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the oxidation kinetics follow a linear trend and the oxide scale consists of two layers after the oxidation in 
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High temperature oxidation of indefinite chill roll material 

under dry and humid atmospheres 

Liang Hao, Zhengyi Jiang*, Zhixin Chen, Dongbin Wei, Xiawei Cheng, Jingwei Zhao, 
Ming Luo, Li Ma, Suzhen Luo and Laizhu Jiang 

ABSTRACT: In this paper, the isothermal oxidation of the indefinite chill (IC) roll was 
investigated by using a thermogravimetric analyser (TGA) from 550 to 700 ℃ under 
dry and humid atmospheres. It was found that the oxidation kinetics followed a 
linear trend, and the oxide scale consists of two layers after the oxidation in dry air 
but three layers in humid air above 600 ℃. In dry air, the graphite was covered by 
the oxide scale above 650 ℃. The water vapor accelerated the oxidation of the 
matrix and the graphite. The graphite was covered by the extension of the oxide 
scale above 600 ℃ in humid air. The as-treated samples were examined with SEM 
and XRD, while the kinetics was based on TGA results.  
Keywords: IC roll, isothermal oxidation, thermogravimetric analyser (TGA) 

1. Introduction 

Hot rolled sheets and strips are primarily intermediate products that are used to 

produce cold rolled sheets and strips. Once the defects occurred in this process, it is 

very difficult to eliminate through the subsequent processes. Rolls with improved 

mechanical properties such as wear resistance, high strength, fracture toughness and 

thermal fatigue are essential for the quality improvement of rolled products and for 

roll durability [1-3]. Three types of roll materials are globally used, namely high 

chromium (Hi-Cr) steel, high speed steel (HSS) and indefinite chill (IC) roll materials. 

Hi-Cr steel, containing up to 18% chromium, has a good resistance to thermal 

oxidation. Nevertheless, sticking defects appeared in the last stages of hot rolling 

process, particular for ferritic stainless steels [4-10]. Studies have shown that the 

sticking problems are improved with the presence of oxide scales on the rolls. This is 

the reason why sticking worsens when Hi-Cr rolls are used, because with 18% Cr, 



 

these steels are highly oxidation resistant. The further evolution was to reduce the 

amount of Cr to less 7% and add Mo, V, W and C to produce HSS. It has a higher 

strength but still difficult to be oxidised. IC roll materials, containing a substantial 

amount of graphite, have a good thermal and oxidation behaviour [11]. Because the 

graphite in the IC roll materials can retard crack propagation and reduce sticking as 

they lubricate the contact area between the roll and the rolled strips. It is reported 

that the sticking defects are obviously improved with the application of IC roll [12-16]. 

During the hot rolling, the surface temperature of work rolls can exceed 700℃ in a 

very short contact time (10-2 to 10-3 sec) because of the heat conducted from hot 

strips, deformation heat and friction heat, and then they are cooled to room 

temperature by spraying water for the rest of time in each cycle (2 to 10-1 sec) [17]. 

The total time of the work rolls in high temperature is less than 30 min in one period 

of roll changing, and oxide scale formed on the roll surface can be broken by friction 

and thermal fatigue. The purpose of this paper is to investigate the oxidation 

mechanism of IC roll material through a combined study of oxidation kinetics, and 

surface morphology and cross sections of the oxide scales formed by carrying out the 

isothermal oxidation in both dry and humid atmospheres at a temperature range 

from 550 to 700 ℃ up to 30 min. Oxidation kinetics and characteristics of oxide 

scale formed were systematically studied. 

2. Experimental 

The IC roll material studied was obtained directly from the shell part of a real work 

roll, and its chemical composition is listed in Table 1. Coupons with the dimensions of 

15×10×1 mm3 were machined and there is a 0.5 mm side length square hole near 

the top edge of the coupon. Two broad surfaces were polished up to 1 µm diamond 

and the rest surfaces were ground with 1200 grit sand paper. Then the samples were 

cleaned by means of ultrasonic agitation in ethanol and kept in vacuum desiccator 

before the tests. 



