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Simulation-Based Uncertainty Quantification for Estimating Atmospheric CO2
from Satellite Data

Abstract

Remote sensing of the atmosphere has provided a wealth of data for analyses and inferences in earth
science. Satellite observations can provide information on the atmospheric state at fine spatial and
temporal resolution while providing substantial coverage across the globe. For example, this capability
can greatly enhance the understanding of the space-time variation of the greenhouse gas, carbon dioxide
(C02), since ground-based measurements are limited. NASA's Orbiting Carbon Observatory-2 (OC0-2)
collects tens of thousands of observations of reflected sunlight daily, and the mission's retrieval algorithm
processes these indirect measurements into estimates of atmospheric CO2. The retrieval is an inverse
problem and consists of a physical forward model for the transfer of radiation through the atmosphere
that includes absorption and scattering by gases, aerosols, and the surface. The model and other
algorithm inputs introduce key sources of uncertainty into the retrieval problem. This article develops a
computationally efficient surrogate model that is embedded in a simulation experiment for studying the
impact of uncertain inputs on the distribution of the retrieval error.
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SIMULATION-BASED UNCERTAINTY QUANTIFICATION FOR
ESTIMATING ATMOSPHERIC CO, FROM SATELLITE DATA

JONATHAN HOBBS*, AMY BRAVERMAN*, NOEL CRESSIE*, ROBERT GRANAT*,
AND MICHAEL GUNSON*

Abstract. Remote sensing of the atmosphere has provided a wealth of data for analyses and
inferences in Earth science. Satellite observations can provide information on the atmospheric state
at fine spatial and temporal resolution while providing substantial coverage across the globe. For
example, this capability can greatly enhance the understanding of the space-time variation of the
greenhouse gas, carbon dioxide (CO,), since ground-based measurements are limited. NASA’s Or-
biting Carbon Observatory-2 (OCO-2) collects tens of thousands of observations of reflected sunlight
daily, and the mission’s retrieval algorithm processes these indirect measurements into estimates of
atmospheric CO,. The retrieval is an inverse problem and consists of a physical forward model for
the transfer of radiation through the atmosphere that includes absorption and scattering by gases,
aerosols, and the surface. The model and other algorithm inputs introduce key sources of uncertainty
into the retrieval problem. This article develops a computationally efficient surrogate model that is
embedded in a simulation experiment for studying the impact of uncertain inputs on the distribution
of the retrieval error.

Key words. Bayesian inference, inverse problem, surrogate model, radiative transfer, simulation
experiment, optimal estimation, nonlinear model

AMS subject classifications. 62F15, 62P12

1. Introduction. In recent decades, atmospheric remote sensing has provided a
wealth of data for understanding the Earth system. Remote sensing instruments, par-
ticularly Earth-orbiting satellites, exploit characteristics of electromagnetic radiation
to make inferences about the state of the atmosphere. The retrieval problem, namely
estimating the atmospheric state from a satellite’s observed radiation, is a primary
scientific inference objective for remote sensing data. Each instrument has one or
more associated retrieval algorithms that estimate a quantity of interest (QOI) from
the instrument’s observed radiances. Retrieval algorithms use a variety of approaches
for estimating the atmospheric state. Some examples include construction of lookup
tables, statistical modeling in combination with likelihood inference, and Bayesian
inverse inference. Formal uncertainty quantification (UQ) can be a valuable tool in
any of these situations by providing a framework for propagating the impact of al-
gorithm choices, including the sources of uncertainty that accompany them, through
the retrieval process.

In satellite remote sensing, the quantity of interest (the atmospheric state) is
inferred from observable radiance spectra (Figure 1), making inference an example
of an inverse problem. Inverse problems present a number of challenges, including
a tendency to be ill-posed and highly sensitive, particularly when the relationship
between the state and the observation is nonlinear [6, 8]. Bayesian inference is an
appealing option in this situation because additional information about the state or
other model parameters can be introduced. In remote sensing, this approach has
been developed into the so-called optimal estimation (OE) retrieval [21]. In the OE
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retrieval, the distribution of the observed spectra given the state and the (marginal)
distribution of the state are modeled probabilistically. From these distributions, a
posterior distribution of the state given the observed spectra can be used to infer the
unknown state. Because of the inherently nonlinear relationship between the state
and the observed spectra, in practice this posterior distribution is rarely available in
closed form.

There are a number of strategies for interrogating the resulting posterior distri-
bution, and practical considerations, such as the volume of data to be processed and
the computational expense of the nonlinear forward model relating the radiances to
the state, often take priority. Markov Chain Monte Carlo (MCMC) sampling from
the posterior distribution has been implemented in remote sensing retrieval problems
[24, 13], but this approach requires a large number of forward model evaluations. The
recently launched Orbiting Carbon Observatory-2 (OCO-2) provides tens of thousands
of retrievals per day, requiring the retrieval process to be computationally fast [10, 18].
The data volume means that the information extracted from the posterior distribu-
tion is minimal, being restricted to a point estimate and an approximate covariance
matrix. As detailed in Section 2.2, a typical approach is to search for the posterior
mode, the maximum a posteriori (MAP) estimate, with numerical approaches and to
obtain the covariance matrix through linearization. Some theoretical aspects of this
retrieval process have been demonstrated [8, 9], and linear error analysis has identified
key sensitivities for this OE retrieval [22, 4].

The present paper develops a simulation-based framework for the OE retrieval
applied to atmospheric CO, retrievals that addresses several objectives. First, the
approach samples the retrieval error distribution under standard conditions without
assuming linearity. Second, it characterizes the impact of key OE-algorithm choices
on the distribution of the retrieval error. Finally, it is contrasted with the linear error
analysis that is commonly used in remote sensing retrievals through a retrieval error
budget that separates contributions from linear and nonlinear sources. In the process,
the true bias and covariance of the retrieval errors can be determined. This approach
and the underlying statistical model resemble simulation studies of nonlinear mixed
effects (NLME) models [14, 15]. In the remote sensing application, the inference ob-
jective focuses on the state, which would be considered the random effect in the NLME
context. A simulation framework allows an extension of the linear approximation in
traditional OE retrieval error analysis [22]. This simulation-based strategy requires
an OF retrieval that is computationally fast in order to facilitate large Monte Carlo
sample sizes in the simulation experiment. In fact, the OCO-2 operational algorithm
is not fast enough, so we develop a surrogate forward model and retrieval.

This article is organized as follows. Section 2 describes OCO-2 and its role in
carbon cycle science, along with the mathematical details for the OE retrieval. Section
3 outlines a UQ simulation framework and an associated surrogate model. Section
4 describes a simulation experiment that examines dominant sources of uncertainty
for OCO-2, with the results discussed in Section 5. Section 6 offers some concluding
remarks and future research directions.

2. Remote Sensing and OCO-2. Later sections summarize simulation exper-
iments using a nonlinear radiative transfer model and OFE retrieval. Figure 2 provides
a schematic overview of this framework, which could be applied to retrievals from
a general remote sensing instrument. A particular instance requires an appropriate
forward model for simulating synthetic radiances from specified atmospheric states,
plus a retrieval algorithm for estimating the state given the observed radiances. The
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Fic. 1. Summary of key sources and sinks of radiation along a path through the atmosphere to
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experiment developed in Section 4 specifically targets the OE retrieval and radiative
transfer model for estimating atmospheric CO, concentration. As motivation, we pro-
vide background on this measurement and the mathematical framework for the OE

retrieval.
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Fic. 2. Schematic diagram of the Monte Carlo framework using the OCO-2 surrogate model.
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The Orbiting Carbon Observatory-2 (OCO-2) launched in July 2014 with an ob-
jective of providing global estimates of atmospheric carbon dioxide at fine spatial
resolution. OCO-2’s primary quantity of interest is the column-averaged dry air mole
fraction of CO,, a quantity termed Xco2. The estimation of X2 is discussed further
in Section 2.2. The OCO-2 instrument’s global coverage and data volume are provid-
ing a more comprehensive picture of atmospheric carbon dioxide (CO,) concentration,
especially regional spatial patterns, seasonal cycles and interannual variability. Re-
mote sensing data are an important data source for CO,, since in situ measurements
are sparse and concentrated in mid-latitude land regions. A comprehensive picture
of the CO, field can aid the understanding of the global carbon cycle. In particular,
Xcoo estimates are combined with transport models to infer carbon fluxes between
the surface and the lower atmosphere. Fluxes vary substantially across the globe,
with source regions often located in close proximity to sink regions, such as in the
tropics where substantial deforestation has occurred [1].

