
University of Wollongong
Research Online

Faculty of Science, Medicine and Health - Papers:
part A Faculty of Science, Medicine and Health

2017

Remote monitoring of dynamic canopy
photosynthesis with high time resolution light-
induced fluorescence transients
Rhys Wyber
University of Wollongong, rwyber@uow.edu.au

Barry Osmond
University of Wollongong, cosmond@uow.edu.au

Michael B. Ashcroft
University of Wollongong, ashcroft@uow.edu.au

Zbynek Malenovky
University of Wollongong, zbynek@uow.edu.au

Sharon A. Robinson
University of Wollongong, sharonr@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Wyber, R., Osmond, B., Ashcroft, M. B., Malenovky, Z. & Robinson, S. A. (2017). Remote monitoring of dynamic canopy
photosynthesis with high time resolution light-induced fluorescence transients. Tree Physiology: an international botanical journal, 38
(9), 1302-1318.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
https://ro.uow.edu.au
https://ro.uow.edu.au/smhpapers
https://ro.uow.edu.au/smhpapers
https://ro.uow.edu.au/smh


Remote monitoring of dynamic canopy photosynthesis with high time
resolution light-induced fluorescence transients

Abstract
Understanding the net photosynthesis of plant canopies requires quantifying photosynthesis in challenging
environments, principally due to the variable light intensities and qualities generated by sunlight interactions
with clouds and surrounding foliage. The dynamics of sunflecks and rates of change in light intensity at the
beginning and end of sustained light (SL) events makes photosynthetic measurements difficult, especially
when dealing with less accessible parts of plant foliage. High time resolved photosynthetic monitoring from
pulse amplitude modulated (PAM) fluorometers has limited applicability due to the invasive nature of
frequently applied saturating flashes. An alternative approach used here provides remote (m), high time
resolution (10 s), PAM equivalent but minimally invasive measurements of photosynthetic parameters. We
assessed the efficacy of the QA flash protocol from the Light-Induced Fluorescence Transient (LIFT)
technique for monitoring photosynthesis in mature outer canopy leaves of potted Persea americana Mill. cv.
Haas (Avocado) trees in a semi-controlled environment and outdoors. Initially we established that LIFT
measurements were leaf angle independent between ±40° from perpendicular and moreover, that estimates of
685 nm reflectance (R685) from leaves of similar chlorophyll content provide a species dependent, but
reasonable proxy for incident light intensity. Photosynthetic responses during brief light events (≤10 min),
and the initial stages of SL events, showed similar declines in the quantum yield of photosystem II (ΦII) with
large transient increases in 'constitutive loss processes' (ΦNO) prior to dissipation of excitation by non-
photochemical quenching (ΦNPQ). Our results demonstrate the capacity of LIFT to monitor photosynthesis
at a distance during highly dynamic light conditions that potentially may improve models of canopy
photosynthesis and estimates of plant productivity. For example, generalized additive modelling performed
on the 85 dynamic light events monitored identified negative relationships between light event length and
∆ΦII and ∆electron transport rate using either ∆photosynthetically active radiation or ∆R685 as indicators of
leaf irradiance.
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ABSTRACT    23 

Understanding the net photosynthesis of plant canopies requires quantifying photosynthesis 24 

in challenging environments, principally due to the variable light intensities and qualities 25 

generated by sunlight interactions with clouds and surrounding foliage. The dynamics of 26 

sunflecks and rates of change in light intensity at the beginning and end of sustained light 27 

(SL) events makes photosynthetic measurements difficult, especially when dealing with less 28 

accessible parts of plant foliage. High time resolved photosynthetic monitoring from pulse 29 

amplitude modulated (PAM) fluorometers has limited applicability due to the invasive nature 30 

of frequently-applied saturating flashes. An alternative approach used here provides remote 31 

(< 5 m), high time resolution (10 s), PAM equivalent but minimally-invasive measurements 32 

of photosynthetic parameters. We assessed the efficacy of the QA flash protocol from the 33 

Light-Induced Fluorescence Transient (LIFT) technique for monitoring photosynthesis in 34 

mature outer canopy leaves of potted avocado trees in a semi-controlled environment and 35 

outdoors. Initially we established that LIFT measurements were leaf angle independent 36 

between ± 40˚ from perpendicular and moreover, that estimates of 685 nm reflectance (R685) 37 

from leaves of similar chlorophyll content provide a species dependent, but reasonable proxy 38 

for incident light intensity. Photosynthetic responses during brief light events (≤ 10 min), and 39 

the initial stages of SL events (Fig. 6), showed similar declines in the quantum yield of PSII 40 

(ΦII) with large transient increases in “constitutive loss processes” (ΦNO) prior to dissipation 41 

of excitation by non-photochemical quenching (ΦNPQ). Our results demonstrate the capacity 42 

of LIFT to monitor photosynthesis at a distance during highly dynamic light changes that 43 

potentially may improve models of canopy photosynthesis and estimates of plant 44 

productivity. For example, generalized additive modeling performed on the 85 dynamic light 45 

events monitored here identified negative relationships between light event length and ∆ΦII 46 

and ∆ETR using either ∆PAR or ∆R685 as indicators of leaf irradiance.  47 
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INTRODUCTION  48 

The ability to model the total productivity of higher plants or even large-scale 49 

ecosystems requires accounting for photosynthesis occurring in dynamic light conditions in 50 

both direct light-exposed outer canopy leaves and in the shaded inner canopy foliage (Porcar-51 

Castell et al. 2006; Niinemets 2007). These dynamic light conditions occur as light interacts 52 

with passing clouds and foliage elements causing a dynamic patchwork of light intensities of 53 

varying length. Variously, these effects can be referred to as sunflecks, sunpatches, 54 

shadeflecks or cloudflecks, depending on the cause of light fluctuation and light quality, 55 

either numbra or penumbra (Smith et al. 2013). These dynamic light events have been shown 56 

to provide a significant portion of photosynthetically active radiation (PAR) for carbon 57 

fixation to understory plants (Pearcy 1990). However, accounting for the contribution of light 58 

fluctuations to net photosynthesis has proven problematic due to: i) difficulty of accessing 59 

canopy environments, ii) difficulties in measurement of leaf-level PAR and iii) insufficient 60 

temporal resolution of photosynthesis measuring instruments. (Nichol et al. 2012; Way et al. 61 

2012; Osmond 2014).  62 

Laser PAM instruments have mitigated canopy access to some extent (Flexas et al. 63 

2000; Ounis et al. 2001; Flexas et al. 2002; Louis et al. 2005). However, this method is still 64 

limited by the invasive nature of the saturating flash, and although sub-saturating PAM 65 

protocols have recently been developed (Loriaux et al. 2013), no PAM instrument delivering 66 

the non-intrusive sub-saturation flashes at a longer range (at least 1 m) is currently available. 67 

Current PAM methods for long-term monitoring, such as MONI-PAM, (Porcar-Castell et al. 68 

2008) require fixing leaves into clips on heavy measuring heads, making it difficult to 69 

maintain the natural orientation of the examined leaf and potentially causing leaf damage. 70 

Additionally, although MONI-PAM provides reliable measures of incident PAR for 71 

estimation of photosynthetic electron transport rates (ETR), they are limited to measurement 72 
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resolutions of  >30 s to avoid intrusive effects of the saturating flash (Shen et al. 1996; 73 

Apostol et al. 2001; Osmond et al. 2017).  74 

LIFT instruments operated with the fast repetition rate (FRR) fluorescence excitation 75 

and analysis protocols were originally developed and used for measurements of marine 76 

phytoplankton (Kolber et al. 1993). In its terrestrial implementation, LIFT utilizes either LED 77 

or laser excitation sources for remote measurements of active chlorophyll fluorescence. The 78 

first application of LIFT technology at the Biosphere 2 Laboratory was based on red laser 79 

excitation and telescope optics, which induced and captured fluorescence at distances of up to 80 

50 m (Ananyev et al. 2005). Corrected measurements of ETR from this LIFT prototype were 81 

shown to be highly comparable to those produced by PAM (Pieruschka et al. 2010). Since its 82 

first application, the LIFT approach has been used to perform daily and seasonal monitoring 83 

of various canopies, showing, for instance, photosynthetic changes with both light and 84 

temperature (Pieruschka et al. 2010) and generating maps of canopy photosynthetic 85 

heterogeneity (Pieruschka et al. 2009; Nichol et al. 2012). Importantly, long-term monitoring 86 

with time resolutions as high as 3 s has been demonstrated to be much less invasive than 87 

