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Abstract 

Cost has been traditionally known as a key factor that needs to be considered in the decision 

making process. Recent awareness in environmental problems has highlighted the need for 

considering environmental impacts into the process of making choices. However, far too 

little attention has been paid to reflect the environmental impact and the building cost into 

the decision making process. As such, this study proposed a method that integrates and 

considers the environmental cost and building cost in the structural design process. This 

method takes into account the cost associated with building materials, construction methods 

and amount of embodied carbon emission during the life cycle of buildings. The current 

study analysed the effects of two construction systems (Flat slab and waffle slab) and two 

structural materials (Normal concrete and Ultra-lightweight concrete) on overall costs of a 

typical high rise concrete structure (15-story office building) in Australia (NS11401.1 2014). 

The results show that the office building designed with lightweight construction method 

(waffle slab) and normal concrete (Normal weight) has a lower life cycle cost (50 year 

lifespan) in comparison with the other design alternatives. It was found that an appropriate 

selecting of construction forms and type of concrete can save up to 7% of the cost of material 

consumption, 5% of the total energy consumption expense, and 5% of the CO2-e emissions 

of the building across all five major cities. This study demonstrates a method to quantify the 

potential impact of Ultra-lightweight concrete has on the life cycle cost and carbon emissions 

of commercial buildings. The proposed methodology to assess life cycle cost and 

environmental impact can be used as a supporting tool in selection of efficient construction 

methods and structural materials over the lifetime of building.  

Key word: Life cycle analysis, CO2-e emissions, life cycle cost, Ultra-lightweight concrete. 



1. Introduction  

The construction and building industry is responsible for a large part of the 

environmental burden because the Australian building sector, for example, uses 

almost 20% of Australia’s annual energy consumption and produces 23% of the 

Greenhouse Gases (GHG) (ABCB 2016). This situation will become even more 

critical due to the increasing number of houses (more than 3.3 million) resulting from 

the fast growth of population (NHSC 2011). A reduction in GHG is a vital need for 

Australia because the nation committed to cope with carbon mitigation by 26-28% 

below the 2005 level by 2030 during the Paris UN Climate Conference (DEE 2015). 

These growing pressures for ecological accountability have led to greater efforts to 

address the challenges associated with mitigation of CO2-e emissions in the building 

industry in Australia (DEE 2015; Robati et al. 2017; Yu et al. 2017). Moreover, the 

need to assess the energy performance of buildings has extended from simply 

calculating the energy consumption during the operational phase to assessing their 

impacts over whole life cycle of buildings (Fraile-Garcia et al. 2017; Tian 2013; Tian 

& de Wilde 2011; Zuo et al. 2017). 

Sustainability covers the environmental, social and economic aspects and most 

studies focus on the environmental and economic aspects of buildings by utilising 

Life Cycle Environmental Assessment (LCEA) and Life Cycle Cost Assessment 

(LCCA) (Akbarnezhad & Xiao 2017; Fraile-Garcia et al. 2017; Zuo et al. 2017). 

Indeed, some studies have tried to optimise the structural design of buildings by 

considering their economic and environmental aspects (Cha et al. 2008; Hahn et al. 

2010; Ji et al. 2014; Saling et al. 2002); they have proposed a conceptual framework 

to measure sustainability by selecting the optimal product design and simultaneously 

considering the environmental impact and costs of the products. Some other studies 



have employed quantitative methods to determine the embodied CO2-e emissions 

and cost incurred by selection of structural design alternatives through the lifetime of 

buildings (Ferreiro-Cabello et al. 2016; Fraile-Garcia et al. 2015; Fraile-Garcia et al. 

2016). The results of these studies have shown that the embodied carbon emissions 

and costs of buildings were affected by the selection of structural alternatives (e.g. 

materials used, structural system selected and height of the building) on the decision-

making process.  

Others propose to evaluate the environmental and economic impacts by converting 

embodied CO2-e emissions into a momentary term over various stages of the 

building life cycle (Chou & Yeh 2015; Gu et al. 2008; Hong et al. 2013; Itsubo & 

Inaba 2003; Ji et al. 2014; Kim et al. 2012; Silvestre et al. 2014). Hong et al. (2012) 

proposed to integrate the cost and CO2-e emissions associated with building 

structural design (using different grades of concrete 21-30 MPa), while Chou and 

Yeh (2015) studied the environmental impacts associated with the life cycle of two 

construction methods (prefabrication and cast in place) by focusing on the 

consumption of fuel, electricity, and water. 

Some research studies have previously quantified the effect that the structural 

materials have on the whole life energy performance of buildings (Appleby 2012; 

Bekas et al. 2015; DIIS 2013; Kaziolas et al. 2015); these studies have employed an 

optimisation method to minimise life cycle cost and energy associated with the 

structural design of buildings. The results of these studies have shown that basic 

design decisions about structural elements (type of floor, shape of core servers, 

arrangements of columns, and heights of beams) have a direct impact on the energy 

consumption of buildings. For example, Aye et al. (2012) studied the life cycle 

energy usage for three forms of building construction in Melbourne, Australia; they 



considered an eight-story multi-residential building with three different construction 

systems: modular prefabricated timber, conventional concrete construction, and 

modular prefabricated steel (Aye et al. 2012) and showed that a steel structure caused 

a 50% increase in embodied energy compared to a concrete structure, but the steel 

structure reduced material consumption up to 78% by mass compared to the concrete 

structure. Hajdukiewicz et al. (2015) studied the structural and environmental 

performance of operating a building; they used a monitoring method for educational 

buildings that were mainly built with in situ and precast concrete, and showed there 

was a distinct lag between the outdoor and indoor air temperature in the monitored 

elements. They also pointed out the positive role that Ground Granulated Blast 

furnace Slag (GGBS) had in reducing the internal peak temperatures, and concluded 

by showing that the thermal mass used in the floor systems slowed the flow of heat 

through the elements and caused a temperature lag in the system. 