 

Fe C Ni Cr Si Mn Mo 

Balance 3.35 4.54 1.85 0.77 0.89 0.49 

Table 1. Chemical compositions of the studied IC roll (wt. %) 

The isothermal oxidation was investigated on a SETSYS Evolution S60/58507. SETSYS 

Evolution is equipped with a vertical hang down symmetrical balance and can work 

under corrosive and humid atmospheres. The SETSYS balance has the resolution 

down to 0.002 µg, and extremely low drifts and high precision over long periods of 

time. A WETSYS is used to provide a controlled humid atmosphere to simulate real 

hot rolling conditions. The controlled humid atmosphere is produced by passing dry 

air pass through a sealed water tank held at a given temperature. The maximum 

water temperature for WETSYS is 60 ℃ (corresponding to 20% water vapor in 

water-saturated gas), which is used in this investigation[18]. As a comparison, the 

oxidation behaviours of the IC are also investigated in dry air. The schematic diagram 

of the apparatus is illustrated in Figure 1. The isothermal oxidation experiments were 

conducted at the temperatures ranging from 550 to 700 ℃ for 30 min. The 

experimental details are given as follows: (a) the sample was suspended in the 

furnace which was then evacuated and filled with high purity Ar; (b) as the pressure 

of Ar reached 1 atm, the sample was heated to the testing temperatures at a rate of 

25 ℃/min and held for 5 min once the testing temperature was reached. During the 

heating, Ar flowed through the furnace at a rate of 100 ml/min; (c) the oxidising gas 

was introduced at a rate of 100 ml/min, and the isothermal oxidation processed for 

30 min; (d) the isothermal oxidation was terminated by replacing the oxidation gas 

with Ar to prevent further oxidation and the sample was cooled to room 

temperature at a rate of 99 ℃/min. The mass variations were recorded every 0.2 s 

in these processes. 



 

 
Figure 1. Schematic diagram of SETSYS Evolution S60/58507 

Metallographic examination was carried out after the specimens were sectioned, 

ground, polished and etched with 2% Nital. An optical microscope (OM) was 

observed using a DM6000 optical microscope. Additionally, the morphology and the 

chemical composition of the oxidation products was determined with scanning 

electron microscopy (SEM) using a JEOL JSM 6490 and filled emission JEOL 

JSM-7001F SEM [19, 20]. The constitutions of the oxide scales were identified by X-ray 

diffraction (XRD) on a GBC MMA diffractometer. The cross-section segments have 

been cut from each sample, mounted in Bakelite, and polished down to 0.25 µm. the 

oxidation kinetics curves were obtained by plotting the mass change per surface area 

against the oxidation time. 

3. Results 

3.1. Microstructure of IC roll material 

Figure 2a shows the optical micrograph of IC roll material etched by 2% Nital prior to 

the experiments. Three different phases, graphite, Fe3C (cementite) and tempered 

martensite can be distinguished according to different contrasts and morphologies, 

in which coarse martensitic matrix mingles with a substantial amount of free graphite 

(dark region) and cementite (bright region) formed along the cell boundaries [21]. The 

graphite is reported to play a role in delaying the crack growth and in lubricating to 

prevent the rolled plates and the rolls from sticking [1]. The XRD spectrum (Figure 2b) 



 

reveals two phases, cementite and iron matrix. 

 
Figure 2. Optical micrograph (a) and XRD pattern of the studied IC roll (b). 

3.2. Oxidation kinetics 

The oxidation kinetics curves obtained under both dry and humid atmospheres are 

shown in Figure 3. It is observed that the influence of the temperature on the mass 

gain at different oxidising atmospheres varies, and its oxidation kinetics follows a 

roughly linear law. In dry air, the mass gain (Figure 3a), comparatively low at 550 ℃, 

rises gradually with the increase of the temperature until 650 ℃, and the oxidation 

rate at 700 ℃ demonstrates a lower mass gain than that at 650 ℃, even lower 

than that at 600 ℃ at later stage. However, the presence of water vapor in the 

atmosphere accelerates the mass gain of the sample at each temperature. In 

addition to that, the mass gain (Figure 3b), reveals a linear trend and obviously goes 

up with the increase of the oxidation temperature. 