PAM, causing no detectable change in photosynthetic parameters during monitoring of leaves 88 

in the dark (Osmond et al. 2017).  89 

The FRR model, upon which LIFT measurements are based, provides not only PAM 90 

comparable conventional photosynthetic parameters, but also provides measurements of 91 

broad-band radiance, reflected from an interrogated leaf at 685 nm (R685), which potentially 92 

may be used as a proxy for leaf PAR. Leaf reflectance between 670 and 750 nm has been 93 

previously utilized during canopy laser PAM measurements for calculation of electron 94 

transport rates (ETR) and provided seasonal estimates similar to those calculated from 95 

MONI-PAM leaf PAR measurements (Ounis et al. 2001). 96 
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The original laser-based LIFT instrument operated at the Biosphere 2 Laboratory was 97 

not field portable (Ananyev et al. 2005). However, the current generation of LIFT 98 

instruments, which rely on blue LED excitation, are field portable (15 kg) and utilize an eye-99 

safe blue LED excitation for measuring photosynthesis at distances of up to 5 m (Osmond et 100 

al. 2017; Wyber et al. 2017). When combined with advances in PAR sensor miniaturisation 101 

and the potential to use broadband leaf reflectance as an indicator of leaf PAR, the current 102 

generation of LIFT instruments may provide an ideal solution for measuring in vivo leaf 103 

photosynthesis under dynamic light conditions at more informative temporal resolutions. 104 

However, for successful application of LIFT technology to canopy measurements, the effects 105 

of varying leaf orientation with respect to the excitation beam needs to be understood and 106 

quantified in order to correct for leaf angular changes during growth, and to produce 107 

comparable measurements between differently oriented foliage. Moreover, the influence of 108 

leaf type, plant species, and chlorophyll content need to be known for the use of R685 in 109 

robust remote determination of leaf PAR and calculation of ETR.  110 

To our best knowledge, LIFT studies involving canopy measurements have so far 111 

neglected the influences of leaf angular orientation and shadow propagation, and have 112 

sometimes relied on top-of-canopy PAR measurements. Therefore, in this paper we aimed to 113 

understand: i) the importance of leaf orientation on LIFT photosynthetic measurements, ii) 114 

determine the potential of hemispherical–conical leaf reflectance (R685) sensed by LIFT to 115 

approximate leaf PAR and iii) determine what changes in LIFT-measured photosynthetic 116 

parameters can be observed (and generalised) under dynamic light conditions. We then 117 

examined the physiological and biochemical implications of photosynthetic changes under 118 

dynamic light (cause by clouds and intermittent shadows cast by nearby foliage or building 119 

architecture) and used generalised additive modelling to identify generalised predictors which 120 
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may be applied to modelling photosynthesis under dynamic light conditions and in future 121 

extended to sub-canopy environments.  122 

 123 

MATERIALS AND METHODS 124 

Plant material and environment 125 

Measurements reported in this study were collected from three different avocado 126 

plants (Persea americana Mill. cv. Haas) grown at the University of Wollongong (UOW), 127 

Australia (34° 24' 17.5"S, 150° 52' 17.8"E). A 1.5 m plant, grown from seed in sunlight in a 128 

temperature-controlled (30˚C/18ºC day/night) greenhouse of the Research School of Biology, 129 

Australian National University, was re-potted into a 50 L pot using a commercially available 130 

fruit and citrus soil mix (Osmocote Fruit & Citrus; Bella Vista, NSW Australia) and grown 131 

for 18 months prior to measurements in a glass atrium in the School of Biological Sciences, 132 

UOW. The atrium provided a maximum glass filtered sunlight intensity of ~700 μmol 133 

photons·m
-2

·s
-1

 with direct sunlight period limited to ~4 hours as a consequence of building 134 

architecture. Atrium temperatures ranged between 15˚C at night to 25˚C during the day, with 135 

natural direct and diffuse irradiance supplemented by ~60 μmol photons·m
-2

·s
-1 

of light from 136 

fluorescent tubes
 
for 8 hours as a consequence of building lighting.  137 

Two additional plants were purchased from a commercial nursery and re-potted into 138 

20 L pots using the same soil mix as for the atrium plant. Following re-potting these plants 139 

were transferred to the UOW Ecology Research Centre (ERC) and grown outdoors 140 

underneath a 50% black shade cloth enclosure for three months prior to measurements. The 141 

shade-enclosure was open to the NW to provide protection against strong sunlight on cool 142 

mornings but allowed for direct sunlight exposure ~4 hours after sunrise. Plants grown at the 143 

ERC experienced a maximum light intensity of ~1200 μmol photons·m
-2

·s
-1

 with a direct 144 

light period limited to ~10 h in summer (as a consequence of local geography and enclosure 145 
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architecture) and temperatures ranging from 15˚C at night to 35˚C during the day. All plants 146 

were watered every other day with 4 litres of tap water.  147 

Instrument description and calibration  148 

Active chlorophyll fluorescence was measured using a commercially available Light-149 

Induced Fluorescence Transient instrument (LIFT; Soliense Inc, Shoreham, NY, USA; 150 

http://www.soliense.com/LIFT_Terrestrial.php). The LIFT instrument utilises low intensity 151 

high frequency flashes (flashlets) of blue light (470 nm) to induce fluorescence changes in 152 

leaves at distances of < 5 m. The number of flashlets delivered to leaves can be modulated to 153 

provide two different measurement protocols, designed to reduce QA and to observe the 154 

kinetics of electron transport (QA flash), or to fully reduce the PQ pool and provide PAM-155 

analogous measurements (PQ flash) (Osmond et al 2017). Both of these protocols modulate 156 

the frequency of flashlets in two main phases, a variable length saturation phase (flashlets 157 

applied at 50% duty cycle; termed SQA for QA flashes or SPQ for PQ flashes), and a 158 

relaxation phase with an exponentially-decreasing duty cycle (termed RQA for QA flashes or 159 

RPQ for PQ flashes)(Osmond et al. 2017). The whole fluorescence transient is then fitted 160 

using the fast repetition rate (FRR) fluorescence model, which determines FmQA, FʹmQA, FoQA 161 

and FʹQA for QA flashes and FmPQ, FʹmPQ, FoPQ and FʹPQ for PQ flashes (Kolber 2014; 162 

Osmond et al. 2017). The QA flash protocol of the LIFT instrument consisted of an SQA 163 

saturating sequence of 300 flashlets (1.6 µs pulses) applied at 2.5 µs interval and an RQA 164 

phase consisting of 90 flashlets (1.6 µs pulses) with an exponential increase in the 20 µs 165 

interval described by an exponential term of 1.04. The PQ flash protocol consisted of an SQA 166 

phase consisting of 6000 flashlets (1.6 µs pulses) with a 20 µs interval and an RQA phase 167 

identical to the QA flash protocol. 168 

LIFT/FRR QA measurements provide a non-invasive method to probe photosynthesis 169 

at informative time resolutions for monitoring photosynthesis during fluctuating light 170 
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(Osmond et al. 2017). However, as QA flashes are designed to only reduce the first electron 171 

acceptor QA they underestimate PAM Fm and Fʹm by ~10% (Osmond et al. 2017). To correct 172 

for this underestimation, the PQ flash is utilized to provide a PAM-analogous reference Fm 173 

and Fʹm values for the correction of LIFT FmQA and FʹmQA measurements (Osmond et al. 174 

2017). To correct LIFT FmQA and FʹmQA measurements to match those from PAM a white 175 

light response curve (0 to 1000 μmol photons·m
−2

·s
−1

 in 50 μmol increments) was performed 176 

on six avocado leaves as described in Wyber et al. 2017. At each light intensity a LIFT QA 177 

and PQ flash measurement were performed in quick succession (double flash; Osmond et al. 178 

2017) and the linear regression equation between FmQA or FʹmQA and the FmPQ or FʹmPQ 179 

measurements used to correct LIFT FmQA or FʹmQA during leaf monitoring (supplementary 180 

material Fig. S1). 181 

Effect of leaf angular orientation on LIFT/FRR measurements 182 

Leaves of avocado (n = 6) were used to assess the effect of leaf orientation on 183 

