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SIMULATION-BASED UNCERTAINTY QUANTIFICATION FOR1

ESTIMATING ATMOSPHERIC CO2 FROM SATELLITE DATA2

JONATHAN HOBBS∗, AMY BRAVERMAN∗, NOEL CRESSIE∗† , ROBERT GRANAT∗,3

AND MICHAEL GUNSON∗4

Abstract. Remote sensing of the atmosphere has provided a wealth of data for analyses and5
inferences in Earth science. Satellite observations can provide information on the atmospheric state6
at fine spatial and temporal resolution while providing substantial coverage across the globe. For7
example, this capability can greatly enhance the understanding of the space-time variation of the8
greenhouse gas, carbon dioxide (CO2), since ground-based measurements are limited. NASA’s Or-9
biting Carbon Observatory-2 (OCO-2) collects tens of thousands of observations of reflected sunlight10
daily, and the mission’s retrieval algorithm processes these indirect measurements into estimates of11
atmospheric CO2. The retrieval is an inverse problem and consists of a physical forward model for12
the transfer of radiation through the atmosphere that includes absorption and scattering by gases,13
aerosols, and the surface. The model and other algorithm inputs introduce key sources of uncertainty14
into the retrieval problem. This article develops a computationally efficient surrogate model that is15
embedded in a simulation experiment for studying the impact of uncertain inputs on the distribution16
of the retrieval error.17

Key words. Bayesian inference, inverse problem, surrogate model, radiative transfer, simulation18
experiment, optimal estimation, nonlinear model19

AMS subject classifications. 62F15, 62P1220

1. Introduction. In recent decades, atmospheric remote sensing has provided a21

wealth of data for understanding the Earth system. Remote sensing instruments, par-22

ticularly Earth-orbiting satellites, exploit characteristics of electromagnetic radiation23

to make inferences about the state of the atmosphere. The retrieval problem, namely24

estimating the atmospheric state from a satellite’s observed radiation, is a primary25

scientific inference objective for remote sensing data. Each instrument has one or26

more associated retrieval algorithms that estimate a quantity of interest (QOI) from27

the instrument’s observed radiances. Retrieval algorithms use a variety of approaches28

for estimating the atmospheric state. Some examples include construction of lookup29

tables, statistical modeling in combination with likelihood inference, and Bayesian30

inverse inference. Formal uncertainty quantification (UQ) can be a valuable tool in31

any of these situations by providing a framework for propagating the impact of al-32

gorithm choices, including the sources of uncertainty that accompany them, through33

the retrieval process.34

In satellite remote sensing, the quantity of interest (the atmospheric state) is35

inferred from observable radiance spectra (Figure 1), making inference an example36

of an inverse problem. Inverse problems present a number of challenges, including37

a tendency to be ill-posed and highly sensitive, particularly when the relationship38

between the state and the observation is nonlinear [6, 8]. Bayesian inference is an39

appealing option in this situation because additional information about the state or40

other model parameters can be introduced. In remote sensing, this approach has41

been developed into the so-called optimal estimation (OE) retrieval [21]. In the OE42
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retrieval, the distribution of the observed spectra given the state and the (marginal)43

distribution of the state are modeled probabilistically. From these distributions, a44

posterior distribution of the state given the observed spectra can be used to infer the45

unknown state. Because of the inherently nonlinear relationship between the state46

and the observed spectra, in practice this posterior distribution is rarely available in47

closed form.48

There are a number of strategies for interrogating the resulting posterior distri-49

bution, and practical considerations, such as the volume of data to be processed and50

the computational expense of the nonlinear forward model relating the radiances to51

the state, often take priority. Markov Chain Monte Carlo (MCMC) sampling from52

the posterior distribution has been implemented in remote sensing retrieval problems53

[24, 13], but this approach requires a large number of forward model evaluations. The54

recently launched Orbiting Carbon Observatory-2 (OCO-2) provides tens of thousands55

of retrievals per day, requiring the retrieval process to be computationally fast [10, 18].56

The data volume means that the information extracted from the posterior distribu-57

tion is minimal, being restricted to a point estimate and an approximate covariance58

matrix. As detailed in Section 2.2, a typical approach is to search for the posterior59

mode, the maximum a posteriori (MAP) estimate, with numerical approaches and to60

obtain the covariance matrix through linearization. Some theoretical aspects of this61

retrieval process have been demonstrated [8, 9], and linear error analysis has identified62

key sensitivities for this OE retrieval [22, 4].63

The present paper develops a simulation-based framework for the OE retrieval64

applied to atmospheric CO2 retrievals that addresses several objectives. First, the65

approach samples the retrieval error distribution under standard conditions without66

assuming linearity. Second, it characterizes the impact of key OE-algorithm choices67

on the distribution of the retrieval error. Finally, it is contrasted with the linear error68

analysis that is commonly used in remote sensing retrievals through a retrieval error69

budget that separates contributions from linear and nonlinear sources. In the process,70

the true bias and covariance of the retrieval errors can be determined. This approach71

and the underlying statistical model resemble simulation studies of nonlinear mixed72

effects (NLME) models [14, 15]. In the remote sensing application, the inference ob-73

jective focuses on the state, which would be considered the random effect in the NLME74

context. A simulation framework allows an extension of the linear approximation in75

traditional OE retrieval error analysis [22]. This simulation-based strategy requires76

an OE retrieval that is computationally fast in order to facilitate large Monte Carlo77

sample sizes in the simulation experiment. In fact, the OCO-2 operational algorithm78

is not fast enough, so we develop a surrogate forward model and retrieval.79

This article is organized as follows. Section 2 describes OCO-2 and its role in80

carbon cycle science, along with the mathematical details for the OE retrieval. Section81

3 outlines a UQ simulation framework and an associated surrogate model. Section82

4 describes a simulation experiment that examines dominant sources of uncertainty83

for OCO-2, with the results discussed in Section 5. Section 6 offers some concluding84

remarks and future research directions.85

2. Remote Sensing and OCO-2. Later sections summarize simulation exper-86

iments using a nonlinear radiative transfer model and OE retrieval. Figure 2 provides87

a schematic overview of this framework, which could be applied to retrievals from88

a general remote sensing instrument. A particular instance requires an appropriate89

forward model for simulating synthetic radiances from specified atmospheric states,90

plus a retrieval algorithm for estimating the state given the observed radiances. The91
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Fig. 1. Summary of key sources and sinks of radiation along a path through the atmosphere to
the satellite.

experiment developed in Section 4 specifically targets the OE retrieval and radiative92

transfer model for estimating atmospheric CO2 concentration. As motivation, we pro-93

vide background on this measurement and the mathematical framework for the OE94

retrieval.95
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Fig. 2. Schematic diagram of the Monte Carlo framework using the OCO-2 surrogate model.
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The Orbiting Carbon Observatory-2 (OCO-2) launched in July 2014 with an ob-96

jective of providing global estimates of atmospheric carbon dioxide at fine spatial97

resolution. OCO-2’s primary quantity of interest is the column-averaged dry air mole98

fraction of CO2, a quantity termed XCO2. The estimation of XCO2 is discussed further99

in Section 2.2. The OCO-2 instrument’s global coverage and data volume are provid-100

ing a more comprehensive picture of atmospheric carbon dioxide (CO2) concentration,101

especially regional spatial patterns, seasonal cycles and interannual variability. Re-102

mote sensing data are an important data source for CO2, since in situ measurements103

are sparse and concentrated in mid-latitude land regions. A comprehensive picture104

of the CO2 field can aid the understanding of the global carbon cycle. In particular,105

