films, which consequently 

leads to continuous consumption of Li/electrolyte and uncontrollable Li dendrite growth during Li 

stripping and plating. These comprehensively make the LMBs have a poor performance in cycling 

stability, coulombic efficiency, and safety, which greatly limits their practical applications. To 

improve the performance of the Li metal anodes, scientists have conducted a wide range of research, 

including developing functional electrolyte and additives, synthesizing new solid electrolyte, 

developing artificial SEI films, and designing novel hosts or substrate materials. 
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3. Organic Liquid Electrolyte Engineering  

The SEI film on the surface of Li, which is formed by the spontaneous reaction between Li metal 

and electrolytes upon direct contact or during the charge/discharge processes, determines the 

electrochemical performance of the Li metal anode to a large extent.[46, 47] Engineering of the 

electrolytes can directly affect the nature of the SEI and thus modify the Li anode/electrolyte 

interface, which can significantly influence the performance of the Li metal anode. In the electrolyte, 

the organic solvents and the Li-contained salts have been identified as the source of the organic 

species and inorganic species in the SEI film, respectively.[17, 20, 48] Tuning these components in 

the electrolyte can fundamentally manipulate the actual composition of the SEI. Consequently, in 

the past few decades, a variety of organic solvents and Li salts have been investigated, leading to a 

great improvement on the performance of Li metal anodes.  

3.1 Organic solvents design 

Organic solvents, which dissolve Li salts to form a liquid electrolyte, have significant impact on 

the solubility of the Li salts and the ionic conductivity of the electrolyte, which can further 

influence the battery cycling efficiency, the reversible capacity, and safety. Moreover, the organic 

solvents also determine the main content and the chemical/physical properties of the SEI film,[45] 

which usually is required to have high Li ion conductivity and good flexibility to adapt the volume 

changes during cycling to avoid dendrite growth. The electrolyte solvents studied so far mainly 

include carbonic ester, carboxylic ester, and alkyl carbonates, with LiPF6, LiBF4, LiClO4, 

LiN(SO2CF3)2 etc. as the Li salts.[49] The most commonly used solvents and the corresponding 

battery performances are summarized in Table 2.  

Table 2. Battery performance with electrolytes using different organic solvents. 
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Solvent Li salt 
Coulombic 

efficiency 
Ref 

Propylene Carbonate 

(PC) 
LiClO4. 84 [50] 

Ethylene and dimethyl 

carbonates (EC-DMC) 
LiPF6 93 [51] 

Tetrahydrofuran (THF) LiAsF6 88 [52] 

2-Methyltetrahydrofu

ran (2-MeTHF) 
LiAsF6 96 [53] 

Dimethoxymethane 

(DMM) 
LiAsF6 97 [54] 

Diethyl ether LiAsF6 98 [55] 

Since 1958, PC has been used as the solvent for Li battery electrolytes, due to its high dielectric 

constant.[21] However, investigation has revealed that the capacity of LMBs with PC-based 

electrolytes could fade rapidly during cycling,[56] which is because of the reaction between the 

PC-based solvents and the freshly deposited Li metal,[50] causing the non-uniform morphological 

change of the Li surface. The uneven growth of the electrodeposited Li will then result in dendrites 

to further deteriorate the overall battery performance, imposing the low coulombic efficiency and 

serious safety hazard. Because of this, ether-based electrolytes have been developed to improve the 

coulombic efficiency and partially alleviate the safety issue, since they can lead to a relatively 

uniform Li deposition with a smoother surface. The battery performance with various ether-based 

electrolytes (e.g. THF, 2-MeTHF, diethyl ether, and others) are listed and compared in Table 2. 

Compared with the PC-based electrolytes, higher coulombic efficiencies can be achieved on these 

ether-based electrolytes.  
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However, the ether solvents still can not completely eliminate the dendrite growth and the 

capacity retention is usually unsatisfactory after a long cycling.[57] To make it even worse, the 

ether-based electrolytes tend to decompose at much lower potentials compared to PC (e.g. THF was 

found to be decomposed at 4.0 V, while PC remained stable at up to 5.0 V), which makes them 

unsuitable for the various newly emerged high-voltage cathode materials. In comparison, ethylene 

carbonate (EC), a kind of alkyl carbonate, can stably withstand a much wider potential range. By 

using EC as an additive, the electrolyte solutions can possess a higher ion conductivity and lower 

polarization. Comprehensively, these merits have made them a hotpot in the research and industry 

of Li batteries.  

Nevertheless, the high melting point of the EC has limited its applications at low temperature. 

Since 1990s, a diverse range of co-solvents have been introduced into the EC-based electrolytes to 

expand the application EC-based electrolytes towards lower temperature, including diethoxyethane 

(DEE),[58] dimethoxyethane (DME),[58, 59] and 2-MeTHF.[60] But none of these solvents was 

satisfactory, due to the decomposition problem of these ethers as mentioned above.  

In recent years, another type of linear carbonates has been developed as the co-solvents in 

EC-based electrolytes for LMBs. On the one hand, compared with the ether-based co-solvents, 

these linear carbonates can remain stable in a much wider potential range. On the other hand, 

compared with the cyclic carbonates, these linear carbonates have combined advantages of low 

boiling points and low viscosity.[61] Benefited from these, such linear carbonates can be mixed 

with EC at any ratio, which not only promotes the ionic transporting performance but also 

significantly extends the operation temperature window of the EC-based electrolytes.[21] 

By far, a large number of linear carbonates has been used as the co-solvents, which includes 
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dimethyl carbonate (DMC),[61, 62] diethyl carbonate (DEC),[62, 63] and ethylmethyl carbonate 

(EMC), etc.[64-66] Among these choices, ethylene and dimethyl carbonates (EC-DMC) have 

shown the greatest potential to be used in the LMBs.[17, 51] By adopting it into the electrolyte, the 

cycling life of a Li (anode) | LiMn1.9Co0.1O4 (cathode) battery could achieve 586 cycles, which is 

much superior compared to 216 cycles of the EC-DME electrolyte, 191 cycles of the EC-DEE 

electrolyte, and only 110 cycles for the EC-DEC electrolyte.[58] In addition to the various binary 

solvents, the ternary solvents have been found with a better overall performance, which may be the 

researching hot spot for the next few years.[67] Consequently, it is clearly shown that choosing 

suitable functional co-solvents is a very effective strategy to maintain the Li anode’s reversibility 

and thus enhance the overall performance of a LMB. 

3.2 Li Salts Design for Electrolytes 

Besides the organic solvents of the electrolytes, the Li salts also have great impact on the 

performance of Li metal anode. Li salts can be generally divided into inorganic and organic types. 

The inorganic Li salts include LiClO4, LiAsO6, and LiPF6, while the organic ones include 

LiN(CF3SO2)2 (LiTFSI), LiN(SO2CF3), LiC(SO2CF3)3, and others.[49, 68] According to their 

functions, as summarized in Table 3, these Li salts can also be classified as electrolyte solutes, such 

as LiPF6 [69] and LiTFSI,[70] which mainly provide ionic conductivity for the electrolytes; and 

electrolyte additives, such as LiNO3 [71] and LixSy,[72] which mainly help generate robust SEI 

films and further suppress the dendrite growth. In this part, the role of different Li salts will be 

summarized accordingly. 
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Table 3. The specialties of common kinds of Li salts used in electrolyte. 

Function Li salt Specialty 

Main 

component of 

SEI 

Ref 

Electrolyte solute 

LiClO4 

Stable to ambient 

moisture but strong 

oxidizing 

LiCO3 [61] 

LiAsF6 
Of good cycling 

stability but toxic 
LiCO3 [73] 

LiBF4 

Less toxic, but of 

inferior ion 

conductivity 

LiF [74] 

LiPF6 

Well-balanced 

properties but of 

thermal instability 

LiF [69, 75] 

LiTFSI 

Highly resistant to 

oxidation and high 

soluble but of moderate 

ion conductivity 

Li2S2O3 and 

Li3N 
[76] 

Addictive 

LiNO3 
Forming an even SEI to 

protect the anode 
LiNxOy [71, 77] 

LixSy 
Forming a more robust 

and dense SEI 
Li2S and Li2S2 [71] 

LiNO3+LixSy 

Forming a flat and 

robust SEI which give 

the anode a better 

protection 

LiNxOy, Li2S 

and Li2S2 
[72, 78] 
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3.2.1 Li Salts as Electrolyte Solutes 

Basically, Li salts have been used as electrolyte solutes to provide a high ionic conductivity to 

maintain the uninterruptedly carrying-on of the battery redox reactions.[61, 69, 73-76] The specific 

characteristics of these Li salts are summarized in Table 3. For LIBs, LiClO4, LiAsF6, LiBF4 and 

LiPF6 have been used as the electrolyte solutes. Among them, LiPF6 is the most widely used 

commercial electrolyte solute so far for its balanced properties and high ion mobility.[69] The 

problem of LiPF6 is the thermal instability. A strict upper temperature barrier (ca. 50 ºC) has to be 

set during battery operation to avoid any possible reactions between LiPF6 and the solvents.[21] 

Based on LiPF6, LiPF6-n(CF3)n [79] and LiPF3(C2F5)3 [80] have been synthesized with a better 

thermal stability, as an alternative for LiPF6. Apart from LIBs, these Li salts, such as LiPF6 and 

LiBF4, have also been widely used in the research of Li-S or Li-O2 batteries. Especially for the Li-S 

batteries, LiTFSI has been frequently used as the electrolyte solute, which can prevent the formation 

of the soluble high-order polysulfides and so as to suppress the undesirable shuttling effect.[70]  

3.2.2 Li Salts as Electrolyte Additives 

Li salts used as additives mainly include LiNO3, LixSy, and their combination. During the cycling, 

LiNO3 can be directly reduced to LiNxOy, which passivates the Li surface; while LixSy can form to 

Li2S and Li2S2, which can generate a dense film to suppress the Li dendrite growth. In the case of 

simultaneously using these two species, the synergistic effect can be achieved, resulting in a more 

effective protection for the Li anodes. To meet the specific requirements of the various battery 

systems, the careful selection and compositional design of the most suitable additives have to be 

carried out. 