 

 

Figure 3. Isothermal oxidation curves of IC samples at different temperatures in dry (a) and 
humid atmospheres (b) 

3.3. Surface morphologies analysis 

3.3.1. Oxidise in dry air 

Figure 4 shows SEM images of the samples oxidised at the different temperatures for 

30 min in dry air. Different surface morphologies can be seen after the oxidation at 

different temperatures. At 550 ℃  (Figure 4a), the surface morphology was 

comparatively flat, and the shallow grooves were only located at the grain 

boundaries. The grooves were deepening at 600 ℃ (Figure 4b). It is because the 

oxide scales grown on the matrix protruded out while the cementite at the grain 

boundaries was slowly oxidised, thus the grain boundaries seem to be sunken. The 

selection oxidation takes place at these temperatures due to that different alloy 

compositions and microstructures between the matrix and the cementite. As the 

oxidation processed at 650 ℃ (Figure 4c), the oxidation of the cementite at grain 

boundaries became obvious, which makes the grooves to be shallower. At 700 ℃, 

the oxide scales covered the whole surface with the invisibility of initial grain 

boundaries and tended to peel off (circled area in Figure 4d). 
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Figure 4. SEM images of the samples oxidised at the temperatures in dry air: (a) 550 ℃, (b) 

600 ℃, (c) 650 ℃ and (d) 700 ℃. 

3.3.2. Oxidise in humid air 

Figure 5 shows SEM images of the samples oxidised at the temperatures between 

550 and 700 ℃ in humid air. The morphologies of the surfaces were significantly 

different from those oxidised in dry air. Although the presence of water vapor, the 

sample was gently oxidised and present similar pattern as the sample oxidised in dry 

air at 550 ℃  (Figure 4a). The surface morphology, however, was more 

homogeneous at 600 ℃ in humid air (Figure 5b) than that of in dry air, with the 

disappearing of the grain boundaries. Because the oxidation of the Fe3C (cementite) 

accelerated in humid air at this temperature. At 650 and 700 ℃, the surfaces 

(Figures 5c and d) were more uneven than their counterparts in dry air (Figures 4c 

and d). The water vapor intensified the oxidation rate at the higher temperatures, 

and the oxide scales formed in humid air adhered firmly to the matrix unlike the 

oxide scales produced in dry air which tended to peel off. 



 

 
Figure 5. SEM images of the samples oxidised at the temperatures in humid air: (a) 550 ℃, (b) 

600 ℃, (c) 650 ℃ and (d) 700 ℃. 

3.4. X-ray structural analysis 

Figure 6 shows XRD patterns of the IC samples after the oxidation at the different 

temperatures in both dry and humid atmospheres. In dry air, iron and cementite 

phases are revealed at all temperatures, indicating that the thickness of the oxide 

scales is less than the depth of X-ray diffraction. As the increase of the testing 

temperature, the main phases are transformed to hematite (Fe2O3) and magnetite 

(Fe3O4) at the high temperature, showing the oxidation is getting more severe and 

the thin oxide scale is penetrated by XRD ray. Comparing with the oxidation products 

obtained in dry air, the intensity of hematite and magnetite is higher but lower for 

iron and cementite at 550 and 600 ℃, and only iron oxides are revealed at high 

temperature, indicating that the thick oxide scale and the fact that the ray of XRD 

cannot penetrate deeply to detect the matrix phase. 



 

 

 
Figure 6. XRD patterns of the IC samples after the oxidation at different temperatures in dry (a) 

and humid atmospheres (b). 

4. Discussion 

For the quantitative estimation of the performance of the IC roll material in an 

oxidising environment, a mathematic model is necessary. For this purpose, the most 

efficient way is to consider the mass gain Δm as a function of the exposure time t in 

the oxidising atmosphere, while the rest of factors influencing oxidation are 

expressed by a oxidation rate constant Kp. Hence, the comparison of the 

performance is reduced to the determination of the function that bindsΔm and t 
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along with the calculation of the constant Kp [22]. 