XCO2 estimates are combined with transport models to infer carbon fluxes between106

the surface and the lower atmosphere. Fluxes vary substantially across the globe,107

with source regions often located in close proximity to sink regions, such as in the108

tropics where substantial deforestation has occurred [1].109

Emissions from human activities such as fossil-fuel burning and land-use change110

are key components of the global carbon budget. The combined land and ocean sinks111

remove approximately half of anthropogenic carbon emissions, but there is pronounced112

year-to-year variability in this proportion [3]. The mechanisms behind this variability113

are largely unknown, and substantial uncertainty exists as to the relative impact114

of tropical forests and boreal forests of the Northern Hemisphere as land carbon115

sinks. Continuous monitoring across the globe from remote sensing instruments has116

the potential to more precisely identify sources and sinks and their evolution over117

time. At the same time, appropriate uncertainties must be attached to the remote118

sensing retrievals so that they can be propagated through the flux-inversion process.119

A comprehensive understanding of the OCO-2 OE retrieval and associated sources of120

uncertainty is a critical component of this end-to-end inference problem.121

2.1. Measurement. The OCO-2 instrument includes three imaging grating122

spectrometers measuring solar radiation reflected from the Earth’s surface in the123

infrared (IR) portion of the spectrum. Each spectrometer corresponds to an IR band124

with a resolution of approximately 1000 wavelengths (colors) over a narrow wavelength125

range of less than 50 nm. Molecular oxygen (O2) absorbs strongly in one of the bands,126

termed the O2-A band, and the other two bands are known as the weak CO2 band and127

the strong CO2 band. The collection of observed radiances from the three bands at a128

particular time make up a sounding. The satellite is in sun-synchronous polar orbit129

in a formation of satellites called the A-train at 700 km above the Earth’s surface.130

The orbit track crosses the Equator on the daytime side in the early afternoon local131

time, and about 15 orbits are completed each day [10].132

Let the random vector Y represent the set of radiances for a single OCO-2 sound-133

ing. Figure 3 gives an example of a radiance vector from the surrogate forward model134

outlined in Section 3. The observed radiances are a result of the interaction between135

the radiation and the composition of the atmosphere and of the Earth’s surface along136

the path from the top of the atmosphere to the surface and back to the satellite.137

The general goal is to estimate the atmospheric state, which we denote as X, from138

the observed radiances, along with characterizing the uncertainty of the estimate. In139

particular, certain atmospheric constituents will absorb and/or scatter radiation. The140

extent of absorption and scattering depends on the wavelength as well as the amount141

and type of the constituent, as shown in Figure 1.142

The mathematical relationship between the atmospheric state X and the radi-143

ances Y is captured through a forward model, F(X,B). The inputs of the forward144
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Fig. 3. Example of a radiance vector Y.

model include the state as well as a set of forward-model parameters B that are char-145

acteristics of the instrument and any other quantities not included in the state X. In146

general the parameters are not perfectly known, and their treatment in the retrieval147

problem is discussed in the next subsection.148

For many remote sensing applications, including OCO-2, the forward model dis-149

cretizes the atmospheric vertical profile into a set of layers. The composition of150

different layers can be different, but the atmosphere is assumed homogenous within a151

layer. This discretization allows for a numerical solution to the equation of radiative152

transfer (RT), and this numerical solution is the resulting value of F(X,B). For the153

OCO-2 surrogate model defined in Section 3, the elements of the state vector can be154

grouped into the following general categories:155

• CO2 Vertical Profile. The dry-air mole fraction, or the number of moles156

of CO2 per mole of dry air, varies vertically in the atmospheric column. For157

OCO-2, it is defined at 20 fixed pressure levels in the atmosphere, correspond-158

ing to the upper and lower boundaries of each of the discrete layers. Absorp-159

tion of CO2 occurs at numerous wavelengths, often called absorption lines, in160

both the strong and weak CO2 bands. Therefore, the amount of CO2 present161

is strongly related to the radiances at many wavelengths in these bands. This162

relationship reflects the total number of molecules of CO2 present, and hence163

additional information about the total amount of dry air is required.164

• Surface Pressure. The surface pressure is a single component of the state165

vector that helps identify the total number of molecules of air in the atmo-166

spheric column. Since molecular O2 has a nearly constant dry air mole frac-167

tion anywhere in the atmosphere, the absorption of O2 can accurately reflect168

the total amount of dry air. Surface pressure is identified with this informa-169

tion and a representation of the presence of water vapor in the atmosphere.170
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Many O2 absorption lines are present in the O2 A-band.171

• Surface Albedo. Earth’s surface acts as a boundary condition in the RT172

problem. Some radiation is extinguished and some is reflected at the surface.173

Surface albedo is the fraction of reflected radiation to total incoming radiation174

at the surface. This behavior varies as a function of wavelength. The state175

vector includes two albedo coefficients for each of the three bands. The first176

is the albedo at a reference wavelength at the center of the band (intercept),177

and the second is a slope that defines the linear change in albedo across the178

band.179

• Aerosols. Small particles in the atmosphere interact with incoming radi-180

ation in complex ways. Some radiation is extinguished, and the extent of181

this extinction is often summarized by aerosol optical depth (AOD), which is182

defined as the natural logarithm of the ratio of incoming to transmitted radi-183

ation. Since the ratio is larger than unity, AOD is strictly positive, and larger184

values correspond to more opaque conditions due to radiation extinction by185

aerosols. In addition, some radiation is scattered in different directions, rep-186

resented as different angles with respect to the direct path from the sun. The187

forward model accounts for the angular dependence of scattering through a188

phase function. The OCO-2 state vector includes three coefficients to de-189

scribe the aerosol vertical profile for up to four different aerosol types. For a190

given aerosol type, one coefficient is the natural logarithm of the total AOD191

in the O2 A-band. The second coefficient represents the vertical height where192

the aerosol concentration is a maximum. The third coefficient represents the193

depth of the aerosol profile; a small value indicates a “thin” aerosol layer. The194

state vector can include these coefficients for an arbitrary number of different195

aerosol types, which are characterized by different scattering properties in the196

forward-model parameters B.197

These components represent the key state variables in our investigation. Their198

actual implementation in the radiative transfer model is outlined in Appendix B.199

The OCO-2 mission’s primary QOI is the CO2 mole fraction, but it is important to200

include other components in the state vector because they play important roles in201

the forward model. Since they are not perfectly known, they are estimated as part202

of the retrieval. These additional quantities are often termed nuisance parameters in203

statistics and have been termed interferences in the remote sensing retrieval literature204

[22]. The CO2 retrieval problem is particularly challenging due to the nonlinear nature205

of the forward model and the heterogeneous makeup of the state vector. Further, the206

sensitivity of the measured radiance to these interferences is often larger than to207

changes in CO2.208

2.2. Optimal Estimation. The relationship between the n-dimensional vector209

of satellite radiances Y and the r-dimensional state vector X, where typically n� r,210

can be represented through a simple statistical model,211

(1) Y = F(X,B) + ε.212

The random errors ε can represent measurement error along with model discrepancy.213

Here we assume214

ε ∼ Gaussian (0,Σε) .215

The state vector can also be treated as a random vector with a marginal distribution,216

X ∼ Gaussian (µX,ΣX) .217

6
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Inference for the state can be carried out through its conditional (or posterior)218

distribution given the radiances and relevant parameters φ = (µX,ΣX,Σε,B),219

[X|Y,φ] =
[X,Y|φ]∫

[X,Y|φ]dX
,220

=
[X|φ][Y|X,φ]∫

[X|φ][Y|X,φ]dX
,221

222

where the notation [A|B] denotes the conditional probability distribution of A given223

B. The conditional mean E(X|Y,φ) can serve as an estimate of the state, and the224

conditional variance V ar(X|Y,φ) can characterize the uncertainty of the estimate.225

This inference framework is known as optimal estimation (OE) in the remote sens-226

ing literature [21]. Optimal estimation retrievals for atmospheric constituents such227

as carbon monoxide, carbon dioxide, and ozone have been implemented for a num-228

ber of recent Earth-observing satellites [18, 26]. Despite the multivariate Gaussian229

assumption for the random errors and the atmospheric state, the posterior distribu-230

tion is not Gaussian if the forward model is nonlinear. Generally, an analytical form231

for the posterior distribution is unavailable. However, sampling from the posterior232

distribution is possible with Markov chain Monte Carlo (MCMC) [23, 13], but can233

be prohibitively expensive for the number of soundings processed for a mission like234

