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Abstract
Smart surfaces with tunable wettability have aroused much attention in the past few years. However, to obtain
a surface that can reversibly transit between the lotus-leaf-like superhydrophobic isotropic and rice-leaf-like
superhydrophobic anisotropic wettings is still a challenge. This paper, by mimicking microstructures on both
lotus and rice leaves, reports such a surface that is prepared by creating micro/nanostructured arrays on the
shape memory polymer. On the surface, the microstructure shapes can be reversibly changed between the
lotus-leaf-like random state and the rice-leaf-like 1D ordered state. Accordingly, repeated switch between the
superhydrophobic isotropic and anisotropic wettings can be displayed. Research results indicate that the
smart controllability is ascribed to the excellent shape memory effect of the polymer, which endows the
surface with special ability in memorizing different microstructure shapes and wetting properties. Meanwhile,
based on the smart wetting performances, the surface is further used as a rewritable functional platform, on
which various droplet transportation programmes are designed and demonstrated. This work reports a
superhydrophobic surface with switchable isotropic/anisotropic wettings, which not only provides a novel
functional material but also opens a new avenue for application in controlled droplet transportation.
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Smart surfaces with tunable wettability have aroused much attention in the past few years. 

However, to obtain a surface that can reversibly transit between the lotus-leaf-like 

superhydrophobic isotropic and rice-leaf-like superhydrophobic anisotropic wettings is still a 

challenge. In this paper, by mimicking microstructures on both lotus and rice leaves, we 

report such a surface that was prepared by creating micro/nanostructured arrays on the shape 

memory polymer (SMP). On the surface, the microstructure shapes can be reversibly changed 
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between the lotus-leaf-like random state and the rice-leaf-like one dimensional ordered state. 

Accordingly, repeated switch between the superhydrophobic isotropic and anisotropic 

wettings can be displayed. Research results indicate that the smart controllability is ascribed 

to the excellent shape memory effect of the polymer, which endows the surface with special 

ability in memorizing different microstructure shapes and wetting properties. Meanwhile, 

based on the smart wetting performances, the surface was further used as a rewritable 

functional platform, on which various droplet transportation programmes were designed and 

demonstrated. This work reports a superhydrophobic surface with switchable 

isotropic/anisotropic wettings, which not only provides a novel functional material, but also 

opens a new avenue for application in controlled droplet transportation.  

 

1. Introduction 

In nature, many plants and insets have the superhydrophobicity.
[1] 

The most famous example 

is the lotus leaf,
[1c, 1d]

 on which a water droplet has similar high contact angles (CAs) and low 

sliding angles (SAs) in all directions, representing the isotropic wetting. Rice leaf is also 

superhydrophobic, while it displays the anisotropic wetting,
[1c]

 a water droplet rolls more 

easily parallel to the leaf edge compared with the perpendicular direction. Research found that 

different wetting properties are ascribed to different surface microstructures: on the lotus 

leaves, the micro/nanopapillae are randomly distributed, while they are arranged in one-

dimensional order on the rice leaves.
[1c, 2]

 Inspired by these findings, lots of artificial 

superhydrophobic surfaces that imitating the random microstructures on louts leaves with 

isotropic wetting
[3]

 and quasi-1D microstructures on rice leaves with anisotropic wetting,
[4]

 

respectively, have been prepared. However, all these surfaces inspired by single natural 

microstructure can display only a constant isotropic or anisotropic wetting performance. 

Recently, multi-biomimetic strategy is creating fresh ideas in designing artificial materials 

since it can advance new functions beyond the natural biology.
[5]

 For example, learned from 
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lotus leaf and pitcher plants, Huang et al., reported a magnetically responsive micropillars that 

can not only switch between lotus leaf’s superhydrophobic mode and pitcher plant’s slippery 

mode, but also display programmable fog harvesting and transportation ability.
[5a]

 Herein, 

based on similar multi-biomimetic strategy and learned from microstructures on both lotus 

leaf and rice leaf, we designed a surface with dynamically tunable microstructures that can 

change between the lotus-leaf-like random shape and rice-leaf-like quasi-1D groove shape. It 

was found that the surface can not only display lotus-leaf-like superhydrophobic isotropic and 

rice-leaf-like anisotropic wettings, but also can realize the smart transition between the two 

states. More importantly, based on the smart wetting performance, the surface can be used as 

a rewritable microstructure-dependent platform, on which different droplet transportation 

programmes can be achieved. To the best of our knowledge, although lots of smart 

superhydrophobic surfaces with switchable wettability have been reported,
[3a, 6-8]

 none of them 

can demonstrate the dynamically switching between the lotus-leaf-like superhydrophobic 

isotropic and rice-leaf-like superhydrophobic anisotropic wettings.  

In the past few years, researches about surface anisotropic wetting property have aroused 

much attention,
[9-12]

 especially for those superhydrophobic surfaces,
[4c-4f, 13-15]

 such as 

hierarchical microgrooves structured polydimethylsiloxane (PDMS),
[4c]

 periodic isosceles 

triangle micro-arrays,
[4d]

 micro-wrinkled wavy surfaces,
[4f]

 etc. which integrated both 

superhydrophobicity and anisotropic wetting have demonstrated excellent controllability for 

water droplets and  been applied in many applications, for example, self-propelled leaping of 

droplet, liquid transportation/separation, and microfluidic devices, etc. It is worthy of noting 

that the anisotropic characteristics including anisotropic degree and anisotropic direction are 

all constant on almost all these surfaces since the chemical/geometrical structures are fixed, 

which significantly limits their applications in more complex smart device. A 

superhydrophobic surface with tunable wettability between the isotropic and anisotropic 

wetting states would be promising to overcome this imperfection and provide many novel 
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applications, for example, as the rewritable platform for designing different anisotropic 

wetting performances, but until now, it is still a challenge. As mentioned above, different 

microstructure arrangements for lotus leaf and rice leaf endow them with isotropic and 

anisotropic wettings, respectively.
[1c]