As mentioned, reduction of LiNO3 can form a protective film on the Li metal surface, which can 
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passivate the Li surface and suppress the Li dendrite growth.[77, 81] During the reaction between 

Li and LiNO3, the formed SEI film is a mixture of the LiNxOy, ROLi, and ROCO2Li (where R is the 

organic group such as -CH3 and others) with a uniform and smooth surface, leading to improved 

stability and cycling performance for the Li metal anodes.[71] Furthermore, in case of a Li-S battery, 

LiNO3 can also alleviate Li metal corrosion caused by the shuttle of polysulfides, because of the 

enhanced inertness of Li metal anode surface. Due to these merits of LiNO3, it has been widely used 

in various LMBs, resulting in a stable battery cycling performance and high coulombic 

efficiency.[77, 78] 

On the other hand, the LixSy additives can also form a dense and thick SEI film on the Li metal 

surface. Therefore, they have also been considered ideal additives for the electrolytes. Different 

from the LiNO3-based additives, the LixSy reacts with the Li surface to form an insoluble Li2S and 

Li2S2 layer that is thick and mechanically hard and can thus physically suppress the dendrite growth; 

while LiNO3 restrains the Li dendrites by forming a passivation film that is less hard but able to 

effectively isolate the Li metal surface from contacting the electrolyte.[71, 77] 

 

Figure 4. a) Schematic illustration of the surface film behavior on the Li anode in a Li-S battery;[76] 



21 

 

b) schematic of the morphologies of Li metal surface deposited in different electrolytes without Li 

polysulfide and with Li polysulfide and the corresponding SEM images;[78] c) schematic for the 

reaction of lithium 2-bromoethanesulfonate with Li metal and the SEM image of the interfacial 

layer between an intact electrolyte and a Li anode.[82] 

Recently, a novel electrolyte system with Li2S6 in the LiTFSI-based electrolyte (in a 

1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME, 1:1, v/v)) has been designed for Li-S 

batteries (Figure 4a).[76] With the addition of the Li2S6, a double-layer and bifunctional SEI film 

was generated. The bottom layer is composed of Li (di)sulfides that can prevent the contact between 

LiTFSI and Li metal to avoid their reaction; while the top layer containing Li2SO3 can further 

protect the beneath Li (di)sulfides layer from being corroded by the soluble high-order polysulfides 

in the electrolyte. Therefore, an enhanced Li-S battery cycling stability could be achieved on this 

electrolyte system. 

Moreover, the LiNO3 and LixSy additives can be simultaneously employed to obtain an even 

better synergistic effect to effectively protect the Li anode surface. In the presence of both additives, 

Li metal can be plated with a flat morphology and without any dendrites in the ether electrolyte, 

which can not be achieved with LiNO3 alone.[78, 83] The typical Li metal surface morphology 

obtained in the electrolytes with and without LixSy is illustrated in Figure 4b.[78] When merely 

using LiNO3 as the electrolyte additive, the resulted SEI film did not have sufficient strength to 

inhibit the growth of Li dendrites. Upon the addition of LixSy, a dense SEI film could be formed 

that was able to prevent the Li dendrite growth. In this case, a flat Li deposition with a pancake-like 

morphology can be achieved, which is smooth and dendrite-free, leading to a high cycling stability 

of the LMBs. Due to these advantages, such LiNO3 and LixSy composite additive has been recently 
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used in Li-S batteries.[72, 84] Compared with the sole LiNO3 additive, the SEI formed in the 

electrolyte with dual additives is not only stronger but also sulfurized, which can provide more 

pathways for Li ion transport. Under the protection of this sulfurized SEI film, the battery can cycle 

at a much higher coulombic efficiency of 98%, compared to only 70% of the one with the routine 

electrolyte after 200 cycles.[84] 

Besides the inorganic Li salts additives, some organic Li salts have also been added into the 

electrolytes to improve the performance of Li metal anode. For example, lithium 

2-bromoethanesulfonate can react with Li metal surface to form a SEI that is composed of LiBr and 

other Li-based organometallic (Figure 4c), which is thin and uniform and can be utilized to 

stabilize the Li-O2 batteries from two important aspects.[82] Firstly, it can provide an ideal 

protection for the Li anode, and secondly, it can also act as an effective redox mediator to lower the 

overpotential for the oxygen evolution reaction (OER) reaction at the Li-O2 cathode. 

3.3 Non-Li Additives for Electrolyte Design 

To further modify the surface of Li metal, other functional additives, apart from the various Li 

salts, have been adopted into the electrolytes. These additives can decompose, polymerize, or 

adsorb on the surface of metallic Li to tune the properties of the SEI film,[85, 86] e.g. the intensity 

and uniformity, so as to improve the overall performance of LMBs. These additives include: 

inorganic binary oxides, fluorinated compounds, alkali metal cations, and other additives to be 

specified. 

3.3.1 Inorganic Binary Oxide Additives 

CO2 is an effective additive for LMBs and has been studied since the 1990s. Adding CO2 into the 

electrolyte can generate a hard carbonate-based SEI film, e.g. LiCO3, on the surface of Li anode, 
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which can inhibit the dendrite growth and thus improve the cycling stability of the LMBs.[87, 88] 

Apart from CO2, water is another widely studied additive to the electrolytes, which can well protect 

Li metal anode by forming an even and dense SEI film by promoting the hydrolysis of the Li salts 

or the in-situ formed SEI film.[89] For example, Togasaki and co-workers added a trace amount of 

water with CO2 into an electrolyte containing 1 M LiPF6 in EC and DEC.[90] On the one hand, this 

trace amount of water can promote the hydrolysis of the lithium alkyl carbonate (ROCO2Li) species 

in the SEI film to form LiCO3. On the other hand, it can also react with LiPF6 to form LiF and HF, 

which will further react with ROCO2Li, Li2CO3, and Li2O, through the reactions as followed:[91] 

2ROCO2Li+H2O→Li2CO3+2ROH+CO2                                              

(6) 

LiPF6+H2O→LiF+2HF+PF3O                                                      

(7) 

ROCO2Li+HF→LiF+ROH+CO2                                                                              

(8) 

Li2CO3+2HF→2LiF+H2CO3                                                                                   

(9) 

Li2O+ 2HF→2LiF+H2O                                                          

(10) 

Compared with the native SEI formed without these additives, the as-formed SEI film containing 

an increased amount of LiCO3 and LiF is more uniform and stronger, resulting in an enhanced 

cycling stability. Specifically, with a suitable content of H2O in the electrolyte, the cycling 
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performance could possess a maximum increase by 34.5% as compared to the pristine electrolyte. 

The coulombic efficiency could reach a maximum of 88.9% with certain trace amount of water.[91] 

3.3.2 Fluorinated Compound Additives 

Fluorinated compounds are another group of commonly used additives that can improve the 

performance of the Li anode by forming a LiF-riched SEI on its surface. LiF is widely 

acknowledged as an important component for stable and uniform SEI, which can suppress Li 

dendrite growth.[92, 93] On the one hand, LiF is electrically insulating and can effectively prevent 

electrons from passing through the SEI layer. On the other hand, LiF has low diffusion energy and 

high surface energy for Li ions so as to facilitate the surface diffusion of Li ions in the 

electrodeposition process in an uniform and non-dendritic manner.[92] 

  

Figure 5. a) Schematic illustration of the effect of FEC additives on a Li metal anode, and the SEM 

of Li depositing morphology on Cu foils after 50 cycles with b) 0% and c) 5% FEC content.[94] 
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Among the various fluorinated compounds, the fluoroethylene carbonate (FEC) is very attractive 

and promising as an ideal additive to suppress the Li dendrite formation.[95] Especially. FEC has a 

very low level of the lowest unoccupied molecular orbital (LUMO) (-0.87 eV), which makes it very 

easy to be reduced on the surface of Li metal anode to form a LiF-based protective SEI for Li metal. 

Because of this advantage, it has been recently employed in a variety of LMBs. For example, in a 

LMB with a high-loading LiNi0.5Co0.2Mn0.3O2 (NMC) cathode, the addition of FEC could result in 

the formation of a hard and smooth LiF-rich SEI, which was compact and stable enough to keep a 

uniform and stable Li deposition and at the same time reduce the formation of dead Li, whereas the 

bare electrolyte could merely yield an uneven surface Li metal surface (Figure 5).[94] 

Consequently, with this FEC additive, a high coulombic efficiency up to 98% and a high initial 

capacity of 154 mAh g
-1

 (i.e. 1.9 mAh cm
-2

) at 180.0 mA g
-1

 could be achieved. 

3.3.3 Alkali Metal Cations as Additives 

 Lately, it has also been found that metal cation additives are capable of suppressing the Li 

dendrite growth, which function through a self-healing electrostatic shield mechanism.[96] 

Specifically, these metal cation additives, such as Cs
+
 and Rb

+
 ions, normally have a lower effective 

reduction potential than Li
+
. Therefore, such cations can only be actually adsorbed on the Li surface 

rather than being reduced during the battery cycling, forming a positively charged surface on Li 

metal that can repulse the Li
+
 and generate a so-called electrostatic shield to result in a uniform 

plating of Li
+
 (Figure 6).[96-98]  
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Figure 6. Li deposition models of batteries: a) without and b) with Cs
+
 additives.[98] 

Similarly, K
+
 can also be employed for this task.[99, 100] For example, addition of K

+
 into the 

electrolyte containing lithium oxalyldifluroborate (LiODFB) in EC-DMC can lead to a much more 

uniform Li deposition and improved cycling stability of the LMB.[99] Differing from the Cs
+
 (0.05 

M), only a much lower dosage of K
+
 (10 mM) could effectively prevent the formation of large Li 

dendrites at a high current density of 0.5 mA cm
-2

, which also resulted in a reduced surface density 

of dendrites by at least 100 folds at a current density of 2.5 mA cm
-2

 , further enhancing the 

assembled LMBs .[100]  

3.3.4 Other Additives 

Apart from the aforementioned chemical methods for Li surface protection and dendrite 

prevention by reactively forming protective SEI layers, researchers have also been trying to protect 

the Li metal surface using inert additives. For example, nano diamonds (ND) have been composited 

with Li metal through a co-deposition process (Figure 7a).[48] In this study, the negatively charged 

ND particles can absorb the Li ions on their surface through electrostatic interaction and act as the 

seeds for Li plating on the substrate surface. The small size of the NDs resulted in homogeneous Li 
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deposition, forming a much more homogeneous structure and flatter surface without any dendrites 

(Figure 7b, c). Consequently, The LMBs with this ND additives in electrolyte could catch a high 

coulombic efficiency of 96%. 

 

Figure 7. a) Schematic illustration of the co-deposition of Li ions on ND particles, growth of the 

columnar Li film and the stripping of Li deposits; b, c) SEM images from the cross-sectional views 

of the electrochemically deposited Li films in the electrolyte without and with ND additives.[48] 

Briefly, the design of the liquid electrolytes towards better LMBs can be mainly divided into the 

above prospects. The EC based organic solvents are still the most widely used ones while the 

research towards the ether-based co-solvent is still rapidly going on. As for the many different 

functional additives for the electrolytes, the synergistic effect of LiNO3 and LixSy has been 

acknowledged and much appreciated due to its high effectiveness to protect the Li metal surface, 

that can greatly benefit different types of LMBs, especially the Li-S batteries. Other additives, such 
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as inorganic oxides and fluorinated compounds, are also on quick development. Metal cations that 

function via a self-healing electrostatic shield mechanism have been proven very effective to form a 

dendrite-free and reversible Li metal anode. For a better performance, to consider the solvents, 

electrolyte solutes, and additives integrally will be essential for developing the next-generation 

liquid electrolytes for the LMBs. 