Previous studies have highlighted the relative impact that decision making has on 

energy consumption, environmental performance, and life cycle cost of buildings, 

but there is still no study which uses every aspect to determine the impact of 

structural design on energy performance, life cycle CO2-e emissions, and life cycle 

costs in an integrated context for commercial buildings. Therefore, this study 

proposes to include the CO2-e emissions of a building structure over its lifetime as an 

environmental cost in order to provide a quantitative value for evaluating the global 

environmental impact made by different building structures in five Australian 

climate zones. 

This study is divided into different parts. The first part is the methodology which 

describes the method used to assess the integrated life cycle and analyse the whole of 

life costs associated with the research parameters. Section 3 describes the 



calculations of CO2-e emissions associated with the building structure, energy 

modelling, and life cycle cost analysis. The results and discussion about the key 

findings associated with the research parameters are summarised in section 4.  

2. Methodology 

Commercial and office buildings are built to last for several decades, but over such a 

long period of time a building utilises a wide range of resources and energy intensive 

processes. Cost effectiveness is a key component of structural design at the initial 

stage of projects, so this study analyses the life cycle cost and environmental impacts 

associated with a typical benchmark office building in Australia. This benchmark 

building is one of four benchmarking buildings proposed by the National standard 

Organization (NSDO) in Australia (NS11401.1 2014).  

Figure 1 summarises all costs associated with a product or project over its lifetime, 

including the concept and definition, design and development, manufacturing and 

installation, operational and maintenance, and the disposal costs (AS/NZ4536 2014). 

This study quantifies the life cycle costs associated with the office building by 

considering alternatives structural materials and forms of construction; the life cycle 

costs include the initial costs, and the operational and maintenance costs (as shown in 

Equation 1). 

���� = ����.� + ����.� + ���
�.�                                        (1)  

LCCA = Life Cycle Cost  
PVCP.C = Present value of capital costs (initial cost)  
PVOP.C = Present value of operational costs (over 50 year lifetime)  
PVRep.C = Present value of replacement costs (over 50 year lifetime)  



 

Figure 1 Life cycle cost of building 

The initial cost included materials and construction expenses; the operational and 

maintenance cost consist of utilities cost and repair costs that occur only every 

several years over a 50 year service life. The costs associated with a feasibility study 

(concept and definition), and the design, development, and discarding (disposal) are 

excluded from the scope of this study. 

The environmental impact associated with the benchmark building was derived in 

terms of CO2-e emissions because they contribute more climate change than the 

other GHGs (methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons and 

sulphur hexafluoride) (IPCC 2014; UNFCCC 2008). The environmental costs 

represent the cost of CO2-e emissions per ton which are derived from the lifetime 

carbon emissions of buildings. Equation 2 is a method for estimating the cost 

associated with CO2-e at each stage of a building’s life. 

�������
 = ����.��� + �����.���                                        (2) 

EIMCO2-e = Environmental impact (CO2-e emissions) costs 
PVIC.CO2 = Present value of initial CO2-e cost 
PVOPC.CO2 = Present value of operational CO2-e costs (over 50 year lifetime) 
 
This comparison framework is used to integrate the life cycle costs and 

environmental impact of several structural design alternatives and then choose the 

best alternatives. The environmental impact costs are estimated from the total GHGs 



emitted over the building lifetime and the present carbon value (as shown in Figure 

2). In this study the total GHGs emitted by the building consist of the state of the 

product, the construction stage, and use stage.   

 

Figure 2 Environmental cost analysis method  

Figure 3 shows how the global assessment framework provides a method to combine 

the life cycle costs (initial costs, and operational and maintenance costs) and 

environmental impact costs (the total equivalent CO2-e emissions cost) over the 

lifetime of the building. This method compares the global costs across alternative 

building designs and delivers an outcome of cost results as a single global assessment 

parameter. This comparison framework integrates the results of life cycle costs and 

the environmental impacts of several structural design alternatives to help select the 

best alternatives.  



 

Figure 3 Global assessment framework 

2.1 Initial cost assessment method  

The initial cost of the building includes the materials, transportation, and 

construction process. The quantities of building materials are from NS11401.1 

(2014), the quantity of concrete and steel reinforcement comes from the detailed 

structural design (shown in Appendix B), and the input data to estimate these costs 

comes from the commonly used Australian construction cost guides and published 

literature (Cordell 2016; Rawlinsons 2016). The base year taken was 2016, and the  

input climate data were classified based on five different climate zones across 

Australia: Darwin (climate zone 1); Brisbane (climate zone 2); Sydney (climate zone 

5); Melbourne (climate zone 6); Canberra (climate zone 7) (NS11401.1 2014). The 

cost of Ultra-lightweight concrete was calculated based on its unique mix design 

(proposed as mixes 32 and 36 in (Robati et al. 2016)), and the relative cost was 

collected from supplier price lists such as Eastchem (2017) (supplier of hollow fly 

ash cenosphere) and Boral (2017) (supplier of other components). A summary of the 

building materials and associated costs and quantities are provided in Table 1. The 

quantities of materials used in the building (items 8 to 16) are derived from NS 

11401.1 (NS11401.1 2014), and the estimated quantities of structural materials 

(concrete and steel reinforcement) for the Flat slab and Waffle slab are based on a 



detailed structural analysis. In terms of structural analysis and design, a detailed 

concrete structure design is considered by following the Australian Standards 

Concrete structures (AS3600 2009). Two main aspects of this code, i.e., the strength 

and serviceability, were taken into the account during the structural design of this 

building. In this study the amount of live load was sourced from the Australian and 