 Dynamically controlling surface microstructure is 

believed to be an effective way to realize the switch between the isotropic and anisotropic 

wetting. Recently, some efforts have been expended on the elastic PDMS substrates to 

attempt to realize this goal by repeatedly stretching/relaxing or controlling one-direction 

curvature of the substrates.
[16]

 However, only static switch between isotropic and anisotropic 

wettings can be achieved since these surfaces display high adhesion to water droplet (droplet 

cannot roll, which is contrary to the phenomena on the lotus leaf and rice leaf). Meanwhile, 

such elastic surfaces cannot keep the deformed microstructures and related wetting 

performances without the external actions (for instance, mechanical strain), thus limiting their 

applications in some fields where external actions are unsuitable. In this regard, to advance 

new strategies and novel materials for realizing reversible transition between the lotus-leaf-

like superhydrophobic isotropic wetting and rice-leaf-like superhydrophobic anisotropic 

wetting are still urgently needed. 

In this work, inspired by the special wetting performances and microstructure shapes on the 

lotus leaf and rice leaf, we report a surface that can transit reversibly between the 

superhydrophobic isotropic and anisotropic wettings through dynamically controlling the 

microstructure shape to imitate lotus-leaf-like structure and rice-leaf-like structure, 

respectively (Figure 1a). The surface was prepared by creating micro/nanostructured pillars 

on the shape memory polymer (SMP) material through polymerizing the diglycidyl ether of 

bisphenol A type epoxy resin (DGEBA), n-octylamine (OA), and m-xylylenediamine 

(MXDA) on a micro/nanostructured template (Figure S1-S3 in the supporting information). 

The good shape memory effect of the polymer allows the surface to repeatedly memorize and 

display different microstructure shapes, and ultimately resulted in the smart transition 
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between the two wetting states. Furthermore, based on the smart transition ability, we showed 

that the surface can be used as the rewritable platform, on the surface, different water 

transportation programmes can be achieved by designing different grooves structures, which 

successfully overcome the current problem that one surface often can display only a fixed 

anisotropic wetting performance. As we know, although a lot of studies have been focused on 

SMP materials due to their special shape memory ability and related important applications 

including in biomedical devices, smart adhesives, and optical chips,
[17-18]

 studies of the 

superhydrophobic SMP are still rare and have only been reported in very recently for self-

cleaning, water shedding, and so on.
[19]

 This work reports a superhydrophobic surface with 

switchable isotropic/anisotropic wettings, which not only provides a novel functional material, 

but also opens a new avenue for application in controlled droplet transportation.  

2. Results and discussion 

2.1. Morphology and wetting switching 

Figure 1b-d displays the scanning electron microscopy (SEM) images of the as-prepared 

surface at different amplified scales. It can be seen that regular pillars with diameter, spacing 

and height of about 10 μm, 10 μm, and 30 μm, respectively, covering the surface uniformly 

(Figure 1b, 1c). Amplified image demonstrates that nanopits with width of about 520 nm 

dispersing on the pillar tips (Figure 1d). These results indicate that the as-prepared surface has 

similar micro/nanostructures with those on the lotus leaf.
[1c]

 On such a surface with uniform 

micro/nanostructured pillars, a water droplet (4 μL) has the same CAs (151 ± 1.5°) and SAs 

(24 ± 1.2°) measured in arbitrary two vertical directions A and B, respectively (insets in 

Figure 1b, Figure 1h), indicating that the surface has the superhydrophobic isotropy in both 

static and dynamic wettability (herein, results measured in directions A and B just represent 

some examples, in fact, the CA and SA are similar in random directions on the surface). To 

obtain the rice-leaf-like microstructures, silicon templates with microgroove structure was 

used to press the surface (at 120℃ that higher than the glass transition temperature (Tg) of the 
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polymer, Figure S4-S6 in supporting information). Figure 1e shows the SEM image of the 

surface that after pressing by a template with groove width (Wg) of about 260 μm. One can 

clearly see that new microgroove structure can be formed on the surface. From magnified 

images, it can be seen that some pillars remain constant (those unpressed pillars), both the 

morphology and the size are similar with the original states (Figure 1f), while those pressed 

pillars collapse and show uniform deformation and orientation (Figure 1g). Like the rice leaf, 

such a microgroove structured surface displays superhydrophobic anisotropic wetting. As 

shown in Figure 1i, in direction B (CA = 151 ± 2°, SA = 29 ± 1.5°, inset in Figure 1e, 

measured perpendicular to the grooves), both CA and SA are larger than those in direction A 

(CA = 142 ± 1.5°, SA = 20 ± 1.3°, measured parallel to the grooves, inset in Figure 1e). 

Further heating the surface at 120℃ for about 45 s, one can observe that both the surface 

microstructure and the wetting performances return to the initial state (Figure S7 in supporting 

information), and such transition can be repeated several cycles without any deterioration of 

the responsivity (Figure 1j, take the dynamic anisotropy as an example, the static wetting 

changes see supporting information Figure S8). These results indicate that reversible 

transition between the superhydrophobic isotropic and anisotropic wetting states can be 

realized by controlling surface microstructure shape between the lotus-leaf-like structure and 

the rice-leaf-like structure repeatedly. Herein, what needs to be stressed is that the surface 

chemical composition has no apparent change during the variation of surface microstructure 

(Table S1 in supporting information), means that the microstructure variation mainly induces 

the smart wetting performance.  