4. Solid-State Electrolytes 

Despite the rapid developments of the various liquid electrolytes for Li metal anodes, several 

major safety issues still remain, such as their high reactivity with Li metal, possible leakage, and 

high flammability. Even worse, these issues might be further worsened by the flammable nature of 

Li metal. Moreover, in these liquid electrolytes, the formation of Li dendrites can hardly be 

completely avoided. To address these concerns associated with the liquid electrolytes, solid-state 

electrolytes (SSEs) have been explored with expectations to block the dendrite growth by their high 

shear modulus and lower reactivity with the Li metal surfaces. Besides these merits, the SSEs are 

also promising for higher energy densities for Li-metal batteries by getting rid of the unnecessary 

solvents.[101] For the specific battery systems, the adoption of SSEs could also bring about extra 

bonus. For example, SSEs can fundamentally overcome the polysulfide shuttle effect in the Li-S 

batteries, because the SSEs only allow the transfer of Li ions and thus avoid the unwanted loss of 

both Li metal anode and sulfur cathode. Hence, a rapidly increasing amount of research has been 

conducted and reported since the SSEs were firstly incorporated into batteries in the 1960s.[102]  
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Figure 8. The diagram of historical development of SSEs and the related battery systems.[103] 

The track of the developments of SSEs and the related battery systems can be illustrated in 

Figure 8.[103] Since 1980s, both inorganic and organic SSEs have received increasing attention. 

Along with the development of both materials and theories, the SSEs have been gradually 

incorporated into a wide range of electrochemical devices, such as sensors, supercapacitors, and 

batteries. Since the beginning of this century, researchers have been focusing on the in-depth study 

of ionic transport mechanism with advanced characterization methods, with the purposes of 

exploring novel super ionic conductors and extending new applications with these solid ion 

conducting materials.  

However, for the practical application of SSEs, there are still some major obstacles to overcome, 

including their low intrinsic ionic conductivity at room temperatures and the unsatisfactory 

compatibility with Li metal anodes. Therefore, the rational design of SSEs should meet several key 

criteria, such as high ionic conductivity, low interfacial resistance with the electrode active 

materials, wide electrochemical stable window, good chemical compatibility with both the Li metal 

and various cathode materials, and low cost.[104, 105] In this section, we will summarize the latest 

development of the three main types of SSEs: the inorganic, polymeric, and inorganic/polymeric 

hybrid SSEs. The new methods to improve the ionic conductivity of SSEs will also be introduced. 
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4.1 Inorganic SSEs for LMBs 

Since the lithium phosphorus oxynitride (LiPON) material was for the first time successfully 

fabricated in 1992,[106] a wide range of Li ion conducting SSEs have been developed, including 

Na-superionic conductor (NASICON)-type,[107] perovskites-type,[108] sulfide-based,[109] and 

garnet-type materials [110]. 

Among the various Li ion-conducting materials, the sulfide-based glass materials frequently 

possess relatively high ionic conductivity for Li ions. For example, Li10GeP2S12 is a typical ion 

conducting sulfide-based glass with outstandingly high Li ionic conductivity of 1.2×10
-2

 S cm
-1

 at 

room temperature,[111] which was firstly synthesized in 2011 by a stoichiometric reaction of Li2S, 

GeS2, and P2S5 at 550 °C under vacuum. Figure 9 presents and compares the ionic conductivity of 

the various SSEs and other electrolytes (including both the gel electrolytes and organic liquid 

electrolytes) as a function of temperatures for practical batteries.[111] It can be noted that even at 

very low temperatures (e.g. -30 °C), the Li10GeP2S12 material still has a very high conductivity (ca. 

1 mS cm
-1

). Nevertheless, in the practical batteries, the Li10GeP2S12 material tends to be reduced by 

Li metal at low potentials and is commonly sensitive to moisture to generate toxic H2S gas, leading 

to gassing or other issues for batteries, which needs to be addressed to more effectively utilize such 

sulfide-type SSE.[112] 
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Figure 9. Thermal evolution of ionic conductivity of Li10GeP2S12 phase together with those of other 

lithium solid electrolytes.[111] 

Compared with the sulfide-based SSEs, the oxide solid electrolytes are more stable, free from 

toxic gas releasing even when exposed to ambient environment.[113] In these materials, the 

Perovskite Li3xLa2/3-xTiO3 (LLTO) has a high ionic conductivity up to 10
-3

 S cm
-1

 at room 

temperature.[114] However, the Ti
4+

 species in LLTO can be easily converted to Ti
3+

 or lower 

valences upon contact with metallic Li anode, which leads to a reactive interface with oxidation of 

Li metal, causing critical issues for LMBs.  

Apart from the sulfide glasses, another frequently studied SSE is the oxide-based and 

NASICON-type Li ion conductors, which commonly have an AM2(PO4)3 formula with the A site 

usually occupied by Li, Na, or K ions and the M site occupied by Ge, Zr or Ti ions.[115] In these 

NASICON-type ionic conductors, the LiTi2(PO4)3 system is the representative one and has attracted 

much interest because of its excellent stability with both atmosphere and water as well as high ionic 

conductivity (ca. 7×10
-4

 S cm
-1

) at room temperature. Moreover, substituting the Ti sites with Al, 

the Li1+xAlxTi2-x(PO4)3 could obtain an even higher ionic conductivity up to 1.3×10
-3

 S cm
-1

 and an 
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excellent compatibility with various battery active materials.[116]  

Apart from their low ionic conductivity, another typical issue for the SSEs for practical battery 

applications is their poor interfacial affinity with the electrode active materials. To minimize this 

interfacial impedance, the sputter-depositing technology has been the most frequently used method 

to load battery active materials onto the thin SSE films. Kim et al. constructed a 500 nm-thick 

LiCoO2 (LCO) film by sputter-depositing on the NASICON-type 

Li2O-Al2O3-SiO2-P2O5-TiO2-GeO2 (LICGC) SSEs and systematically studied the microstructural 

evolution of the LCO cathode and LCO/electrolyte interface in case of heat treatment at different 

temperatures.[117] It was found that the LCO film was fully crystallized after annealing at 500 °C 

and a sharp LCO/LICGC interface without any reaction phases was formed compared with that of 

600 °C, which was beneficial for the diffusion of Li ions (Figure 10a-c). The analysis has indicated 

that although the NACSICON-type electrolyte possessed a relatively lower ionic conductivity 

compared with the sulfide-based ones, it could still form a stable interface with the electrode active 

materials, which is essential to improving the cycle performance of LMBs. 

Another intensively investigated oxide-based SSE is the garnet-type Li7La3Zr2O12 (LLZO), 

whose main advantage comes with their wide electrochemical window and excellent stability with 

Li metal. Similar to other inorganic SSEs, the low ionic conductivity and high interfacial resistance 

are the two main challenges of the LLZO materials for practical applications. To enhance the ionic 

conductivity of LLZO, a variety of efforts have been devoted, such as hetero elemental doping [118] 

or directly fabricating all-solid-state battery assembles on the LLZO solid electrolyte.[119] However, 

there is still very few satisfying achievements. Recently, minimizing the thickness of SSE has been 

found to be an effective and promising way that can possibly solve this problem. Yan et al. 
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constructed a solid-state battery using a garnet-type LLZO nanoparticle slurry to form a solid 

electrolyte layer of only several micrometers,[120] two orders of magnitude thinner than those 

prepared by other methods. The assembled Li/LLZO/LiFePO4 cell exhibited an excellent cycle 

stability at both room temperature and 60 °C since the thin layer could greatly facilitate Li ion 

transfer in this battery configuration, thus showing the great potential of this strategy. 

  

Figure 10. a) Cross-sectional TEM image and the corresponding electron diffraction pattern of 

LCO film after thermal treatment at 500 °C; TEM images for the LCO/LICGC interface after 

annealing at b) 500 °C and c) 600 °C;[117] d) optic image of the LLCZN pellet, e) SEM images of 

the garnet solid-state electrolyte/Li metal interface with and without ALD, f) EIS result of the 

symmetric Li/LLCZN/Li cells with and without ALD treatment, and g) galvanostatic cycling results 
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of Li/ALD-treated LLCZN/Li cell at a current density of 0.2 mA cm
-2

.[121] 

Another aspect that contributes to the high resistance of the LLZO comes from the interface, due 

to its poor wetting properties with the (molten) Li metal surface, because of the formation of 

Li2CO3 on the garnet surface.[122] To avoid it, many strategies have been developed to accelerate 

the interfacial ionic transfer of LLZO materials. For example, by finely polishing the LLZO surface, 

the interfacial area specific resistance (ASR) between LLZO and Li metal could be significantly 

reduced from 960 to 109 Ω cm
2
, resulting in a much more stable cycling performance than the 

unpolished LLZO in the same symmetric cell.[122] In another study, Han et al. innovatively applied 

an ultrathin Al2O3 coating on the garnet-type Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) SSE by atomic 

layer deposition (ALD) method to ameliorate its wettability to the electrode active materials 

(Figure 10d-e).[121] By doing so, significant enhancement on the interfacial contact between Li 

metal and the SSE could be achieved to reduce the interfacial ASR to 34 Ω cm
2
 from 1710 Ω cm

2
 

on the bare garnet LLCNZ SSE. Based on this modified SSE, a symmetric Li/LLCNZ/Li cell has 

been fabricated with a much decreased impedance (Figure 10f). As a result, excellent cycling 

performance was achieved for Li plating/stripping at a current density of 0.2 mA cm
-2

 (Figure 10g). 

The dramatic reduction in ASR demonstrates that the ALD-Al2O3 coating can effectively eliminate 

the microscopic gaps between Li metal and garnet SSEs, thus providing a very convenient and 

feasible way to overcome the challenges of garnet-type SSEs. 