LIFT/FRR measurements. Avocado plants growing at the ERC and the School of Biological 184 

Sciences atrium (n = 3; previously exposed to ~200 μmol photons·m
-2

·s
-1

 of diffuse morning 185 

irradiance) were transferred to the laboratory and detached leaves (two from each plant) were 186 

prepared immediately prior to measurements (~10 min). Leaves were prepared as described 187 

in Takayama et al (2013). The leaf petiole was cut underwater and the detached leaf was 188 

sealed in a water filled 1.5 mL microcentrifuge tube sealed using paraffin film. Gas exchange 189 

and chlorophyll fluorescence imaging analyses revealed little change in photosynthesis in 190 

these leaves (Takayama et al. 2013), and in the present study there was no change in Fv/Fm 191 

(measured by PAM) during 6 hours in the dark. Prepared leaves were then affixed to a 192 

vertical panel positioned on a motorized tripod (Celestron Advanced VX; Celestron, 193 

Australia) at a distance of 1 m from the LIFT fore optics. Using the motorized tripod, the leaf 194 

orientation was rotated from 0° (adaxial) to 180° (abaxial) in 10° increments, with six 195 
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replicate LIFT/FRR QA measurements performed for each leaf at each rotated angle. All 196 

measurements were performed under a low level of ambient light from a combination of 197 

sunlight and fluorescent tubes (~65 μmol·m
-2

·s
-1

) (Fig. 1).   198 

Leaf PAR approximation using reflectance at 685 nm 199 

LIFT-detected R685, acquired between QA flashes, was assessed as a potential proxy 200 

for actual leaf PAR by investigating leaves of the following species: Alectryon subcinereus, 201 

Eucalyptus globoidea, Lomandra longifolia, Acmena smithii, Asplenium nidus, Polyscias 202 

elegans, Ficus macrophylla, Mangifera indica and two groups of avocado leaves varying in 203 

chlorophyll content. High (lower canopy) and low chlorophyll (upper canopy) avocado leaves 204 

were collected from different locations in the canopies of avocado plants growing at the ERC 205 

(n = 4) and in the UOW atrium (n = 2). Leaves of all other plants (n = 3 per plant) were 206 

sourced from plants growing under natural sunlight in minimally disturbed gardens on the 207 

UOW campus. Leaves from these plants were randomly sampled from leaves within reach, 208 

from plants growing in different light environments. Ficus macrophylla and M. indica plants 209 

were growing in shaded positions, A. smithii, A. nidus and P. elegans plants were growing 210 

under mottled shade from surrounding foliage and E. globoidea and A. subcinereus plants 211 

were found growing in full sun locations. White-light response curves were performed using 212 

a quartz iodide lamp from a Rollei P355 automatic slide projector, with leaf PAR measured at 213 

the leaf surface using a LS-C micro quantum light sensor (Walz, Effeltrich, Germany). Light 214 

response curves were performed for the following 14 mean light intensities ± SD from 0 to 215 

~1000 μmol photons·m
-2

·s
-1

: 0.00 ± 0.00, 1.98 ± 0.27, 3.80 ± 0.60, 24.23 ± 3.42, 40.17 ± 216 

8.72, 51.47 ± 7.84, 52.84 ± 19.08, 78.12 ± 20.29, 85.88 ± 11.23, 103.84 ± 12.55, 200.59 ± 217 

25.30, 287.03 ± 38.59, 598.42 ± 46.46 and 1065.18 ± 40.43. Light intensities were modulated 218 

by varying the distance and focus of the quartz iodide lamp from leaves, with the error in 219 

light steps due to the manual adjustment of the light source focus and distance.  During light 220 
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response curves each light step was maintained for 5 min with three replicate measurements 221 

of R685 at each light intensity. For each species separate light response curves were performed 222 

on three replicate detached leaves prepared as described above. All measurements were 223 

performed at a distance of 1 m, with the LIFT instrument positioned perpendicular to the leaf 224 

surface. 225 

Total chlorophyll content of leaf replicates was assessed with a Soil-Plant Analysis 226 

Development 502 chlorophyll meter (SPAD, Spectrum Technologies Inc, USA). For the 227 

conversion of avocado SPAD measurements to chlorophyll content, a calibration curve was 228 

generated from avocado leaves varying in chlorophyll content using high-performance liquid 229 

chromatography (HPLC), as described by Pogson et al. (1996) (see supplementary material 230 

Fig. S2). 231 

In vivo LIFT/FRR photosynthetic measurements under dynamic light 232 

All in vivo leaf measurements were performed on the adaxial surface of fully 233 

expanded avocado leaves attached to plants and maintained in their natural orientation. LIFT 234 

measurements were restricted to leaves ≤ 1 m from the LIFT fore optic (middle to lower 235 

canopy leaves) to maintain a high temporal measurement resolution. While measurements at 236 

longer distances are possible, these require greater averaging of fluorescence transients 237 

decreasing the temporal measurement resolution. Additionally, of leaves within ≤ 1 m from 238 

the LIFT fore optic, only those where an angle between ± 40˚ relative to the LIFT beam could 239 

be achieved were selected for measurements. Measurements were made around the Southern 240 

Hemisphere summer equinox (October, November and December 2014) and (March then 241 

October and December 2015) and involved monitoring of leaves over full diurnal cycles, 242 

starting at 18:00 h the day prior and finishing at 06:00 after the following night (i.e. two 243 

nights and one day; n = 10 days). For all measurements the LIFT instrument was operated 244 

with a 10 ± 1 s time resolution, where each data point was the fitted average of six successive 245 
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QA fluorescence transients. Following sunset each night, reference PQ flash measurements 246 

were performed every hour until sunrise, with the maximum FmPQ serving as a dark-adapted, 247 

PAM equivalent reference. Leaf PAR was recorded at the surface of all leaves every 10 s 248 

using either one LS-C micro quantum light sensor (cosine corrected; ± 30˚) placed in the 249 

centre of the LIFT measuring beam, or two sensors placed on either side of the measuring 250 

beam and connected to a universal light meter (ULM-500; Walz, Effeltrich, Germany). For 251 

leaf PAR measurements using two micro quantum light sensors, leaf PAR was taken as the 252 

average of both sensors.  253 

Data analysis  254 

Calculation of LIFT/FRR photosynthetic parameters 255 

All photosynthetic parameters were calculated using the conventional approaches for 256 

fluorescence data collected using the PAM methodology. Data are marked by a postfix 257 

QA or PQ to denote the source of the fluorescence data from either the QA or PQ flash 258 

respectively, and with Fm and Fʹm measurements with no postfix denoting the source of 259 

fluorescence data from QA flashes corrected to match those from
 

PAM/PQ flash 260 

measurements. The maximum quantum yield of photosystem II was calculated as:  261 

𝐹𝑉/𝐹𝑚 =
(𝐹𝑚𝑃𝑄−𝐹𝑜𝑃𝑄)

𝐹𝑚𝑃𝑄
  262 

for a leaf in the dark and the quantum yield of photosystem II as: 263 

ϕII =
(𝐹ʹ𝑚−𝐹ʹ𝑄𝐴)

𝐹ʹ𝑚
  264 

for a leaf in the light. Electron transport rate (ETR) was calculated using the formula of 265 

Genty et al. (1989);  266 

ETR = ϕII × PAR × 𝐸 × α 

where PAR was the incident light intensity at the leaf surface measured by either one or two 267 

micro quantum light sensors. The energy partitioning between PSI and PSII (E) was taken as 268 
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0.5 (Maxwell et al. 2000), and the leaf absorbance (α) was measured as 0.856 ± 0.05 based 269 

upon mean ± SD absorbance of six middle to lower canopy avocado leaves, representative of 270 

those measured by LIFT (n = 2 ERC plant 1, n = 1 ERC plant 2 and n = 3 atrium), measured 271 

in an integrating sphere as described by Björkman and Demmig (1987). Partitioning of the 272 

fraction of absorbed excitation dissipated in non-photochemical quenching (ΦNPQ) and 273 

constitutive heat dissipation (ΦNO) were calculated by adapting the formulae of 274 