As mentioned above, it is the surface microstructure variation that leads to the switch of 

the surface wetting performance, to have a better insight into the behaviors of surface 

microstructure, its variation was further in-situ investigated by a confocal microscopy. Figure 

2a and 2b show the 3D confocal microscopy image and corresponding profile picture of the 

as-prepared surface. It can be seen that both the morphology and the size of the pillars are in 
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good agreement with the results derived from the SEM (Figure 1b-d). Atomic force 

microscopy (AFM) image further confirms the presence of nanostructure on the top part of 

pillar and the roughness is about 24.5 nm (Figure 2c). After pressing by the template, as 

shown in Figure 2d (the Wg of template is about 100 μm), some pillars collapse while others 

remain unchanged. From the corresponding profile picture (Figure 2e), it can be seen that the 

average pillar height decreases to about 9.2 μm for those collapsed pillars, and remains 

constant at about 30 μm for those unchanged pillars. Under heating at 100℃, one can observe 

that the average heights for those collapsed pillars increase while for those unchanged pillars 

remain constant (Figure 2f). When the time is increased to about 110 s, both the morphology 

(Figure 2g) and the size (Figure 2h) of the pillars would restore to the original state. In 

addition, we also find that the recovery velocity of the collapsed pillars is dependent on the 

heating temperature, and the needed time for total recovery is decreased with increasing the 

temperature (Figure S9 in supporting information). Moreover, due to its intrinsic 3D net 

crosslinking structures of epoxy SMP, the material has remarkable fatigue durability (Figure 

S10 in supporting information), the microstructure can be recovered even after pressing 

several times (Figure 2i). Accordingly, as shown in Figure 1j, surface wettability can be 

repeatedly switched between the superhydrophobic isotropic and anisotropic wetting states. 

Moreover, the smart transition can still be observed even after one month, demonstrating a 

good stability of our surface. 

To obtain a surface has the most remarkable superhydrophobic anisotropic wetting 

performance, arrays of pillars with different spacing, height, and Wg were investigated. Figure 

3a shows the results of CAs and SAs on 30 μm height pillars with spacing of 5 μm, 10 μm, 20 

μm, and 30 μm, respectively (before pressing and without groove structures). One can observe 

that water droplets can roll on all these surfaces with high CAs (higher than 150°). Herein, 

only arrays with spacing of 10 μm was chosen to introduce groove structure since other 

surfaces have unrecoverable microstructure or would lose the superhydrophobicity after 
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pressing by the template (Figure S11-S13 in supporting information). Figure 3b-f display the 

relationship between the CAs/SAs and the Wg on pillars with different heights (10 μm, 20 μm, 

and 30 μm, more information sees Figure S14 in supporting information). When the pillar 

height is too low (10 μm), only static anisotropic wetting can be observed because the surface 

superhydrophobicity would disappear after introduction of microgroove structure (droplets be 

pinned in directions both parallel and perpendicular to the grooves, Figure 3b, SA = 90° 

means that droplet is pinned on the surface). When the pillar height is increased to 20 μm, the 

surfaces can remain the superhydrophobicity when the Wg ≤ 220 μm (Figure 3c). However, 

on these pillars, the difference values for CA (ΔCA) and SA (ΔSA) between two investigation 

directions (perpendicular and parallel to the grooves) are too small, means that the wetting 

anisotropy is inconspicuous (Figure 3c, 3d). Further increasing the pillar height to 30 μm, we 

can find that surface can keep the superhydrophobicity even when then Wg is as large as 260 

μm (Figure 3e, when Wg ＞260 μm, surface would lose the superhydrophobicity in static 

wettability, CAs in both directions parallel and perpendicular to grooves would less than 

150°). More importantly, the increase of Wg can effectively increase the wetting anisotropy. 

On such a surface (pillar height of 30 μm, Wg = 260 μm), the ΔCA and ΔSA are 9° and 9°, 

respectively (Figure 3e, 3f), which is similar with the wetting performance on the rice 

leaf.
[4c,13e]

 From the above comparison and analysis, two rules can be deduced. Firstly, high 

pillars can help the surface remain the superhydrophobicity after introduction of 

microgrooves; secondly, large Wg is in favor of the increase of wetting anisotropy (more 

discussion see supporting information).
 [4c]

 In this work, the surface composed of pillars with 

height of 30 μm and Wg of 260 μm has the best superhydrophobic anisotropy.  

2.2. Mechanism of the smart wettability 

From the above, it can be seen that good controllability of surface microstructure 

(transition between lotus-leaf-like and rice-leaf-like structure shapes) and suitable 

microstructure sizes (including pillar height and Wg) are important for the smart wetting 
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performances, which can be explained as follows. The tunable microstructure can be ascribed 

to the good shape memory effect of the polymer, which can memorize and display various 

microstructure shapes (Figure S15 in supporting information).
[20]

 Briefly, the lotus-leaf-like 

micro/nanostructured pillars on the as-prepared surface are the permanent shape (Figure 4a), 

the molecular chains adopt conformation with the highest entropy and in the 

thermodynamically stable state (Figure 4g).
[21]

 When the surface is heated above the Tg, the 

molecular chains mobility is activated, and the polymer becomes soft (Figure 4b). In this 

situation, when a template with groove structure is used to press the surface, those pillars be 

pressed would collapse while others keep the pristine state (Figure 4c). It is worthy of noting 

that during this process, the crosslinking network formed during the polymerization between 

DGEBA, OA, and MXDA can effectively prohibit the long-rang chain slippage, which can 

cause the change of the chain conformation and realize the entropy trapping.
[21]

 As a result, 

those collapsed pillars changes into a low entropy state (Figure 4h), and such a state can be 

kept after further cooling the surface under the external force below the Tg because of the 

freeze of the molecular chain segments (the undeformed pillars would return to the initial 

thermodynamically stable state), finally forming the groove structure on the surface (Figure 