New Zealand standard for imposed actions (AS/NZ1170.0 2002). The live loads for 

office parking, and work rooms are 5kPa and 3 kPa, respectively. The dead load for 

the concrete members was obtained by multiplying the volume of the member with 

the unit weight of concrete. Wind loads on the building were determined in 

accordance with the Australian and New Zealand standard wind actions 

(AS/NZ1170.2 2011). The magnitude of wind pressure on the structure was 

calculated based on height above ground, size, importance, and location. The 

importance level of the building is level 3, due to the consequences of failure based 

on the expected high rate of occupancy and use AS/NZ1170.1 (2002). For ultimate 

limit states and serviceability, the annual probability exceedance came from 

AS/NZ1170.2 (2011), Table 3.1, for designed working life of 50 years in a cyclic 

zone in Australia. To calculate the wind load, Zone D is used to ensure there is 

enough strength in the structure as well as validating the potential of constructing the 

building in other zones. For the loading conditions, a combination of actions is used 

to check the serviceability and strength of the building in accordance with clause 

4.2.1 and 4.2.2 of the AS/NZ1170.2 (2011). The CAD package Etabs, Safe and a 

Microsoft Excel spreadsheet were used to verify the minimum requirements of the 

concrete design code. 

 

 



Table 1 summary of building materials and unit costs 

Building materials 

Materials quantities 
Materials base cost 

Unit 

Construction 
forms 

F.S W.S Cost/unit Canberra Sydney Melbourne Brisbane Darwin 

1 
Concrete on 

Ground (N20) 
m3 250 250 $/m3 192 354 275 275 200 

2 
Suspended 

concrete (N32)* 
m3 2,775 

200
2 

$/m3 285 312 241 231 292 

3 
Suspended 

concrete (N40)* 
m3 124 83 $/m3 265 372 295 304 265 

4 Steel in concrete tonne 411 636 $/tonne 2,350 2,220 2,205 2,205 2,660 

5 Timber formwork m2 36,250 $/m2 138 
equivalent to 261 tonne (12mm 

thickness and 600 kg/m3 density)  

6 Steel formwork m2 11.16 $/m2 130 
equivalent to 11.6 tonne (density:10 

kg/m2) 

7 
Plastic based 

formwork 
Number 218 $/number 269 ------- 

8 Timber battens m2 20.1 $/m2 136 
equivalent to 20.1 tonne (density:2 

kg/m2) 

9 Steel eaves gutter m2 0.21 $/m2 37.4 
equivalent to 0.21 tonne (4.5 mm 
thickness and 0.27 kg/m3 density) 

10 
Steel ridge 

flashing 
m2 0.1 $/m2 37.4 

equivalent to 0.1 tonne (4.5 mm 
thickness and 0.27 kg/m3 density) 

11 Steel fascia m2 0.64 $/m2 37.4 
equivalent to 0.64 tonne (4.5 mm 
thickness and 0.27 kg/m3 density) 

12 Steel downpipe m2 2.25 $/m2 37.4 
equivalent to 2.25 tonne (4.5 mm 
thickness and 0.27 kg/m3 density) 

13 Plasterboard m2 205.92 $/m2 45.89 
equivalent to 205.92 tonne (13 mm 
thickness and 668 kg/m3 density) 

14 
Roof and celling 

insulation 
m2 1.41 $/m2 16.28 

equivalent to 1.41 tonne (90 mm 
thickness and 10 kg/m3 density) 

15 Wall insulation m2 3.57 $/m2 20.23 
equivalent to 3.57 tonne (density:2 

kg/m2) 

16 
Steel doors and 

mechanisms 
m2 20 $/m2 208 ------- 

17 Glazed window m2 ------- $/m2 475 ------- 

F.S: Flat slab; W.S: Waffle slab;  
*The cost associated with Ultra-lightweight concrete (N32 and N40) was 49% higher than normal concrete (the price is shown above). 
-The base materials cost for item 5 to 17 was extracted from NSW (Sydney) database (Cordell 2016) and it was assumed the same for the 
other cities.  

2.2 Operational and maintenance cost assessment method 

The operating costs of the building is based on the energy consumed over a 50 year  

service life, while the operating energy over the life cycle of buildings is calculated 

based on the simulated annual heating and cooling load. The estimated annual energy 

used was multiplied by the relative energy market forecasts up to 2040 (Economics 

2015; Jacobs 2016) and the future method of calculation to extend the estimated 

costs of energy from 2040 to 2066 (a 50 year lifetime). Equation 3 was used to 

determine the present operational costs over a 50 year, although the future costs were 

then discounted by 7% as a nominal per year (Lawania & Biswas 2016).  
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PVOP.cost = Present value of operational costs 
FEC = future energy cost (based on the market forecast and future cost analysis) 
d = discounted rate per year  
n = the appropriate number of years 
 
The present value associated with maintenance (replacement) costs is estimated for 

glazed windows (25 years) and plasterboard (35 years), both of which have a shorter 

lifetime than the building (50 years) (Rauf & Crawford 2012). The construction 

materials in Table 1 have a higher life expectancy than the whole building (50-year), 

and therefore the costs of ongoing repair, replacement, refurbishment, and external 

site development were excluded from this study. 

2.3 Environmental costs estimation method 

The most common category for environmental impact used in life cycle assessment 

is global warming, so this study used CO2-e emissions as a key method for assessing 

the environmental impact of various structural design alternatives. The calculated 

CO2-e emissions at each stage of the designed buildings (production, construction, 

operation and end of life demolition) were included. For the production and 

construction phases, the CO2-e emissions that are associated with manufacturing  and 

transporting the construction materials were estimated. The embodied CO2-e 

emissions associated with construction work, transportation, and final demolition at 

the end of life were taken in this study to be at a level of 1% of the lifetime CO2-e 

emissions (Ruuska & Häkkinen 2015; Sartori & Hestnes 2007). 

During the operational stage, energy conversion results in the release of greenhouse 

gas emissions were estimated by using the national emissions factor proposed by the 

Australian National Greenhouse Accounts (DEE 2016). The emissions factor used to 

convert the consumption of operational energy into CO2-e emissions is a function of 



the electricity purchased and consumed in 2015 (Lawania & Biswas 2016). 