Emissions from human activities such as fossil-fuel burning and land-use change
are key components of the global carbon budget. The combined land and ocean sinks
remove approximately half of anthropogenic carbon emissions, but there is pronounced
year-to-year variability in this proportion [3]. The mechanisms behind this variability
are largely unknown, and substantial uncertainty exists as to the relative impact
of tropical forests and boreal forests of the Northern Hemisphere as land carbon
sinks. Continuous monitoring across the globe from remote sensing instruments has
the potential to more precisely identify sources and sinks and their evolution over
time. At the same time, appropriate uncertainties must be attached to the remote
sensing retrievals so that they can be propagated through the flux-inversion process.
A comprehensive understanding of the OCO-2 OE retrieval and associated sources of
uncertainty is a critical component of this end-to-end inference problem.

2.1. Measurement. The OCO-2 instrument includes three imaging grating
spectrometers measuring solar radiation reflected from the Earth’s surface in the
infrared (IR) portion of the spectrum. Each spectrometer corresponds to an IR band
with a resolution of approximately 1000 wavelengths (colors) over a narrow wavelength
range of less than 50 nm. Molecular oxygen (O,) absorbs strongly in one of the bands,
termed the O,-A band, and the other two bands are known as the weak CO, band and
the strong CO, band. The collection of observed radiances from the three bands at a
particular time make up a sounding. The satellite is in sun-synchronous polar orbit
in a formation of satellites called the A-train at 700 km above the Earth’s surface.
The orbit track crosses the Equator on the daytime side in the early afternoon local
time, and about 15 orbits are completed each day [10].

Let the random vector Y represent the set of radiances for a single OCO-2 sound-
ing. Figure 3 gives an example of a radiance vector from the surrogate forward model
outlined in Section 3. The observed radiances are a result of the interaction between
the radiation and the composition of the atmosphere and of the Earth’s surface along
the path from the top of the atmosphere to the surface and back to the satellite.
The general goal is to estimate the atmospheric state, which we denote as X, from
the observed radiances, along with characterizing the uncertainty of the estimate. In
particular, certain atmospheric constituents will absorb and/or scatter radiation. The
extent of absorption and scattering depends on the wavelength as well as the amount
and type of the constituent, as shown in Figure 1.

The mathematical relationship between the atmospheric state X and the radi-
ances Y is captured through a forward model, F(X,B). The inputs of the forward
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Fic. 3. Example of a radiance vector Y.

model include the state as well as a set of forward-model parameters B that are char-
acteristics of the instrument and any other quantities not included in the state X. In
general the parameters are not perfectly known, and their treatment in the retrieval
problem is discussed in the next subsection.

For many remote sensing applications, including OCO-2, the forward model dis-
cretizes the atmospheric vertical profile into a set of layers. The composition of
different layers can be different, but the atmosphere is assumed homogenous within a
layer. This discretization allows for a numerical solution to the equation of radiative
transfer (RT), and this numerical solution is the resulting value of F(X,B). For the
OCO-2 surrogate model defined in Section 3, the elements of the state vector can be
grouped into the following general categories:

e CO, Vertical Profile. The dry-air mole fraction, or the number of moles
of CO, per mole of dry air, varies vertically in the atmospheric column. For
0CO-2, it is defined at 20 fixed pressure levels in the atmosphere, correspond-
ing to the upper and lower boundaries of each of the discrete layers. Absorp-
tion of CO,4 occurs at numerous wavelengths, often called absorption lines, in
both the strong and weak CO, bands. Therefore, the amount of CO, present
is strongly related to the radiances at many wavelengths in these bands. This
relationship reflects the total number of molecules of CO, present, and hence
additional information about the total amount of dry air is required.

e Surface Pressure. The surface pressure is a single component of the state
vector that helps identify the total number of molecules of air in the atmo-
spheric column. Since molecular O, has a nearly constant dry air mole frac-
tion anywhere in the atmosphere, the absorption of O, can accurately reflect
the total amount of dry air. Surface pressure is identified with this informa-
tion and a representation of the presence of water vapor in the atmosphere.

5
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Many O, absorption lines are present in the O, A-band.

e Surface Albedo. Earth’s surface acts as a boundary condition in the RT
problem. Some radiation is extinguished and some is reflected at the surface.
Surface albedo is the fraction of reflected radiation to total incoming radiation
at the surface. This behavior varies as a function of wavelength. The state
vector includes two albedo coefficients for each of the three bands. The first
is the albedo at a reference wavelength at the center of the band (intercept),
and the second is a slope that defines the linear change in albedo across the
band.

e Aerosols. Small particles in the atmosphere interact with incoming radi-
ation in complex ways. Some radiation is extinguished, and the extent of
this extinction is often summarized by aerosol optical depth (AOD), which is
defined as the natural logarithm of the ratio of incoming to transmitted radi-
ation. Since the ratio is larger than unity, AOD is strictly positive, and larger
values correspond to more opaque conditions due to radiation extinction by
aerosols. In addition, some radiation is scattered in different directions, rep-
resented as different angles with respect to the direct path from the sun. The
forward model accounts for the angular dependence of scattering through a
phase function. The OCO-2 state vector includes three coefficients to de-
scribe the aerosol vertical profile for up to four different aerosol types. For a
given aerosol type, one coefficient is the natural logarithm of the total AOD
in the O, A-band. The second coefficient represents the vertical height where
the aerosol concentration is a maximum. The third coefficient represents the
depth of the aerosol profile; a small value indicates a “thin” aerosol layer. The
state vector can include these coefficients for an arbitrary number of different
aerosol types, which are characterized by different scattering properties in the
forward-model parameters B.

These components represent the key state variables in our investigation. Their
actual implementation in the radiative transfer model is outlined in Appendix B.
The OCO-2 mission’s primary QOI is the CO4 mole fraction, but it is important to
include other components in the state vector because they play important roles in
the forward model. Since they are not perfectly known, they are estimated as part
of the retrieval. These additional quantities are often termed nuisance parameters in
statistics and have been termed interferences in the remote sensing retrieval literature
[22]. The CO, retrieval problem is particularly challenging due to the nonlinear nature
of the forward model and the heterogeneous makeup of the state vector. Further, the
sensitivity of the measured radiance to these interferences is often larger than to
changes in CO,.

2.2. Optimal Estimation. The relationship between the n-dimensional vector
of satellite radiances Y and the r-dimensional state vector X, where typically n > r,
can be represented through a simple statistical model,

(1) Y =F(X,B) +e.

The random errors € can represent measurement error along with model discrepancy.
Here we assume
€ ~ Gaussian (0, X) .