4d). Upon reheating the surface above the Tg without external load, all the molecular chains 

mobility is re-activated (Figure 4e). For those undeformed pillars, the molecular chain 

configuration keeps constant, while for those deformed pillars, the thermodynamically 

favorable tendency for increasing entropy allows the molecular configuration to change back 

to its permanent configuration, and collapsed pillars would be recovered (Figure 4f). After 

further cooling to the room temperature, the surface microstructure would restore to the initial 

lotus-leaf-like shape. Therefore, as shown in Figure 2i, surface microstructure can be 

repeatedly controlled between the lotus-leaf-like structure and rice-leaf-like structure through 

cycled pressing/recovering processes. 
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Based on the above explanation, it would be easy to understand the variation of surface 

microstructure between the lotus-leaf-like and the rice-leaf-like structure shapes. It is well 

known that different microstructures can lead to different wetting performances.
[1c] 

On the 

original surface, a regular arrangement of  the micro/nanostructured pillars can be observed 

under the water droplet (Figure 4i, the micro/nanostructure can help to trap air and lead to the 

surface superhydrophobicity
[22]

, more discussion about the superhydrophobicity see 

supporting information). When a water droplet is wetting and rolling along two arbitrary 

vertical directions on the surface (Figure 4j and 4l), the energy barriers needed to be overcame 

are similar (Figure 4k and 4m, the similar energy barrier is due to the same widths of gaps that 

the droplet needs to jump across), 
[1c, 2, 23] 

and the length/continuity of three-phase contact line 

(TCL) are also alike (Figure 4i)
[12b]

. Therefore, as shown in Figure 1h, the water droplet has 

the same CA and SA in the two vertical directions and the surface shows the lotus-leaf-like 

superhydrophobic isotropic wetting. Herein, what needs to be stressed is that two vertical 

directions presented in Figure 4i just represent some examples. In fact, the surface shows the 

superhydrophobic isotropic wettability in random directions since the energy barriers are 

approximate between each other in all directions (Figure S17 and related discussion in 

supporting information). After introduction of the microgrooves, the grooves can squeeze/pin 

and stretch the droplet in directions viewed parallel and perpendicular to the grooves, 

respectively.
 [11d]

 As a result, the CA measured perpendicular to the grooves is larger than that 

measured parallel to grooves (Figure 1i). Meanwhile, it can be found that different from the 

direction A (measured direction parallel to the grooves, Figure 4n), much larger gaps are 

present in direction B (measured direction perpendicular to the grooves, Figure 4n). As 

reported,
[23]

 in composite Cassie wetting state, larger gaps can offer larger energy barrier. 

When a droplet is rolling in direction A (along the grooves), it only needs to jump across the 

small valleys between pillars (Figure 4o) with low energy barrier (Figure 4p), and the TCL is 

relative continuous (Figure 4n). When the droplet is rolling in direction B (perpendicular to 
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the grooves), compared with direction A, in addition to the small valleys between pillars, it 

also needs to jump across big groove gaps with higher energy barrier (Figure 4q and 4r), and 

the TCL would be more discontinuous (Figure 4n). Therefore, similar as that on the rice leaf 

and as shown in Figure 1i, the SA is higher in direction perpendicular to grooves than that 

parallel to grooves because the TCL is more discontinuous in the perpendicular direction due 

to higher wetting/dewetting energy barrier.
[4f,12b]

 Noticeably, to obtain remarkable 

superhydrophobic anisotropic wetting, suitable structure sizes including pillar height and Wg 

are also important. On surfaces with short pillars, after introduction of microgroove, such 

shorts pillars cannot withstand the droplet and impede the water wetting the gaps due to the 

decrease of the upward Laplace force (Figure S18a in supporting information).
[12b, 24]

 

Therefore, as shown in Figure 3b, surface with pillar height 10 μm would lose the 

superhydrophobicity after introducing the groove structure. Furthermore, Wg is also 

significant, as the Wg is too small, it cannot provide effect energy barrier to cause the 

anisotropy (Figure S18b in supporting information), while when the Wg is too large, the pillar 

height become insufficient to prevent water from wetting the gaps (Figure S18c in supporting 

information). Therefore, as shown in Figure 3c-f, the degree of anisotropy is increased as the 

Wg is increased, while finally lose the superhydrophobicity as the Wg is too large (more 

discussion see supporting information). From the above, it can be seen that the absence or 

presence of groove structures endow the pillar-structured surface with superhydrophobic 

isotropic and anisotropic wettings, respectively. As explained in the above paragraph, the 

groove structures can be introduced and removed repeatedly due to the excellent shape 

memory effect of the polymer, therefore, as shown in Figure 1j, cycled switching between the 

superhydrophobic isotropy and anisotropy can be realized. 

2.3. Application of the surface as a rewritable platform for droplet transportation 

The surface with such a special switchable ability in superhydrophobic isotropic and 

anisotropic wettings can be potentially used in many applications, such as in microdroplet-
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related functional chip.
[25]

 Recently, such superhydrophobic chips have aroused much 

attention due to their wide applications in microreaction and cell adhesion/transfection. 

During these applications, realization the controllable droplet transportation is very important, 

and design anisotropic wetting on the surface is a common way to obtain such controllable 

transportation chips.
[26] 

However, almost all present transportation chips, especially those with 

microstructure-dependent anisotropic wettability, can demonstrate only a single transportation 

programme and often are difficult be redesigned since the surface microstructures often are 

static. It is worthy of noting that our surface can be used as a rewritable platform, on which, 

various droplet transportation programmes can be achieved. As a demonstration, we designed 

groove structures on the bottom half of our surface through pressing with the groove 

structured template, and then investigated the water droplets transportation properties as a 

water droplet was rolling from top to bottom on the surface (the surface is tilted at about 25°). 