Hendrickson et al. (2004) and Klughammer et al. (2008):  275 

ϕNPQ =
𝐹ʹ𝑄𝐴

𝐹ʹ𝑚
−

𝐹ʹ𝑄𝐴

𝐹𝑚𝑃𝑄
, and 276 

ϕNO = (
𝐹ʹ𝑄𝐴

𝐹𝑚𝑃𝑄
)  277 

Note that ϕII  +  ϕNPQ  +  ϕNO  =  1 278 

Data preparation and light fluctuation analysis 279 

In vivo monitoring of leaves produced two different datasets with equal time 280 

resolutions (10 s: LIFT and leaf PAR), which were aligned in the software R (R Core Team 281 

2013) by matching timestamps. Light fluctuations were manually identified; with the start of 282 

each light fluctuation defined as a rapid increase in light greater than the slow diurnal 283 

changes in the background illumination. The end of each light fluctuation was defined as the 284 

point at which leaf PAR returned to within 5% of levels measured immediately before the 285 

start of the light event. The light fluctuation length and time since the last light fluctuation 286 

were retrieved for each light event and their distribution was normalized by loge 287 

transformation. Additionally, the initial, middle, maximum, difference (∆), and the area under 288 

curve (AUC) were retrieved for each light event, where ∆ was calculated as the middle value 289 

– the initial value (Fig. 2). Time of day was not examined due to differences in the light 290 

exposure between the two plant measurement sites; in total, 85 light fluctuations were 291 

monitored. 292 
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Summary statistics for each light fluctuation were analysed using generalised additive 293 

models (GAM). Generalised additive model analyses were performed in R using the ‘gam’ 294 

package (Hastie et al. 1990), with separate GAM analyses run with initial, maximum, AUC 295 

and ∆ values of ΦII, ΦNPQ, ΦNO and ETR as response variables. For each response variable, all 296 

combinations of light fluctuation length, time since last light fluctuation and location, initial, 297 

maximum, AUC and ∆ values for leaf PAR, R685, and the initial values for ΦII and ΦNPQ were 298 

analysed as predictors. Initial values of ΦNO and ETR were excluded as predictors from 299 

GAMs due to co-dependency with ΦNPQ and ΦII and leaf PAR, respectively. Additionally, 300 

raw fluorescence measurements (Fm, Fʹm, Fo and Fʹ) were excluded from analyses due to 301 

dependency on distance from leaf to LIFT. For continuous predictor variables, a spline fit 302 

with two knots was used to fit the data. Model selection for each response variable was based 303 

upon the greatest deviance explained. The best models for each response variable were for 304 

the ∆ values for each response variable and the predictors; light event length, time since last 305 

light event, location and either ∆R685 or ∆PAR. Given the strong co-dependency between 306 

∆PAR and ∆ETR, both models are presented. 307 

RESULTS  308 

Effect of leaf angular orientation on LIFT/FRR measurements 309 

Changes in leaf angle away from perpendicular to the LIFT measurement beam 310 

resulted in sharp decreases in raw fluorescence parameters (Fʹ, Fv and Fʹm) (Fig. 3A), with the 311 

same trend observed for both adaxial and abaxial leaf surfaces. In contrast, photosynthetic 312 

parameters based on ratios, such as ΦII, were found to be relatively insensitive to changes in 313 

leaf angle (Fig. 3B). ΦII measurements were found to be maintained at angles less than 40° 314 

for adaxial leaf surfaces. For abaxial leaf surfaces, ΦII slowly increases by ~20% at leaf 315 

angles from 90° to 180°.  316 
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Leaf PAR approximation using reflectance at 685 nm 317 

The possibility of using R685 as a proxy for leaf PAR was assessed using a series of 318 

light response curves (0 to 1000 µmol photons·m
-2

·s
-1

) on leaves varying in total chlorophyll 319 

content within and between species (Table 1).  320 

LIFT R685 measurements were linearly related to leaf PAR measured at the leaf 321 

surface in all species (R
2
 > 0.9). However, the determined relationships were found to be both 322 

species and chlorophyll content dependent (Fig. 4A, B and C). High chlorophyll (181.2 ± 323 

1.5 g·cm
-1

) and low chlorophyll groups (36.5 ± 1.7 g·cm
-1

) of equal sized avocado leaves 324 

provided two distinct linear relationships (R
2
 > 0.9) (Fig. 4C), with the low chlorophyll group 325 

exhibiting a mean increase in R685 of 40 ± 11% relative to the high chlorophyll group. 326 

Overall, the plants formed three general linear trends: high reflectance (A. subcinereus, E. 327 

globoidea and L. longifolia), medium reflectance (A. smithii, A. nidus, P. americana [low 328 

chlorophyll] and P. elegans) and low reflectance (F. macrophylla, M. indica and 329 

P. americana [high chlorophyll]) (Fig. 4D). Mean R685 measurements for the medium and 330 

high reflectance groups correspond with increasing SPAD measurements (36.2 ± 10.7 and 331 

48.4 ± 3.7, respectively). This is, however, not the case of the low reflectance group which 332 

possessed the highest mean SPAD measurement (59.8 ± 1.8). We attempted to use R685 as an 333 

indicator of leaf PAR for in vivo monitoring of light fluctuations, but the relationship 334 

between R685 and leaf PAR was found to vary throughout the day and also just before and 335 

after light fluctuations (Fig. 5). 336 

Changes in photosynthetic parameters during dynamic light fluctuations 337 

The dynamic responses of photosynthetic parameters in outer canopy leaves of 338 

avocado were dependent on the frequency, duration, light intensity and time of day. Time of 339 

day was not examined in GAMs due to differences in light exposure between ERC and 340 

atrium light environments. However, differences with time of day were evident in ERC 341 
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measurements, which will be examined here. Initially it was convenient to characterize these 342 

responses in the highly reproducible sunlight environment of the atrium in the School of 343 

Biological Sciences, UOW. Two sustained light events (SL; ~45 min) and four successive 344 

brief light events (BL; ~10 min) all of ~500 μmol photons·m
-2

·s
-1

 were superimposed on the 345 

background of a diffuse shade light (~50 μmol·photons·m
-2

·s
-1

) growth environment (Fig. 6).   346 

In the shade, little energy was directed to ΦNO, with ~70:30% partitioned between ΦII 347 

and ΦNO (Fig. 6B).  A ~10-fold increase in PAR over ~2 min (Fig. 6A) produced a transient 348 

overshoot in ETR accompanied by redistribution in energy partitioning as ~50 % of ΦII was 349 

dissipated by a two phase increase in ΦNPQ. The latter was accompanied by a transient near 350 

doubling in ΦNO. Photosynthetic ETR settled to a more noisy steady state (~65 μmol 351 

electrons·m
-2

·s
-1

) that responded to small perturbations in PAR (Fig. 6A). After the ~5 min 352 

shade event (Fig. 6A) that saw rapid redistribution of energy from ΦNPQ back to ΦII, the 353 

second prolonged SL event resulted in a larger initial transient overshoot in ETR. 354 

Interestingly, ΦNPQ was immediately re-engaged to a similar steady state, with a smaller 355 

transient increase in ΦNO. Partitioning to ΦII increased slowly as ΦNPQ declined (Fig. 6B), 356 

with both events tracking a small decline in PAR (Fig. 6A).  357 

Initial responses in the four subsequent BLs, all at approximately the same PAR as the 358 

above prolonged events, were qualitatively and quantitatively similar in terms of transients in 359 

the rate of ETR and return to steady state (Fig. 6A). Moreover, they were also similar with 360 

respect to the small transient in ΦNO as large changes in energy partitioning took place 361 

between ΦII and ΦNPQ (Fig. 6B). Interestingly, ETR increased by ~13% after three successive 362 

BLs as ΦNPQ declined. The passage of the last BL event saw ETR and energy partitioning 363 

between ΦII, ΦNPQ and ΦNO return to initial levels within a few minutes.  364 
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Monitoring of photosynthetic parameters outdoors with LIFT/FRR further expanded 365 

the above observations and it was possible to identify differing dynamic responses to 366 

fluctuating light throughout the diurnal cycle (Fig. 7A). As in the atrium, shading from 367 

structural elements of the plant enclosure generated a reproducible early morning pattern of 368 

seven oscillations in sunlight, but this time at low PAR (from ~50 to ~150 μmol photons·m
-369 