The state vector can also be treated as a random vector with a marginal distribution,

X ~ Gaussian (px, Xx) .
6
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Inference for the state can be carried out through its conditional (or posterior)
distribution given the radiances and relevant parameters ¢ = (px, Xx, X, B),

(X, Y|o]
JIX,Y|¢)dX’

(X|o][Y[X, ¢]
JXIBI[YIX, pJdX’

(XY, ¢] =

where the notation [A|B] denotes the conditional probability distribution of A given
B. The conditional mean E(X|Y,¢) can serve as an estimate of the state, and the
conditional variance Var(X|Y, ¢) can characterize the uncertainty of the estimate.
This inference framework is known as optimal estimation (OE) in the remote sens-
ing literature [21]. Optimal estimation retrievals for atmospheric constituents such
as carbon monoxide, carbon dioxide, and ozone have been implemented for a num-
ber of recent Earth-observing satellites [18, 26]. Despite the multivariate Gaussian
assumption for the random errors and the atmospheric state, the posterior distribu-
tion is not Gaussian if the forward model is nonlinear. Generally, an analytical form
for the posterior distribution is unavailable. However, sampling from the posterior
distribution is possible with Markov chain Monte Carlo (MCMC) [23, 13], but can
be prohibitively expensive for the number of soundings processed for a mission like
OCO-2. Evaluation of the forward model F(X, B) is time-consuming, so the full pos-
terior distribution must be summarized in an efficient manner that limits the number
of evaluations of the forward model.

A strategy commonly advocated in remote sensing and used in the OCO-2 full
physics (FP) retrieval algorithm is to search for the posterior mode. This is equivalent
to minimizing a “cost function” of the form,

—2m[X[|Y,¢] = (Y — F(X,B))" =71 (Y — F(X,B))
(2) + (X — px)" T (X — px) + constant.

A variety of optimization algorithms can be used for solving this nonlinear least
squares problem. The Levenberg-Marquardt (LM) algorithm, which is a tunable
generalization of gradient descent and the Gauss-Newton algorithm, is often used in
remote sensing applications [21]. The actual implementation of the algorithm includes
non-trivial choices such as the starting value, convergence criterion, and initial value
for the LM regularization parameter. The algorithm determines step size and direction
in part based on the gradient of the cost function (2), which requires the forward-
model Jacobian,

_ OF(X,B) _ (0F(X,B)
KX =—3x :( X}, )

Notice that the Jacobian is generally a function of the atmospheric state.

In an operational setting such as the OCO-2 FP retrieval, other algorithm choices
must be made as well. In particular, values for key parameters are set at fixed
values. Since their true values are not generally known, we distinguish these retrieval
parameters from their true counterparts.

e The retrieval forward model parameters are set at ]g, and the true forward
model parameters are B.

e The retrieval prior mean vector is set at p,, and the true marginal mean for
the state is px.
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e The retrieval prior covariance matrix is set at 3,, and the true marginal
covariance for the state is Xx.
e The retrieval error covariance matrix is set at 3., and the true error covari-
ance is Xe.
The value of the state vector at the last step of a nominally converged LM algo-
rithm is declared the retrieved state and denoted X. It is a function of the data
Y. An expression for the posterior covariance [21] can be computed through a linear
approximation,

S(X) = [K(X)"S'K(X) +3;'] 7"

This approximation involves the Jacobian, which must be evaluated at a chosen value
of the state vector. This choice of X, or linearization point, can impact the overall
uncertainty if, for example, the retrieval X is used as the linearization point. The
OCO-2 operational retrieval uses this convention, so this choice is used throughout
the rest of this paper. Henceforth, we define

S =S(X) = [K(X)TS'K(X) + z;lr .

The primary QOI for OCO-2 is X2, the column-averaged dry-air mole fraction
of CO,. Fundamentally, this is the ratio of the number of CO, molecules in a column
to the total number of molecules of dry air in the column. We decompose the state

vector,
Xa
x= [ Xs } ’

where X, is the vertical profile of CO, and Xp is the rest of the state vector. The
prior mean vector of the state,
_ p’a,a
Ho [ Ha,p ] ’

can be similarly decomposed, and the covariance matrix can be written as

A S S
S — |: Daa AQ'B :| ’
Sga  Spp

where S, is the block of the covariance matrix corresponding to the vertical profile
of CO,.

Given the configuration of the state vector, Xco2 can be constructed as a weighted
average of the vertical profile of CO, [18]. The vector of weights h(Xg) has the same
dimension as X, and the weights are generally a function of the other state vector
elements. However, the weights are fixed for the surrogate model defined in Section
3, and we drop the dependence of h on the state vector,

Xco2 =hTX,.

In a similar fashion, the retrieved Xcpo and a variance estimate can be computed
from the retrieval,

Xco2 =h"X,,

@’Xcog = hTSaah.

8
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2.3. Error Analysis. Linear error analysis is a standard framework for diag-
nosing error characteristics in OE retrievals [21]. Through an analytic formulation,
the technique quantifies the linear propagation of uncertainty for particular sources,
including the inherent variability of the state, the noisy measurements, and system-
atic errors in parameters and the forward model, into the variability in the retrieval
errors. In this article, we compare and contrast this approach with simulation-based
UQ, which can additionally characterize nonlinearity and uncertainty propagation
from any other retrieval algorithm choices, specifically uncertainty in the prior mean,
that are not handled in the OE framework. The linear error analysis technique in OE
uses a linearization of the retrieval error, A = X — X, to decompose the contribution
from the sources noted previously. The linearization process relies on the Jacobian
and two additional operators.

1. The gain matriz G has dimension r x n and characterizes the linear response
of the retrieval to the measurements,

G(X) = [(K(X))T S (X) + 2;1} - (K(X))T >l

2. The averaging kernel A has dimension r x r and characterizes the linear
response of the retrieval to the state vector,

A(X) = G(X)K(X).

In this framework, the retrieval error can be decomposed into several contributions
[21],

A=X-X
= (A(X) - I) (X =pu,) smoothing
+ G(X)e noise
+ v nonlinearity.

The nonlinearity term ~ is zero for a linear forward model, as outlined in Ap-
pendix A. Additional contributions arise if the forward model used in the retrieval
is different from the true forward function. Parameter error is also introduced if the
retrieval model parameters B are different from the true model parameters B. For an
operational retrieval such as OCO-2, these are important contributions to the retrieval
error; these other contributions will not be addressed in the current work.

The analogous error budget has been developed for Xco2 [5]:

(3) Axcoz = Xcoz — Xcoo
=hT" (A,m(X) — I,m> (Xa - ua’a) smoothing
+ hTA,5(X) (X5 = o p) interference
+h7G (X)e noise
+ 7xco2 nonlinearity.

Here, the averaging kernel matrix is partitioned in a similar fashion as the covariance
matrix, with A, (X) and A,g(X) representing the CO,-profile rows of the averaging
kernel. Further, G, (X) represents the first 20 rows, corresponding to the CO, profile,

of the gain matrix.
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In this budget, smoothing error for the full state vector is further divided for
Xco2 into smoothing error for the CO, profile and interference error due to the
correlation between retrieval errors in the CO, profile and retrieval errors in other
state-vector elements [5, 22]. The final term, yxcos2, is a catch-all that arises from
the nonlinearity of the forward model, the role of this nonlinearity in the behavior
of the retrieval algorithm, and the choice of linearization point. In an operational
setting, the true state X and random error € are not known, so the OE error-analysis
focuses on characterizing the plausible marginal variability of each contributor to the
budget based on the assumed probability distribution of the true state and random
error [5]. Correlations between contributions are ignored. Through our simulation
experiment (Section 4), components of the error budget can be computed directly
from the known true state and model discrepancy. Error budget components can be
evaluated jointly.

3. Surrogate Model. The previous section highlighted some of the critical
choices in the practical implementation of the OCO-2 remote sensing retrieval. Pa-
rameters that are in reality uncertain are fixed, and the LM algorithm is configured in
a specified fashion. These choices can impact the distribution of the retrieval X and
the adequacy of S as a measure of the variability of the distribution of the retrieval
error,

A=X-X.

Particular attention is focused on the retrieval error for Xcp9, namely

Axco2 = Xco2 — Xco2.

We wish to study this distribution by simulation experiments through extensive Monte
Carlo draws under different combinations of geophysical conditions and algorithm
choices. However, the computational cost of the OCO-2 FP forward model limits the
scope of any experiments involving this model.