For these SSEs, although great progress has been achieved so far, the interface problem between 

inorganic SSEs and Li metal is still significant. Moreover, development of facile and low-cost 

strategies to fabricate these inorganic SSEs with an outstanding mechanical flexibility and high 

ionic conductivity at room temperature is very necessary and desirable to make them comparable to 

the liquid electrolytes counterparts, which indeed requires further exploration. 
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4.2 Solid Polymer Electrolytes 

Compared with the above-mentioned inorganic SSEs, the solid polymer electrolytes (SPEs) have 

a much better flexibility and can form a more intimate contact with Li metal anodes or the various 

cathodes. Among all kinds of SPEs, the gel polymer electrolytes (GPEs), especially the 

poly(ethylene oxide) (PEO) ones, have received the most attention, due to their high solubility of 

the various Li salts.[123] Unfortunately, such PEO-based GPEs still exhibit a low ionic conductivity, 

because PEO tends to crystallize at room temperature, suppressing the transport of Li ions along the 

polymer chains.[124] This issue can be alleviated by elevating the temperature,[125] modifying the 

polymer chains to be aligned, or introducing plasticizers.[126, 127] These strategies can improve 

the conductivity of PEO-based SPEs, however, at the costs of their mechanical strength. 

Polymer blending is an effective solution to increase the ionic conductivity of SPEs. This can be 

attributed to the integrated and comprehensive effects of several factors, including the reduction of 

crystallinity and the increase of micro ion transfer channels.[128] To achieve this, PEO and 

polymethyl methacrylate (PMMA) were blended with a poly(vinylidene) 

fluoride-hexafluoropropylene (PVDF-HFP) co-polymer to form a matrix for GPE (denoted as 

PE-PM-PVH).[129] Compared with the sole GPEs, this PE-PM-PVH GPE possessed a higher ionic 

conductivity of 0.81 mS cm
-1

 at 25 °C with a superior thermal stability and electrochemical stability. 

As a result, excellent battery performances (a full cell with Li metal anode and LCO cathode) have 

been achieved based on this blended GPS, with capacity retention of 98% after 100 cycles. Besides, 

Chen et al. reported another composite polymer electrolyte (CPE) membrane by adding an organic 

cage-type compound cucurbit[6]uril (CB[6]) into PEO based electrolytes via a solvent-free and 

hot-pressing method. In this CPE, the CB[6] tends to homogenously disperse in the membrane, 
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owing to its natural compatibility with PEO matrix. On the other hand, CB[6] has carbonyl groups 

at both ends, which can coordinate with Li
+
 to form complexation and contribute to the uniform 

deposition of Li metal onto the electrode.[130] As a result, superior cycling performance was 

obtained on a LMB using electrolyte for over 200 cycles at 0.5 C, which ensured the safe operation 

of the all-solid-state LMBs. 

 

Figure 11. a) Schematic of the synthesis of the 3D-GPE; and the comparison of the Li 

plating/stripping process on b) liquid electrolyte and c) 3D-GPE.[131] 

Apart from further increasing the ionic conductivity, there is also plenty of room to achieve a 

higher rigidity on these SPEs so as to physically mitigate the Li dendrite growth on the Li metal 

surface. Generally, incorporating cross-linked structures in the SPEs can lead to a better 
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dimensional stability than the chain-like PEO molecules and thus achieve both high ionic 

conductivity and sufficient stiffness.[132] Based on this, a novel 3-dimensional network GPE 

(3D-GPE) was recently designed by a ring-opening polymerization reaction of poly(ethylene glycol) 

diglycidyl ether (PEGDE), diglycidyl ether of bisphenol-A (DEBA), and diamino-poly(propylene 

oxide) (DPPO) with penetrating linear molecule of poly(vinylidene fluoride-co-hexafluoropropylene) 

(PVDF-HFP) (Figure 11a).[131] In this process, DBEA served as the supporting framework, in 

which the PEGDE and DPPO were cross-linked with PVDF-HFP chains embedded in them. 

Consequently, this ring-opening polymerization method solely generated the cross-linked structure 

of PEGDE and DPPO, which can ensure a fast ion transport, without any other undesirable 

by-products. As a result, the obtained 3D-GPE membrane possessed an unprecedented high ionic 

conductivity of 2.36×10
-3

 S cm
-1

 at 25 °C, even much higher than that of a liquid electrolyte (LiPF6 

in EC/DMC) soaked in a commercial separator (3.56×10
-4

 S cm
-1

 at 25 °C). Moreover, this compact 

structure can also promote the formation of a tough and homogeneous SEI layer on Li metal surface, 

thus effectively restraining the protrusion of Li dendrites as shown in Figure 11b, c.  
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Figure 12. a) The molecular structures of the MSTP monomer and the polymerization process of 

MSTP-PE; b) ionic conductivities of PEO-PE and MSTP-PE with temperature changes; c) linear 

sweep voltammetry profile of the MSTP-PE at a scan rate of 1 mV s
-1

. Insert is the local enlarged 

view for the current density within stable electrochemical window;[133] and d) Image of in-situ 

polymerization of liquid vinylene carbonate (VC) into PVCA after heating at 60 °C for 24 h.[134] 

  Compared with the PEO-based SPEs, the polysiloxane (PSI)-based ones have higher ionic 

conductivity, lower glass transition temperature (Tg), as well as better flexibility, because of the 

long polysiloxane backbones that can supply adequate diffusion pathways for Li ions, and thus have 

been widely studied as the solid polymer electrolytes for LMBs.[19] A main problem of the 

conventional PSI-electrolyte is the difficulty in battery assembling due to its liquid/gelatinous state 

at room temperature. To deal with this issue, a novel modified silyl-terminated polyether (MSTP-PE) 

has been fabricated by using TEGDME as the plasticizing agent and LiTFSI as the Li salt (Figure 

12a).[133] This novel MSTP-PE material exhibited a high ionic conductivity of 3.6×10
-4

 S cm
-1

 at 

25 °C (Figure 12b), stable electrochemical window of up to 5.0 V (Figure 12c), and superior 

thermal stability. The excellent characteristics of this MSTP-PE electrolyte can also be reflected 

from the very good battery performance. When it is assembled into a LiFePO4/MSTP-PE/Li LMB, 

a highly reversible specific capacity of 170 mA h g
-1

 at 1 C and excellent thermal stability (126 and 

154 mAh g
-1

 at 5 °C and 60 °C, respectively) can be simultaneously achieved, demonstrating the 

application potential of this MSTP-PE electrolyte for high performance LMBs.  

  Moreover, some other rigid molecular species have also been introduced as the crosslinkers 

into the PSI-based SPEs for a better mechanical stability. For example, gallic acid molecules have 

been cross-linked with an ion conducting PSI derivative through a thiolene click reaction.[135] 
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Because of the rigid aromatic rings in the gallic acid molecule, the resulted SPEs exhibited an 

enhanced mechanical stability as well as greater thermal stability up to 150 °C compared with the 

pristine PSI electrolytes that exploded after 15 min at 150 °C in a coin cell, which indicated that the 

Li dendrite growth was more effectively mitigated in this rigid and mechanically strong SPEs 

reinforced by the gallic acid molecules.. 

Another type of PSE is the polycarbonate (PC)-based ones, which have relatively higher ionic 

conductivity (ca. the order of 10
-5

 S cm
-1

), moderate electrochemical stability window, and better 

compatibility towards the Li anode compared with the conventional PEO-based SPEs. Commonly, 

such PC-based PSEs are fabricated by a solution casting technique, which involves toxic solutions 

and is time-consuming. Aimed at this issue, novel facile in-situ polymerization methods have been 

developed. In this method, the liquid precursors are injected into the batteries followed by in-situ 

polymerization to directly fabricate the PC-based PSEs inside a battery.[136] For example, a 

poly(vinyl carbonate) (PVCA)-based SPE was fabricated through an in-situ radical polymerization 

process (Figure 12d).[134] This PVCA-SPE possessed a decent electrochemical stability window 

of 4.5 V and ionic conductivity of 9.82×10
-5

 S cm
-1

 at 50 °C. When assembled into 

LCO/PVCA-SPE/Li battery, a high specific capacity of 146 mAh g
-1

 at 0.1 C at 50 °C was achieved, 

which maintained 99.3% after 150 cycles. Using similar radical-assisted and in-situ polymerization 

technique, a poly(diethylene glycol carbonate) dimethacrylat (PDEC-DMA) macromonomer was 

also synthesized, which was subsequently converted into an interpenetrating network polymer 

electrolyte (IPN-PDEC).[137] The obtained polymer electrolyte possessed a remarkable mechanical 

property (Young's modulus of 2.0 GPa), a high ionic conductivity of 1.64×10
-4

 S cm
-1

, and a good 

electrochemical stability up to 4.5 V. A LiFePO4/IPN-PDEC/Li coin cell could be stably cycled at 
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0.2 C with a high specific capacity of 142 mAh g
-1

 and coulombic efficiency of 99% after 100 

cycles. These successes thus demonstrate that the polycarbonate-based electrolytes have great 

potential, especially for the high-temperature LMBs.  

These numerous endeavors discussed above have significantly increased the ionic conductivity 

through polymer blending or in-situ polymerization. The mechanical strength of SPEs can also be 

enhanced by introducing some rigid molecular species (e.g. gallic acid), which in turn improved the 

cycling and safety properties of the battery. However, their relatively low stability with Li metal and 

the inferior rigidity compared with the inorganic ones still require future studies and improvements 

for practical application in LMBs. 

4.3 Inorganic/Polymer Hybrid Electrolytes 

As discussed above, the specific types of electrolytes have the respective shortcomings, such as 

the low ionic conductivity and inferior mechanical modulus of polymer electrolytes and the poor 

adhesion of inorganic electrolytes towards Li anode. To remedy their individual defects, integrating 

the inorganic and polymer SSEs by introducing the strong ceramic fillers into the soft polymer 

matrix via different protocols seems a very promising method, with the advantages in multiple 

aspects.  
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Figure 13. a) Schematic of Li depositing on Li metal anode with PLL electrode and routine liquid 

electrolyte, digital images of the b) flat and c) bended PLL electrolyte;[138] d) schematic diagram 

of PCPSE architecture in an all-solid-state battery;[139] e) illustration of an all-solid-state battery 

with LAGP-PEO (LiTFSI) hybrid electrolyte;[140] f) Li dendrite growth and suppression on 

symmetric cells with or without g-C3N4;[141] g) schematic of the 3D garnet–polymer composite 

architecture;[142] h) protocol for fabrication of gelatinous composite PFPE-functionalized BNNFs 

(G-CFBNs); i) ionic conductivity and Li
+
 transference number of LE-Celgard, G-PVH, and 

G-CFBN at 25 °C.[143] 

Firstly, introducing inorganic species into the polymer SSEs can effectively improve their 

mechanical strength while maintaining certain degree of flexibility. For example, a PEO-lithium 

bis(trifluoromethylsulphonyl)imide (LiTFSI)-LLZTO (PLL) composite electrolyte was fabricated 
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by mixing the garnet-type electrolyte (Li7-xLa3Zr2-xTaxO12) particles with Li salt and cross-linked 

PEO substrate.[138] This PLL electrolyte was anion-immobilized, which contributed to the uniform 

Li ions distribution and effective dendrite inhibition (Figure 13a). On the one hand, the polymer-Li 

salt matrix in it ameliorated the interfacial wettability between the electrolyte and Li metal surface. 