OCO-2. Evaluation of the forward model F(X,B) is time-consuming, so the full pos-235

terior distribution must be summarized in an efficient manner that limits the number236

of evaluations of the forward model.237

A strategy commonly advocated in remote sensing and used in the OCO-2 full238

physics (FP) retrieval algorithm is to search for the posterior mode. This is equivalent239

to minimizing a “cost function” of the form,240

−2 ln[X|Y,φ] = (Y − F (X,B))
T

Σ−1ε (Y − F (X,B))241

+ (X− µX)
T

Σ−1X (X− µX) + constant.(2)242243

A variety of optimization algorithms can be used for solving this nonlinear least244

squares problem. The Levenberg-Marquardt (LM) algorithm, which is a tunable245

generalization of gradient descent and the Gauss-Newton algorithm, is often used in246

remote sensing applications [21]. The actual implementation of the algorithm includes247

non-trivial choices such as the starting value, convergence criterion, and initial value248

for the LM regularization parameter. The algorithm determines step size and direction249

in part based on the gradient of the cost function (2), which requires the forward-250

model Jacobian,251

K(X) =
∂F(X,B)

∂X
≡
(
∂Fi(X,B)

∂Xk

)
.252

Notice that the Jacobian is generally a function of the atmospheric state.253

In an operational setting such as the OCO-2 FP retrieval, other algorithm choices254

must be made as well. In particular, values for key parameters are set at fixed255

values. Since their true values are not generally known, we distinguish these retrieval256

parameters from their true counterparts.257

• The retrieval forward model parameters are set at B̂, and the true forward258

model parameters are B.259

• The retrieval prior mean vector is set at µa, and the true marginal mean for260

the state is µX.261
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• The retrieval prior covariance matrix is set at Σa, and the true marginal262

covariance for the state is ΣX.263

• The retrieval error covariance matrix is set at Σe, and the true error covari-264

ance is Σε.265

The value of the state vector at the last step of a nominally converged LM algo-266

rithm is declared the retrieved state and denoted X̂. It is a function of the data267

Y. An expression for the posterior covariance [21] can be computed through a linear268

approximation,269

S(X) ≡
[
K(X)TΣ−1e K(X) + Σ−1a

]−1
.270

This approximation involves the Jacobian, which must be evaluated at a chosen value271

of the state vector. This choice of X, or linearization point, can impact the overall272

uncertainty if, for example, the retrieval X̂ is used as the linearization point. The273

OCO-2 operational retrieval uses this convention, so this choice is used throughout274

the rest of this paper. Henceforth, we define275

Ŝ ≡ S(X̂) =
[
K(X̂)TΣ−1e K(X̂) + Σ−1a

]−1
.276

The primary QOI for OCO-2 is XCO2, the column-averaged dry-air mole fraction277

of CO2. Fundamentally, this is the ratio of the number of CO2 molecules in a column278

to the total number of molecules of dry air in the column. We decompose the state279

vector,280

X =

[
Xα

Xβ

]
,281

where Xα is the vertical profile of CO2 and Xβ is the rest of the state vector. The282

prior mean vector of the state,283

µa =

[
µa,α
µa,β

]
,284

can be similarly decomposed, and the covariance matrix can be written as285

Ŝ =

[
Ŝαα Ŝαβ
Ŝβα Ŝββ

]
,286

where Ŝαα is the block of the covariance matrix corresponding to the vertical profile287

of CO2.288

Given the configuration of the state vector, XCO2 can be constructed as a weighted289

average of the vertical profile of CO2 [18]. The vector of weights h(Xβ) has the same290

dimension as Xα, and the weights are generally a function of the other state vector291

elements. However, the weights are fixed for the surrogate model defined in Section292

3, and we drop the dependence of h on the state vector,293

XCO2 = hTXα.294

In a similar fashion, the retrieved XCO2 and a variance estimate can be computed295

from the retrieval,296

X̂CO2 ≡ hT X̂α,297

V̂ arXCO2 ≡ hT Ŝααh.298299
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2.3. Error Analysis. Linear error analysis is a standard framework for diag-300

nosing error characteristics in OE retrievals [21]. Through an analytic formulation,301

the technique quantifies the linear propagation of uncertainty for particular sources,302

including the inherent variability of the state, the noisy measurements, and system-303

atic errors in parameters and the forward model, into the variability in the retrieval304

errors. In this article, we compare and contrast this approach with simulation-based305

UQ, which can additionally characterize nonlinearity and uncertainty propagation306

from any other retrieval algorithm choices, specifically uncertainty in the prior mean,307

that are not handled in the OE framework. The linear error analysis technique in OE308

uses a linearization of the retrieval error, ∆ = X̂−X, to decompose the contribution309

from the sources noted previously. The linearization process relies on the Jacobian310

and two additional operators.311

1. The gain matrix G has dimension r×n and characterizes the linear response312

of the retrieval to the measurements,313

G(X̂) =

[(
K(X̂)

)T
Σ−1e K(X̂) + Σ−1a

]−1 (
K(X̂)

)T
Σ−1e .314

2. The averaging kernel A has dimension r × r and characterizes the linear315

response of the retrieval to the state vector,316

A(X̂) = G(X̂)K(X̂).317

In this framework, the retrieval error can be decomposed into several contributions318

[21],319

∆ = X̂−X320

=
(
A(X̂)− I

)
(X− µa) smoothing321

+ G(X̂)ε noise322

+ γ nonlinearity.323324

The nonlinearity term γ is zero for a linear forward model, as outlined in Ap-325

pendix A. Additional contributions arise if the forward model used in the retrieval326

is different from the true forward function. Parameter error is also introduced if the327

retrieval model parameters B̂ are different from the true model parameters B. For an328

operational retrieval such as OCO-2, these are important contributions to the retrieval329

error; these other contributions will not be addressed in the current work.330

The analogous error budget has been developed for XCO2 [5]:331

∆XCO2 = X̂CO2 −XCO2(3)332

= hT
(
Aαα(X̂)− Iαα

) (
Xα − µa,α

)
smoothing333

+ hTAαβ(X̂)
(
Xβ − µa,β

)
interference334

+ hTGα(X̂)ε noise335

+ γXCO2 nonlinearity.336337

Here, the averaging kernel matrix is partitioned in a similar fashion as the covariance338

matrix, with Aαα(X̂) and Aαβ(X̂) representing the CO2-profile rows of the averaging339

kernel. Further, Gα(X̂) represents the first 20 rows, corresponding to the CO2 profile,340

of the gain matrix.341
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In this budget, smoothing error for the full state vector is further divided for342

XCO2 into smoothing error for the CO2 profile and interference error due to the343

correlation between retrieval errors in the CO2 profile and retrieval errors in other344

state-vector elements [5, 22]. The final term, γXCO2, is a catch-all that arises from345

the nonlinearity of the forward model, the role of this nonlinearity in the behavior346

of the retrieval algorithm, and the choice of linearization point. In an operational347

setting, the true state X and random error ε are not known, so the OE error-analysis348

focuses on characterizing the plausible marginal variability of each contributor to the349

budget based on the assumed probability distribution of the true state and random350

error [5]. Correlations between contributions are ignored. Through our simulation351

experiment (Section 4), components of the error budget can be computed directly352

from the known true state and model discrepancy. Error budget components can be353

evaluated jointly.354

3. Surrogate Model. The previous section highlighted some of the critical355

choices in the practical implementation of the OCO-2 remote sensing retrieval. Pa-356

rameters that are in reality uncertain are fixed, and the LM algorithm is configured in357

a specified fashion. These choices can impact the distribution of the retrieval X̂ and358

the adequacy of Ŝ as a measure of the variability of the distribution of the retrieval359

error,360

∆ = X̂−X.361

Particular attention is focused on the retrieval error for XCO2, namely362

∆XCO2 = X̂CO2 −XCO2.363

We wish to study this distribution by simulation experiments through extensive Monte364