2
·s

-1
 over ~70 min). The sudden increase in PAR from ~50 to 1200 μmol photons·m

-2
·s

-1
, due 370 

to full sun exposure of previously shaded leaves, was accompanied by a brief initial transient 371 

in ETR, settling to a steady state that was similar to the maximum levels attained in the early 372 

low light oscillations. The transition to strong sunlight was also accompanied by a precipitous 373 

decline in energy partitioned to ΦII from about 75% to 10%. After an initial transient increase 374 

in ΦNO more than half of the dissipation was due to ΦNPQ (Fig. 7B). Dynamic decreases in 375 

PAR, due to passing clouds, were reflected in these parameters that drifted slowly towards 376 

the initial morning shade conditions as ETR increased with the afternoon decline in PAR. 377 

After ~7 h of full sunlight (~1200 to 600 μmol photons·m
-2

·s
-1

), late afternoon natural 378 

canopy shade provided ~40 min of highly stochastic BL events. The stronger late afternoon 379 

natural shade BL events produced an approximately 5-fold increase in ETR which peaked at 380 

about twice the ETR in full sunlight (Fig. 7A). Data from the early morning and late 381 

afternoon periods of dynamic PAR are expanded in Fig. 7C, 7D and 7E, 7F, respectively 382 

(note that the ETR and PAR scaling on Fig. 7E and 7F is 3-fold greater than that on Fig. 7C 383 

and 7D). The plants monitored outdoors showed a similar pattern of energy distribution from 384 

06:00 to 07:00 h to that observed from the tree in the atrium at about the same PAR prior to 385 

the first SL event (c.f., Fig. 6A and 6B). In contrast to the strong BL events in the atrium, low 386 

PAR early morning oscillations produced relative small declines in ΦII that scarcely 387 

perturbed ΦNPQ. Clearly, under these conditions ETR proceeds with maximum efficiency 388 

with minimal engagement of photoprotective energy dissipation. Stronger stochastic BL 389 
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events occurring in the late afternoon were of similar PAR to those monitored in the atrium. 390 

Although, under similar conditions of energy partitioning, there was a striking absence of the 391 

reciprocal relationship between ΦII and ΦNPQ observed in the atrium (c.f., Fig. 7F and 6B).  392 

Differentiating photosynthetic responses to sustained and brief light events of differing 393 

PAR intensities 394 

Monitoring of photosynthetic parameters with LIFT/FRR revealed a plethora of reproducible 395 

and reversible patterns in response to abrupt changes in sunlight that invited closer attention. 396 

Before de-convolution of statistical relationships, it is helpful to examine differences in 397 

photosynthetic changes in response to light event length, either sustained light (SL; > 10 min) 398 

or brief light (BL; ≤ 10 min), and light event intensity, either strong (max PAR ≥ 500 μmol 399 

photons·m
-2

·s
-1

) or weak (max PAR < 500 μmol photons·m
-2

·s
-1

). Although, it should be 400 

noted that these groups do not define the exclusive conditions under which the described 401 

photosynthetic behaviours occur, but they describe rather generalised reactions that hold for 402 

most leaves examined within each group. 403 

Strong light, from both BL and SL events, produced photosynthetic changes 404 

dependent on the duration of the light event (Fig. 8). For a strong SL event outdoors (Fig. 8A, 405 

8C), photosynthetic changes were quantitatively similar to that in Fig. 7A, 7B (and to that in 406 

the atrium; Fig. 6A, 6B) but with ~60% higher rates of ETR at ~900 μmol photons·m
-2

·s
-1

 for 407 

~90 min. Initial transient increase in the rate of ETR and ΦNO preceded changes in ΦNPQ by 408 

about 5 min (Fig. 8A, 8C), but otherwise changes in energy partitioning were also 409 

qualitatively similar those in the atrium.  410 

In contrast, different photosynthetic responses were observed during strong BL events 411 

that were faster than the initial increases in the rates of ETR and ΦNO in SL events (Fig. 8B, 412 

8D). For example, in a leaf that had previously been exposed to weak sunlight (~100 μmol 413 
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photons·m
-2

·s
-1

; Fig. 8B), a strong BL event (~1,000 μmol photons·m
-2

·s
-1

; ~2 min.) 414 

produced a markedly different energy partitioning dynamic. The short strong BL event 415 

produced a decline in ΦII, which coincided with an equal drop in ΦNPQ, resulting in a much 416 

amplified ΦNO transient. This photosynthetic response to a short strong BL event in a sun leaf 417 

on a dull day appears to stimulate PSII energy dissipation processes in the same manner as 418 

observed in the initial exposure to a strong SL event in the atrium (Fig. 6B). However, during 419 

the midday BL event the duration of the light event is shorter than the time required for ΦNPQ 420 

engagement. 421 

Sustained as well as brief sunlight exposures on another cloudy day are compared in 422 

Fig. 9. The lower maximum PAR in both events (~220 μmol photons·m
-2

·s
-1

) did not produce 423 

large initial transients in ETR (Fig. 9A) and as expected, much lower rates of ETR were 424 

achieved than in strong PAR events (~50 vs. 125 μmol electrons·m
-2

·s
-1 

c.f., Fig. 9A, 9B vs. 425 

8A, 8B). However, the long (~25 min) weak sunlight event exposed protracted changes in 426 

energy partitioning similar to those in the short strong BL event monitored in another leaf a 427 

month earlier (c.f., Fig. 8C and 8D). Notably, the 1 min BL event with a similar PAR at 428 

midday did not elicit a change in ΦNO (cf., Fig 8D) and the small decline in ΦII was mirrored 429 

in a small increase in ΦNPQ.  430 

Generalized additive model analyses  431 

 To identify generalized relationships between changes in photosynthetic parameters in 432 

response to light event properties, which might be useful for photosynthetic modelling, 433 

generalized additive models were created. Generalised additive models generated for each 434 

photosynthetic response variable consistently showed indicators of leaf irradiance (∆R685 and 435 

∆PAR) as significant predictor variables (P ≤ 0.003**). Exceptions to this were ∆ETR and 436 

ΦNO for models run with ∆R685 (P = 0.266) and ∆PAR (P = 0.065) respectively (Table 2).  437 
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The length of light events was found to be a significant predictor of ∆ΦII, ∆ΦNPQ and 438 

∆ETR when ∆PAR was included in models (P < 0.001). In contrast, light event length was 439 

found to be a significant predictor of only ∆ΦII (P = 0.021) and ∆ETR (P = 0.001) when 440 

∆R685
 
was included in models as an indicator of leaf irradiance. The time since last light event 441 

was a significant predictor of ∆ΦNPQ in models run using both indicator of leaf irradiance 442 

(∆R685; P = 0.004 and ∆PAR; P = 0.002) and a significant predictor of ∆ΦII (P = 0.045) and 443 

∆ΦNO (P = 0.029) in models run with ∆R685 and ∆PAR respectively. Sample location (ERC 444 

or atrium) was found to be a significant predictor of both ∆ΦNPQ (∆R685; P <0.001 and ∆PAR; 445 

P = 0.04) and ∆ΦNO (∆R685; P = 0.004 and ∆PAR; P = 0.028) in models with both ∆R685 and 446 

∆PAR as predictors. 447 

Partial response graphs of each response variable plotted against either ∆PAR or 448 

∆R685 showed the same trends irrespective of using ∆PAR or ∆R685 as an indicator of leaf 449 

irradiance, with the exception of ETR, which showed a positive relationship with increasing 450 

∆PAR and a flat relationship with increasing ∆R685 (see supplementary data Fig. S3 to S10). 451 

The direction of relationships with indicators of leaf irradiance (∆PAR or ∆R685) was as 452 

expected for ∆ETR, ∆ΦII and ∆ΦNPQ. Positive relationships with increasing leaf irradiance 453 

(∆PAR or ∆R685) were identified for ∆ETR and ∆ΦNPQ, while a negative relationship was 454 

identified for ∆ΦII. Positive relationships between ∆ΦNPQ and leaf irradiance showed a 455 

plateau with high levels of leaf irradiance. Interestingly, ∆ΦNO, unlike all other parameters, 456 

showed a flat relationship with low levels of leaf irradiance and a positive relationship with 457 

high levels of leaf irradiance (∆PAR > 400 μmol photons·m
-2

·s
-1 

and ∆R685 > 500 AU). 458 

Additionally, negative relationships were identified between light event length and ∆ΦII and 459 