On the other hand, the PLL’s inherited high rigidity from the ceramic fillers could provide a strong 

suppression against dendrites growth.[144] Notably, this composite electrolyte was well 

freestanding but mechanically flexible (Figure 13b, c), advantageous to application on the flexible 

all-solid-state batteries. And these merits of the composite membrane were further confirmed by its 

excellent performance in an all-solid-state LiFePO4/PLL/Li battery, which achieved a specific 

capacity of 155 mAh g
-1

 and coulombic efficiency of 99% (0.1 C at 60 °C) with 87% capacity 

retention after 100 cycles. 

Alternatively, apart from directly blending the polymer with the ceramic particles, a 

layer-structured polymer/ceramic/polymer sandwich electrolyte (PCPSE) composed of cross-linked 

poly(ethylene glycol) methyl ether acrylate (CPMEA) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) has been 

developed (Figure 13d).[139] In this architecture, the ceramic layer can decrease the interfacial 

double-layer electric field between the surface of Li metal and the polymer; while the soft polymer 

layer can promote the uniform diffusion of Li ions at the interface by providing an intimate contact 

between the electrolyte and the electrode surface. LiFePO4/Li all-solid-state cells were assembled 

with both CPMEA and PCPSE membranes and the obtained initial discharge capacities were close 

(around 130 mAh g
-1

 at 0.2 C and 120 mAh g
-1

 at 0.5 C, respectively). However, the capacity of the 

LiFePO4/CPMEA/Li cell faded rapidly to 70 mAh g
-1

 after 325 cycles, while the one using the 

PCPSE electrolyte still retained 102 mAh g
-1

 after 640 cycles with a high coulombic efficiency of 

nearly 100%, verifying the better electrochemical stability of PCPSE. Similarly, a 
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Li1.5Al0.5Ge1.5(PO4)3-poly(ethylene oxide) (LAGP-PEO) composite solid electrolyte with a buffer 

layer of PEO (LiTFSI) has also been proposed, which also effectively balanced the modulus and 

surface adhesion (Figure 13e),[140] indicating that the PCPSE is feasible for high-performance 

LMBs. 

Nanoscale inorganic fillers have relatively larger contact areas with polymer electrolytes and can 

effectively inhibit the crystallization of polymer phases, which can increase the transport routes for 

Li ions and thus are possibly beneficial to induce an extra ionic conductivity compared to the sole 

polymers.[145] In some cases, even some passive ceramic nanoparticles, such as TiO2 [146] and 

graphitic carbon nitride (g-C3N4),[141] have been proven effective for this purpose. Moreover, these 

nanostructured inorganic electrolytes can also effectively suppress Li dendrite formation due to their 

high mechanical strength (Figure 13f).[141] However, these passive nanoparticles themselves are 

non-conductive for Li ions, which means the ionic migration pathways are only confined within the 

interphase regions between the particles and polymers, making the actual ionic conductivity lower 

than the ones using the ionic-conducting nanoparticles, such as Li6.4La3Zr1.4Ta0.6O12 (LLZTO),[147] 

Li1.3Al0.3Ti1.7(PO4)3 (LATP),[148] and organic polymer nanoparticles [149]. Therefore, for example, 

the ion conductive Li1.3Al0.3Ti1.7(PO4)3 (LATP) nanoparticles have been dispersed in a PEO matrix 

to enhance the ionic conductivity to 1.7×10
-4

 S cm
-1

 at room temperature, which was 1 to 2 orders 

of magnitude higher than that of the PEO matrix.[150] 

Other low-dimensional (1D nanofibers or 2D nanoflakes/sheets) inorganic SSE nanomaterials 

have also been developed, due to their larger surface area and better mechanical integrity in 

comparison with the 0D ones, which contributes to a more efficient ionic conduction network in 

SPEs and is able to further enhance the ionic conductivity.[151] For example, the garnet-type 
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Li6.4La3Zr2Al0.2O12 (LLZO) nanofibers were incorporated into a polymer electrolyte of PEO/Li salt 

to form a garnet-polymer composite electrolyte with a 3D network structure (Figure 13g).[142] 

This rationally designed hybrid structure provided both continuous Li ion transfer channels from the 

LLZO nanofibers and mechanical flexibility from the polymer matrix, resulting in a high ionic 

conductivity of 2.5×10
-4

 S cm
-1

 at room temperature and superior structural strength to impede Li 

dendrites growth. Recently, Shim et al. reported another composite GPE, which was composed of 

perfluoropolyether (PFPE) functionalized boron nitride nanoflakes (BNNFs) in the P(VdF-co-HFP) 

(PVH) matrix (Figure 13h).[143] A very small amount of such BNNFs (0.5 wt.%) in the composite 

GPE could induce a significantly enhanced performance, including a high ionic conductivity of 

4×10
-4

 S cm
-1

 at 25 °C (twice of the conventional liquid electrolyte with a commercialized separator 

as shown in Figure 13i), super high mechanical performance (Young’s modulus of 110 GPa and 

tensile strength of 53 MPa), and promising dendrite-inhibiting capability. Due to these advantages, 

the LMBs with this composite GPE showed both high capacity and good cycling stability that were 

even much superior to the one using conventional liquid electrolytes. This meritorious work thus 

rendered a highly desirable strategy that was very promising for commercial applications of LMBs 

in the future. 

5 Interfacial Engineering of Li Anode and Electrolyte/Separator 

As aforementioned, the SEI films can spontaneously form on the surface of Li metal anode 

through reactions between the Li metal surface and the electrolyte (i.e. the Li salt and/or the organic 

solvents), which to certain degree provides some protection to the Li metal surface and suppresses 

the dendrite growth. However, such spontaneously formed “native” SEI films are normally too thin 

and fragile for the long-term cycling. Consequently, to intentionally design artificial SEI films with 
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better chemical stability and physical robustness is a more ideal solution to inhibit the problematic 

Li dendrite and unnecessary consumption of electrolytes.  

According to the formation mechanisms, the artificial SEI films can be divided into the in-situ 

artificial SEI films that are directly formed on the Li metal surface, and the ex-situ artificial SEI 

films, which are individually fabricated and then transferred/attached onto the Li metal surface or 

generated via the pre-treatment of the Li metal anode before the initial operation of the battery. In 

addition to designing artificial SEI films on Li metal anode, modification of the separator interface 

can achieve similar effect and thus suppress the dendrite growth and improve the performance of 

the LMBs. 

5.1 In-situ Formed Artificial SEI Films 

The in-situ artificial SEI films are usually generated via reactions between the Li metal surface 

and the intentionally added additives in the electrolytes (as mentioned in 3.2.2, 3.3.1 and 3.3.2), 

such as Li salts, inorganic oxides, or fluorinated compounds. Compared with the native SEI films, 

these in-situ formed artificial SEI films are thicker and stronger, with a higher mechanical strength. 

A series of in-situ artificial SEI films with various compositions have been studied, including 

Li2Sx-riched SEI film and LiF-riched SEI film,[84, 94] which have effectively improved the 

performance of the Li metal anode in different battery systems.  

Among the many reported in-situ artificial SEI films, those organic-inorganic hybrid ones can 

more effectively improve the performance of Li metal anode. Particularly, the organic component 

can provide sufficient elasticity to cope with the volume changes during the cycling. For example, 

through the in-situ reaction between the Li metal foil and a mixture of 1-chlorodecane vapor and 

oxygen/carbon dioxide gas, a mechanically strong hybrid artificial SEI film containing RCO3Li and 
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LiCl was generated on the surface of the Li metal anode.[152] This artificial SEI is thick (over 30 

μm) but conductive to Li ions, which can thus effectively suppress Li dendrite growth. The cycling 

life of the Li-O2 batteries with this hybrid SEI film can be significantly enhanced to over 340 cycles, 

almost 7 folds higher compared with bare Li metal anode.  

  

Figure 14. Schematic illustration of a) LiPAA SEI; b) structure of LiPAA polymer; and c) Li 

dendrites growth on Li metal without and with the protection of LiPAA.[153] 

Apart from the higher mechanical strength, a self-adapting ability to the volume changes has also 

been integrated into the artificial SEIs. Li et.al. proposed a smart SEI film that was composed of 

lithium polyacrylic acid (LiPAA) prepared by a one-step reaction of Li metal and polyacrylic acid 

(PAA) (Figure 14a, b).[153] Due to its good stability and elasticity, this polymeric LiPAA-based 

SEI can spontaneously adjust itself in relation to the volume changes of the Li metal anode during 

the electrochemical striping/plating process. Therefore, a self-adapting interface regulation was 

achieved on this SEI film to reduce the cracking during battery operation and thus inhibit the 

detrimental dendritic Li formation (Figure 14c), to result in a very stable and reversible Li 
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plating/stripping for 700 h.  

5.2 Ex-situ Formed Artificial SEI Films 

Although the in-situ formed SEI films can provide protection for the Li metal anode, the 

formation process and the components are generally complicated, the mechanisms are therefore 

limitedly understood.[154] Moreover, because the microstructure and porosity of these SEI films 

are normally hard to control, their protection for the Li metal anode is thus difficult to be further 

optimized.[155] In this regard, the ex-situ artificial SEI films are developed in a more controllable 

manner with a larger thickness, higher hardness, and better flexibility.[156] Technologies for 

fabricating the ex-situ SEI films include magnetron sputtering,[157, 158] ALD,[159, 160] 

Langmuir-Blodgett scooping (LBS),[161] physical transplantation,[162] and so on.[163] In this 

section, the latest progress in the ex-situ artificial SEI films will be summarized in a sequence of 

their components.  

5.2.1 Li Ion Contained Ex-situ Artificial SEI Films 

The artificial SEI films should be endowed with high ionic conductivity to realize the fast, stable 

and uniform transport of Li ions over the whole electrode surface. Thus, LiF, Li3N, and other Li 

compounds, which possess high Li ion conductivity would be suitable components for the SEI films. 