Consequently, we have developed a computationally efficient surrogate model and
retrieval based on the physical principles in the OCO-2 FP forward model and mea-
surement approach. There are multiple strategies for surrogate-model development
in the literature. Statistical models, which are usually Gaussian process models, are
often developed as emulators of complex computer models [6, 19]. Another approach
involves developing a surrogate of reduced order or complexity based on the original
parent model, which is the approach is implemented in this article. The surrogate
model makes some simplifications for interpretability and computational efficiency
while attempting to maintain the key components of the state vector and radiative
transfer that contribute substantially to uncertainty in Xcos. Scattering of radiation
in the atmosphere by aerosols has been shown to contribute to errors in retrieved
Xco2 for other remote sensing instruments [18], so aerosols are a primary focus for
investigation with the surrogate model. After some initial investigation with even
simpler surrogate models that did not include aerosol scattering, we found that the
surrogate model presented here exhibits a satisfactory level of nonlinear behavior for
the experiments desired. As implemented, the surrogate model achieves computa-
tional efficiency over the full physics model through a reduced state vector, fixed
absorption coefficients, a simplified instrument model, and reduced-accuracy numer-
ics for radiative transfer. Further details on the surrogate model can be found in
Appendix B.

The surrogate-model state vector includes the same configuration as the FP state
vector for the CO, profile, surface pressure, surface albedo, and aerosols, as defined in
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Section 2.1. Other elements of the FP state vector are not included in the surrogate
state vector. Table 1 highlights the makeup of the two models’ state vectors. In their
most extensive formulation, the surrogate state vector includes 39 elements and the FP
state vector includes 49 elements. A more detailed description of the representation
of the state vector and the radiative transfer included in the surrogate model can be
found in Appendix B.

TABLE 1
Composition of the state vector X in the OCO-2 full physics (FP) forward model and in the
surrogate forward model.

Component Full Physics | Surrogate

20-Level CO, profile v v

Surface air pressure

Surface albedo

ANIENIEN

Aerosol profile

Temperature scaling

Humidity scaling

Wavelength offset, scaling

SNIENIENENENENEN

Fluorescence

Evaluation of the surrogate forward model provides a substantial computational
speed-up; a five-iteration retrieval takes approximately 200 seconds with the FP model
and approximately 10 seconds for the surrogate model. This speed improvement allows
extensive Monte Carlo experiments with the surrogate model. Figure 2 provides an
overview of the general experimental setup. An experiment requires specification of
the true marginal distribution for the state X, through (pux,Xx), the random error
characteristics through ¥, and the forward model parameters B. Similar choices are
made for the surrogate retrieval inputs such as p,, 3,4, 2e, B. We distinguish two key
approaches for choosing these inputs. One option is to fix these inputs at specified
values, which we call sensitivity mode. Another option, as illustrated in Figure 2, is
to generate random inputs to reflect uncertainty in retrieval inputs. This option is
termed stochastic mode.

The experiment proceeds by simulating a large random sample of state vectors
X, each of which are used to evaluate the forward model. Random errors are added
to yield synthetic radiance vectors Y. A surrogate retrieval is then performed to yield
retrievals X and covariances S.

4. UQ Simulation Experiment. In this section we develop a surrogate-model
experiment to investigate the impact of systematic misspecification of and uncertainty
in the retrieval prior mean p, on the retrieval error distribution. These experiments
focus on the impact of the prior mean choices for surface albedo and aerosols. Rep-
resenting the surface and aerosols is an ongoing challenge in remote sensing retrievals
like OCO-2, since they appear to contribute a substantial portion of the variability in
retrieval errors [18].
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419 4.1. Marginal Distribution. The geophysical states are constructed from avail-ii
420 able data sources, which include remote sensing and reanalysis datasets. These sources
421 provide geophysically plausible mean states and intraseasonal variability, which is ad-
422 equate for studying the error distribution under a range of geophysical conditions and
423 algorithm choices. The experiment considers a marginal distribution based on typical
124 conditions near Izana, Tenerife, Spain in July. Influenced by atmospheric transport
125 from northern Africa, this location is characterized by moderate CO, variability and
426 high mean aerosol optical depth, particularly from dust.

427 A few key data sources provide the basis for the marginal distribution. In each
428 case, daily “data” from June-August 2013 near the location of interest are extracted.
129 Daily values for the necessary components of the state vector are treated as replicates,
130 and their empirical means and covariances are assembled to produce a marginal mean
431 vector pux and a marginal covariance matrix 3x. Daily data on vertical profiles for
432 CO, come from a simulation of NASA’s Goddard Earth Observing System Model,
433 version 5 (GEOS-5) [20]. Daily data on surface pressure and aerosols come from the
434 Modern Era Retrospective Analysis for Research and Applications Aerosol Reanalysis
135  (MERRAero) [2]. Finally, daily data on surface albedo data come from the Moderate
136 Resolution Imaging Spectrometer (MODIS) albedo product [25].

437 4.2. Simulation of the Radiances. The (marginal) distribution of X, with
138 mean px and covariance matrix ¥x, is used to simulate synthetic state vectors. For
139 each simulated state X, the surrogate model F(X, B) is evaluated at each wavelength
440 in each band, and random errors € are added to yield synthetic radiance vectors Y.
441  The error covariance matrix 3. is a diagonal matrix. The individual variances are
112 defined to be proportional to the expected signal. Specifically, let Y = {Y;; : i =
143 1,...,n,;7 =1,2,3}, where j indexes the spectral band (O,, weak CO,, strong CO, )
444 and 7 indexes wavelength within a band. Hence, ni + ns +n3 = n. Then the variance
445 for each radiance Y; ; is related to its expectation, as follows:

146 Yij=Fi;(X,B)+¢€
143 Var(Y; ;) = ¢; F; ;(X,B).

449 The band-specific constant ¢; is specified to yield signal-to-noise ratios (SNRs) that
450 are comparable to those characteristic of the OCO-2 instrument. This model for the
151 error variance follows the general behavior of the instrument with a slightly simplified
452 structure. The OCO-2 operational algorithm develops wavelength-specific variances
453 based on known instrument characteristics [12]. These distributional assumptions for
454  generating synthetic states X and radiances Y are applied for all treatments in the
455  experiment.

456 4.3. Treatments in the Simulation Experiment. The experiment explores
457 the impact of uncertainty in the retrieval prior mean p,, as depicted on the right side
158  of Figure 2; the prior covariance 3, is fixed at 3x. In particular, each retrieval uses
159 a prior mean that is generated from a hyper-distribution,

460 ., ~ Gaussian(0,, Q).

461  The experiment includes two factors with levels that reflect different choices for the
462 hyper-parameters 8, and €2,. The two factors described below included five and three
163 levels, respectively, and the experiment was run in a full two-way factorial design,
164 yielding 15 treatments.
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The first factor is the systematic error present in the prior mean p,, reflected
by the choice of the hyper-parameter 8,. In general, this parameter is defined as an
offset from the true marginal mean,

eazux‘i_é.

The five levels of this factor reflect varying amounts of misspecification,
e MA: § = —2,/diag(Xx)

e MB: § = —/diag(Xx)
e MC: =0,

e MD: § = /diag(Xx),
e ME: § = 2,/diag(Xx).

Here, +/diag(3x) represents a vector with a single non-zero element given by the
marginal standard deviation for the natural logarithm of the aerosol optical depth
(log AOD) for the dominant aerosol type, which is dust for the location of interest.
The element is in its appropriate place in the state vector, and all other elements
are set to 0 for all treatments. We know from the physics behind the retrieval and
preliminary surrogate-model experiments that uncertainty in the AOD component of
the prior mean is among the most problematic.

The second factor is the degree of uncertainty present in the specification of the
prior mean, reflected by the choice of the hyper-parameter €2,. The three levels
of this factor reflect no uncertainty, small uncertainty, and moderate uncertainty,
respectively,

e VO: Q, =0,
e V1: T102X7
e V2: 2, = diag(Xx).
The treatments are summarized in Table 2.