Electricity is a dominant energy source in the benchmark building to provide the 

required cooling load; other energy sources do not contribute to the total energy used 

(Robati et al. 2017). It must be noted that the emissions projections are inherently 

uncertain, and this uncertainty increases into the projected future emissions. Based 

on Australia’s report into emissions projections(DEE 2016), future emissions from 

the combustion of fuels to generate electricity are predicted at a level of 186 Mt CO2-

e emissions in 2030, which is roughly equivalent to 2015 levels. As such, this study 

uses a base year of 2015 to estimate the CO2-e emissions associated with the energy 

usage stage of a building.  

The values related to the embodied CO2-e emissions of materials is extracted from 

the accessible Australian literature and databases (Alcorn 2003; AusLCI 2016; 

Crawford 2011; eTool 2014; Hammond et al. 2011; Moussavi Nadoushani & 

Akbarnezhad 2015; Robati et al. 2016). The mean distance from manufacturing 

companies to the site (the central business district for each city) is measured using 

the Google map tools (Poinssot et al. 2014). In the last stage, the environmental 

impact is converted into costs. The price of CO2-e emissions is based on the Adams 

et al. (2014) method and the Australia Emissions Trading Scheme (Combet 2012) 

with an inflation rate of 3% per year (RBA 2016). Future CO2-e emissions is 

discounted at 7% as a nominal rate per year (Lawania & Biswas 2016). Equation 4 

provides a present value for the costs of CO2-e emissions over the lifetime of the 

buildings.  

����'�
	����	 =� ��()'*+	∗	(��-)"
(�� )"

#$

%&�
                                      (4) 

PVCO2-e = Present value of CO2-e costs 
CPCO2-e = Current CO2-e price 
a = is the expected increase in price per year (inflation rate) 



d = discounted rate per year  
n = the appropriate number of years 
 

2.4 Building Design and Construction 

The system for constructing the proposed 15 story office building is a mid-rise 

concrete structure (NS11401.1 2014); it has a square plan shape with a gross area of 

1000 m2, and consists of twelve 3.30 metre high stories and three floors of parking 

(as shown in Figure 4). The geometry and construction materials are summarised in 

Table 2.  

Table 2 Overall specification for the benchmark building 

Parameter Unit Specification 

Basement dimensions m 31.62 × 31.62 
Number of Stories --- 15 

Concrete slab on ground mm 200 
Concrete suspended slab mm 175 

Average elevation per floor m 3.3 
Total floor Area (including parking, Stairs & 

Verandas) 
m2 15,000 

Total habitable area (external dimensions) m2 8,807.1 
Number of floors above ground level --- 11 

Number of rooms --- 176 

 

Figure 4 Template of 15-storey commercial office building as visualised in 
Design Builder 



The structural system is designed to meet the minimum needed to satisfy the national 

construction code (ABCB 2015; AS3600 2009; AS/NZ1170.0 2002) 

Table 3 Summary of the structural design 

Construction form Flat slab (F.S) Waffle slab (W.S) 
Column span distance (L) 5.27 m 5.27 m 

Slab thickness (D) 200 mm 250 mm 

Concrete quantities 
(m3) 

N20 250 250 

N32 3,005 2,002 

N40 124 124 

Steel quantities (Tonne) 753 679 

Cross section 

  
 

This current study evaluated the possible effects of normal and low-density concrete 

with a higher weight (Flat slab) and lower weight (Waffle slab) office structure when 

the most common (Normal Weight) and novel (ultra-lightweight) concrete materials 

are used. The types of concrete mix designs were extracted from previously 

published journal papers and databases (CCAA 2015; O'Moore & O'Brien 2009; 

Robati et al. 2016; Wu et al. 2015; Yun et al. 2013) (shown in Table 3).  

2.5 Energy Modelling 

To analyse the energy over the lifetime of the project, this office building is modelled 

in DesignBuilder (energy simulation software) so that the effects of alternative 

structural systems on the energy consumption could be assessed. DesignBuilder, a 

user interface for the EnergyPlus dynamic thermal simulation engine requires hourly 

weather files while the required inputs for equipment and occupancy heat gains and 

schedules are extracted from (NS11401.1 2014) and ABCB (2015).  

This study used the Building Code of Australia (BCA) “deemed to satisfy” approach 

to define the envelope construction of this building. The concrete thermal resistance 



and thermal mass, as two of the more prominent aspects of an energy analysis of 

building, are presented in Table 4 below.  

Table 4 Benchmark building physical properties 

Thermal resistance requirements and values and thermal mass values 

Elements 
R-values 

(m2.K/W) 
Item description References 

Ground 

floor 

1.25 
Solid concrete*1 (150 mm, 2400 kg/m3) (ABCB 2015) 

Slabs 

a.1.250 

b.1.81 

c.1.216 

d. 1.627 

Solid concrete (Study parameters) 

a. Flat slab with Normal Weight concrete*1 

b. Flat slab with Ultra-lightweight concrete*2 

c. Waffle slab with Normal Weight concrete*1 

d. Waffle slab with Ultra-lightweight concrete*2 

(ABCB 2015) 

Roof 

a.4.203 

b.4.836 

c.4.169 

d. 4.581 

Solid concrete, (Study parameters) 

a. Flat slab with Normal Weight concrete*1 

b. Flat slab with Ultra-lightweight concrete*2 

c. Waffle slab with Normal Weight concrete*1 

d. Waffle slab with Ultra-lightweight concrete*2 

(ABCB 2015) 

Wall 
3.42 

2. 125 mm minimum solid reinforced concrete*1 
(ABCB 2015) 

Window 
U value was taken as 5.80 with SHG=0.81 for all climates (Daly et al. 2014; Guan 

2009) 

 
*1 Normal Weight 

concrete 

*2Ultra-lightweight 

concrete 

 

 

Grade (MPa) 40(a) 32(b) 20(c) 40(a) 32(b) 

(CCAA 2015; Robati et 

al. 2016) 

Density (Kg/m3) 2393 2470 1744 1400 1164 

Thermal conductivity(W/mK) 1.96 2.10 1.18 0.31 0.28 

Specific heat (kJ/(kg.k)) 0.88 0.88 0.88 0.88 0.88 

a. Grade N40 used in the vertical structural elements such as columns and shear walls. 

b. Grade N32 used in the slabs (Waffle and Flat). 

c. Grade N23 used in the other concrete element (staircase). 