Studies have also shown that the common components in the in-situ artificial SEI films, such as 

Li3PO4, can also be utilized in the fabrication of ex-situ artificial SEI films on Li metal anodes due 

to their very high Li ion conductivity. 
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Figure 15. Schematic illustrations of the effect of the Li3PO4 coating on Li metal foils in 

suppressing the Li dendrite formation.[157] 

The Li3PO4 SEI film can bring in a number of benefits to the cycling behavior of the Li metal 

anodes. Firstly, the Li3PO4 film can act as a physical barrier between the Li metal and the 

electrolyte, preventing their contact/reaction and thus reducing the loss of Li metal. Secondly, the 

amorphous Li3PO4 can lead to a uniform current distribution, resulting in a layer-by-layer Li 

deposition manner  rather than forming the needle-like dendrites (Figure 15).[157] To prepare a 

homogeneous and flat Li3PO4 SEI film on the Li metal surface, the magnetron sputtering method is 

especially convenient, because of its characteristics to achieve a controllable thickness by simply 

adjusting the sputtering time.[157] Using this method, a homogeneous Li3PO4 thin film was 

deposited on a Li metal foil, which could significantly improve the anode performance due to its 

high chemical stability and the amorphous structure with the advantages of fewer grain boundaries 

that can provide a high ionic conductivity, a low surface energy, as well as an isotropy nature for a 

homogeneous current distribution. These merits thus comprehensively induced a uniform deposition 

of Li metal and the dendritic Li formation can be minimized.  
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Figure 16. SEM analyses of bare Li metal anode and LiF-coated Li-metal anode generated via the 

magnetron sputtering.[158] 

Using the same method, a LiF artificial SEI film can be generated on the surface of Li metal as 

well. Compared with other components for SEI, LiF has a lower energy barrier for the diffusion of 

Li ions and a higher surface energy. As a result, the LiF SEI films usually have a higher Li ion 

conductivity than the other SEIs. By comparing the bare and the LiF-coated Li metal anode before 

and after the electrochemical cycles, it is clear that the LiF SEI films can effectively inhibit dendrite 

formation (Figure 16).[158] Consequently, the assembled Li/Li4Ti5O12 LMB with the LiF-coated Li 

metal anode exhibited a high discharge capacity of 135 mAh g
-1

 over 500 cycles; while the 

counterpart with a bare Li metal anode died after 350 cycles.   
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Figure 17. a) Schematic representation of the structural evolution of the nickel fluoride (NiF2) 

during electrochemical reduction the as-formed TLL; and the optic photos of b) the bare Li foil 

after 650 cycles and c) the TLL protected Li foil after 1000 cycles in the Li-LiFePO4 cells.[162] 

Such LiF-based SEI films can also be prepared by an electrochemical reduction process. As 

shown in Figure 17a, a transplantable LiF-rich layer (TLL) composed of nanoscale LiF domains 

was pre-formed by electrochemically reducing and Li-intercalating of a NiF2-containing and 

conductive film, which could be directly used to cover the Li metal surface when assembling a 

LMB.[162] Compared with the SEI films prepared by magnetron sputtering, this TLL not only 

showed a higher nucleation-potential barrier for Li metal but also a better transferrable 

characteristic. In the assembled Li-LiFePO4 cells, Li metal with this TLL layer still looked fresh 

even after 1000 cycles of charge-discharge; while the bare Li foil turned black after 500 cycles, 

indicating significant side reactions occurred without the protection of this TLL (Figure 17b, c).  
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Figure 18. Schematic illustration showing ASEI designs for Li-SB electrodes, and their respective 

fabrication processes.[161] 

Moreover, Langmuir-Blodgett scooping (LBS) is another physical method to directly prepare the 

ex-situ SEI film, which is able to form the film via a layer-by-layer manner with a highly precise 

thickness control.[164] For example, a thin artificial SEI film containing the lithium terminated 

sulfonated titania (LTST) nanoparticles was generated on the surface of Al foil via the LBS method 

from a suspension of LTST nanoparticles and was subsequently transferred onto Li metal surface by 

a simple roll-press process and used in a Li-S battery (Figure 18).[161] The SEI film formed with 

LTST nanoparticles possessed a high Li ionic conductivity and acted as an electrostatical shield to 

eliminate the agglomeration of the soluble anionic polysulfide components on the anode surface 

thus stabilizing Li metal surface.[165] Consequently, the coulombic efficiency of the Li-S cells with 

this LTST coated anode can be up to 90%.[161]  

5.2.2 Al Ion Contained Ex-situ Artificial SEI Films 

Al2O3-based SEI film is frequently used as a protecting layer for the Li metal anode, due to its 

high mechanical strength that can effectively suppress the Li dendrite growth and inhibit the loss of 
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the active Li metal. Commonly, Al2O3 protection layers of a few nanometers thick can be generated 

by the ALD or sputtering technique yet the process is too complex for practical applications at large 

scale.[159, 160, 166] To solve this issue, alternative Al-containing SEI layers as well as new 

methods have been recently reported with a better viability for large scale production.  

 

Figure 19. Schematic illustration of the Li plating process with the addition of AlCl3.[167] 

Recently, a new approach to generating Al2O3 SEI artificial film from aluminum halides has been 

proposed. In this method, AlCl3 was used as an electrolyte additive, which can react with the trace 

amount of water in the electrolyte and form Al(OH)3 nanoparticles dispersed in the electrolyte 

(Figure 19).[167] These primary Al(OH)3 particles aggregated on the Li metal surface, further 

absorbed the rest Al
3+

 in the electrolyte, and finally formed a continuous Al2O3 SEI film that fully 

covered the surface of Li metal anode and enabled a uniform and dendrite-free Li morphology. Due 

to these excellent characteristics, the rechargeable LMB with this Al2O3 SEI film can reach a very 

long life of up to 500 cycles. 

5.2.3 Organic Polymer Contained Ex-situ Artificial SEI Films 

Polymers are electrically insulating and elastic. Therefore, they can be considered as a suitable 

matrix for artificial SEI films to adapt the large volume changes in electrochemical cycling, upon 
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being modified to be able to conduct Li ions. For this purpose, various polymers have been explored 

and reported, including polyacetylene,[168] poly(vinylene carbonate-co-acrylonitrile) 

(P(VC-co-AN)),[169] poly(ethyl α-cyanoacrylate) (PECA) [170] etc. 

Poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide) is a kind 

of polymer that has been recently utilized as an implantable protecting layer on the Li metal 

anode.[170] Figure 20a shows the chemical structure of the polymer that was synthesized by 

ring-opening metathesis polymerization, and this polymer solution was directly coated on the 

surface of Li metal to form a protective film after the removal of the solvent. Under this polymeric 

skin, the Li metal plating/stripping could occur without the dendrite growth, protecting the anode 

from corrosion with the liquid electrolyte. 

 

Figure 20. a) Illustration of the different interfacial chemistries of bare Li metal, Li metal with 

grafted skin in a carbonate electrolyte and chemical structure of the polymer skin, composed of a 

cyclic ether group (pink) and a polycyclic main chain (blue);[170] b) schematic illustration of the 

effect of two-layered hybrid artificial SEI film on Li metal and the SEM figures of the Li metal 
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batteries with and without the artificial SEI film after cycling;[171] c) schematic illustration of Li 

deposition on the surface of bare Li, Li(LiNO3), and Li(PECA+LiNO3) anode.[170] 

The organic-inorganic hybrid ex-situ artificial SEI films, which possess the advantages of both 

inorganic and polymer layers, have also been developed to protect the Li metal surface. For 

example, a hybrid ex-situ SEI composed of an outer layer of LiPON and an inner layer of organic 

elastomeric layer has been designed (Figure 20b).[171] In this hybrid structure, the base 

elastomeric layer was formed by the polymerization of DOL solution, and the top LiPON layer was 

then deposited by ALD. In this composite film, the organic elastomeric layer provided mechanical 

stabilization that could confer mechanical flexibility; while the LiPON layer provided Li-ion 

conductivity and chemical protection by passivating the Li metal surface. By applying this 

LiPON/elastomeric polymer composite coating on the Li metal anode surface, a good cycling 

performance up to 300 cycles as well as the successful inhibition of the dendrite growth were 

achieved. Another type of organic-inorganic hybrid SEI film has also been reported with a high 

Young’s modulus of over 25 GPa to inhibit Li dendrite formation.[170] To prepare it, ethyl 

α-cyanoacrylate (ECA) was used as the monomer, which was reduced by Li metal to form an 

inorganic nitride layer
 
during cycling. And at the same time, these monomers could also polymerize 

to poly(ethyl α-cyanoacrylate) to form a very smooth organic interface layer on top of Li metal 

surface. The nitride layer that was generated by the reduction of ECA and LiNO3, which possessed 

a high mechanical strength to suppress the formation of Li dendrite; while the organic SEI film 

contributed to a higher stability of the Li anode by separating it from the electrolyte (Figure 20c). 

These advantages could comprehensively contribute to a very high battery capacity retention up to 

93% after 500 cycles that was much superior to the one with only LiNO3 additive (43% after 500 
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cycles). 

5.3 Separator Modification 

Considering the overall configuration of the LMBs, dendrite growth from the Li metal anode 

occurs at the interface between the anode and the separator.[172] Therefore, modifying the separator 

of LMBs is also an effective way to inhibit the dendritic Li growth, which can be commonly 

achieved by applying an additional functional coating layer. With this purpose, many organic or 

inorganic films have been attached onto the separator that can effectively improve the strength of 

the separator and suppress the Li dendrite growth. These efforts include polydopamine-coated 

separators,[173] ceramic particles coated separators,[174] and etc. 

 

Figure 21. a) Schematic illustration of a molecular reaction om the Vulcan XC72 carbon black 

nanoparticles to MAXC superstructure and the modular assembly process; and b) schematic 
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illustrations of Li-S cell prototypes without and with MAXC interlayer.[175] 

Recently, an interesting modularly-assembled interlayer has been synthesized for separator 

modification for the rechargeable Li-S batteries, which can efficiently trap soluble intermediate 

polysulfides and keep Li anode intact and stable.[175] This modularly-assembled interlayer 

(denoted MAXC) was fabricated by agglomerating carbon black nanoparticles into a ellipsoidal 

superstructure through a double Fischer esterification reaction (Figure 21a). The as-formed MAXC 

interlayer could provide both the space for storing sufficient electrolyte and efficient immobilization 

of the soluble polysulfides, in order to prevent them from diffusing to the Li metal anode (Figure 

21b). As a result, this MAXC modified separator significantly enhanced the efficiency of Li 

striping/plating by giving a much higher columbic efficiency of 98.8% than the bare cell. 

Briefly, over the last decade, the interfacial engineering of the Li metal anodes has become a 

hotspot in the study of improving the stability and cycling life for the liquid-electrolyte LMBs, 

which can be achieved by the design of artificial SEI films on the surface of Li anode and the 

modification of the surface of the separators, to effectively suppress Li dendrite growth from 

different perspectives. Each kind of the in-situ/ex-situ formed SEI films and the modification 

coatings for the separators has its own particular characteristics that are especially suitable for 

specific applications, which need to be paid special attention to during their deployment. 