∆ETR, and time since last light event and ∆ΦNPQ in models using either ∆PAR or ∆R685
 
as an 460 

indicator of leaf irradiance. For models incorporating ∆PAR as a predictor, a positive 461 

relationship was also identified between light event length and ∆ΦNPQ. For sample location, 462 
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light fluctuations measured in the School of Biological Sciences atrium showed lower values 463 

of ∆ΦNO and higher values of ∆ΦNPQ for both indicators of leaf irradiance than measurements 464 

at the ERC. 465 

DISCUSSION 466 

Remote non-invasive and high temporal resolution measurements of photosynthesis 467 

are essential for quantifying photosynthesis under dynamic light conditions. Attempts to 468 

remotely monitor photosynthesis in canopies with actively induced fluorescence approaches 469 

have used either laser PAM (Flexas et al. 2000; Ounis et al. 2001; Flexas et al. 2002) or LIFT 470 

instruments (Ananyev et al. 2005; Pieruschka et al. 2009; Pieruschka et al. 2010; Pieruschka 471 

et al. 2014). Although studies have investigated the effect of leaf shape, orientation and 472 

arrangement on light interception (Cohen et al. 1987; Jordan et al. 1993), no study, to our best 473 

knowledge, has investigated the effect of leaf angularity on remote active fluorescence 474 

measurements, nor a possible use of reflectance at 685 nm as a proxy of leaf PAR. We 475 

addressed both of these issues and utilized LIFT technology for remote near-proximity 476 

measurements of avocado leaf photosynthesis during SL and BL events in vivo.  477 

Effect of leaf angular orientation on LIFT/FRR measurements 478 

Maintaining the natural orientation of leaves in canopies during measurements of 479 

photosynthesis is important for correctly capturing the contribution of individual leaves to net 480 

canopy photosynthesis. We found that LIFT raw fluorescence measurements (e.g. Fʹ, Fʹm) are 481 

sensitive to leaf angle, while ΦII is relatively insensitive, except at very steep angles. The raw 482 

fluorescence changes due to leaf angularity are probably related to elongation of the LIFT 483 

measurement beam, which consequently lowers excitation energies delivered to the leaf 484 

surface and fluorescence returned to the sensor. Although leaf fluorescence emissions are 485 

generally considered to be isotropically emitted from the leaf (Pinto et al. 2017), another 486 
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factor affecting the amplitude of the returned fluorescence signal is the possible non-487 

uniformity of the angular distribution of the emitted fluorescence radiation. Irrespectively, in 488 

the case of ΦII, the decrease in both Fʹ and Fʹm are corrected for by internal ratio of the 489 

calculations. Nevertheless, at steep leaf angles the fluorescence signal becomes very low, 490 

reducing the signal-to-noise ratio below a level required for reliable assessment of ΦII by 491 

LIFT/FRR.  492 

Monitoring of photosynthesis in avocado leaves is aided by availability of large mature 493 

leaves, which often hang perpendicularly relative to the LIFT measuring beam. However, it 494 

might be impossible to ensure that leaves are in optimal angular positions and that 495 

measurements are collected from the adaxial surface in canopies, where leaves are held in 496 

planophile (prevailingly horizontal) angular positions. In accordance with the results from 497 

PAM measurement (Schreiber et al. 1977; Schreiber et al. 1996), our LIFT measurements of 498 

the abaxial leaf surface demonstrated a slight underestimation of ΦII. However, for 499 

photosynthetic monitoring of planophile leaves it is not currently known how light intensity 500 

changes at the leaf adaxial side affect photosynthetic measurements conducted on the abaxial 501 

leaf side. Moreover, rapid leaf movement driven by wind still presents a considerable 502 

challenge to modelling and measurements (Burgess et al. 2016) both in terms of the 503 

frequency needed to capture rapidly changing PAR (Roden et al. 1993) and the observational 504 

uncertainties due to large variations in leaf angle. 505 

Leaf PAR approximation using reflectance at 685 nm 506 

Although accurate estimates of leaf PAR are essential for deriving the actual ETR 507 

(Genty et al. 1989), acquisition of leaf PAR measurements in canopy environments with 508 

traditional PAR sensors is difficult unless the geometries of both sensor and leaf are 509 

constrained. We employed two different sensor arrangements for measurements of leaf PAR, 510 
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both of which presented challenging problems. The use of a single PAR sensor placed in the 511 

centre of the LIFT measurement beam resulted in underestimation of ETRs during the start of 512 

light fluctuations, when illumination was first recorded by a portion of the LIFT measurement 513 

beam and only later by the PAR sensor. This issue was addressed by using two PAR sensors 514 

placed on either side of the LIFT measurement beam. This allowed the averaging of PAR 515 

from both sensors, which compensated the underestimation of ETR during the start of light 516 

fluctuations. However, we observed several cases where light fluctuations travelled over only 517 

a single sensor and where averaging of the two PAR sensors consequently did not match the 518 

expected changes in photosynthetic parameters. In these cases, the change in R685 may 519 

actually better represent changes in photosynthesis. This problem highlights the need for a 520 

reliable method of estimating leaf PAR remotely and within an equally sized measurement 521 

footprint. 522 

As previously shown by Ounis et al. (2001), broad band red leaf reflectance is 523 

strongly correlated with leaf PAR. However, our results show that the gradients of these 524 

relationships are species dependent and strongly influenced by chlorophyll content and the 525 

structure of foliar tissues. We found species dependent relationships could be generalised into 526 

three different relationships (high, medium and low reflectance), which may be potentially 527 

related to the plant growth environment. Leaves collected from plants naturally growing on 528 

the UOW campus were found under different light environments, broadly correlating with the 529 

three generalised reflectance trends. High reflectance trend plants were collected from full 530 

sun exposed conditions, medium reflectance trend plants were found under partially exposed 531 

conditions and low reflectance leaves were collected from the shaded canopies of a large fig 532 

and mango tree. The different gradients in these three generalised trends may be partially 533 

explained by the strong absorbance of 685 nm light by chlorophylls, which is evident in 534 

differences between high and low chlorophyll avocado leaves and partially in leaf SPAD 535 
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measurements. Furthermore it is likely that scattering by species-specific internal leaf 536 

structures and reflection by cuticle properties also influence the gradients of these 537 

relationships.  538 

Our laboratory light response curves showed strong correlations between R685 and leaf 539 

PAR, however, the relationship between PAR and R685 measured in the field varied before 540 

and after light fluctuations, and also over the course of a diurnal cycle. These variations 541 

might be driven by changes in the spectral composition of combined direct and indirect solar 542 

irradiation during a diurnal cycle, and multi-angular anisotropy of leaf reflectance, i.e. 543 

variations in specular and diffuse leaf reflectance depending on actual solar altitude and 544 

zenith. These effects on reflected light estimates of leaf PAR were recognized by Ounis et al. 545 

(2001). However, our measurements show that more work is needed to assess these factors in 546 

order to accurately approximate absolute PAR values from leaf R685 in canopy environments. 547 

To allow for the use of R685 as a proxy for leaf PAR, leaf biochemical and physical 548 

properties may potentially be retrieved from spectral measurements using leaf radiative 549 

transfer models such as PROSPECT (Malenovský et al. 2006), while changes in solar 550 

spectral composition and variations in direct and diffuse irradiance can be modelled for 551 

exposed outer canopy leaves (Emde et al. 2016). However, accounting for changes in the 552 

spectral quality and intensity of light within inner canopies may prove to be too complex, 553 

making use of R685 as a proxy of leaf PAR in the inner canopy unfeasible. 554 

Changes in photosynthetic parameters during dynamic light fluctuations 555 

Our results demonstrate the applicability of the high frequency LIFT protocol for 556 

chlorophyll fluorescence based measurements of photosynthesis during BL and SL events in 557 

avocado leaves, complementing the application of this technique to the ground truthing of 558 

solar induced fluorescence (Wyber et al. 2017). The time resolution of such measurements 559 
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achieved here with LIFT/FRR is ~2 orders of magnitude faster than that achieved to Adams 560 

et al. (1999) in studies of changes in xanthophyll cycle-dependent energy dissipation in two 561 

vines growing in the understorey of an open Eucalyptus forest with PAM. Like these authors, 562 

we sought to partition energy from absorbed PAR into three component processes; 563 

photochemical quenching (ΦII), non-photochemical quenching (ΦNPQ) and still poorly 564 

specified constitutive losses (ΦNO), all monitored by the small fraction of excitation emitted 565 

as fluorescence (Hendrickson et al. 2004; Kramer et al. 2004). 566 

Our measurements with LIFT/FRR during a rapid increase in PAR confirm that induction of 567 