Instead of a parabolic rate law used for a limited number of metals at stable states, 

oxidation kinetics of the IC material approximately obey a linear trend. Therefore, a 

linear rate law is expressed to fit the oxidation kinetics data below: 

∆𝑚 = 𝐾𝑝𝑡                        (1) 

where Δm is the weight gain per unit area. t is the oxidation time and Kp is the 

oxidation rate constant. 

According to Arrhenius equation, the oxidation rate constant was found to be an 

exponential function of temperature: 

𝐾𝑝 = 𝐾0exp(−𝐸
𝑅𝑅

)                    (2) 

where Ko is the pre-exponential factor, E is the apparent activation energy, R is the 

gas constant and T is the absolute temperature. The curves of the natural logarithm 

of kp vs 1000/T under two oxidising conditions are shown in Figure 7, from which can 

be obtained that he activation energy E are 28.443 and 55.28 kJ/mol for dry and 

humid atmospheres, respectively, and the R-squared (R2) has a higher accuracy in 

humid atmosphere (0.99) than that in dry atmosphere (0.81). Therefore, the 

oxidation kinetics is better fit in linear law for humid air than in dry air. 

 

Figure 7. Dependence of the oxidation rate constant with temperature in dry (a) and humid 
atmospheres (b) 

Figure 8 shows cross sections and the correspondent EDS line scanning analysis of 

the IC oxidised in dry air. The oxide scale consists of two distinctive layers. The EDS 
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line scanning analysis show that the thin layer located at next to the substrate is 

Cr-rich, it is believed to be (FeCr)3O4, and the thick oxide layer at the scale-gas 

interface containing only iron and oxygen is thought to be hematite (Fe2O3). The 

intensity of Si at the metal-oxide scale interface reveals no obvious difference 

between the substrate and the oxide scale at 550 ℃, but a higher intensity of Si was 

observed in the substrate beneath the oxide scale than in the oxide scale at 600 and 

650 ℃.The similar phenomenon was also observed for the intensity of Ni, namely, 

the intensity of Ni beneath the oxide layer increases gradually as the increase of the 

temperature. 

 
Figure 8. Cross sections and EDS line scanning element analysis of the IC oxidised in dry air for 30 

min: (a) 550 ℃, (b) 600 ℃ and (c) 650 ℃. 

Figure 9 shows SEM X-ray maps of the cross section of the IC oxidisied at 700 ℃ for 

30 min in dry air, from which two oxide layers can be seen, a thin Cr-rich layer next to 

the substrate and a thick Fe-O-rich layer. Neither Si or Ni is present in the oxide scale, 

which indicates that it can hardly diffuse into the oxide scale at 700 ℃ in dry air. 
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Figure 9. SEM X-ray maps for the IC oxidised at 700 ℃ for 30min in dry air 

Figure 10 shows cross sections and the correspondent EDS line scanning analysis of 

the IC oxidised in humid air. The morphologies of the cross sections of the oxide scale 

are quite different from that of in dry air. At 550℃, two distinctive oxide layers were 

observed and the EDS line scanning analysis show that the thin layer located at next 

to the substrate is Cr-rich (FeCr)3O4, and the thick outer oxide layer containing only 

iron and oxygen is thought to be hematite (Fe2O3). As the oxidising temperatures 

reach 600 and 650℃, however, the oxide scale was comprised of three oxide species, 

namely an Cr-rich layer next to the substrate, a thick middle layer of magnetite 

(Fe3O4) and a thin outer layer of hematite (Fe2O3) at oxide-gas interface. Moreover, 

the intensities of Si and Ni are higher in the substrate beneath the oxide scale than 

that in the oxide scale at the three temperatures, indicating that Si and Ni rarely 

diffuse into the oxide layers. 