6. Stable Host and Substrate Materials for Li Metals 

As mentioned, the inhomogeneous deposition of Li ions on the surface of Li metal anode is the 

main contribution to the dendrite formation, resulting in low coulombic efficiency, shortened 

life-span, and quick death of LMBs.[176] Therefore, designing stable host and substrate materials to 

regulate Li deposition behavior and impede dendrites growth could be possibly effective to deal 
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with these issues for Li metal anodes. 

Nanoporous frameworks with excellent electrical conductivity and high specific surface area can 

confine the deposition of Li in a more homogeneous manner.[177] Benefited from the distinctive 

pore structure and the large surface area of these nanoscale framework, the electrode local effective 

current density (J) of Li deposition can be significantly decreased, leading to a larger Sand’s time (τ, 

which means the time for the surface ion concentration on the anode to reduce to 0, and after it, Li 

dendrites start to grow) and thus mitigating the Li dendrite growth.  

6.1 Carbon-based Substrate Materials  

Various carbon materials have been regarded as the suitable matrix to host Li metal because of 

their good electronic conductivity, high structural versatility, and excellent chemical stability. 

Carbon materials with various porosity and morphology have been explored for this purpose. For 

example, 3D carbon nanotube sponge (CNTS) was coated with an ALD-prepared Al2O3 layer as an 

artificial SEI film and was used as an electrode for Li metal deposition in a LMB.[178] Due to the 

material’s high porosity (>99%) and large surface area (300-400 m
2
 g

-1
), the obtained CNTS 

successfully facilitated a very homogenous Li nucleation and effectively suppressed dendrites 

growth. As a result, a high coulombic efficiency for Li striping/plating of 92.4% was achieved after 

80 cycles, which was superior to the bare Cu electrode (40.2% at 50th cycle). In another study, a 

highly conductive and flexible carbon fiber/carbon foam with a hierarchical structure was also used 

as a host material for Li metal deposition.[179] On its porous surface, Li metal was deposited in a 

conformal manner to form a highly stable Li/electrolyte interfaces, which led to high coulombic 

efficiencies of 98-99% at a high Li loading of 3-4 mAh cm
-2

.  

However, common techniques to load Li metal onto the various substrates, such as 
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electrochemical deposition or ALD, are not viable for large-scale production due to their low yield. 

With the consideration of this, direct impregnation of Li metal into the host material is much more 

convenient. To achieve this, a carbon nanofiber textile with a surface graphitized layer on individual 

nanofibers was obtained by thermal treatment, which possessed an enhanced wettability with 

molten Li compared with the ones treated at lower temperatures.[180] Due to this advantage, this 

flexible substrate can be simply loaded with Li by putting them together at a temperature above the 

melting point of Li (Figure 22a). Even at a high current density of 3 mA cm
-2

, the obtained 

composite Li metal anode can be still stably cycled for over 100 cycles with a high coulombic 

efficiency close to 100%. 

 

Figure 22. a) Schematic of the 3D composite Li anode formation with HT-CNFs;[180] b) synthesis 
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process of Li-rGO composite film and corresponding SEM images;[181] c) photo and cycle 

performance of rGO/Li anode in pouch cell (7×5 cm) compared with pure Li anode;[182] d) 

schematic diagram; SEM images of e) crumpled graphene balls with high supporting for Li plating; 

f) cross-sectional SEM images of 8 μm thick CGB before/after Li deposition of 0.75 mAh cm
-2

; and 

g) 120 μm thick CGB before/after Li deposition of 10 mAh cm
-2

.[183] 

Apart from the 1D CNTs or carbon fibers, the graphene nanosheet is another ideal matrix for Li 

deposition, owing to its 2D features that can effectively provide a large surface area for Li 

deposition to reduce the dendrites growth and at the same time achieve a better inter-sheet contact 

to reduce the interfacial resistance. For example, a nitrogen-doped graphene matrix, with a large 

pore volume (1.93 cm
3
 g

-1
) and surface area (380.7 m

2
 g

-1
), was designed to accommodate the Li 

metal.[178] On this material, the N-doping sites were found to be lithiophilic, which could lead to a 

more uniform Li metal deposition and thus impede the dendrite formation, resulting in a high 

coulombic efficiency for Li plating/striping of 98% for nearly 200 cycles. Innovatively, a more 

convenient and scalable method was proposed by directly impregnating the molten Li onto the 

porous and lithiophilic substrates utilizing capillary force.[181] In another example, reduced 

graphene oxide (rGO) was selected as the host material, and the abundant oxygen-containing 

surface functional groups could act as a lithiophilic substrate to host Li metal (Figure 22b).[181] 

Remarkably, by using this host material, a low volume variation (ca. 20%) between charge and 

discharge was achieved, together with a good cycling stability and rate capability (ca.110 mAh g
-1

 

at 4 C and 70 mAh g
-1

 at 10 C in a full cell with a LiCoO2
 
cathode). Moreover, graphene can also 

work as a protective layer for other host materials for Li metal. In this case, a thin and paper-like 

current collector composed of copper nanowires (CuNWs) covered by a thin graphene layer was 
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reported as the host for the dendrite-free Li metal deposition.[184] In this material, the CuNWs with 

large inter-wire space could accommodate a large amount of Li; while the graphene nanosheets on 

the outside acted as a high-strength interfacial protective layer to prevent the excessive deposition 

of Li. As a result, a high coulombic efficiency up to 97% could be maintained during the 200 cycles 

test.  

By loading Li metal on certain functional host materials, additional bonus for improved 

mechanical properties might also be achieved in some cases. For instance, a bendable Li anode was 

fabricated by integrating Li metal onto a flexible rGO scaffold, which could effectively avoid the 

crack growth on Li metal upon bending (Figure 22c).[182] This rGO/Li composite anode material 

was coupled with a CNT/S cathode to form a bendable Li-S pouch cell, with excellent cycling 

stability for 100 cycles that was far superior to the pristine Li metal foil anode. Recently, Luo and 

co-workers developed a novel crumpled graphene ball (CGB) to host Li metal (Figure 22d, e).[183] 

Different from other typical graphene foams or films, this CGB material possessed a much higher 

resistance to stress and was able to buffer the detrimental volume changes of Li metal during 

striping and plating. When loaded with a high amount of Li metal up to 10 mAh cm
-2

, this CGB 

electrodes still showed a negligible change in volume or any observable dendrites (Figure 22f, g). 

Due to this high structural stability, the CGB/Li composite electrode delivered a very good cycling 

stability of more than 700 cycles with a high coulombic efficiency of 97.5%, which was much 

superior to the bare Cu electrode (below 60% after 300 cycles).  

6.2 Metal-based Substrate Materials 

Apart from the various carbon substrates, the metal-based matrix materials can also achieve a 

high affinity to Li metal and are capable to homogenize the Li deposition on their interior/exterior 
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surface.[185] A number of studies have been reported on the modification of common Cu current 

collectors to better suit the LMBs. For example, on a novel porous Cu current collector with 

vertically aligned microchannels (VAMCs), it has been successfully realized the controllable 

deposition of Li ions into the channels to achieve dendrite-free Li metal anodes (Figure 23a).[186] 

The microchannels with high aspect ratio divided the bulk current collector into small and narrow 

regions. Thus, there was no uncontrollably detrimental interact of Li
+
 flux in each single 

nanochannel, resulting in a relatively uniform Li deposition (Figure 23b, c). The modified anode 

delivered a great rate and cycle performance with capacity retention of 90% compared with planar 

Cu anode (80%) after 100 cycles in a full cell with LiFePO4 cathode. However, the vertically 

aligned channels are generally fabricated by reactive-ion etching (RIE),[187] which is complicated 

and might not be suitable for practical applications at a large scale.  

 

Figure 23. a) Schematic diagram of the preferential deposition of Li on the modified Cu current 

collector; b, c) cross-sectional SEM images of Li deposits on the composite collector at different 
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magnifications;[186] and optic images of d) Li metal, e) Cu mesh, f) 3D Li-metal/Cu mesh 

composite, and; g-i) the corresponding SEM images of the above optic images.[188]  

In another case, a Cu mesh/Li-metal composite anode was fabricated by simply embedding the 

Cu mesh into Li metal upon mechanical pressure (Figure 23d-i).[188] Compared with the bare Li 

foil, this 3D Cu/Li composite electrode provided a larger surface area and volume to reduce the 

local current density and accommodate Li deposition during Li plating, thus a higher coulombic 

efficiency was obtained on this material than the bare Li metal (93.8% in 100 cycles vs. 30.9% in 70 

cycles). In order to facilitate the large-scale commercial applications, another 3D Cu-Ni current 

collector for Li metal anodes was recently reported by electrodepositing a porous Ni coating on Cu 

substrate via a one-step, rapid hydrogen bubble dynamic template (HBDT) electrodeposition 

technique (Figure 24a).[189] The honeycomb-like and porous Ni layer (overall porosity of 81.7%) 

could fully accommodate Li deposition in its abundant pore structure, confining the volume 

expansion of electrode and significantly enhancing the cycling performance of Li plating/stripping 

(beyond 300 cycles at 1.0 mA cm
-2

 with an aerial capacity of 0.5 mAh cm
-2

). 
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Figure 24. a) Comparison of the Li plating process on 3D Ni-Cu current collector and planar Cu 

foil;[189] b) schematic of Li/C-wood composite design with fast infusion of Li metal into 

channels;[190] c) design of porous Li-Cu-Ni anode to confine the volume change of electrode;[191] 

d) schematic of electrolyte-proof architecture;[192] and e) schematic illustration of mesoporous 

AlF3 framework, Al4Li9-LiF skeleton and LAFN.[193]  

Pre-storing Li in host materials can effectively compensate the Li consumption resulted from the 

simultaneous decomposition of electrolytes. However, in the commonly used electroplating 

approach by packaging the host material and bare Li foil into a half cell, it is difficult to control the 

actual deposition behavior of Li. Moreover, the tedious and time-consuming assembling and 

disassembling process of the half cells to obtain and clean the Li/matrix composite severely limits 

its practical application.  