 

The internal energy loads in the office building form a large portion of energy usage 

and are significant input parameters in the energy analysis. Table 5 summarises the 

assumptions made to analyse the energy of the benchmark building. The schedules 

associated with the building are extracted from ABCB (2015). 

  



Table 5 Benchmark building simulation assumption 

Parameters 
Key variables References 

Lighting power density and schedule 9 (W/m2) (ABCB 2015) 
Occupancy density and schedule 10 (m2/person) (ABCB 2015) 

Equipment load and schedule 15 (W/m2) (ABCB 2015) 
Domestic hot water 0.4 (L/m2) (ABCB 2015) 

Infiltration 0.28 (ACH) (Egan 2011) 
Ventilation requirements and schedule 10 (L/s/person)  

HVAC set point 18-26 °C (ABCB 2015) 

HVAC 
Design builder 
Simple HVAC, 

Auto size 
(Daly et al. 2014) 

 

The results of modelling the benchmark building are shown in terms of total energy 

usage across different design alternatives. Here the total energy consumption is 

compared with national and states average energy usage to ensure that the predicted 

energy consumption is realistic (Pitt&Sherry 2012), and then, at the final stage, the 

total energy consumption of the benchmark building across four climates is 

converted into the equivalent energy cost and environmental cost (equivalent CO2-e 

emissions). 

3. Results and Discussion 

3.1 Lifetime environmental impacts  

Figure 5 is a comparison between whole of life CO2-e emissions for the benchmark 

office building across the five major climate zones. Note that the region dominated 

by heat such as Darwin has higher CO2-e emissions than the colder climate zones 

(Canberra and Melbourne) due to the high cooling load during the operational phase 

of the building in the hot climate where total CO2-e emissions are much higher than 

cold climates. Moreover, CO2-e emissions associated with these buildings reveal that 

Ultra-lightweight concrete released more CO2-e emissions than conventional 

concrete, and the heavier building with Ultra-lightweight concrete (200.low) 

produced highest carbon dioxide emissions (CO2-e/m2) across all five major cities. 



The NABERS (National Australian Built Environment Rating System) rating tool 

revealed that the environmental impact of these different design alternatives scored 

from 1 star (poor performance) to 3.5 stars (above average performance). The 

buildings located in Darwin and Canberra had the lowest (1 star) and highest (3.5 

star) environmental impact rating, respectively, but more importantly, these ratings 

changed across various design alternatives in some regions; in Melbourne for 

instance, the lighter weight building made from novel concrete had a lower rating 

(2.5 star) than the others, which means that the selection of structural materials and 

the form of construction influences the overall environmental ratings.  

Source of the reference points NABERS (1.5, 2.5, 3 and 3.5 star rating) (Flores 2015) 

 

 

 

 

 

Waffle.low: Lightweight structure (Waffle slab) with Ultra-lightweight concrete; Waffle.normal: Lightweight  structure 

(Waffle slab) with Normal Weight concrete; 200.low: heavyweight structure (200mm Flat slab) with Ultra-lightweight 

concrete; 200.Normal: heavyweight structure (200mm Flat slab) with Normal Weight concrete. 

Figure 5 Annual GHG (CO2-e emission) normalised by net internal area (m2) 

Figure 6 shows the CO2 emissions intensity associated with different phases of life 

cycle for two cities with the highest and lowest amount of CO2-e/m2. The first bar 

shows the CO2-e emissions related to the production phase, the construction phase 

and the end of life (demolition) phase of the building; the second bar shows the CO2-
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e emissions from operational phase of the building over a 50 year lifetime, and the 

last bar is the whole life CO2-e emissions for each alternative design. These results 

reveal how the range of CO2-e emissions for the buildings is influenced by changes 

in the type of concrete and type of construction. For instance, the Lightweight 

structures designed with Ultra-lightweight concrete had higher CO2-e emissions (5% 

in Canberra and 2% in Darwin) than the other design alternatives, whereas the 

Lightweight structure made from Normal weight concrete (Waffle.Normal) has the 

lowest CO2-e emissions across both cities. This trend can be seen in the other three 

main cities (as shown in Appendix A).  

 
*ACT average state CO2 emission (kg/m2) intensity:  

12,140  (BZE 2013; Pitt&Sherry 2012) 

 
*NT  average state CO2 emission (kg/m2) intensity: 
9,421 (BZE 2013; Pitt&Sherry 2012) 

 

Waffle.low: Lightweight structure (Waffle slab) with Ultra-lightweight concrete; Waffle.normal: Lightweight structure 

(Waffle slab) with Normal Weight concrete; 200.low: heavyweight structure (200mm Flat slab) with Ultra-lightweight 

concrete; 200.Normal: heavyweight structure (200mm Flat slab) with Normal Weight concrete. 

Figure 6  Life cycle  CO2 emissions normalised by the gross floor area and 
separated by the type of concrete and method of construction.  

3.2 Present value Environmental costs of buildings 

The environmental life cycle cost includes the total cost associated with CO2-e 

emissions over the whole life (50 years) of the office buildings. This study estimated 
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the CO2-e emissions at the production (peruse), construction, use stage, and end of 

life demolition. The CO2-e emissions of the final phase was considered at a 1% level 

by previous studies (Ruuska & Häkkinen 2015; Sartori & Hestnes 2007). Figure 7 

shows the present environmental life cycle cost for four design scenarios (different 

forms of construction and structural materials), and the present cost of CO2-e 

emissions (Australian dollars) per net internal area.  