ETR and decline in ΦII is faster than increase in ΦNPQ, and because ΦII + ΦNPQ + ΦNO = 1, 568 

results in strong transients in ΦNO in the first 10 min (Fig. 6). The plethora of “constitutive 569 

loss processes” embraced by ΦNO is rapidly reversible and is mitigated in SL (and in repeated 570 

BL events) by induction of ΦNPQ (Fig. 8C and Fig. 7E, F respectively). While changes in 571 

electron transfer happen very rapidly over seconds, ∆pH-dependent NPQ, linked with the 572 

enzymatic changes in xanthophyll and lutein pigment cycles, occurs over minutes to hours 573 

(García-Plazaola et al. 2007; Demmig-Adams et al. 2012). The transient in ΦNO and ETR 574 

occurred over ~10 min and likely corresponds to the slow induction of ∆pH-dependent NPQ 575 

(Krause et al. 1991; Adams et al. 1999; Maxwell et al. 2000; Müller et al. 2001; Demmig-576 

Adams et al. 2012; Jia et al. 2013). It is important to note that SL events at high PAR produce 577 

high ΦNPQ, presumably associated with de-epoxidation of violaxanthin and lutein epoxide, 578 

leading to accumulation of zeaxanthin and lutein in avocado leaves (Matsubara et al. 2005; 579 

García-Plazaola et al. 2007; Jia et al. 2013). Although ΦNPQ declines in the afternoon, it is 580 

about twice morning levels, and much stronger BL events are not associated with the 581 

transients in ΦNO observed in the morning (Figs. 7E, F). Clearly, ~6 h prior exposure to an 582 

average of >800 μmol photons·m
-2

·s
-1

 sunlight had effectively damped energy partitioning 583 

processes. 584 
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 Complementary declines in ΦII and increases in ΦNO with little engagement of NPQ 585 

were apparent during weak morning BL events (Fig. 7C, D). An unexpected decline in ΦNPQ 586 

associated with strong transient increases in ETR and ΦNO was observed in short strong BL 587 

events in leaves acclimated at > 50 μmol photons m
-2

 s
-1

 (Fig. 8D), as well as in low PAR SL 588 

events on cloudy days (Fig. 9C). This decrease in ΦNPQ may reflect the sensitivity of the LIFT 589 

assay in which the ultra-fast probing of PSII by blue light may maintain a low level of steady 590 

state NPQ. Increases in light from a weak SL or BL event may then potentially increase the 591 

PSI oxidizing potential causing NPQ to drop. However, further investigation of the 592 

mechanisms underpinning these photosynthetic responses is required to confirm this 593 

hypothesis. 594 

Generalized additive model analyses  595 

Generalized additive models were run for each photosynthetic parameter to 596 

understand the importance of various components of light fluctuations on different 597 

photosynthetic processes. We found that more complex models, which also incorporated the 598 

pre-light fluctuation states of photosynthetic parameters, showed no improvement over 599 

simpler models. This suggests that when analysed without respect to the light fluctuation time 600 

of day or sequential order, that the pre-light fluctuation states of photosynthetic parameters 601 

have insignificant influence on photosynthetic changes during the light event. The priming of 602 

leaves by an initial SF has already been well documented (Way et al. 2012) and although it 603 

was not evident in the initial states of photosynthetic parameters, we did observe a priming 604 

effect of the first SL event, each day, in atrium leaves. This priming was evident in a lower 605 

initial ETR and higher ΦNO than in a following SL event of equal intensity and duration (Fig. 606 

6A, 6B), which occurred, presumably, because higher ETR capacity had been induced but 607 

was not expressed in the first SL event. It is likely that this priming effect may be captured in 608 

statistical analyses where light fluctuations are examined with respect to time of day and 609 
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sequential order. Additionally, the significance of time since last light event in GAM analyses 610 

can be seen in the decrease in ΦNPQ during closely spaced BL events (Fig. 6B).  611 

Sample location proved to be a significant predictor of ΔΦNPQ and ΔΦNO, with both 612 

ΔPAR and ΔR685 included as predictors. In both cases, light fluctuations in leaves grown in 613 

the atrium had higher levels of ΔΦNPQ and lower ΔΦNO. In general, light fluctuations in the 614 

atrium reached a maximum PAR of ~700 μmol photons·m
-2

·s
-1 

in contrast to 615 

1200 μmol photons·m
-2

·s
-1

 reached during light events at the ERC. This indicates that for the 616 

same ΔPAR, higher ΔΦNPQ and lower ΔΦNO were achieved for leaves in the atrium. This is 617 

likely a result of differences in leaf age/leaf acclimation. 618 

The direction of changes in ∆ΦII, ∆ΦNPQ and ΔETR matched the expected changes in 619 

ΦII, ΦNPQ and ΔETR under increasing light. The strong relationship between ETR and PAR 620 

was expected, given their co-dependency, but the insignificance of the relationship between 621 

R685 and ΔETR suggests R685, at least in the case of ΔETR prediction, may be a poor proxy 622 

for leaf irradiance compared with on-the-leaf PAR measurements under dynamic light 623 

conditions.  624 

The results of GAM analyses identified highly significant relationships between 625 

photosynthetic measurements and light fluctuation properties that may be useful for 626 

modelling photosynthesis in dynamic outer canopy light environments. However, these trends 627 

represent those from young (~2 year old) re-potted avocado plants, which may have had 628 

some degree of pot binding. Both leaf age and pot binding have been shown to influence leaf 629 

photosynthetic responses (Poorter et al. 2012). Old deep shade leaves in established orchard 630 

trees have been shown to have lower ETRs and NPQ (Matsubara et al. 2012), while pot 631 

binding has been shown to limit leaf photosynthetic rates, through restricted root biomass in 632 

pot bound plants (Poorter et al. 2012). Moreover, while ETR is commonly calculated with the 633 

assumption of equal energy partitioning between PSII and PSI (E = 0.5), measurements of 634 
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sunflecks and other light fluctuations in inner canopies, where far-red enriched diffuse light is 635 

punctuated by specular sunlight, likely represents a situation where the assumption of equal 636 

energy partitioning does not hold. As such, the deployment of LIFT for monitoring of 637 

dynamic light fluctuations in established orchard trees, and the measurement of E during 638 

dynamic light fluctuations is required to determine if the generalised trends identified from 639 

GAM analysis are found in established older plants. 640 

Conclusion 641 

The ability to effectively monitor light fluctuations in canopies is essential for 642 

understanding photosynthetic regulation during SL and BL events in different canopy layers 643 

and for modelling the total productivity of plants (Porcar-Castell et al. 2006). This study 644 

showed that LIFT can be usefully deployed outdoors to perform high time resolved 645 

measurements of photosynthesis in outer canopy leaves in their natural orientation. LIFT was 646 

capable of providing measurements of ΦII that are relatively insensitive to changes in leaf 647 

angular position and to resolve effects of SL and BL events on leaf photosynthesis. It also 648 

showed the potential of leaf reflectance at 685 nm to be used as an indicator of leaf PAR 649 

under conditions of fixed leaf chlorophyll and light quality. For modelling photosynthesis in 650 

canopies, statistically significant relationships between light event properties and 651 

photosynthetic parameter responses were identified from potted avocado plants.  652 

The availability of programmable LED arrays for dynamic light environments in the 653 

laboratory (e.g., Alter et al. 2012) and advances in modelling interactions between plant 654 

architecture and dynamic light environments (e.g., Burgess et al. 2016) undoubtedly will 655 

accelerate our understanding of these processes in future. The time resolution of the 656 

automated remote monitoring of chlorophyll fluorescence with LIFT/FRR is approaching that 657 

achieved decades ago in dynamic light response studies in fixed gas exchange systems. With 658 
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the use of currently available miniature light sensors and the ability to automate leaf 659 

measurements using a motorized tripod, it now is possible to monitor canopy photosynthesis 660 

in mature orchards with precision. Such studies will be the subject of subsequent reports and 661 

potentially will support improved models of canopy photosynthesis and estimates of plant 662 

productivity at larger spatial scales. 663 
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 827 