Carlo draws under different combinations of geophysical conditions and algorithm365

choices. However, the computational cost of the OCO-2 FP forward model limits the366

scope of any experiments involving this model.367

Consequently, we have developed a computationally efficient surrogate model and368

retrieval based on the physical principles in the OCO-2 FP forward model and mea-369

surement approach. There are multiple strategies for surrogate-model development370

in the literature. Statistical models, which are usually Gaussian process models, are371

often developed as emulators of complex computer models [6, 19]. Another approach372

involves developing a surrogate of reduced order or complexity based on the original373

parent model, which is the approach is implemented in this article. The surrogate374

model makes some simplifications for interpretability and computational efficiency375

while attempting to maintain the key components of the state vector and radiative376

transfer that contribute substantially to uncertainty in XCO2. Scattering of radiation377

in the atmosphere by aerosols has been shown to contribute to errors in retrieved378

XCO2 for other remote sensing instruments [18], so aerosols are a primary focus for379

investigation with the surrogate model. After some initial investigation with even380

simpler surrogate models that did not include aerosol scattering, we found that the381

surrogate model presented here exhibits a satisfactory level of nonlinear behavior for382

the experiments desired. As implemented, the surrogate model achieves computa-383

tional efficiency over the full physics model through a reduced state vector, fixed384

absorption coefficients, a simplified instrument model, and reduced-accuracy numer-385

ics for radiative transfer. Further details on the surrogate model can be found in386

Appendix B.387

The surrogate-model state vector includes the same configuration as the FP state388

vector for the CO2 profile, surface pressure, surface albedo, and aerosols, as defined in389
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Section 2.1. Other elements of the FP state vector are not included in the surrogate390

state vector. Table 1 highlights the makeup of the two models’ state vectors. In their391

most extensive formulation, the surrogate state vector includes 39 elements and the FP392

state vector includes 49 elements. A more detailed description of the representation393

of the state vector and the radiative transfer included in the surrogate model can be394

found in Appendix B.395

Table 1
Composition of the state vector X in the OCO-2 full physics (FP) forward model and in the

surrogate forward model.

Component Full Physics Surrogate

20-Level CO2 profile X X

Surface air pressure X X

Surface albedo X X

Aerosol profile X X

Temperature scaling X

Humidity scaling X

Wavelength offset, scaling X

Fluorescence X

Evaluation of the surrogate forward model provides a substantial computational396

speed-up; a five-iteration retrieval takes approximately 200 seconds with the FP model397

and approximately 10 seconds for the surrogate model. This speed improvement allows398

extensive Monte Carlo experiments with the surrogate model. Figure 2 provides an399

overview of the general experimental setup. An experiment requires specification of400

the true marginal distribution for the state X, through (µX,ΣX), the random error401

characteristics through Σε, and the forward model parameters B. Similar choices are402

made for the surrogate retrieval inputs such as µa,Σa,Σe, B̂. We distinguish two key403

approaches for choosing these inputs. One option is to fix these inputs at specified404

values, which we call sensitivity mode. Another option, as illustrated in Figure 2, is405

to generate random inputs to reflect uncertainty in retrieval inputs. This option is406

termed stochastic mode.407

The experiment proceeds by simulating a large random sample of state vectors408

X, each of which are used to evaluate the forward model. Random errors are added409

to yield synthetic radiance vectors Y. A surrogate retrieval is then performed to yield410

retrievals X̂ and covariances Ŝ.411

4. UQ Simulation Experiment. In this section we develop a surrogate-model412

experiment to investigate the impact of systematic misspecification of and uncertainty413

in the retrieval prior mean µa on the retrieval error distribution. These experiments414

focus on the impact of the prior mean choices for surface albedo and aerosols. Rep-415

resenting the surface and aerosols is an ongoing challenge in remote sensing retrievals416

like OCO-2, since they appear to contribute a substantial portion of the variability in417

retrieval errors [18].418
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4.1. Marginal Distribution. The geophysical states are constructed from avail-419

able data sources, which include remote sensing and reanalysis datasets. These sources420

provide geophysically plausible mean states and intraseasonal variability, which is ad-421

equate for studying the error distribution under a range of geophysical conditions and422

algorithm choices. The experiment considers a marginal distribution based on typical423

conditions near Izaña, Tenerife, Spain in July. Influenced by atmospheric transport424

from northern Africa, this location is characterized by moderate CO2 variability and425

high mean aerosol optical depth, particularly from dust.426

A few key data sources provide the basis for the marginal distribution. In each427

case, daily “data” from June-August 2013 near the location of interest are extracted.428

Daily values for the necessary components of the state vector are treated as replicates,429

and their empirical means and covariances are assembled to produce a marginal mean430

vector µX and a marginal covariance matrix ΣX. Daily data on vertical profiles for431

CO2 come from a simulation of NASA’s Goddard Earth Observing System Model,432

version 5 (GEOS-5) [20]. Daily data on surface pressure and aerosols come from the433

Modern Era Retrospective Analysis for Research and Applications Aerosol Reanalysis434

(MERRAero) [2]. Finally, daily data on surface albedo data come from the Moderate435

Resolution Imaging Spectrometer (MODIS) albedo product [25].436

4.2. Simulation of the Radiances. The (marginal) distribution of X, with437

mean µX and covariance matrix ΣX, is used to simulate synthetic state vectors. For438

each simulated state X, the surrogate model F(X,B) is evaluated at each wavelength439

in each band, and random errors ε are added to yield synthetic radiance vectors Y.440

The error covariance matrix Σε is a diagonal matrix. The individual variances are441

defined to be proportional to the expected signal. Specifically, let Y ≡ {Yi,j : i =442

1, . . . , nj ; j = 1, 2, 3}, where j indexes the spectral band (O2, weak CO2, strong CO2 )443

and i indexes wavelength within a band. Hence, n1 +n2 +n3 = n. Then the variance444

for each radiance Yi,j is related to its expectation, as follows:445

Yi,j = Fi,j(X,B) + εi,j ,446

V ar(Yi,j) = cjFi,j(X,B).447448

The band-specific constant cj is specified to yield signal-to-noise ratios (SNRs) that449

are comparable to those characteristic of the OCO-2 instrument. This model for the450

error variance follows the general behavior of the instrument with a slightly simplified451

structure. The OCO-2 operational algorithm develops wavelength-specific variances452

based on known instrument characteristics [12]. These distributional assumptions for453

generating synthetic states X and radiances Y are applied for all treatments in the454

experiment.455

4.3. Treatments in the Simulation Experiment. The experiment explores456

the impact of uncertainty in the retrieval prior mean µa, as depicted on the right side457

of Figure 2; the prior covariance Σa is fixed at ΣX. In particular, each retrieval uses458

a prior mean that is generated from a hyper-distribution,459

µa ∼ Gaussian(θa,Ωa).460

The experiment includes two factors with levels that reflect different choices for the461

hyper-parameters θa and Ωa. The two factors described below included five and three462

levels, respectively, and the experiment was run in a full two-way factorial design,463

yielding 15 treatments.464
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The first factor is the systematic error present in the prior mean µa, reflected465

by the choice of the hyper-parameter θa. In general, this parameter is defined as an466

offset from the true marginal mean,467

θa = µX + δ.468

The five levels of this factor reflect varying amounts of misspecification,469

• MA: δ = −2
√

diag(ΣX)470

• MB: δ = −
√

diag(ΣX)471

• MC: δ = 0,472

• MD: δ =
√

diag(ΣX),473

• ME: δ = 2
√

diag(ΣX).474

Here,
√

diag(ΣX) represents a vector with a single non-zero element given by the475

marginal standard deviation for the natural logarithm of the aerosol optical depth476

(log AOD) for the dominant aerosol type, which is dust for the location of interest.477

The element is in its appropriate place in the state vector, and all other elements478

are set to 0 for all treatments. We know from the physics behind the retrieval and479

preliminary surrogate-model experiments that uncertainty in the AOD component of480

the prior mean is among the most problematic.481

The second factor is the degree of uncertainty present in the specification of the482

prior mean, reflected by the choice of the hyper-parameter Ωa. The three levels483

of this factor reflect no uncertainty, small uncertainty, and moderate uncertainty,484

respectively,485

• V0: Ωa = 0,486

• V1: 1
10ΣX,487

• V2: Ωa = diag(ΣX).488

The treatments are summarized in Table 2.489

Table 2
Treatments for the uncertain prior mean (µa) experiment. Each treatment is named as a

combination of the magnitude of systematic error (MA, MB, MC, MD, ME) in the prior mean and
the level of uncertainty (V0, V1, V2) in the prior mean.