Waffle.low: Lightweight structure (Waffle slab) with Ultra-lightweight concrete; Waffle.normal: Lightweight structure 

(Waffle slab) with Normal Weight concrete; 200.low: heavyweight structure (200mm Flat slab) with Ultra-lightweight 

concrete; 200.Normal: heavyweight structure (200mm Flat slab) with Normal Weight concrete. 

Figure 7 Environmental cost of the buildings 

Figure 7 shows that the Lightweight building (Waffle slab) constructed with Ultra-

lightweight concrete has the highest amount of carbon emission costs ($AUD) per 

normalised CO2-e emissions for the net settlement area (Tonne CO2-e/m2) over the 

lifetime of the buildings, while the Waffle slab with Normal weight concrete has the 

lowest carbon emission costs. This shows that Ultra-lightweight concrete can cost up 

to 5% more over the whole of life environmental costs than Normal weight 

(conventional) concrete, which means the type of concrete used is a large part of the 

total CO2-e emissions. For Melbourne, the total carbon cost per m2 (net internal area) 

Canberra Melbourne Sydney Brisbane Darwin

200.low $143.85 $175.77 $171.28 $204.32 $262.32

200.normal $140.33 $171.86 $166.52 $198.82 $260.16

Waffle.low $146.13 $179.45 $173.88 $206.97 $265.42

Waffle.normal $138.88 $170.32 $164.96 $197.50 $259.29
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of the building changed from 170 to 180 ($AUD/ (Tonne CO2/m
2)) when Ultra-

lightweight is used as the main structural material. This change in cost of CO2-e 

emissions also occurs when the heavier building consists of 200mm thick Flat slabs 

(200.normal and 200.low). 

3.3 Life cycle cost analysis 

3.3.1 Capital costs 

This study evaluated the capital costs associated with Flat slab and Waffle slab 

construction methods and Normal and Ultra-lightweight concrete across five regions 

(as shown in Figure 8).  

 

Figure 8 Initial capital costs (construction) of the building 

The results show that the average cost of a Lighter weight structure (Waffle Slab) 

with Normal Weight concrete is less than the heavier structure (Flat slab). For 

example, the initial cost of the building in Melbourne with Waffle slab and Normal 

Weight concrete is 6% lower than the Flat slab with normal concrete (200.normal), 

however, Ultra-lightweight concrete in the structure resulted in higher capital cost in 

all five climate zones. The initial cost of the building with Flat slab with Ultra-

lightweight concrete (200.low) is higher than the cost of the construction systems. As 
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the literature highlights, the availability of supplementary cementitious materials 

used in Ultra-lightweight concrete is limited compared to Normal Weight concrete, 

so the costs are higher (Glavind 2012). For instance, the cost of Ultra-lightweight 

concrete used in this study is affected mainly by the price of Cenosphere (hollow 

particles from the production of fly ash) which is higher than the other concrete 

components (Eastchem 2017). Apart from the cost, there are still obstacles to the use 

of Lightweight and/or Ultra-lightweight concrete, i.e., regulatory, technical, and 

supply chain (Cabeza et al. 2013; Duxson & Provis 2008; Van Deventer et al. 2012). 

There are several research programs currently aiming to remove these obstacles to 

allow for a wider use of Lightweight and/or Ultra-lightweight concretes (Huiskes et 

al. 2016; Yu et al. 2015), so it is worth considering when Ultra-lightweight concrete 

may become more available. 

3.3.2 Operating and maintenance costs of the buildings 

The present values associated with the operating expenses are derived from forecasts 

of energy consumption and energy prices; these simulations were used to determine 

the operational costs over the lifetime of buildings (50 years). The maintenance costs 

are compared to the present value and the cost of  replacing  materials with shorter 

lifespans than buildings (50 years), such as glazed windows (25 years) and 

plasterboard (35 years) (Rauf & Crawford 2012). Figure 9 shows the costs associated 

with Energy consumption and the materials used across five cities in Australia. The 

cost analysis shows that Darwin with its warm winter and hot summer had the 

highest energy consumption, while Melbourne, with its mild temperature had lower 

energy consumption than the other cities; however, the operational costs are much 

higher than the replacement costs over the lifetime of the buildings. The energy 

performance was influenced by the methods of construction (Flat slab and Waffle 



slab) and the types of structural materials (concrete density: Normal Weight and 

Ultra-lightweight). The results show that selecting the right forms of construction 

and type of concrete could save 2.4% of the running costs (during lifetime) for the 

building in Darwin and 5% for the other cities (Brisbane, Sydney, Melbourne, and 

Canberra). The Lightweight office building (Waffle) with Normal Weight concrete 

(Waffle.normal) has lower running costs than the alternatives, whereas the operating 

and replacement costs associated with the analysis reveal a consistently higher 

expenditure for the Waffle slab made from low density concrete (Ultra-lightweight).  

 

Figure 9 Present value of operational and replacement costs of the building 

3.4 Combined life cycle environmental and cost net present value  

Table 6 summarises the whole life cycle cost assessment of the office building across 

five major cities in Australia; these costs are presented as environmental costs and 

life cycle cost (a combination of capital cost, operating costs, and maintenance costs) 

per net internal area. These results indicate that the energy demand at the operational 

phase and capital phase are the highest proportion of costs over the 50 year lifetime 

of the building. The equivalent cost CO2-e emissions from production, construction, 

use, and demolition (end of life) can be up to 5% of the total cost of the buildings 
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Canberra
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Canberra Melbourne Sydney Brisbane Darwin

Waffle.normal $35.02 $32.23 $41.93 $53.62 $84.35

Waffle.low $36.79 $33.92 $44.14 $56.13 $86.21

200.normal $34.99 $32.23 $41.93 $53.56 $84.13

200.low $35.72 $32.85 $42.98 $54.89 $84.59

Present value of operating  & maintenance costs (PV AUD $/m2)



across all cities and design alternatives. The overall cost (LCCA+ Environmental 

cost) of the office building in Sydney ranged from to 4,017 ($ AUD/m2) for the 

Waffle slab with normal concrete (Waffle.normal) to 4,189 ($ AUD/m2) for the Flat 

slab with Ultra-lightweight concrete (200.low).  