Fe O
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Figure 10. Cross sections and EDS line scanning element analysis of the IC oxidised in humid air 

for 30 min: (a) 550 ℃, (b) 600 ℃ and (c) 650 ℃. 

Figure 11 shows SEM X-ray maps for the IC oxidised at 700 ℃ in humid air. Three 

oxide phases were also observed. Both Si and Ni are only present in the substrate 

beneath the inner oxide, revealing that Si and Ni can hardly diffuse into the oxide 

scales; whereas Cr intensifies in the inner oxide, showing that the inner oxidation 

results in consuming Cr element. 

 
Figure 11. SEM X-ray maps for the IC oxidised at 700 ℃ for 30min in humid air 

A significant feature of the IC roll materials is the presence of a substantial amount of 

free graphite, which greatly improves the ability of the roll to withstand the thermal 
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shocks associated with hot rolling steel strip, and greatly reduces the potential for 

fusing of the strip to the roll [23]. Therefore, the degradation of graphite due to 

oxidation directly affected its functionality. Figure 12 shows cross sectional images of 

the graphites after the oxidation in dry air. It can be seen that the morphologies of 

the graphites exhibit different characteristics after the oxidation in different 

temperatures. The oxidation of graphite known as decarburisation denudes the 

graphite connected to the surface and leaves empty cavities [24]. After the oxidation 

at 550 and 600 ℃, the graphite surface sinks due to the fact that the oxidation of 

the graphite results in the loss of the graphite, but the graphite still exposes outside. 

At 650 ℃, the loss of the graphite and the growth of the oxide scale lead to the 

graphite totally covered by the oxide scale. After the further oxidation at 700 ℃, the 

oxide scale covered on the graphite grows thicker, and tends to fill the cavities caused 

by the oxidation the graphite. 

 
Figure 12. Cross sectional images of the graphites after the oxidation in dry air for 30 min: (a) 

550 ℃, (b) 600 ℃, (c) 650 ℃, and (d) 700 ℃. 

Figure 13 shows cross sectional images of the graphites after the oxidation in humid 

air. The morphologies of the graphites after the oxidation in humid air are different 
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from those in dry air. The water vapor accelerates the growth of the oxide scale and 

the loss of the graphite. The graphite, still exposes outside after the oxidation at 

550 ℃, is covered by the oxide scale at 600 ℃. At 650 ℃, the oxide scale extends 

to fill the graphite cavities. After the oxidation at 700 ℃, the graphite is nearly 

completely consumed and filled by the extension of the oxide scale, which makes the 

graphite ineffective to play its role in hot rolling. 

 
Figure 13. Cross sectional images of the graphites after the oxidation in humid air for 30 min: (a) 

550 ℃, (b) 600 ℃, (c) 650 ℃, and (d) 700 ℃. 

5. Conclusions 

The isothermal oxidation investigation of the IC material was investigated on a TGA at 

the temperatures from 550 to 700 ℃ for 30 min under dry and humid atmospheres. 

The following conclusions can be obtained: 

1. In dry air, the oxidation kinetics of the IC samples show that the mass gain, 

revealing a linear trend, rises gradually with the increase of the temperature 

until 650 ℃, and the oxidation rate at 700 ℃ is lower than that at 650 ℃. In 

humid air, however, the mass gain shows a linear trend and obviously goes up 
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with the increase of the oxidation temperature. 

2. The oxide scale of the IC after oxidation in dry air is made up of two oxide layers: 

an inner thin Cr-rich layer ((FeCr)3O4) next to the substrate and an outer thick 

layer of hematite at the metal-gas interface. Above 600 ℃, the oxide scale of 

the IC oxidised in humid air consists of three oxide species: an inner Cr-rich layer 

next to the substrate, a middle layer of magnetite and an outer layer of hematite. 

Si and Ni rarely diffuse into the oxide layers. 

3. In humid air, the graphite was consumed and covered by the extension of the 

oxide scale above 600 ℃. The roll temperature of the IC should be controlled 

below 600 ℃ in order to be effectively applied in the hot rolling mill. 
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