Fig. 1. LIFT leaf angle measurement setup viewed from a nadir perspective. The blue broken arrow indicates the 828 

measurement beam of the LIFT, perpendicular to the tripod mounted leaf and sample holder. The solid black 829 

line indicates the rotation direction of the leaf and sample holder, where measurements from 0˚ to 80˚ indicate 830 

measurements from the leaf adaxial surface and measurements at 100˚ to 180˚ indicate measurements from the 831 

leaf abaxial surface. 832 

 833 

 834 

 835 

 836 
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 837 

Fig. 2. Leaf photosynthetically active radiation (PAR) measured during two successive light fluctuations. Figure 838 

illustrates the parameters retrieved for each light fluctuation for generalized additive model analysis, where 839 

AUC = the area under PAR intensity curve for a given light fluctuation and initial, maximum and mid refer to 840 

the PAR immediately prior to the light fluctuation, the maximum achieved PAR during a light fluctuation and 841 

the PAR half way through the light fluctuation respectively. ΔPAR refers to the PAR change in during a light 842 

fluctuation as the difference between the initial and the mid light fluctuation PAR. For generalized additive 843 

model analysis the same parameters were retrieved for each measured parameter during each light fluctuation. 844 

 845 
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 849 

 850 

 851 

 852 
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 855 

 856 

Fig. 3. Relationship between avocado leaf adaxial and abaxial LIFT/FRR measurements and changes in leaf 857 

angle. Measurements were performed on avocado leaves (n = 6) positioned 1.0 m from the LIFT instrument. 858 

Leaves were rotated 180˚ degrees relative to the LIFT measuring beam in 10° increments using a motorized 859 

tripod, where replicate LIFT measurements were taken for each angle (n = 6). The leaf angle changes in each 860 

measured parameter were normalised to the maximum to allow direct comparison. Panel A shows raw 861 

fluorescence parameters and panel B shows ΦII. All measurements are means ± SD.  862 

 863 

 864 

 865 

 866 

 867 
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Table 1. Plant species and mean SPAD values ± SD (n = 3) used to assess LIFT-detected R685 as a proxy for leaf 869 

PAR. Leaves were collected from naturally growing plants on the University of Wollongong campus. SPAD 870 

measurements were used to control for chlorophyll content between species replicates. Samples are grouped 871 

based on the measured intensity of R685, where underlined SPAD / chlorophyll contents (Chl) represent the 872 

mean ± SD of all measurements within each group.  873 

Species scientific name Common name SPAD / total Chl (μg.cm-1) 

High reflectance at 685 nm  48.4 ± 3.7  

Alectryon subcinereus (Native Quince) 47.4 ± 3.3 

Eucalyptus globoidea (White stringy bark) 50.9 ± 4.9 

Lomandra longifolia (Spiny-head mat-rush) 46.9 ± 3.0 

Medium reflectance at 685 nm  36.2 ± 10.7 

Acmena smithii (Lilli Pilly) 28.4 ± 2.0 

Asplenium nidus (Bird's-nest fern) 33.0 ± 1.1 

Persea americana (Avocado) low chlorophyll 30.3 ± 2.0 / 36.5 ± 1.7 

Polyscias elegans (Celery wood) 53.2 ± 5.2 

Low reflectance at 685 nm  59.8 ± 1.8 

Ficus macrophylla (Fig tree) 61.5 ± 2.2 

Mangifera indica (Mango) 59.2 ± 1.6 

Persea americana (Avocado) high chlorophyll 58.5 ± 1.5 / 181.2 ± 1.5 
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 874 

 875 

Fig. 4. Relationships between leaf-level PAR and LIFT measured reflected light at 685 nm (R685) for leaves of 8 876 

different plant species. Light response curves were performed on detached leaves with the LIFT instrument at a 877 

fixed distance of 1 m and measuring beam perpendicular to the leaf surface. All measurements are means (n = 3) 878 

± SD with linear fits. Individual relationships derived from triplicate leaf measurements of each species are 879 

shown in panel A, B and C. In panel D, species relationships have been plotted as generalised trends for low 880 

reflectance leaves (P. americana [High chl], F. macrophylla and M. indica), medium reflectance leaves 881 

(A. nidus, A. smithii, P. elegans and P. americana [low chl]) and high reflectance leaves (A. subcinereus, 882 

L. longifolia and E. globoidea).  883 
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 884 

Fig. 5. Relationship between leaf PAR and R685 measured during a single day on an exposed outer canopy 885 

avocado leaf from a plant grown indoors in a glass atrium. During cloud free days the structural beams in the 886 

roof of the atrium cast regularly spaced shadows inducing two sustained light events (SL; ~45 min) and four 887 

brief light events (~10 min). Panel A shows changes in R685 (dotted line) and leaf PAR (solid line) over a full 888 

diurnal cycle and panel B shows changes between 10:00 and 14:00 on the same day (red box in panel A). Panel 889 

C shows the relationships for two sustained light events and a brief light event (SL1, SL2, BL1; red bars in 890 

panel B), where solid symbols show relationships during the initial light event PAR increase (↑) and empty 891 

symbols during the subsequent light event PAR decrease (↓). 892 
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 893 

Fig. 6. Photosynthetic changes in an outer canopy avocado leaf to dynamic changes in sunlight intensity in a 894 

glass atrium. On cloud free days structural roof beams cast regularly spaced shadows (grey bars) creating two 895 

sustained light events (~45 min) and four brief light events (~10 min) of comparable light intensity. Panel A, 896 

incident PAR and ETR estimated from a micro quantum light sensor and LIFT/FRR measurements of 897 

chlorophyll fluorescence monitored at 10 s intervals. Panel B, energy partitioning between three component 898 

photosynthetic processes.   899 
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 900 

Fig. 7. Photosynthetic changes in response to dynamic sunlight fluctuations in an outer canopy leaf of an 901 

avocado plant outdoors at the ERC at different times of the day. Morning light fluctuations are due to shadows 902 

from the shade house framework before sudden exposure to direct sunlight, while evening light fluctuations are 903 

due to natural shade from adjacent vegetation. Panel A, incident PAR and ETR at measured at 10 s intervals, 904 

panel B, energy partitioning between three component photosynthetic processes. Data from early morning and 905 

late afternoon brief light events are shown at expanded scales in panels C, D and  E, F  respectively (red boxes 906 

of panels A and B; N. B. the scale of the latter is three times larger than the former).   907 
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 908 

Fig. 8. Photosynthetic parameters during a midday strong sustained light event (A and C) and a midday brief 909 

light event (B and D) in two different leaves on an avocado plant grown in a shade house at the ERC and 910 

monitored by LIFT/FRR with PAR collected at 10 s intervals.   911 
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 912 

Fig. 9. Photosynthetic parameters during a morning weak sustained light event (A and C) and a midday brief 913 

light event (B and D)  in a leaf of a sun grown avocado plant at the ERC monitored by LIFT/FRR with PAR 914 

collected at 10 s intervals.  915 
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Table 2. Results of general additive models created for the ∆ values of photosynthetic parameters measured 916 

during 85 dynamic light fluctuations on middle to lower avocado leaves using the LIFT instrument. Models 917 

have been run for the ∆ value of each measured response variable and the predictor variables: sustained light or 918 

brief light event length (SL/BL length), time since last sustained light or brief light event (time since last 919 

SL/BL), sample location and either ∆R685 (top) or ∆PAR (bottom). For each model the deviance explained is 920 

given in brackets (dev explained). P values are given for each predictor variable, where significant vectors are 921 

marked by *** = P < 0.001, ** = P ≥ 0.001 & P < 0.01 and * = P ≥ 0.01 & ≤ 0.05.  922 

 Predictor  

 ∆R685 Ln(SL/BL length) Ln (time since last SL/BL) Sample location 

Response (dev explained)     

∆ϕII (0.703) <0.001*** 0.021* 0.045* 0.109 

∆ϕNPQ (0.576) <0.001*** 0.215 0.004** <0.001*** 

∆ϕNO (0.353) 0.003** 0.668 0.092 0.004** 

∆ETR (0.375) 0.266 <0.001*** 0.144 0.229 

 ∆PAR Ln(SL/BL length) Ln (time since last SL/BL) Sample location 

∆ϕII (0.503) <0.001*** <0.001*** 0.077 0.546 

∆ϕNPQ (0.524) <0.001*** <0.001*** 0.002** 0.04* 

∆ϕNO (0.461) 0.065 0.094 0.029* 0.028* 

∆ETR (0.726) <0.001*** <0.001*** 0.376 0.331 
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