TABLE 2
Treatments for the uncertain prior mean (p,) experiment. FEach treatment is named as a
combination of the magnitude of systematic error (MA, MB, MC, MD, ME) in the prior mean and
the level of uncertainty (VO0, V1, V2) in the prior mean.

Covariance Q,

5Ex  diag(Ex)

0 10

—2,/diag(Ex) | MAVO | MAV1 | MAV2

Mean  —./diag(¥x) | MBVO | MBV1 | MBV?2
Offset 0 MCVO0 | MCV1 | MCV2
5 V/diag(Zx) | MDVO | MDV1 | MDV2
2y/diag(¥x) | MEVO | MEV1 | MEV?2

For the treatments that include some degree of uncertainty in the retrieval’s prior
mean f,, it is possible to estimate components of the variance in Xco2 through the
use of the conditional-variance formula,

Var(Axcoz) = E(Var(Axcozlp,)) + Var(E(Axcoz|p,))-

The first contribution, E(Var(Axcoz2|p,)), is the variability in the retrieval errors
given the prior mean, averaged across the distribution of prior means. This vari-
ability results from the inherent variability in the state X as well as the random
errors in the radiances Y, and the posterior covariance S accounts for these, at least
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to the extent that the linear approximation is adequate. The second contribution,
Var(E(Axcoz|i,)), is variability in the retrieval bias for a given prior mean across
the distribution of prior means. The posterior covariance S conditions on the prior
mean p, and does not capture this second contribution to the variability. These
components can both be computed in the Monte Carlo framework if a hierarchical
sampling strategy is used. Specifically,

e Generate p =1,...,50 random prior mean vectors

/J’a,p ~ N(0a7 Qa)‘

e For each prior mean vector p, ,,, generate ¢ = 1, ...,400 simulated states and
radiances X, 4, Y, 4 and perform retrievals.
The sample size of 400 for each prior mean represents a compromise that achieves
a satisfactory Monte Carlo precision while allowing a reasonable outer loop sample
size (50). The treatments representing no uncertainty in the prior mean (V0) do not
require hierarchical sampling. For these treatments, a total of 5000 independent state
and radiance vectors were simulated.

5. Results. This section summarizes the results of the experiment in several
ways. Since X¢o2 is the primary QOI, it receives additional focus, both in terms of the
components of variance relative to variability in the retrieval prior mean and in terms
of the components of the error budget. In addition, the bias and covariance of the
retrieval errors for the full state vector X are summarized using a small set of summary
figures of merit. These diagnostics reveal key properties of the CO, retrieval and
represent a suite of tools that could additionally be used in summarizing simulation
experiments for other remote sensing retrievals and similar nonlinear Bayesian inverse
problems.

5.1. Xco2 Components of Variance. Figure 4 summarizes the error distribu-
tions for Xcoo for each of the treatments in the experiment. The error distribution
for each prior mean g, which is fixed for the VO treatments (left column) and ran-
domly generated (center and right columns), is summarized with its mean and two
extreme quantiles. The impact of the increasing level of uncertainty in the retrieval
prior mean is evident both in the V1 treatments, where a modest amount of addi-
tional variability is present in the overall error distribution, and in the V2 treatments,
where there is especially noticeable variability in the conditional means (points) of
the Xcoo9 errors for the randomly selected prior means. In addition, there is a weak
relationship between this conditional bias and the prior mean log AOD, which is par-
ticularly evident in the MAV2 and MEV?2 treatments. As the log AOD prior mean
increases, the mean Xcpo retrieval error decreases. This relationship clearly does not
explain all of variability in the conditional bias, so other elements of the prior mean
vector play a role as well.

Table 3 summarizes the bias and variance in the Xcpo retrieval error for each
treatment in the experiment. For the V1 and V2 treatments, the variance is sepa-
rated into the contributions from the average error variance within each prior mean
E(Var(Axco2)|p,)) and from the variance of average errors across prior means
Var(E(Axcoz|p,))- In addition, the average of the estimated posterior variances

—

E(Varxco2), is reported for comparison.

From a practical standpoint, the retrieval bias is small (less than 0.1 ppm) for
all except the extreme MA and ME treatments. There is a trend from negative to
positive bias moving from MA to ME. This suggests that the prior-mean specification
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may reflect the importance of nonlinearity in the presence of parameter error, a topic
that is studied further in Section 5.2. The volatility is also reflected in the variance of
the retrieval errors. Both components of the error variance are largest for the MAV2
and MEV2 treatments. The between-prior variance is largest for the V2 treatments
and is relatively modest in the V1 treatments. -

The average of the estimated posterior variances, E(Varxcos2), compares well to
the empirical error variance computed from the Monte Carlo simulations for the VO
treatments, although the empirical error variance is at least slightly larger for every
treatment. The posterior variance attempts to capture the inherent variability in the
atmospheric state and the noise present in the radiances, and the inflation in the VO
treatments may be due in part to nonlinearity. In addition, the posterior-variance
calculation assumes a fixed (known) prior mean p,, so the V1 and V2 treatments
will exhibit additional variability in the retrieval errors that would not be captured
in the calculation of Varxcops. This mismatch is noticeable, around 20%, in the
small-uncertainty (V1) treatments and becomes more substantial, as large as 50%,
for the moderate-uncertainty (V2) treatments. This result underscores the impact of
uncertainty propagation for a particular algorithm input, p,, through uncertainty in
the primary QOL. .

Since each retrieval, X co32, has a corresponding reported variance, Varxcos2, the
distribution of retrieval errors can also be diagnosed by normalizing the retrieval error
by the square root of this reported variance. The distribution of this unitless quantity,

Axco2,p,q

— 5
VVarxcoz,p,q

is summarized in Figure 5 for each treatment in the experiment. The standardized
errors {Z, .} are sorted and plotted against standard Gaussian quantiles, yielding a
quantile-quantile plot. The slope of the resulting regression line yields a scaling of

Zpq = p=1,...,50; ¢ =1,...,400,

the standard deviation of the true retrieval errors relative to /Var XC02,p,q,» Which
based on the linear approximation. This slope is closest to unity for the VO and V1
treatments but deviates more substantially in the V2 treatments. In particular, the
V2 treatments show a tendency toward skewed and heavy-tailed error distributions.

5.2. Xco2 Error Budget. Section 2.3 outlined an error budget (3) that is often
used in diagnosing remote sensing retrievals. Three of the four error terms, namely
smoothing, interference, and noise, can be computed directly for each Monte Carlo
draw and corresponding retrieval. Since the total Xcos error is available as well, the
error due to nonlinearity can be computed as a difference between the total and the
sum of the other three components. The joint distribution of the error terms can
be summarized from these calculated errors across the Monte Carlo simulation. In
addition, an estimate of the variance for each of the first three components can be
obtained based on a linear approximation and assumed covariance matrices 3. and
3.. The calculation based on a linear approximation is often called linear “error
analysis” in the remote sensing literature [22, 5], and in our experiment we have an
opportunity to assess the validity of linear error analysis.