As shown in Figure 5, groove structures (Wg = 260 μm) with various directions can be created 

on our surface through repeatedly pressing/recovering processes. When the groove structure is 

designed in the horizontal direction (Figure 5a), a water droplet (about 10 μL, dyed with 

methylene blue for clearly observation) can roll in the region without groove structure (this 

regions shows superhydrophobic isotropy) and be pinned as it reaches the region with groove 

structures (this regions shows superhydrophobic anisotropy). (Figure 5a1-a4). As the groove 

direction is changed into vertical direction (Figure 5b), lean to the left (Figure 5c), and lean to 

the right (Figure 5d), respectively, it can be seen that when the droplet gets to the regions with 

groove structures, transportation directions can be easily changed along the groove directions 

(vertical: Figure 5b1-b4; lean to the left: Figure 5c1-c4; leant to the right: Figure 5d1-d4), 

demonstrating excellent controllability for droplet transportation. It is well known that surface 

adhesion is the key factor that determines the dynamical property of a droplet on the 

surface,
[27]

 and different sliding properties as described above can be ascribed to the effect of 

the adhesion anisotropy.
[2, 11a, 12c]

 As already reported,
 
groove structured surfaces have such 
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adhesion anisotropy, they display high/low water adhesions in directions that 

perpendicular/parallel to the grooves, respectively.
 [2]

 The adhesion difference in different 

directions can effectively prevent the water droplet from rolling in the high adhesive direction 

and restrict it to slide along the low adhesive direction.
[ 26a]

 Therefore, as shown in Figure 5, 

the sliding water droplets could be pinned or turned along the groove direction as they 

reached the groove structured regions. From the above, it can be concluded that based on our 

surface, different droplet transportation plans can be achieved due to the particular shape 

memory microstructure and switchable superhydrophobic isotropic and anisotropic wettability. 

Furthermore, it needs to be stressed that droplet transportation just represents one function, it 

is believed that the surface with such smart ability can be easily extended to other 

microstructure-dependent functional application, such as optics, friction, and energy transfer. 

3. Conclusions 

In conclusion, a smart superhydrophobic surface with shape memory 

micro/nanostructure is reported, on which the surface microstructure can be controlled 

reversibly between the lotus-leaf-like structure and the rice-leaf-like structure, accordingly, 

the wetting performances can be switched reversibly between the superhydrophobic isotropic 

and anisotropic states. The smart controllability is ascribed to the good shape memory effect 

at micro/nanoscale of the polymer, which can result in different microstructure shapes and 

solid/liquid wettings. Furthermore, based on the special switchable ability, the novel 

application of the surface as a rewritable platform for controllable droplet transportation was 

also demonstrated. This work advances a strategy to realize the dynamic control of the surface 

microstructure based on the shape memory effect of SMP, and firstly reports a surface that 

can switch reversibly between the lotus-leaf-like superhydrophobic isotropic wetting state and 

the rice-leaf-like superhydrophobic anisotropic wetting state. Given the smart wetting 

performance on the surface, it is believed to be potentially used in many other applications, 

such as bioseparation, and the microfluidic device. Meanwhile, the concept can easy be 
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extended to other SMPs with different external stimulus, for instance, light, magnetic, and 

electric. 

4. Experimental Section 

Fabrication of the surface: The hierarchical structured superhydrophobic SMP surfaces were 

prepared by the replica-molding method. The hierarchical structured silicon template was 

firstly prepared by combing the photolithography and chemical etching process. After that, 

PDMS mold was obtained by replicating the rough silicon substrate. Finally, 

superhydrophobic SMP surface was prepared through the replication process on the PDMS 

mold. In detail, Contact lithographic masks were constructed by Microelectronics R&D 

Center, the Chinese Academy of Sciences. A KARL SUSS MA6 (Germany) instrument was 

used to transfer the patterns of masks onto silicon wafers by a photolithographic method. A 

deep-etching process was completed using an STSICP ASE (UK) instrument. Thus rough 

silicon wafers were prepared on which geometrical structures of patterned square pillars were 

introduced. To obtain the hierarchical micro/nanostructure, a metal-assisted chemical etching 

process was used to introduce nanostructure onto the pillars. Pillar structured silicon substrate 

was firstly treated with piranha solution (mixture of H2SO4 (98%) and H2O2 (30%) at 

V/V=3:1) at 80℃ for 1 h, and then coated by the Ti (2 nm) and Au (5 nm) layers in sequence. 

After that, the substrate was immersed into the etching solution (1:1 HF (40%) and H2O2 

(30%)) for about 30 s, and then treated with aquaregia (1:3 volume mixture of 69% HNO3 and 

37% HCl) for 1 min to remove the remainder Au. Finally, the substrate was taken out, washed 

with abundant pure water and dried with N2.  

The hierarchical structured silicon substrate was firstly modified with FAS 

(Heptadecafluorodecyltrimethoxysilane, shin-Etsu chemical Co., Ltd., Japan), which was 

conducted in an evacuated desiccator for one night under the vacuum condition using 40 μL 

of FAS.
[18d] 

After that, the PDMS precursors were poured over the FAS modified structured 

silicon substrate. After degassing for about 15 min under vacuum, the prepolymer mixture 
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was cured at 65℃ for 4 h and the PDMS mold can be obtained after peeling off carefully 

from the silicon substrate.
 

The prepolymer of SMP was mixed by bisphenol A diglycidyl ether (Bluestar Chemical 

New Materials Co), n-octylamine (J&K Scientific) and m-xylylenediamine (Changsha 

institute of chemical industry) in a molar ratio of 8:2:3. After degassing for 10 min, the SMP 

prepolymer mixture was poured onto a PDMS mould and baked at 60℃ (2 h) and 100℃ (1 h) 

in sequence. Finally, the superhydrophobic SMP with hierarchical micro/nanostructures was 

achieved after carefully peeling. 