Table 6 whole life environmental and life cycle cost assessment of the building  

Location 
Type of 
Building 

PV. Initial 
cost 

PV.Operational 
and 

replacement 
cost 

LCCA 
PV. 

Environmental 
cost 

Total costs 

C
o

m
p

ariso
n
 

(%
) 

($ AUD/m2) ($ AUD/m2) ($ AUD/m2) ($ AUD/m2) ($ AUD/m2) 

M
el

b
o
u

rn
e 200.normal 1,819 1,611 3,431 172 3,603 +2% 

200.low 1,870 1,642 3,512 176 3,688 +5% 

Waffle.normal 1,743 1,612 3,354 170 3,525 ---- 

Waffle.low 1,779 1,696 3,475 180 3,655 +4% 

C
an

b
er

ra
 200.normal 1,830 1,750 3,580 140 3,720 +2% 

200.low 1,853 1,786 3,639 144 3,783 +4% 

Waffle.normal 1,754 1,751 3,505 139 3,644 ---- 

Waffle.low 1,770 1,840 3,610 146 3,756 +3% 

S
y

d
n

ey
 

200.normal 1,836 2,096 3,932 167 4,099 +2% 

200.low 1,868 2,149 4,017 171 4,189 +4% 

Waffle.normal 1,755 2,096 3,852 165 4,017 ---- 

Waffle.low 1,779 2,207 3,986 174 4,160 +4% 

B
ri

sb
an

e 

200.normal 1,817 2,678 4,495 199 4,694 +2% 

200.low 1,870 2,744 4,614 204 4,818 +4% 

Waffle.normal 1,741 2,681 4,423 198 4,620 ---- 

Waffle.low 1,779 2,806 4,585 207 4,792 +4% 

D
ar

w
in

 200.normal 1,841 4,206 6,047 260 6,307 +1% 

200.low 1,864 4,229 6,093 262 6,356 +2% 

Waffle.normal 1,769 4,218 5,987 259 6,246 ---- 

Waffle.low 1,786 4,311 6,096 265 6,362 +2% 
PV: Present value 
Waffle.low: Lightweight structure (Waffle slab) with Ultra-lightweight concrete; Waffle.normal: Lightweight structure (Waffle slab) with 
Normal Weight concrete; 200.low: heavyweight structure (200mm Flat slab) with Ultra-lightweight concrete; 200.Normal: heavyweight 
structure (200mm Flat slab) with Normal Weight concrete. 

 

This data indicates that a Waffle slab with an appropriate type of concrete (Normal 

Weight) can save up to $156 per m2 (average value across all cities) in the total life 

cycle cost of the building across all five major cities, whereas the use Ultra-light 

weight concrete in the Flat slab increased the total costs of the building by almost 3% 

compared to Normal weight (conventional) concrete. Furthermore, the methods of 



construction and the structural materials are more tangible in colder climates that hot 

climates such as Melbourne and Darwin. A comparison between the Waffle slab and 

Flat slab, including Normal weight concrete, reveals that a lightweight structure with 

Normal weight concrete (Waffle.normal) can consistently save up to 2% in the total 

cost of the building, whereas  the total cost associated with buildings constructed 

from Ultra-lightweight concrete across a lightweight structure (Waffle.low) and 

heavyweight structure (200.low) has not changed, and moreover, of the methods of 

construction and structural materials are more tangible in colder climates than hotter 

climates such as Melbourne and Darwin.  

4. Conclusion 

Despite the improvements in reducing CO2-e emissions for building designs, the 

guidance currently available to structural engineers on how to incorporate whole of 

life CO2-e emissions impact in building design is still limited. This study seeks to 

demonstrate how different structural alternatives affect the lifetime energy 

consumption, the materials used, the CO2-e emissions, and the costs in a typical 

office building in Australia. The two main parameters in this study are the method of 

construction (Flat slab and Waffle slab) and the type of concrete (Normal Weight and 

Ultra-lightweight) used as structural materials. Energy consumption figures (based 

on energy simulation results) and material replacement (25 years for glazed windows 

and 35 years for plasterboard) over the building lifespan are used to quantify the 

operational phase cost and CO2-e emissions by focusing on Australian energy prices 

and Australian national emissions factor. 

This study finds that the total life cycle cost of buildings is heavily influenced by the 

selection of structural materials and system of construction, indeed we have shown 

that an appropriate building design can save almost 7% of the cost of material 



consumption, 5% of the total energy consumption expense, and 5% of the CO2-e 

emissions. A Lightweight building with a Waffle slab and Normal density cost less 

than the other buildings (LCCA and environmental costs) across five main climate 

zones; the heavyweight building with a Flat slab and Normal weight concrete is the 

second best design alternative, saving almost 3% in total costs compared to the other 

buildings.       

The analysis of CO2-e emission costs shows that the use phase of the building is 

responsible for most CO2-e emissions, while the other building phase accounts for 

almost 5% of total CO2-e emission. The present value of CO2-e emissions varies 

from 6 to 9.5 $AUD/m2 depending on the type of concrete, method of construction, 

and the climate of the city.  

The operational phase shows that CO2-e emission due to energy consumption is 

strongly influenced by the weight of construction and type of concrete (Normal 

Weight and Ultra-lightweight) used in the building. In general, a Lightweight 

building with Normal density concrete (Waffle.Normal) uses less energy than the 

alternatives, and therefore produces less CO2-e during the operating phase. In 

contrast, the Lightweight structures designed with Ultra-lightweight concrete had 

higher lifetime CO2-e emissions and environmental costs (up to 5.5%) than the other 

design alternatives.  