Figure 6 compares the standard deviation of each error component for each treat-
ment, using both the actual errors based on the simulation and the standard deviations
computed based on the linear approximation. The variability in the smoothing error
and noise error are nearly constant across all treatments, and the simulation-based
variability matches that expected from the linear approximation for both smoothing
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TABLE 3
Summary of Xcoz2 bias and variance for the uncertain prior mean experiment. Bias is reported
in units of ppm and variance is reported in units of ppm?. The total variance of the retrieval
errors is Var(Axcoz2) = E(Var(Axco2)|p,) + Var(E(Axco2)|ie), which is the sum of the two
components above it in the table. This total can be contrasted with the retrieval’s mean estimated
variance E(@"Xcog),

MAV0 | MAV1 | MAV2
E(Axcos) | 0210 | 0264 | 0.312
E(Var(Axcos)|m,) | 0436 | 0.588 | 0.663
Var(E(Axco2)|i,) 0.006 | 0.034
Var(Axcoz) | 0436 | 0.594 | 0.697
E(Varxcos) | 0344 | 0.482 | 0.483
MBVO0 | MBVI | MBV2
E(Axcoz) | 0073 | 0.097 | 0.144
E(Var(Axcon)|m,) | 0382 | 0.553 | 0.588
Var(E(Axco2)|m,) 0.006 | 0.022

)

)

Var(Axcoz 0.382 0.559 0.610
0.331 0.466 0.471
MCVO0 | MCV1 | MCV2
E(Axcos) | 0015 | -0.023 | 0.067
E(Var(Axcos)lp,) | 0388 | 0545 | 0.661
Var(E(Axco2)|it,) 0.003 | 0.027

)

)

—

E(VCLTXCOQ

Var(Axcos) | 0.388 | 0.548 | 0.688
Var 0.324 | 0.456 | 0.461
MDVO0 | MDV1 | MDV2
E(Axcos) | -0.069 | -0.110 | -0.021
E(Var(Axco2)|w,) | 0.386 | 0.543 | 0.582
Var(E(Axcos2)|m,) 0.003 | 0.023

)

)

E(VG,T’XCOQ

Var(Axco2) | 0.386 | 0.546 | 0.605
E(Varxcos) | 0318 | 0.444 | 0.456
MEVO0 | MEVI | MEV2
E(Axco2) | -0.120 | -0.166 | -0.127
E(Var(Axco2)lm,) | 0371 | 0.533 | 0.658
Var(E(Axco2)|ity) 0.003 | 0.027

)

)

Var(Axcoz 0.371 0.536 0.685

E(Varxcos2) | 0313 | 0438 | 0.437

and noise. These two error components reflect variability due to 3. and the CO,
portion of 3x, parameters that are not changed across the treatments.

In contrast, the variability of the interference error and the nonlinear error change
across treatments. The error budget suggests that different retrieval prior means p,,
will likely lead to different distributions of interference error. The average interference
error is related to the difference between the marginal mean px and the retrieval
prior mean p, for the pressure, aerosol and albedo components of the state vector.
These are the constituents of Xg in the interference term of the error budget (3).
Thus the variability in the retrieval prior mean translates to variability in the average
interference error. This variability is not present in the calculation based on the linear
approximation, where a fixed retrieval prior mean is assumed. The nonlinear error is
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a component that is difficult to diagnose in operational linear error analysis, but it
is available in this Monte Carlo setting. The nonlinear error term can dominate for
the treatments with greater uncertainty. As shown in Figure 6, the variability due to
nonlinearity is the largest of the error budget terms in the V2 treatments.

Figure 6 also shows the standard deviation of the total error in Xcoo for both
the simulation and the linear approximation. The simulation-based standard devia-
tions are computed from the true retrieval errors in the experiment. For the linear

approximation, the standard deviation is \/E(@“ xco2). The impact of both the
nonlinearity and interference error contributions is evident in the simulation-based
variability of the total error, especially for the V2 treatments. The bottom panel of
Figure 6 shows that the traditional error analysis always yields total variances that
are too small, sometimes substantially so.

The total error variance can also be impacted by correlations among the error
budget components. Table 4 summarizes these empirical correlations among the terms
in the error budget in the MCVO0 (control) and MEV2 treatments. This analysis of the
correlations among the components of the error budget is possible in the simulation-
based setting, but correlations are not given in traditional linear error analysis. This
represents a potential weakness since the variance of the total error is the sum of the
variances of individual terms plus twice the sum of covariances between all possible
error pairs. Traditional error analysis assumes that the latter component is zero.
From Table 4, smoothing, interference and noise errors are essentially uncorrelated
with each other. In general, smoothing and interference errors could be correlated with
each other if the marginal distribution includes cross-correlations between the CO,
profile and other components, such as aerosols. The marginal distribution used in this
surrogate model experiment does not include correlations between the CO, and non-
CO, components of the state vector. The nonlinear term has modest correlations with
the other terms in the control experiment, and the correlation remains, particularly
with noise error, in the MEV2 treatment.

TABLE 4
Correlations of error-budget components for the MCVO (control) and MEV?2 treatments in the
sitmulation experiment.

MCVO
Smoothing Interference Noise Nonlinear
Smoothing 1.000 -0.039 -0.013 0.075
Interference -0.039 1.000 0.001 0.081
Noise -0.013 0.001 1.000 -0.191
Nonlinear 0.075 0.081 -0.191 1.000
MEV2
Smoothing Interference Noise Nonlinear
Smoothing 1.000 -0.011 0.017 0.027
Interference -0.011 1.000 -0.033 0.043
Noise 0.017 -0.033 1.000 -0.089
Nonlinear 0.027 0.043 -0.089 1.000

5.3. State Vector Figures of Merit (FOMs). An assessment of the error
distribution of the full state vector provides additional insight into the behavior of
the retrieval algorithm. In particular, a component-by-component look at the retrieval
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bias and variance can reveal specific state-vector elements that may be more or less
problematic in the retrieval. This can be complemented with an investigation of
the correlations of retrieval errors across components. Strong correlations, either
positive or negative, can suggest combinations of state vector elements that may not
be completely identifiable in the retrieval. The Monte Carlo experiment provides the
distribution of retrieval errors, A = X — X, and this distribution can be summarized
with some key FOMs useful in simultaneous inference [7]. Following the notation of
Cressie and Burden [7], we define the retrieval bias and covariance as

Bias = E(X — X) = E(A)
Cov = Cov(X — X) = Cov(A).

One useful FOM is a unitless normalized bias, or inverse coefficient of variation,
. -1/2 .
Icv = (diag(Cov)) Bias.

Figure 7 illustrates this figure of merit for the experiment. The behavior of Icv shows
some interesting contrasts between X,, the CO, profile, and Xg, the other elements
of the state vector. In general, larger biases are present for the components Xg.
Some of these errors can compensate for each other to an extent; for example, an
error in retrieved aerosol can offset an error in retrieved albedo without a substantial
impact on CO,. Large bias is particularly evident for surface pressure, the band-
specific albedo, and the log AOD components for the V1 and V2 treatments. While
the V2 treatments have large absolute bias, the variability is most extreme for these
treatments as well. The largest errors in X, tend to occur in the middle to lower
atmosphere, where the CO, variability is largest.

Additionally, the correlation matrix of the retrieval errors can provide insight into
the relationships among the state vector elements. Figure 8 depicts this matrix for
the MCVO (control) experiment. The upper left 20 x 20 block represents the corre-
lations among the retrieval errors for the vertical profile of CO,. Error correlations
for nearby vertical positions are generally positively correlated. The components of
the CO, profile exhibit modest correlations with other elements of the state vector.
The strongest negative correlations exist between the albedo and aerosol components
of the state vector. This is an illustration of one of the fundamental challenges for
the OCO-2 measurements; surface albedo and aerosol scattering near the surface can
give rise to similar spectral signatures. The negative correlation is consistent with the
retrieval attempting a trade-off between these contributions.

6. Discussion and Conclusion. This study has developed and illustrated a
practical framework for quantifying uncertainty in remote sensing retrievals. The
combination of a computationally efficient surrogate model and a Monte Carlo frame-
work allows simulation from the retrieval-error distribution under a variety of condi-
tions. These empirical results can be readily compared with OE error analysis based
on a linearity assumption. The simulation-based assessment in this study provides a
number of insights beyond those obtained from the OE linear error analysis. First, the
variability in the error due to nonlinearity can be diagnosed, and it is seen to change
across the treatments in the experiment. Second, the simulation reveals that uncer-
tainty in the prior mean p, results in a larger interference-error variance than that
computed in the linear approximation. Finally, modest correlations among the error
budget components are found using the simulation results, which lead to covariances
that must be incorporated to achieve an accurate measure of total error.
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In addition, the simulation approach provides an overall quantification of the ade-
quacy of the retrieval’s uncertainty estimate, and it can also characterize the variabil-
ity in retrieval errors due to nonlinearity. We find that the combination of systematic
misspecification of, and uncertainty in, the prior mean for aerosols and albedo impact
the retrieval bias and variance for Xcpo. There is an important interaction between
these two factors that leads to large bias and variability when the prior mean of log
AOD is high.