Controlling the surface microstructure: To obtain the rice-leaf-like structure on the surface, a 

template with groove structure (Figure S4) was used to press the surface. Detailed process as 

shown in Figure S5. the surface was firstly heated at 120℃ for about 5 min, followed by 

pressing using a pre-cleaned microgroove structured silicon template under a certain pressure 

(Figure S5a-b). Noticeably, to assure that those pillar contact with the concave section of 

template have no deformation, the used template with depth of groove (50 μm) must be larger 

than the height of pillar (30 μm). After pressing, the surface was cooled to temperature under 

the pressure (Figure S5b-c), and then the microgroove structures can be formed on the surface 

after demolding (Figure S5d). For restoration to the original state, the deformed surface was 

reheated at 120℃ for a certain time in an oven (Figure S5e), and finally, the microstructures 

would be restored during the process. After cooling to the room temperature, the surface 

microstructure would restore to the initial state. 

Characterization: The surface morphologies were measured on an atomic force microscope 

(AFM, Bruker, Dimension Icon) and a field-emission SEM apparatus (HITACHI, SU8010). 

The 3D morphology and corresponding profile curves were recorded on a confocal 

microscope (Olympus, OLS3000). The water CAs and SAs were measured by a contact angle 

measure meter (JC 2000D5, Shanghai Zhongchen Digital Technology Apparatus Co., Ltd). 
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The final values were obtained by averaging five different values from different positions on 

the same surface. The Dynamic Mechanical Analysis (DMA) measurements data were 

obtained with a Mettler SDTA861e analyzer. The data contains storage modulus and loss 

tangent (tanδ) of the specimens. Tensile tests were carried out using a tensile tester (Instron 

5965) to evaluate the mechanical strength of materials. Shape memory properties were 

performed with a TA Q800 dynamic mechanical analyzer (USA). 
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Figure 1. (a) Schematic illustration of the surface microstructure variation between the lotus-

leaf-like and rice-leaf-like structure shapes. (b) SEM images of the as-prepared/recovered 

surface. (c, d) amplified images viewed at tilt angle of about 40° corresponding to (b) at 

different magnified scales. (e) SEM image of the surface after pressing by a groove structured 

silicon template with Wg of about 260 μm, it can be seen that groove structure can be 

produced onto the surface after pressing. (f) and (g) are magnified SEM images viewed at tilt 

angle of about 40° corresponding to the unchanged (red square) and collapsed (yellow square) 

pillars, respectively. (h) and (i) are wetting results (CAs and SAs) on the surface 

corresponding to (b) and (e), respectively. Direction A and B are the measured directions as 

labeled in image (b) and (e). (j) Variation of difference value for SA (ΔSA) between the two 

directions after several consecutive pressing/recovering cycles. From these results, one can 

find that both static and dynamic wetting performances can be controlled reversibly between 

the superhydrophobic isotropy and anisotropy on the surface by tuning the surface 

microstructure. 
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Figure 2. (a), (d), and (g) are the 3D confocal microscopy images for the as-prepared surface, 

after pressing by a groove structured template, and after recovery, respectively. (b), (e), and (h) 

are the profile images corresponding to (a), (d), and (g), respectively. (c) AFM image of one 

pillar tip, confirming the presence of nanostructures. (f) Statistic of average heights of pillars 

under heating at 100℃ for different time. (i) Average pillar height for those pressed pillars 

after several consecutive pressing and recovery cycles. 
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Figure 3. (a) Statistic of CAs and SAs on surfaces with different spacing (all pillars with the 

same height of 30 μm). Dependence of CAs/SAs on the Wg for surfaces with different pillar 

heights: (b) H= 10 μm, (c) and (d) H = 20 μm, (e) and (f) H = 30 μm, respectively. SA = 90° 

means that droplet is pinned on the surface. 
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Figure 4. Schematic illustration of variation of the molecular chain conformation, surface 

microstructure and related solid/liquid contact states. The as-prepared micro/nanostructured 

pillars are the permanent structure shape (a), which contains lots of crosslinking network and 

the conformation of the molecular chains has the highest entropy (g). When the surface is 

heated above Tg and pressed by a groove-structured template (b-c), the crosslinking network 

can prohibit the long-range chain slippage, which can result in the formation of new chain 

conformation with lower entropy (h) and the collapse of some pillars (c). After cooling, the 

deformed shape can be kept due to the freeze of the molecular chain segments (d). Further 

reheating can re-activate the mobility of molecular chains (e) and realize the recovery of 

chains conformation, the surface structure to the original state due to the thermodynamically 

favorable tendency for increasing entropy (f). (i) and (n) are schematic illustration of TCL 

from the top view on surface with and without groove structure, respectively. Direction 

labeled represents the measured direction. On the surface without groove structure, same 

contact model (j, i) and energy barrier (k, m) during water droplets wetting and rolling in two 

vertical directions can be observed, Therefore, the surface shows isotropic wetting 
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performances. On the groove structured surface, much larger gaps are formed in direction 

perpendicular to the grooves (q) than that parallel to the grooves (o), which can offer larger 

energy barrier (p, r)  and result in more discontinuous TCL (n), thus endowing the surface 

with anisotropic wetting.  

 

 

 
Figure 5. Application of the surface as the rewritable platform for controllable droplet 

transportation. (a), (b), (c), (d) are the schematic illustration of different designs of surface 

microstructure on the identical surface, it can be seen that the surface is composed of two 

parts, the upper part has no groove structure and the bottom part has the groove structure. (a1-

d4) are photographs of the same surface after creating with different microgroove structures 

through repeatedly pressing/recovering process and corresponding water transportation 

processes (the color of the droplet is due to the addition of the methylene blue). It can be seen 

that when the groove structure is in the horizontal direction, the water droplet starts roll from 

the upper part to the bottom part, when it reaches the region with groove structure, it would be 

pinned (a1-a4). When the grooves structures are designed in the vertical direction (b1-b4), lean 

to the left direction (c1-c4), and lean to the right direction (d1-d4), respectively, the water 

droplet would roll spontaneously to the corresponding directions as they get to the groove 

regions. These results indicate that the surface can be used as a rewritable platform and 

different transportation programmes can be realized. 
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 A novel surface that can reversibly transit between the superhydrophobic isotropic and 
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functional platform, on which various droplet transportation programmes can be redesigned 

and displayed.  
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Table S1. XPS analysis results of flat and microstructured surface under different conditions 

Sample Atomic concentration(%) 

C O N 

Flat SMP 72.54 26.05 1.41 

Microstructure SMP 73.93 24.18 1.89 

After pressing 74.45 23.51 2.04 

After recovering 73.85 24.46 1.69 

 

From the Table S1, one can observe that the microstructured SMP has the similar chemical 

composition with that on the flat SMP, meanwhile, during the whole variation of surface 

microstructure, the surface chemical composition has no apparent variation. 