The results of the study have shown that the Waffle slab with a right type of concrete 

(Normal Weight) can save up to $156 per m2 (average value across all cities) in the 

total life cycle cost of the building across all five cities. 

The findings of this study show that selecting the optimal structural design based on 

a specific stage of building’s life cycle could make it difficult to choose the ideal 

design alternatives. This is why all the stages of life cycle assessment must be 



considered when selecting alternative designs to achieve more environmentally 

friendly buildings.  

The proposed framework provides a method to look beyond the structural system by 

considering not only the life cycle cost but also the life cycle CO2-e emissions impact 

that the design alternatives have over the lifetime of buildings.  

The findings of this study might also be used as a guideline to optimise the 

performance of concrete structures by considering the efficiency of the structural 

materials and construction systems, but further studies must consider the potential 

impact of other structural forms (timber, steel and Post tensioned) on the whole life 

cycle of buildings.  



APPENDIX A: WHOLE LIFETIME CO2-e EMISSION ASSOCIATED WITH 

THE ANALYSIED BUILDINGS 

 

 

Figure A-1 Life cycle  CO2-e emissions normalised by gross floor area and 
separated by type of concrete and construction method- Melbourne 

 

Figure A-2 Life cycle  CO2-e emissions normalised by gross floor area and 
separated by type of concrete and construction method- Canberra 
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Figure A-3 Life cycle  CO2-e emissions normalised by gross floor area and 
separated by type of concrete and construction method- Sydney 

 

Figure A-4 Life cycle  CO2-e emissions normalised by gross floor area and 
separated by type of concrete and construction method- Brisbane 
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 Figure A-5 Life cycle  CO2-e emissions normalised by gross floor area and 
separated by type of concrete and construction method- Darwin 
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APPENDIX B: DETAILED STRUCTURAL DESIGN 

Table B-1 A summary of Flat slab detailed structural design 
Structure details- Flat slab 

Structure elements 

Size of 
element 
(Cross 

section) 
(mm) 

G
rad

e o
f 

co
n

crete 

S
teel 

arran
g

em
en

t 
(C

ro
ss 

sectio
n

) (m
m

) 

N
u

m
b
er o

f 
C

o
lu

m
n

s 
 

Q
u

an
tity

 o
f 

C
o
n

crete (m
3) 

T
o

tal 
C

o
n

crete (m
3) 

Q
u

an
tity

 o
f 

steel (to
n

n
e) 

%
 S

teel 

T
o

tal S
teel 

(to
n

n
e) 

C
o
lu

m
n
 

Level 1 
to 3 

Interior 500×500 

N40 

10 N 32 24 20 

93 

18 3% 

83 

perimeter 350×350 8 N 28 24 10 11 4% 

Level 4 
to 6 

Interior 400×400 10 N 28 24 13 13 4% 

perimeter 325×325 8 N 24 24 8 8 3% 

Level 7 
to 9 

Interior 375×375 10 N 20 24 11 7 2% 

perimeter 300×300 8 N 20 24 7 6 3% 

Level 
10 to 12 

Interior 375×375 8 N 24 24 8 8 3% 

perimeter 300×300 8 N 20 24 5 6 3% 

Level 
13 to 15 

Interior 275×275 6 N 16 24 6 2 3% 

perimeter 250×250 8 N 16 24 5 4 3% 

S
lab

 

Suspended floor with 
drop panel 

200 mm 
(depth) 

N32 

Column strip & 
Mid span: Top-
N12@150 mm; 
Bot- N12@100 
mm (Same for 

both directions)+ 
Drop panel 

(N12@ 300 mm) 

2469 3,000 654 0.56% 654 

Wall 
200 mm 

(thickness) 
N40 

N12@300 mm 
both sides (Top & 

Bottom) 
--- 31 9 4% 9 

Staircase 
15 mm 

(thickness) 
N20 

N12@200 mm 
both directions 

--- 250 7 1% 7 

Table B-2 A summary of Waffle slab detailed structural design.  
Structure details- Waffle Slab 

Structure elements 

Size of 
element 
(Cross 

section) (mm) 

G
rad

e o
f 

co
n

crete 

Steel 
arrange
ment 

(Cross 
section
) (mm) 

N
u

m
b
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f 
C

o
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Q
u

an
tity
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crete (m
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Q
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 o
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steel (to
n

n
e) 

%
 S

teel 

T
o

tal S
teel 

(to
n

n
e) 

C
o
lu

m
n
 

Level 1 
to 3 

Interior 500×500 

N40 

10 N 
32 

24 20 

93 

18 3% 

83 

perimeter 350×350 8 N 28 24 10 11 4% 

Level 4 
to 6 

Interior 400×400 
10 N 
28 

24 13 13 4% 

perimeter 325×325 8 N 24 24 8 8 3% 

Level 7 
to 9 

Interior 375×375 
10 N 
20 

24 11 7 2% 

perimeter 300×300 8 N 20 24 7 6 3% 

Level 
10 to 

12 

Interior 375×375 8 N 24 24 8 8 3% 

perimeter 300×300 8 N 20 24 5 6 3% 

Level 
13 to 

15 

Interior 275×275 6 N 16 24 6 2 3% 

perimeter 250×250 8 N 16 24 5 4 3% 

S
lab

 

Suspended floor 
250 mm (50 

mm thickness) 

N32 

Column strip & 
Mid span: Top-
N16@ 140 mm; 
Bot- 3 N20 for 

each Ribs (Same 
for both 

directions); 
Spacing of Ribs 
every 900 mm 
each direction 

704 

2,002 580 0.21% 580 

Drop panel 3500×324 mm 298 

Sterm 200×300 mm 1,000 

Staircase 
200 mm 

(thickness) 
N40 

N12@300 mm 
both sides (Top 

& Bottom) 
----- 31 9 4% 9 

Staircase 
15 mm 

(thickness) 
N20 

N12@200 mm 
both directions 

----- 250 7 1% 7 
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