Covariance Ωa

0 1
10ΣX diag(ΣX)

−2
√

diag(ΣX) MAV0 MAV1 MAV2

Mean −
√

diag(ΣX) MBV0 MBV1 MBV2
Offset 0 MCV0 MCV1 MCV2

δ
√

diag(ΣX) MDV0 MDV1 MDV2

2
√

diag(ΣX) MEV0 MEV1 MEV2

For the treatments that include some degree of uncertainty in the retrieval’s prior490

mean µa, it is possible to estimate components of the variance in XCO2 through the491

use of the conditional-variance formula,492

V ar(∆XCO2) = E(V ar(∆XCO2|µa)) + V ar(E(∆XCO2|µa)).493

The first contribution, E(V ar(∆XCO2|µa)), is the variability in the retrieval errors494

given the prior mean, averaged across the distribution of prior means. This vari-495

ability results from the inherent variability in the state X as well as the random496

errors in the radiances Y, and the posterior covariance Ŝ accounts for these, at least497
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to the extent that the linear approximation is adequate. The second contribution,498

V ar(E(∆XCO2|µa)), is variability in the retrieval bias for a given prior mean across499

the distribution of prior means. The posterior covariance Ŝ conditions on the prior500

mean µa and does not capture this second contribution to the variability. These501

components can both be computed in the Monte Carlo framework if a hierarchical502

sampling strategy is used. Specifically,503

• Generate p = 1, . . . , 50 random prior mean vectors504

µa,p ∼ N(θa,Ωa).505

• For each prior mean vector µa,p, generate q = 1, . . . , 400 simulated states and506

radiances Xp,q,Yp,q and perform retrievals.507

The sample size of 400 for each prior mean represents a compromise that achieves508

a satisfactory Monte Carlo precision while allowing a reasonable outer loop sample509

size (50). The treatments representing no uncertainty in the prior mean (V0) do not510

require hierarchical sampling. For these treatments, a total of 5000 independent state511

and radiance vectors were simulated.512

5. Results. This section summarizes the results of the experiment in several513

ways. Since XCO2 is the primary QOI, it receives additional focus, both in terms of the514

components of variance relative to variability in the retrieval prior mean and in terms515

of the components of the error budget. In addition, the bias and covariance of the516

retrieval errors for the full state vector X are summarized using a small set of summary517

figures of merit. These diagnostics reveal key properties of the CO2 retrieval and518

represent a suite of tools that could additionally be used in summarizing simulation519

experiments for other remote sensing retrievals and similar nonlinear Bayesian inverse520

problems.521

5.1. XCO2 Components of Variance. Figure 4 summarizes the error distribu-522

tions for XCO2 for each of the treatments in the experiment. The error distribution523

for each prior mean µa, which is fixed for the V0 treatments (left column) and ran-524

domly generated (center and right columns), is summarized with its mean and two525

extreme quantiles. The impact of the increasing level of uncertainty in the retrieval526

prior mean is evident both in the V1 treatments, where a modest amount of addi-527

tional variability is present in the overall error distribution, and in the V2 treatments,528

where there is especially noticeable variability in the conditional means (points) of529

the XCO2 errors for the randomly selected prior means. In addition, there is a weak530

relationship between this conditional bias and the prior mean log AOD, which is par-531

ticularly evident in the MAV2 and MEV2 treatments. As the log AOD prior mean532

increases, the mean XCO2 retrieval error decreases. This relationship clearly does not533

explain all of variability in the conditional bias, so other elements of the prior mean534

vector play a role as well.535

Table 3 summarizes the bias and variance in the XCO2 retrieval error for each536

treatment in the experiment. For the V1 and V2 treatments, the variance is sepa-537

rated into the contributions from the average error variance within each prior mean538

E(V ar(∆XCO2)|µa)) and from the variance of average errors across prior means539

V ar(E(∆XCO2|µa)). In addition, the average of the estimated posterior variances540

E(V̂ arXCO2), is reported for comparison.541

From a practical standpoint, the retrieval bias is small (less than 0.1 ppm) for542

all except the extreme MA and ME treatments. There is a trend from negative to543

positive bias moving from MA to ME. This suggests that the prior-mean specification544
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may reflect the importance of nonlinearity in the presence of parameter error, a topic545

that is studied further in Section 5.2. The volatility is also reflected in the variance of546

the retrieval errors. Both components of the error variance are largest for the MAV2547

and MEV2 treatments. The between-prior variance is largest for the V2 treatments548

and is relatively modest in the V1 treatments.549

The average of the estimated posterior variances, E(V̂ arXCO2), compares well to550

the empirical error variance computed from the Monte Carlo simulations for the V0551

treatments, although the empirical error variance is at least slightly larger for every552

treatment. The posterior variance attempts to capture the inherent variability in the553

atmospheric state and the noise present in the radiances, and the inflation in the V0554

treatments may be due in part to nonlinearity. In addition, the posterior-variance555

calculation assumes a fixed (known) prior mean µa, so the V1 and V2 treatments556

will exhibit additional variability in the retrieval errors that would not be captured557

in the calculation of V̂ arXCO2. This mismatch is noticeable, around 20%, in the558

small-uncertainty (V1) treatments and becomes more substantial, as large as 50%,559

for the moderate-uncertainty (V2) treatments. This result underscores the impact of560

uncertainty propagation for a particular algorithm input, µa, through uncertainty in561

the primary QOI.562

Since each retrieval, X̂CO2, has a corresponding reported variance, V̂ arXCO2, the563

distribution of retrieval errors can also be diagnosed by normalizing the retrieval error564

by the square root of this reported variance. The distribution of this unitless quantity,565

Zp,q =
∆XCO2,p,q√
V̂ arXCO2,p,q

; p = 1, . . . , 50; q = 1, . . . , 400,566

is summarized in Figure 5 for each treatment in the experiment. The standardized567

errors {Zp,q} are sorted and plotted against standard Gaussian quantiles, yielding a568

quantile-quantile plot. The slope of the resulting regression line yields a scaling of569

the standard deviation of the true retrieval errors relative to

√
V̂ arXCO2,p,q, which570

based on the linear approximation. This slope is closest to unity for the V0 and V1571

treatments but deviates more substantially in the V2 treatments. In particular, the572

V2 treatments show a tendency toward skewed and heavy-tailed error distributions.573

5.2. XCO2 Error Budget. Section 2.3 outlined an error budget (3) that is often574

used in diagnosing remote sensing retrievals. Three of the four error terms, namely575

smoothing, interference, and noise, can be computed directly for each Monte Carlo576

draw and corresponding retrieval. Since the total XCO2 error is available as well, the577

error due to nonlinearity can be computed as a difference between the total and the578

sum of the other three components. The joint distribution of the error terms can579

be summarized from these calculated errors across the Monte Carlo simulation. In580

addition, an estimate of the variance for each of the first three components can be581

obtained based on a linear approximation and assumed covariance matrices Σe and582

Σa. The calculation based on a linear approximation is often called linear “error583

analysis” in the remote sensing literature [22, 5], and in our experiment we have an584

opportunity to assess the validity of linear error analysis.585

Figure 6 compares the standard deviation of each error component for each treat-586

ment, using both the actual errors based on the simulation and the standard deviations587

computed based on the linear approximation. The variability in the smoothing error588

and noise error are nearly constant across all treatments, and the simulation-based589

variability matches that expected from the linear approximation for both smoothing590
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Table 3
Summary of XCO2 bias and variance for the uncertain prior mean experiment. Bias is reported

in units of ppm and variance is reported in units of ppm2. The total variance of the retrieval
errors is V ar(∆XCO2) = E(V ar(∆XCO2)|µa) + V ar(E(∆XCO2)|µa), which is the sum of the two
components above it in the table. This total can be contrasted with the retrieval’s mean estimated

variance E(V̂ arXCO2).