 

Diglycidyl ether of bisphenol A type epoxy resin E-51(DGEBA)

n-octylamine (OA) m-xylylenediamine (MXDA)
 

Figure S1. Chemical structures of the SMP prepolymer ingredients. 
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Figure S2. Schematic illustration of preparation process of the lotus-leaf-like hierarchical 

structured superhydrophobic shape memory polymer surface, the detailed process see 

experimental section. 

 

 

50 μm 10 μm

50 μm 5 μm

a) b)

c) d)

 

Figure S3. SEM images of the pillar-structured silicon surfaces before (a, b) and after (c, d) 

chemical etching. (b) and (d) are the magnified images corresponding to (a) and (c), 

respectively. From these pictures, one can find that after chemical etching, nanostructures can 

be produced onto the pillar surfaces. 
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200 μm
 

Figure S4. SEM images of the groove structured template with width and depth of 140 μm 

and 50 μm, respectively. Other templates with different groove widths (100 μm, 180 μm, 220 

μm, 260 μm, 300 μm, 340 μm) and constant depth (50 μm) have similar structure. 

 

Heating and

pressing

Cooling under

pressing

Demolding

Heating

Cooling

Recoverying

a) b) c)

d)e)f)

Lotus-leaf-like structure

Rice-leaf-like structure  

Figure S5. Schematic illustration of the detailed variation process of surface microstructures 

between the lotus-leaf-like structure and the rice-leaf-like structure. 

 

 

Figure S6. Storage modulus and loss tangent (tan δ) as a function of temperature obtained 

from dynamic mechanical analysis. The tanδ peak temperature is 94.3℃ corresponding to the 

glass transition temperature (Tg) of SMP. The drop of storage modulus with 2.61 order of 

magnitude indicate that heating can make the materila to become soft. 
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Figure S7. SEM images of the surface before (a), after pressing by a template with groove 

with width of 260 µm (b), and after recovery (c), respectively. Insets are the magnified image 

of one pillar tip. From these images, it can be seen that surface can memorize different 

microstructure states, after recovery, the collapsed pillars can recover to the initial state, and 

nanostructures can still be observed on pillar tip. 
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Figure S8 Reversible transition between isotropy and anisotropy characterized by the 

difference value of static contact angles in different directions (measured perpendicular and 

parallel to the grooves).  

100 110 120 130
20

40

60

80

100

 

 

T
im

e
 (

s
)

Temperature (℃)
 

Figure S9. Dependence of needed time on temperature for the recovery of collapsed pillars. It 

can be seen that as the heating temperature is increased, the needed time is decreased. 
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Figure S10. Stress-strain curves of SMP. It can be seen that SMP has a high elongation 

(4.14%) at break, demonstrating a good toughness. 

 

250 μm 250 μm 250 μm

a) b) c)

 

Figure S11. SEM images of the surface with spacing of 5 µm before (a), after pressing by the 

groove structured template (b), and after reheating (c). It can be found that on such a surface, 

some pillars cannot recover to the original state after reheating because the pillars can be 

adhered together. 
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Figure S12. SEM images of the surface with spacing of 20 µm before (a), after pressing by 

the groove structured template (b, groove width is about 100 µm), and after reheating (c), 
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respectively. What needs to be stressed is that surface with groove width of 100 µm just 

represents one example, surfaces with other groove widths have the similar controllability of 

the microstructures. (d) Dependence of water contact angles and sliding angles on the width 

of grooves. It can be seen that, on such a surface, microstructure can be controlled at different 

states, however, when the microgrooves were introduced onto the surface, the surface cannot 

display anisotropic wetting (as the groove width is equal or less than 140 µm) or lose the 

superhydrophobicity (as the groove width is larger than 140 µm).  
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Figure S13. SEM images of the surface with spacing of 30 µm before (a), after pressing by 

the groove structured template (b, groove width is about 100 µm), and after reheating (c), 

respectively. What needs to be stressed is that surface with groove width of 100 µm just 

represents one example, surfaces with other groove widths have the similar controllability of 

the microstructures. (d) Dependence of water contact angles and sliding angles on the width 

of grooves. It can be seen that, on such a surface, microstructure can be controlled at different 

states, however, when the microgrooves were introduced onto the surface, the surface would 

lose the superhydrophobicity and only static anisotropy can be observed. 
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Groove width = 220 μm

Groove width = 300 μm

Groove width = 340 μm

 

Figure S14. SEM images of the as-prepared surfaces (arrays with pillar spacing and height of 

10 µm and 30 µm, respectively) before pressing by the microgroove structured templets (the 

left column); after pressing by the templets with different groove width (the middle column); 

and after recovery (the right column). From these images, it can be seen that by adjusting the 

groove width of the template, surfaces with various grooves widths can be obtained. 

Meanwhile, all these surface show excellent shape memory effect. For pillars have height of 

10 µm and 20 µm, similar phenomena can be observed. 
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Figure S15. Shape memory quantitative cycle for SMP. Shape recovery ratio = (ε-εr)/( ε-

εi)×100%. Form the figure, it can be calculated that the shape recovery ratio of the SMP 

material is 98%. 