In this case, Cui’s group pioneered a melting strategy for infusing molten Li into a porous carbon 

fiber network matrix coated by a thin lithiophilic silicon layer, which had a very high wettability 

between matrix and Li metal.[185] Based on this achievement, a fabric polyimide (PI) matrix with 

ALD-coated ZnO layer on the PI fibers was also fabricated as a lithiophilic scaffold for molten 

Li.[181] Notably, the surface of this matrix material was insulating after Li stripping and thus the 

infused Li became the only electron conductive medium, which avoided the direct deposition of Li 

on the outer surface of the PI matrix and successfully confined the undesirable volume expansion 

during cycling. Similarly, carbonized-wood (C-wood) coated with a thin ZnO layer on the inner 

channel walls was fabricated to be a composite Li/C-wood anode by pre-infusing Li metal into its 

channels (Figure 24b),[190] and the Li stripping/plating process preferentially occurred in the 

channels and volume change of the electrode was effectively confined. As a result, the local current 
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density was effectively minimized due to the unique channel structure and Li dendrite growth was 

mitigated. Similarly, such ZnO/C composite can also be directly fabricated by annealing a precursor 

containing both C and Zn, which achieved a similar enhancement effect.[194] 

Nevertheless, these lithiophilic coating layers, especially the metal oxide ones, on these scaffolds 

would unavoidably increase the internal resistance. Therefore, searching appropriate matrix 

materials that have a conductive coating or even free of coating layers for Li infusion is necessary. 

With this aim, a Ni shell was coated on the surface of CuNWs by a very facile electrochemical 

deposition method, which also achieved a good affinity between Cu-Ni nanowires and molten Li 

(Figure 24c).[191] Moreover, this Cu-Ni scaffold had favorable conductivity and mechanical 

stability to accommodate the Li plating/stripping and maintained the dimension of anode during 

cycling. In a full cell using this Li-Cu-Ni anode and LiCoO2 cathode, a high rate capability (90 

mAh g
-1

 at 5 C) and cycle stability for 250 cycles were attained. Apart from coating Ni on CuNWs, 

the commercial Nil foam could directly serve as a stable host for Li infusion by simply dipping Ni 

foam into molten Li.[195] On the one hand, the porous nature of Ni foam provided abundant 

surface area for Li stripping/plating at a low local current density. On the other hand, the good 

wettability of Ni with molten Li greatly facilitated the molten Li infusion process. Moreover, the 

superior electric and ionic conductivity of Ni foam was also favorable for the rapid ion and electron 

transport during cycling. As a result of these many advantages, the Li/Ni foam composite electrode 

displayed a specific capacity of 125 mAh g
-1

 at 0.5 C with coulombic efficiency of 90% for 100 

cycles, much superior to the bare Li foil anode (30 mAh g
-1

 with coulombic efficiency of 72%), 

confirming an efficient utilization of active Li specie in this composite anode.   

Apart from lowing the local current density of Li plating as was discussed above, another 
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solution to prevent the Li dendrite growth or other side reactions, as mentioned in the previous 

sections, is to isolate the Li metal from contacting the liquid electrolytes. This principle is also 

transferrable to the design of the host matrices for Li metals. For example, a novel LixSi-Li2O 

material was synthesized with over stoichiometric Li embedded into SiO (Figure 24d).[192] In this 

architecture, the active Li domains were dominantly wrapped inside the matrix without direct 

contact with the electrolyte, which enabled a highly stable and safe Li storage even at high currents. 

Similarly, another stable Li/Al4Li9-LiF nanocomposite (LAFN) host was prepared by a one-step 

“overlithiation” method of mesoporous AlF3 substrate (Figure 24e).[193] The LiF layer generated 

from this lithiation process could effectively protect the Li metal and facilitate a uniform Li ion 

diffusion to hinder the dendrite formation. As a result, this LAFN composite anode could maintain a 

superior stability in a symmetric cell even at an ultrahigh current density of 20 mA cm
-2

 for more 

than 100 cycles, greatly outperforming the conventional Li foil that failed rapidly in less than 20 

cycles, giving this material a strong potential for practical high rate LMB applications.  
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Figure 25. a) Schematic of Li metal nanocapsules;[196] b) schematics of Li nucleation and growth 

process with AgNP/CNFs seeds and corresponding SEM images;[197] c) schematics of Li plating 

on 2D Cu foil and GF-modified electrode;[198] and d) illustration of the mechanism of microsphere 

protection: I) selective oligomer coating induced by embedded microspheres, II) guided Li ions to 

preferential deposition on the oligomer coating, III) dendrites pressurization by interconnected 

microspheres, IV) enhanced Li metal anode by MSP.[199] 

As discussed above, the various porous carbon nanomaterials could serve as stable hosts for Li 

metal due to the chemical stability and variability of their structures. Moreover, some metallic 

substrates (e.g. Ni) have shown good affinity with Li and can thus effectively attract molten Li 

metal with a high affinity. From this end, dispersing these Li-affinitive species on the carbon matrix 

may also realize selective deposition of Li metal onto these hosts. Cui and co-workers discovered 
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that some materials (e.g. Au nanoparticles) possessed zero overpotential of Li nucleation and could 

serve as heterogeneous seeds to guide Li to selectively nucleate on them.[196] Using hollow carbon 

nanospheres to host the Au seeds, Li deposition can be reversible and preferentially carried out 

inside the sphere without forming large Li dendrites (Figure 25a), which resulted in a high 

coulombic efficiency of 98% over 300 cycles. In another study, ultrafine silver nanoparticles 

(AgNPs) were anchored uniformly on carbon nanofibers (CNFs) by a rapid high-temperature 

treatment, which showed a similar effect due to the high tendency of Ag to alloy with Li metal 

(Figure 25b).[197] 

6.3 Non-conductive Host Materials for Li Metal  

Non-conductive substrate materials, with a high content of polar functional groups (e.g. Si-O, 

O-H, C≡N), can also effectively control the deposition of Li. On these materials, the polarized 

functional groups act as the adhesion sites to adsorb the Li ions in electrolyte and initiate the 

subsequent Li plating on these spots. As a result, the distribution of Li ions is controlled by the 

dispersion uniformity of these functional groups and dendrites growth can be minimized.[177]  

Based on this mechanism, a 3D glass fiber (GF) framework has been proposed for a 

dendrite-free Li anode (Figure 25c).[198] In this case, GFs were covered on a 2D Cu foil current 

collector to compensate the curvature-induced and inhomogeneous Li ion deposition on the bulges 

of the Cu foil surface, in order to prevent accumulation of Li ions and the associated possible 

dendrites formation.[200] In another study, the typical non-conductive scaffold of oxidized 

polyacrylonitrile (PAN) nanofiber was selected because of its surface polar groups with good 

affinity to the electrolytes.[201, 202] Specifically, a free-standing PAN-based insulating microfiber 

(IMF) matrix was fabricated by electrospinning. The stacked micrometer-sized fibers offered high 
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surface affinity to Li ions as well as sufficient internal space for Li metal deposition to minimize the 

volume change of the electrode with different Li loading amounts even as high as 10 mAh 

cm
-2

.[201] Moreover, Lang et al. also reported a PAN fiber array on Cu foam by a low-cost draw 

spinning method to guide homogeneous deposition of Li metal,[203] which showed negligible 

volume variation in the full cell test and a high coulombic efficiency of 97.4% for 250 cycles, much 

superior to bare Cu foam.  

Compared to the arrays or microfibers, functional microspheres may as well suppress Li 

dendrites; and their high rigidity and regular structure could give extra bonus for this task. Recently, 

a microsphere-protected Li metal anode was reported using polystyrene (PS) microspheres 

copolymerized by divinylbenzene (DVB).[199] As shown in Figure 25d, the regularly arrayed 

microspheres generated an oligomer coating in the selected areas, guiding a preferential Li
+
 

deposition on the composite anode. As a result, the full cell with such Li metal anode delivered an 

excellent cycling stability for 190 cycles with 90% retention of initial specific capacity. 

In summary, the purpose of designing porous host materials for Li metal anodes 

is mainly reflected in three aspects: i) supplying adequate surface areas for Li ions deposition; ii) 

minimizing the local current density to alleviate dendrites growth; and iii) providing a strong 

integration with the Li ions in the electrolytes to guide the Li plating. Therefore, seeking 

appropriate methods to simultaneously obtain these aforementioned functions could be a very 

attractive and effective way to achieve a Li metal anode with a satisfactory safety and reversibility. 

7. Conclusion and Perspective 

As the core component for the next generation high-energy LMBs, Li metal anodes have 

attracted a rapidly growing amount of attention due to their exceptional advantages, including low 
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density, high theoretical capacity, and low electrochemical potential. However, the high reactivity 

and spontaneous dendritic Li formation associated with the traditional organic electrolytes are still 

essential.  

With the advance of novel characterization technologies (e.g. Cryo-SEM), deeper understandings 

about the mechanism of dendrites formation and the interfacial evolution during the operation of 

LMB have been obtained. Accordingly, numerous efforts have been devoted in the design of novel 

functional electrolytes, in the modification for a more stable and reliable interface, and in the 

construction of a composite Li anode.  

Although selecting appropriate solutes and functional additives for liquid electrolytes have 

significantly improved interfacial stability and coulombic efficiency, the possible leakage and 

flammability nature of liquid electrolytes may still cause serious safety concerns on the LMBs. On 

the other hand, the solid-state electrolytes have a high mechanical strength that can effectively 

suppress the dendritic Li formation, especially for inorganic/polymer hybrid SSEs, which are able 

to simultaneously achieve both high ionic conductivity and mechanical strength/flexibility. 

However, the poor interfacial wettability and non-negligible resistance between electrolyte and Li 

metal require further investigation. 

For the interface modification, forming artificial SEI film by in-situ/ex-situ routes and modifying 

the separator can effectively suppress the Li dendrite. To design artificial SEI films with suitable 

mechanical strength and chemical stability, the inorganic and organic hybrid SEI films can be a 

good choice and the possible research direction in the further. In addition to the artificial SEI films, 

modifying the separator with various functional polymers or ceramic particles is also an important 

method to improve the stability and the security of the LMBs.  
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Constructing porous and stable frameworks to form 3D composite Li anodes has been a 

promising strategy for high performance LMBs in recent years. The nano-/micro-structures serve as 

stable hosts for Li striping/plating, successfully mitigating the dendrites growth as well as 

minimizing the volumetric variation of Li anode. Therefore, exploration of more facile and 

economical methods to prepare these ideal Li metal anode host are required to be with higher 

scalability and economical viability so as to be better utilized in LMBs. 

Despite the remarkable progress in the last few decades in the development of Li metal anodes 

for the many types of LMBs, however, a number of remaining challenges still exist at present and 

continuous explorations are still necessary for the practically usable Li metal anodes. In the many 

above-summarized strategies, we believe that modification of solid state electrolytes and the 

corresponding design of novel battery configurations as well as the rational design of the stable host 

materials for Li metal are two very promising directions that could possibly mitigate these issues in 

the future. Moreover, the combination of different approaches for commercial application of LMBs 

is imperative. 
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