MAV0 MAV1 MAV2
E(∆XCO2) 0.210 0.264 0.312

E(V ar(∆XCO2)|µa) 0.436 0.588 0.663
V ar(E(∆XCO2)|µa) 0.006 0.034

V ar(∆XCO2) 0.436 0.594 0.697

E(V̂ arXCO2) 0.344 0.482 0.483
MBV0 MBV1 MBV2

E(∆XCO2) 0.073 0.097 0.144
E(V ar(∆XCO2)|µa) 0.382 0.553 0.588
V ar(E(∆XCO2)|µa) 0.006 0.022

V ar(∆XCO2) 0.382 0.559 0.610

E(V̂ arXCO2) 0.331 0.466 0.471
MCV0 MCV1 MCV2

E(∆XCO2) 0.015 -0.023 0.067
E(V ar(∆XCO2)|µa) 0.388 0.545 0.661
V ar(E(∆XCO2)|µa) 0.003 0.027

V ar(∆XCO2) 0.388 0.548 0.688

E(V̂ arXCO2) 0.324 0.456 0.461
MDV0 MDV1 MDV2

E(∆XCO2) -0.069 -0.110 -0.021
E(V ar(∆XCO2)|µa) 0.386 0.543 0.582
V ar(E(∆XCO2)|µa) 0.003 0.023

V ar(∆XCO2) 0.386 0.546 0.605

E(V̂ arXCO2) 0.318 0.444 0.456
MEV0 MEV1 MEV2

E(∆XCO2) -0.120 -0.166 -0.127
E(V ar(∆XCO2)|µa) 0.371 0.533 0.658
V ar(E(∆XCO2)|µa) 0.003 0.027

V ar(∆XCO2) 0.371 0.536 0.685

E(V̂ arXCO2) 0.313 0.438 0.437

and noise. These two error components reflect variability due to Σε and the CO2591

portion of ΣX, parameters that are not changed across the treatments.592

In contrast, the variability of the interference error and the nonlinear error change593

across treatments. The error budget suggests that different retrieval prior means µa594

will likely lead to different distributions of interference error. The average interference595

error is related to the difference between the marginal mean µX and the retrieval596

prior mean µa for the pressure, aerosol and albedo components of the state vector.597

These are the constituents of Xβ in the interference term of the error budget (3).598

Thus the variability in the retrieval prior mean translates to variability in the average599

interference error. This variability is not present in the calculation based on the linear600

approximation, where a fixed retrieval prior mean is assumed. The nonlinear error is601
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a component that is difficult to diagnose in operational linear error analysis, but it602

is available in this Monte Carlo setting. The nonlinear error term can dominate for603

the treatments with greater uncertainty. As shown in Figure 6, the variability due to604

nonlinearity is the largest of the error budget terms in the V2 treatments.605

Figure 6 also shows the standard deviation of the total error in XCO2 for both606

the simulation and the linear approximation. The simulation-based standard devia-607

tions are computed from the true retrieval errors in the experiment. For the linear608

approximation, the standard deviation is

√
E(V̂ arXCO2). The impact of both the609

nonlinearity and interference error contributions is evident in the simulation-based610

variability of the total error, especially for the V2 treatments. The bottom panel of611

Figure 6 shows that the traditional error analysis always yields total variances that612

are too small, sometimes substantially so.613

The total error variance can also be impacted by correlations among the error614

budget components. Table 4 summarizes these empirical correlations among the terms615

in the error budget in the MCV0 (control) and MEV2 treatments. This analysis of the616

correlations among the components of the error budget is possible in the simulation-617

based setting, but correlations are not given in traditional linear error analysis. This618

represents a potential weakness since the variance of the total error is the sum of the619

variances of individual terms plus twice the sum of covariances between all possible620

error pairs. Traditional error analysis assumes that the latter component is zero.621

From Table 4, smoothing, interference and noise errors are essentially uncorrelated622

with each other. In general, smoothing and interference errors could be correlated with623

each other if the marginal distribution includes cross-correlations between the CO2624

profile and other components, such as aerosols. The marginal distribution used in this625

surrogate model experiment does not include correlations between the CO2 and non-626

CO2 components of the state vector. The nonlinear term has modest correlations with627

the other terms in the control experiment, and the correlation remains, particularly628

with noise error, in the MEV2 treatment.629

Table 4
Correlations of error-budget components for the MCV0 (control) and MEV2 treatments in the

simulation experiment.

MCV0
Smoothing Interference Noise Nonlinear

Smoothing 1.000 -0.039 -0.013 0.075
Interference -0.039 1.000 0.001 0.081
Noise -0.013 0.001 1.000 -0.191
Nonlinear 0.075 0.081 -0.191 1.000

MEV2
Smoothing Interference Noise Nonlinear

Smoothing 1.000 -0.011 0.017 0.027
Interference -0.011 1.000 -0.033 0.043
Noise 0.017 -0.033 1.000 -0.089
Nonlinear 0.027 0.043 -0.089 1.000

5.3. State Vector Figures of Merit (FOMs). An assessment of the error630

distribution of the full state vector provides additional insight into the behavior of631

the retrieval algorithm. In particular, a component-by-component look at the retrieval632
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bias and variance can reveal specific state-vector elements that may be more or less633

problematic in the retrieval. This can be complemented with an investigation of634

the correlations of retrieval errors across components. Strong correlations, either635

positive or negative, can suggest combinations of state vector elements that may not636

be completely identifiable in the retrieval. The Monte Carlo experiment provides the637

distribution of retrieval errors, ∆ = X̂−X, and this distribution can be summarized638

with some key FOMs useful in simultaneous inference [7]. Following the notation of639

Cressie and Burden [7], we define the retrieval bias and covariance as640

Bias ≡ E(X̂−X) = E(∆)641

Cov ≡ Cov(X̂−X) = Cov(∆).642643

One useful FOM is a unitless normalized bias, or inverse coefficient of variation,644

Icv = (diag(Cov))
−1/2

Bias.645

Figure 7 illustrates this figure of merit for the experiment. The behavior of Icv shows646

some interesting contrasts between Xα, the CO2 profile, and Xβ , the other elements647

of the state vector. In general, larger biases are present for the components Xβ .648

Some of these errors can compensate for each other to an extent; for example, an649

error in retrieved aerosol can offset an error in retrieved albedo without a substantial650

impact on CO2. Large bias is particularly evident for surface pressure, the band-651

specific albedo, and the log AOD components for the V1 and V2 treatments. While652

the V2 treatments have large absolute bias, the variability is most extreme for these653

treatments as well. The largest errors in Xα tend to occur in the middle to lower654

atmosphere, where the CO2 variability is largest.655

Additionally, the correlation matrix of the retrieval errors can provide insight into656

the relationships among the state vector elements. Figure 8 depicts this matrix for657

the MCV0 (control) experiment. The upper left 20 × 20 block represents the corre-658

lations among the retrieval errors for the vertical profile of CO2. Error correlations659

for nearby vertical positions are generally positively correlated. The components of660

the CO2 profile exhibit modest correlations with other elements of the state vector.661