The impact of uncertain retrieval-algorithm inputs in general has implications for
the community of OCO-2 data-product users. The operational retrieval algorithm
reports the approximate posterior variance for Xcp9, called Varxco2 in this article,
which accounts for the variability in the atmospheric state and the radiance residual
variability but not uncertainty in the retrieval-algorithm inputs. This can result in a
reported uncertainty that underestimates the actual retrieval error variance. Inference
for carbon fluxes utilizes remote sensing data along with the reported uncertainties,
so a more appropriate characterization of the error variance could lead to improved
flux inversion. A geographically and seasonally comprehensive set of UQ experiments
could provide guidance to adjusting the reported uncertainty in the operational data
products. The results of this study suggest that adjustments would be especially
warranted for high AOD conditions.

This study has investigated the impact of uncertainty in the retrieval prior mean
@, as an algorithm input. We note that the model for uncertainty on p, can be
written as:

., — x ~ Gaussian(d, Q,),

for a given pux. Now, if p, is fixed, sampling from this distribution would generate
uncertainty on the marginal mean, px. Thus, the same MC draws of p, — pux could
be used in a simulation experiment that considers uncertainty on the marginal mean,
Bx -
Other key algorithm inputs, especially those linked to aerosols and albedo, likely
impact the retrieval uncertainty. The investigation could be extended to incorporate
uncertainty in the retrieval prior covariance X,, particularly the portion corresponding
to albedo and aerosols. The current OCO-2 operational algorithm uses a constant
prior covariance matrix for all retrievals, and the impact of this choice on retrieval
error distributions will depend on the spatially and temporally varying nature of the
true marginal distribution [18].

The choice of forward-model parameters B can impact the retrieval uncertainty
as well. Several forward-model parameters characterize the wavelength dependence of
aerosol absorption and scattering, and uncertainty in these parameters could impact
the retrieval-error distribution. In addition, the forward model relies on discrete
choices of aerosol types, which cannot perfectly capture the actual aerosol conditions
in the atmosphere [10]. There is also potential in using collections of soundings Y to
estimate these forward-model parameters from the data.

This Monte Carlo framework is sufficiently general, and the surrogate model of-
fers an adequate tradeoff between computational efficiency and physical realism to
facilitate all of these potential UQ investigations for the OCO-2 OE retrieval. The
framework simply requires a statistical model for the atmospheric state, a forward
model representing the remote sensing instrument, and a retrieval algorithm for esti-
mating the state given satellite observations. In fact, this framework could be used
to provide uncertainty estimates for any retrieval algorithm, whether it is Bayesian
or not.
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OCO-2’s implementation of the OE framework uses a numerical search for the
posterior mode and provides a posterior covariance matrix based on a linear approx-
imation. This article has addressed the propagation of uncertainty resulting from
uncertain inputs into this specific algorithm and resulting estimator. Section 1 notes
that the Bayesian formulation allows for other strategies for inference, including explo-
ration of the full posterior distribution, [X|Y]. The OCO-2 FP forward model is likely
too computationally expensive for posterior inference based on MCMC, for example,
but sampling from the posterior distribution is feasible using the more efficient sur-
rogate model developed here. As a reviewer has suggested, the comprehensive results
that are efficiently produced with the surrogate model experiments can be compared
to a subset of corresponding experiments with the full physics forward model. This
work is ongoing.

The OE remote sensing retrieval can be framed as an example of prediction in
a nonlinear mixed model. This class of statistical models has been applied in a
wide range of disciplines from medicine to environmental applications [11], and hence
there is the potential to study the properties of predictors for random effects, or of
estimators of fixed effects. The error budget diagnostics developed and illustrated in
this paper could be implemented in other applications of nonlinear mixed models.
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F1a. 4. Distribution of retrieval errors for Xco2, under the hierarchical sampling strategy and
different experiment conditions, plotted against the log AOD component of the prior mean. The
solid vertical line depicts the true marginal mean of log AOD. Solid circles depict the distribution’s
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mean and error bars cover the center 95% of the retrieval-error distribution.
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tions, plotted against quantiles from a standard normal distribution.

22

This manuscript is for review purposes only.



Smoothing Interference

—= 0.8 —T—— —r —— — 0.8 —T—— — ——
€ MAT 'MBT 'McT '™MDT ME 3 MAT 'MBT 'McT '™MDT 'ME
go7f - B5: wlsi go7f - B: ls
g 0.6 g g 0.6 1
= 05 4 = 05F ¢ Bed F
2 oal ik eeciond T ol ®8x  ®ex eex efX |es, |
o o ox ox ox oy ox
[a] L. eyex . ;o [a] Lo o SRR
S 03[ @y eK X (S MK X X S o3
T 0.2 : : s 02f |
21l g 21l g
S S
@ 0.0 @ 0.0
VOViIV2 VOVIV2 VOVIV2 VOViIV2 VOVivV2 VOViIV2 VOVIV2 VOVIV2 VOViIV2 VOViV2
Experimental Condition Experimental Condition
08 Noise o8 Nonlinear
€ [ MAT '™MB" [ Mc' "MD" ME € [ MAT '™MB" [ Mc' "MD" ME
go7f B: B s go7f ;B s
Co6F L | Co06F L |
£ 05 ) L - 2 o5k . i fied
] L 00X | @ex  ewx | ewx | ] Lo o [ Lo
D 041 ex 5% ox ox ox B 04 e . = ¢
Q g3l . T Q g3l & o b e ]
= - b = L -
T 0.2f : : - T 0.2f : : g
2 o1l - 2 o1l g
pu] pu]
& 00 & 0.0 —hehene R . o o TEEEE
VOVIV2  VOVIV2 VOVIV2 VOViIV2 VOViv2 VOVIV2  VOVIV2 VOVIV2 VOViV2 VOViv2
Experimental Condition Experimental Condition
Total
MA mMB MC MD ME
° o .
08l — : Pog b : : e b : |
e [ [ ™
= x X x
E . x x X x X X %
2 . L .
0.6 g : 3 : B : s : . 5 i
S X x x x x
8
>
k93
[a]
el
5 041 g
©
f =
ol
n
02k . . . . . . ]
L] Simulation
X Linear Approximation
0.0 n T n n n n n n n n n n n n
VO ViooV2 VO ViooV2 VO ViooV2 VO ViooV2 VO ViooV2

Experimental Condition

F1G. 6. Standard deviation of error-budget components and of the total error for each treatment
in the experiment. The four upper panels depict an individual component of the error budget, with the
bottom panel depicting the total error. The total error is computed as the standard deviation of the
true retrieval errors for the simulation case. For the linear approximation, the total error standard

deviation is computed as \/ E(@Xcog)‘ The nine treatments are represented in sequence on the

horizontal azis. Solid circle (o) symbols represent standard deviations computed from the simulated
errors, and X symbols represent standard deviations based on OFE’s linear approximation.
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Figure of Merit Icv, Normalized Bias
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Appendix A. The effect of linearity on the error budget.
If the forward model is linear,

Y =pu+ KX +¢€,

then the error budget can be decomposed exactly into contributions from smoothing
and noise. For the linear model, the posterior covariance S, gain G, and averaging
kernel A are given by

S=[K'S 'K+,
G=[K'S'K+%;'] K's;!
A =GK

Assume without loss of generality that g = 0. For this model, the retrieval is
linear,

X = [K'S 'K+ 37 [2 . + KT Y]
=S¥, 'y, +GY
=82, ', + G (KX +¢)
=82, 'p, + AX + Ge.

Now,

A+8x2,'=S(K'®;'K) + 8%,
=S(K'S'K+ =)
=S8s!
= I’

SO
Syl =1-A.
Then, the retrieval error can be written as
X -X=8%2"'p, + AX - X + Ge
=I-A)p,+(A-I)X+ Ge.