 

Figure S16. Shape of a water droplet on the flat SMP surface with a contact angle of about 

84°. 

 

Discussion about the superhydrophobicity on the surface. 

To have a better understanding about the surface superhydrophobicity, the flat SMP surface 

with the same chemical composition was also prepared and investigated. As shown in Figure 

S16, the contact angle is about 84° on the flat surface. In this work, as shown in Figure 3a, all 

surfaces prepared with different spacings (5 μm, 10 μm, 20 μm, 30 μm) have the 

superhydrophobicity, and such high hydrophobicity can be explained by the following 

equation: 
[1] 

21 coscos ffc  
                                                     (1) 

Here (θ) and (θc) are the contact angles of the flat SMP surface and the rough SMP surface, 

respectively, f1 and f2 are the fractions of the solid surface and air in contact with water, 

respectively (i.e., f1 + f2 = 1). It is easy to deduce from equation 1 that increasing f2 increases 

θc, that is, the fraction of air in the surface is an important factor in determining the 
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superhydrophobicity of the surface. Herein, θ are 84°.
 
For surfaces spacing of 5 μm, 10 μm, 

20 μm, 30 μm, respectively, θc are 151°, 152°, 154°, and 156°, respectively. According to the 

above equation, f2 are 0.887, 0.894, 0.909, and 0.922, respectively, indicating that as the 

spacing is increased, more air can be trapped under the droplet, thus, the as shown in Figure 

3a, the contact angle is increased, and the present air is high enough to induce the high 

hydrophobicity and even superhydrophobicity. Meanwhile, because f2 is increased as the 

spacing is increased, accordingly, f1 is decreased as the spacing is increased, means that less 

solid/liquid contact area is formed as the spacing is increased. Therefore, as the spacing is 

increased, the sliding angle for droplet is decreased. 
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Figure S17. Schematic illustration of the arrangement of the micro/nanostructured pillars. 

In our work, we find that on the as-prepared surface, superhydrophobic isotropic 

wettability can be observed. The reason can be explained as follows. It is well known that the 

energy barrier is related to the width of the gaps between the pillars.
[2] 

On the as-prepared 

surface, as shown in Figure S17, the smallest gap is in the direction A and B, and the largest 

gap is in direction C. In our work, it can be seen that in direction A and B, the width of the 

gaps are the same, which are 10 μm. In direction C, the width is about 14.14 μm. One can find 

that the difference between the largest gap and the smallest gap is only about 4.14 μm. We 

believe that this difference is too small to cause effective energy barrier difference and 

corresponding anisotropic wettability in different directions, especially on surface with 

micro/nanostructures.
[3]

 Furthermore, our experimental results can also support it, as shown in 
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Figure 3e and 3f, even after introduction of groove structures with Wg = 100 μm, the 

anisotropy is still inconspicuous.  
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Figure S18. Schematic illustration of solid/water contact states: (a) for surfaces with short 

pillars, (b) high pillars with small Wg, (c) high pillars large Wg.  Results indicate that short 

pillars and too large Wg would result in the loss of surface superhydrophobicity, and too small 

Wg cannot provide effective energy barrier. 

 

Discussion about the dependence of the wetting performance on the groove width and 

pillar height on the surfaces. 

In this work, before pressing with groove structured template, on all as-prepared surfaces, 

water droplet can roll with contact angles higher than 150°, means that all these surfaces have 

the superhydrophobicity and the droplets reside in the composite Cassie state.
[1]

 After 

introduction of microgroove structures, the wetting performances would be changed. Figure 

3b shows the variation of water contact angles and sliding angles as a function of groove 

width on 10 μm height pillars. It can be seen that after introduction of microgrooves, the 

surface would lose the superhydrophobicity. This variation can be explained as follows: 

according to previous reports,
[4-7]

 increasing the spacing would result in the decrease of the 

upward Laplace force, and for surface with large distance between pillar, high pillars are 

needed to obtain the superhydrophobic composite state. In this work, the introduction with 
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microgrooves can result big gaps between the pillars, as a result, the pillar height would be 

too small to withstand the droplet (Figure S18a), thus water would enter into the gaps, and the 

surface shows general hydrophobicity. During the wetting process, large solid/liquid contact 

area can be formed, and therefore, droplets cannot roll on the surface even along the 

microgrooves. As mentioned above, high pillars are needed for large gaps to obtain the 

superhydrophobicity. Therefore, as shown in Figure 3c-f, when the pillar height is increased, 

it can be found that for relative small-width grooves (the widths of the grooves less than 220 

μm and 260 μm for pillars with height of 20 μm and 30 μm, respectively. Figure 3c and 3e) 

the surface can keep the superhydrophobicity and water droplet can still roll on the surface. 

While when the large-width grooves were introduced, similar with those surfaces with pillar 

height of 10 μm, the surface would lose the superhydrophobicity and droplet would be pinned 

(Figure S18c). These results indicate that for surfaces with different widths of microgrooves, 

suitable pillar height is needed for the superhydrophobicity. In addition to pillar height, a 

suitable width of groove is also very important for the anisotropic wetting. It is these grooves 

that provide the energy barrier and result in the anisotropic wetting. As shown in Figure S18b, 

when the width of the grooves is too small, there is no apparent difference for energy barriers 

caused by these grooves compared with that caused by small valleys between pillars. In other 

words, the energy barriers that water droplets need to overcome are approximate in both 

directions parallel (the energy barrier resulted from small valley between pillars) and 

perpendicular (the energy barrier resulted from small valley between pillars and grooves) to 

the grooves. Thus, as shown in Figure 3d and 3f, for surface with small width of groove, the 

anisotropic wetting performance is not obvious, and when the width of groove is increased, 

the degree of anisotropy is increased.  
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