The strongest negative correlations exist between the albedo and aerosol components662

of the state vector. This is an illustration of one of the fundamental challenges for663

the OCO-2 measurements; surface albedo and aerosol scattering near the surface can664

give rise to similar spectral signatures. The negative correlation is consistent with the665

retrieval attempting a trade-off between these contributions.666

6. Discussion and Conclusion. This study has developed and illustrated a667

practical framework for quantifying uncertainty in remote sensing retrievals. The668

combination of a computationally efficient surrogate model and a Monte Carlo frame-669

work allows simulation from the retrieval-error distribution under a variety of condi-670

tions. These empirical results can be readily compared with OE error analysis based671

on a linearity assumption. The simulation-based assessment in this study provides a672

number of insights beyond those obtained from the OE linear error analysis. First, the673

variability in the error due to nonlinearity can be diagnosed, and it is seen to change674

across the treatments in the experiment. Second, the simulation reveals that uncer-675

tainty in the prior mean µa results in a larger interference-error variance than that676

computed in the linear approximation. Finally, modest correlations among the error677

budget components are found using the simulation results, which lead to covariances678

that must be incorporated to achieve an accurate measure of total error.679
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In addition, the simulation approach provides an overall quantification of the ade-680

quacy of the retrieval’s uncertainty estimate, and it can also characterize the variabil-681

ity in retrieval errors due to nonlinearity. We find that the combination of systematic682

misspecification of, and uncertainty in, the prior mean for aerosols and albedo impact683

the retrieval bias and variance for XCO2. There is an important interaction between684

these two factors that leads to large bias and variability when the prior mean of log685

AOD is high.686

The impact of uncertain retrieval-algorithm inputs in general has implications for687

the community of OCO-2 data-product users. The operational retrieval algorithm688

reports the approximate posterior variance for XCO2, called V̂ arXCO2 in this article,689

which accounts for the variability in the atmospheric state and the radiance residual690

variability but not uncertainty in the retrieval-algorithm inputs. This can result in a691

reported uncertainty that underestimates the actual retrieval error variance. Inference692

for carbon fluxes utilizes remote sensing data along with the reported uncertainties,693

so a more appropriate characterization of the error variance could lead to improved694

flux inversion. A geographically and seasonally comprehensive set of UQ experiments695

could provide guidance to adjusting the reported uncertainty in the operational data696

products. The results of this study suggest that adjustments would be especially697

warranted for high AOD conditions.698

This study has investigated the impact of uncertainty in the retrieval prior mean699

µa as an algorithm input. We note that the model for uncertainty on µa can be700

written as:701

µa − µX ∼ Gaussian(δ,Ωa),702

for a given µX. Now, if µa is fixed, sampling from this distribution would generate703

uncertainty on the marginal mean, µX. Thus, the same MC draws of µa −µX could704

be used in a simulation experiment that considers uncertainty on the marginal mean,705

µX.706

Other key algorithm inputs, especially those linked to aerosols and albedo, likely707

impact the retrieval uncertainty. The investigation could be extended to incorporate708

uncertainty in the retrieval prior covariance Σa, particularly the portion corresponding709

to albedo and aerosols. The current OCO-2 operational algorithm uses a constant710

prior covariance matrix for all retrievals, and the impact of this choice on retrieval711

error distributions will depend on the spatially and temporally varying nature of the712

true marginal distribution [18].713

The choice of forward-model parameters B can impact the retrieval uncertainty714

as well. Several forward-model parameters characterize the wavelength dependence of715

aerosol absorption and scattering, and uncertainty in these parameters could impact716

the retrieval-error distribution. In addition, the forward model relies on discrete717

choices of aerosol types, which cannot perfectly capture the actual aerosol conditions718

in the atmosphere [10]. There is also potential in using collections of soundings Y to719

estimate these forward-model parameters from the data.720

This Monte Carlo framework is sufficiently general, and the surrogate model of-721

fers an adequate tradeoff between computational efficiency and physical realism to722

facilitate all of these potential UQ investigations for the OCO-2 OE retrieval. The723

framework simply requires a statistical model for the atmospheric state, a forward724

model representing the remote sensing instrument, and a retrieval algorithm for esti-725

mating the state given satellite observations. In fact, this framework could be used726

to provide uncertainty estimates for any retrieval algorithm, whether it is Bayesian727

or not.728
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OCO-2’s implementation of the OE framework uses a numerical search for the729

posterior mode and provides a posterior covariance matrix based on a linear approx-730

imation. This article has addressed the propagation of uncertainty resulting from731

uncertain inputs into this specific algorithm and resulting estimator. Section 1 notes732

that the Bayesian formulation allows for other strategies for inference, including explo-733

ration of the full posterior distribution, [X|Y]. The OCO-2 FP forward model is likely734

too computationally expensive for posterior inference based on MCMC, for example,735

but sampling from the posterior distribution is feasible using the more efficient sur-736

rogate model developed here. As a reviewer has suggested, the comprehensive results737

that are efficiently produced with the surrogate model experiments can be compared738

to a subset of corresponding experiments with the full physics forward model. This739

work is ongoing.740

The OE remote sensing retrieval can be framed as an example of prediction in741

a nonlinear mixed model. This class of statistical models has been applied in a742

wide range of disciplines from medicine to environmental applications [11], and hence743

there is the potential to study the properties of predictors for random effects, or of744

estimators of fixed effects. The error budget diagnostics developed and illustrated in745

this paper could be implemented in other applications of nonlinear mixed models.746
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Fig. 4. Distribution of retrieval errors for XCO2, under the hierarchical sampling strategy and
different experiment conditions, plotted against the log AOD component of the prior mean. The
solid vertical line depicts the true marginal mean of log AOD. Solid circles depict the distribution’s
mean and error bars cover the center 95% of the retrieval-error distribution.
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Fig. 5. Distribution of normalized XCO2 retrieval errors under different experimental condi-
tions, plotted against quantiles from a standard normal distribution.
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Fig. 6. Standard deviation of error-budget components and of the total error for each treatment
in the experiment. The four upper panels depict an individual component of the error budget, with the
bottom panel depicting the total error. The total error is computed as the standard deviation of the
true retrieval errors for the simulation case. For the linear approximation, the total error standard

deviation is computed as

√
E(V̂ arXCO2). The nine treatments are represented in sequence on the

horizontal axis. Solid circle (•) symbols represent standard deviations computed from the simulated
errors, and × symbols represent standard deviations based on OE’s linear approximation.
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Appendix A. The effect of linearity on the error budget.755

If the forward model is linear,756

Y = µ+ KX + ε,757

then the error budget can be decomposed exactly into contributions from smoothing758

and noise. For the linear model, the posterior covariance S, gain G, and averaging759

kernel A are given by760

S =
[
KTΣ−1e K + Σ−1a

]−1
,761

G =
[
KTΣ−1e K + Σ−1a

]−1
KTΣ−1e762

A = GK763764

Assume without loss of generality that µ = 0. For this model, the retrieval is765

linear,766

X̂ =
[
KTΣ−1e K + Σ−1a

]−1 [
Σ−1a µa + KTΣ−1e Y

]
767

= SΣ−1a µa + GY768

= SΣ−1a µa + G (KX + ε)769

= SΣ−1a µa + AX + Gε.770771

Now,772

A + SΣ−1a = S
(
KTΣ−1e K

)
+ SΣ−1a773

= S
(
KTΣ−1e K + Σ−1a

)
774

= SS−1775

= I,776777

so778

SΣ−1a = I−A.779

Then, the retrieval error can be written as780

X̂−X = SΣ−1a µa + AX−X + Gε781

= (I−A)µa + (A− I) X + Gε.782783

This results in the linear error budget784

∆ = X̂−X785

= (A− I) (X− µa) smoothing786

+ Gε noise787788

Appendix B. Surrogate model description.789

Some of the key aspects of the surrogate forward model F(X,B) include config-790

uration of the atmospheric state vector X, discretization of the atmospheric profile,791

trace gas absorption, radiative transfer, and viewing geometry.792

Formally, the forward model Fi,j(X,B), i = 1, . . . , nj ; j = 1, 2, 3 defines the793

expected radiance as a function of the state X and parameters B for wavelength i in794

spectral band j. Hence, n = n1 + n2 + n3. The three spectral bands correspond to795

the three OCO-2 spectrometers,796

• O2 A-band (j = 1), centered near 0.765µm,797

• Weak CO2 band (j = 2), centered near 1.64µm,798

• Strong CO2 band (j = 3), centered near 2.06µm.799
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B.1. Vertical profile and state vector. The surrogate model discretizes the800

atmospheric vertical profile into k = 1, . . . ,K layers; the surrogate model uses K =801