This results in the linear error budget

A=X-X
=A-1)X-pu,) smoothing
+ Ge noise

Appendix B. Surrogate model description.

Some of the key aspects of the surrogate forward model F(X,B) include config-
uration of the atmospheric state vector X, discretization of the atmospheric profile,
trace gas absorption, radiative transfer, and viewing geometry.

Formally, the forward model F; ;(X,B), ¢ = 1,...,n;;j = 1,2,3 defines the
expected radiance as a function of the state X and parameters B for wavelength ¢ in
spectral band j. Hence, n = ny + no + n3. The three spectral bands correspond to
the three OCO-2 spectrometers,

e 02 A-band (j = 1), centered near 0.765um,
e Weak CO2 band (j = 2), centered near 1.64um,
e Strong CO2 band (j = 3), centered near 2.06um.
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B.1. Vertical profile and state vector. The surrogate model discretizes the
atmospheric vertical profile into k = 1,..., K layers; the surrogate model uses K =
19. The atmospheric composition within a layer is assumed homogenous. Layer
boundaries are defined by a unitless vertical coordinate gr = pg/ps, where py is
the atmospheric pressure at the top boundary of layer k£ and py41 is the pressure
at the bottom boundary of layer k. The bottom layer is bounded by the surface,
characterized by the surface pressure ps. The K + 1 layer boundaries are fixed at
{q1 = 0.0001,¢qo = 1/K,q3 = 2/K,...,qx+1 = 1.0}.

The atmospheric state vector X includes

e The dry air mole fraction of CO2, ¢/, at level k', k' =1,..., K +1,

e The surface pressure ps,

o Coefficients by ¢, b1.¢,b2,¢,€ = 1,...,4, representing the vertical profile of each
of four atmospheric scattering species, including two composite aerosol types,
cloud ice, and cloud water,

o Coefficients ap,j,a1,; representing the surface-albedo dependence on wave-
length in each of the three spectral bands.

Some additional quantities defined below are functions of these state vector con-
stituents. Any other quantities used are part of the parameter vector B. These
additional parameters include gas absorption coefficients and aerosol extinction and
scattering coefficients.

B.2. Intermediate quantities. The surrogate model F; ; can be more conve-
niently defined in terms of several intermediate quantities, which are functions of X
and B. The explicit notational expression of this dependence is dropped in subsequent
discussion. These intermediate quantities include

e Surface albedo A, ;,

e Vector of layer-specific optical depths 7; ; = {7 r : k=1,..., K},

e Vector of layer-specific single-scattering albedo w; ;(7; ;) = {wi jx(Ti k) :
k=1,...,K},

e Layer-specific phase function P; (7, ;) = {Pijx(rijx) : k=1,...,K}.

The layer-specific optical depth 7; ; , quantifies the extinction of radiation in layer
k. It is the sum of the optical depth for trace gas absorption 7¢ ; j i, from Rayleigh
extinction 7g ; jk, and from each scattering species Taz,i j k¢,

4

Hmzmmﬁqmm+§mmm0
=1

The optical depth due to trace gas absorption is a function of the abundance of the
absorbing gas (O, or CO,) in the atmospheric layer and a wavelength-dependent
absorption coefficient p; ;. In the O, A-band,

Ps\qk+1 — Gk .
TG,igk = 0.21 pijk 9(7)7 Jj=1
gmgq
where my is the molar mass of dry air with units kg mol ™! and g is the gravitational
constant. In the weak and strong CO2 bands,

Ck+ 1 Ps(qrt1 — Gk)
2 e gmgq

TGijk = , j=2,3.

26

This manuscript is for review purposes only.



860
861
862
863
864
865
866
867
868

869

870

876
877
878
879
880

881

882
883

The absorption coefficients p; j , with units m? mol ™!, are a set of fixed coeffi-
cients that are extracted from the OCO-2 full physics absorption coefficient tables.
The Rayleigh optical depth is

Ps\qk+1 — 9k
TR,i,j,k = PR,i,j,k 7S< - )7
gmd
where pg ; j 1 is a Rayleigh extinction coefficient, which is assumed known. Note that
the quantity

Apy = ps(QkH - Qk)7
= Pk+1 — Pk

is the pressure difference between the bottom and the top of layer j.

The aerosol optical depths for each of the four scattering species are based on a
characteristically shaped aerosol profile, parameterized by the coefficients bg ¢, b1 ¢, b2 ¢l
The characteristic shape mimics a Gaussian probability density function. Then the
layer-specific optical depths are defined as

o r+1—bie) o qr—b1e
ba e b2 e
TM,ij ke = €ij.e exp{bo,e} ;
P (1.07171,@) _P (q17b1,6>

bgyz b2,£

where @ is the standard Gaussian cumulative distribution function. Each wavelength
and scattering species has an extinction efficiency e; ;, that is assumed known, and
the shortest wavelength in the O2 A-band is used as a reference with e; ;0 = 1. Then
exp{bo ¢} is the total optical depth at this reference wavelength for each scattering
species. The coefficient b, o defines the peak height of the aerosol profile, and b, ¢
characterizes the effective depth of the profile.

In addition to extinction from multiple sources, the forward function also incor-
porates Rayleigh scattering and scattering by the four scattering species. Scattering
behavior is quantified by the single scattering albedo w; j x(7; ;) and the phase func-
tion, P; ; (7 ). The single scattering albedo is defined as

4
TRkt D om1 WMt TM i gkt

wi i k(Tiik) =
z,j,k( z,],k) ik
Each scattering species has its own wavelength-dependent single scattering albedo,
wu,i,j,¢, Which quantifies the fraction of scattered radiation to extinction, and these
parameters are assumed known.
The phase function P, ; x(7; ;) characterizes angular dependence of scattering,

4
TR,k PR+ D em WMi,3,0TM i g ke P 0

)

Py jr(Tige) = <
TRyigk T D g1 WM,ij,0 TM i k.0
where Pr; ; and P ;¢ are known phase functions for Rayleigh scattering and the
individual scattering species.

Finally the surface albedo provides a lower boundary condition for the transfer
of radiation through the atmosphere. The surrogate model assumes a Lambertian
surface and the wavelength dependence of albedo is represented by

0
Aiy = a0 +a1; (i — 1)),
where v; ; is the wavenumber of interest and VJ(»O) is a pre-defined reference wavenumber
for each band.
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B.3. Radiative transfer. The surface albedo, optical depth, single scattering
albedo and phase function are inputs to computational routines for radiative transfer
(RT). A variety of routines of varying complexity and numerical accuracy are available
for solving the radiative transfer equation, which is an integro-differential equation
for the intensity of radiation as a function of the path through the atmosphere. Addi-
tional inputs for RT include the solar geometry and satellite viewing geometry (zenith
and azimuth angles). Vector RT routines solve for the full Stokes vector, which incor-
porates scalar intensity along with polarization. The surrogate model F; ; includes
a fully polarized first order of scattering (FO) routine and a scalar two-stream (2S)
approximation for the contribution from multiple scattering. The FO routine outputs
the top of atmosphere (TOA) Stokes vector (Iro.;, @ro.i.j,Uro,i ), and the 2S
routine outputs a (TOA) multiple scattering intensity Iog; ;. This radiative transfer
implementation is one key distinction between the surrogate model and the OCO-2
FP forward model, where the latter utilizes more numerically accurate second-order
of scattering (20S) and a larger number of streams for multiple scattering [16, 17].

The instrument geometry defines the Stokes coefficients (My, Mg, My ), and the
expected radiance can be computed as

F;j(X,B) = MiIro, (A, Tij,wij(Tij) Pij(Ti;))
+ Milzs,ii(Ai g, Tij,wij(Tij), Pij(Ti;))
+ MqQro,i,;j(Aij Tij,wi;(Tij), Pij(Ti;))
+ MuUro,i,j(Aij, Tij, wij(Tij), Pij(Tij))
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