19. The atmospheric composition within a layer is assumed homogenous. Layer802

boundaries are defined by a unitless vertical coordinate qk = pk/ps, where pk is803

the atmospheric pressure at the top boundary of layer k and pk+1 is the pressure804

at the bottom boundary of layer k. The bottom layer is bounded by the surface,805

characterized by the surface pressure ps. The K + 1 layer boundaries are fixed at806

{q1 = 0.0001, q2 = 1/K, q3 = 2/K, . . . , qK+1 = 1.0}.807

The atmospheric state vector X includes808

• The dry air mole fraction of CO2, ck′ , at level k′, k′ = 1, . . . ,K + 1,809

• The surface pressure ps,810

• Coefficients b0,`, b1,`, b2,`, ` = 1, . . . , 4, representing the vertical profile of each811

of four atmospheric scattering species, including two composite aerosol types,812

cloud ice, and cloud water,813

• Coefficients a0,j , a1,j representing the surface-albedo dependence on wave-814

length in each of the three spectral bands.815

Some additional quantities defined below are functions of these state vector con-816

stituents. Any other quantities used are part of the parameter vector B. These817

additional parameters include gas absorption coefficients and aerosol extinction and818

scattering coefficients.819

B.2. Intermediate quantities. The surrogate model Fi,j can be more conve-820

niently defined in terms of several intermediate quantities, which are functions of X821

and B. The explicit notational expression of this dependence is dropped in subsequent822

discussion. These intermediate quantities include823

• Surface albedo Ai,j ,824

• Vector of layer-specific optical depths τ i,j ≡ {τi,j,k : k = 1, . . . ,K},825

• Vector of layer-specific single-scattering albedo ωi,j(τ i,j) ≡ {ωi,j,k(τi,j,k) :826

k = 1, . . . ,K},827

• Layer-specific phase function Pi,j(τ i,j) ≡ {Pi,j,k(τi,j,k) : k = 1, . . . ,K}.828

The layer-specific optical depth τi,j,k quantifies the extinction of radiation in layer829

k. It is the sum of the optical depth for trace gas absorption τG,i,j,k, from Rayleigh830

extinction τR,i,j,k, and from each scattering species τM,i,j,k,`,831

τi,j,k = τG,i,j,k + τR,i,j,k +

4∑

`=1

τM,i,j,k,`.832

The optical depth due to trace gas absorption is a function of the abundance of the833

absorbing gas (O2 or CO2) in the atmospheric layer and a wavelength-dependent834

absorption coefficient ρi,j,k. In the O2 A-band,835

τG,i,j,k = 0.21 ρi,j,k
ps(qk+1 − qk)

gmd
, j = 1,836

837

where md is the molar mass of dry air with units kg mol−1 and g is the gravitational838

constant. In the weak and strong CO2 bands,839

τG,i,j,k =
ck + ck+1

2
ρi,j,k

ps(qk+1 − qk)

gmd
, j = 2, 3.840

841842
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The absorption coefficients ρi,j,k, with units m2 mol−1, are a set of fixed coeffi-843

cients that are extracted from the OCO-2 full physics absorption coefficient tables.844

The Rayleigh optical depth is845

τR,i,j,k = ρR,i,j,k
ps(qk+1 − qk)

gmd
,846

847

where ρR,j,j,k is a Rayleigh extinction coefficient, which is assumed known. Note that848

the quantity849

∆pk = ps(qk+1 − qk),850

= pk+1 − pk,851852

is the pressure difference between the bottom and the top of layer j.853

The aerosol optical depths for each of the four scattering species are based on a854

characteristically shaped aerosol profile, parameterized by the coefficients b0,`, b1,`, b2,`.855

The characteristic shape mimics a Gaussian probability density function. Then the856

layer-specific optical depths are defined as857

τM,i,j,k,` = ei,j,` exp{b0,`}
Φ
(
qk+1−b1,`

b2,`

)
− Φ

(
qk−b1,`
b2,`

)

Φ
(

1.0−b1,`
b2,`

)
− Φ

(
q1−b1,`
b2,`

) ,858

859

where Φ is the standard Gaussian cumulative distribution function. Each wavelength860

and scattering species has an extinction efficiency ei,j,` that is assumed known, and861

the shortest wavelength in the O2 A-band is used as a reference with e1,1,` = 1. Then862

exp{b0,`} is the total optical depth at this reference wavelength for each scattering863

species. The coefficient b1,` defines the peak height of the aerosol profile, and b2,`864

characterizes the effective depth of the profile.865

In addition to extinction from multiple sources, the forward function also incor-866

porates Rayleigh scattering and scattering by the four scattering species. Scattering867

behavior is quantified by the single scattering albedo ωi,j,k(τi,j,k) and the phase func-868

tion, Pi,j,k(τi,j,k). The single scattering albedo is defined as869

ωi,j,k(τi,j,k) =
τR,i,j,k +

∑4
`=1 ωM,i,j,` τM,i,j,k,`

τi,j,k
.870

Each scattering species has its own wavelength-dependent single scattering albedo,871

ωM,i,j,`, which quantifies the fraction of scattered radiation to extinction, and these872

parameters are assumed known.873

The phase function Pi,j,k(τi,j,k) characterizes angular dependence of scattering,874

Pi,j,k(τi,j,k) =
τR,i,j,kPR,i,j +

∑4
`=1 ωM,i,j,`τM,i,j,k,`PM,i,j,`

τR,i,j,k +
∑4
`=1 ωM,i,j,` τM,i,j,k,`

,875

where PR,i,j and PM,i,j,` are known phase functions for Rayleigh scattering and the876

individual scattering species.877

Finally the surface albedo provides a lower boundary condition for the transfer878

of radiation through the atmosphere. The surrogate model assumes a Lambertian879

surface and the wavelength dependence of albedo is represented by880

Ai,j = a0,j + a1,j(νi,j − ν(0)j ),881

where νi,j is the wavenumber of interest and ν
(0)
j is a pre-defined reference wavenumber882

for each band.883
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B.3. Radiative transfer. The surface albedo, optical depth, single scattering884

albedo and phase function are inputs to computational routines for radiative transfer885

(RT). A variety of routines of varying complexity and numerical accuracy are available886

for solving the radiative transfer equation, which is an integro-differential equation887

for the intensity of radiation as a function of the path through the atmosphere. Addi-888

tional inputs for RT include the solar geometry and satellite viewing geometry (zenith889

and azimuth angles). Vector RT routines solve for the full Stokes vector, which incor-890

porates scalar intensity along with polarization. The surrogate model Fi,j includes891

a fully polarized first order of scattering (FO) routine and a scalar two-stream (2S)892

approximation for the contribution from multiple scattering. The FO routine outputs893

the top of atmosphere (TOA) Stokes vector (IFO,i,j , QFO,i,j , UFO,i,j), and the 2S894

routine outputs a (TOA) multiple scattering intensity I2S,i,j . This radiative transfer895

implementation is one key distinction between the surrogate model and the OCO-2896

FP forward model, where the latter utilizes more numerically accurate second-order897

of scattering (2OS) and a larger number of streams for multiple scattering [16, 17].898

The instrument geometry defines the Stokes coefficients (MI ,MQ,MU ), and the899

expected radiance can be computed as900

Fi,j(X,B) = MIIFO,i,j(Ai,j , τ i,j ,ωi,j(τ i,j),Pi,j(τ i,j))901

+MII2S,i,j(Ai,j , τ i,j ,ωi,j(τ i,j),Pi,j(τ i,j))902

+MQQFO,i,j(Ai,j , τ i,j ,ωi,j(τ i,j),Pi,j(τ i,j))903

+MUUFO,i,j(Ai,j , τ i,j ,ωi,j(τ i,j),Pi,j(τ i,j)).904905
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