
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part B 

Faculty of Engineering and Information 
Sciences 

2013 

A medium frequency transformer with multiple secondary windings for A medium frequency transformer with multiple secondary windings for 

medium voltage converter based wind turbine power generating systems medium voltage converter based wind turbine power generating systems 

Md Rabiul Islam 
University of Technology Sydney, mrislam@uow.edu.au 

Youguang Guo 
University of Technology Sydney 

Jianguo Zhu 
University of Technology Sydney 

Follow this and additional works at: https://ro.uow.edu.au/eispapers1 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Islam, Md Rabiul; Guo, Youguang; and Zhu, Jianguo, "A medium frequency transformer with multiple 
secondary windings for medium voltage converter based wind turbine power generating systems" (2013). 
Faculty of Engineering and Information Sciences - Papers: Part B. 1081. 
https://ro.uow.edu.au/eispapers1/1081 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/1081?utm_source=ro.uow.edu.au%2Feispapers1%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages


A medium frequency transformer with multiple secondary windings for medium A medium frequency transformer with multiple secondary windings for medium 
voltage converter based wind turbine power generating systems voltage converter based wind turbine power generating systems 

Abstract Abstract 
Recent advances in magnetic materials have led to the development of compact and light weight, 
medium and high frequency transformers, which would be a possible solution to reducing the size and 
weight of wind turbine power generating systems. This paper presents the overall design and analysis of 
a Metglas amorphous alloy 2605SA1 based medium frequency transformer to generate the isolated 
balanced multiple DC supplies for medium voltage converter systems. A comprehensive electromagnetic 
analysis is conducted on the proposed design based on experimental results. The test stand, data 
analysis, and test results are discussed. 

Keywords Keywords 
power, generating, turbine, frequency, systems, transformer, windings, wind, multiple, medium, converter, 
voltage, secondary 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
M. Islam, Y. Guo & J. Zhu, "A medium frequency transformer with multiple secondary windings for medium 
voltage converter based wind turbine power generating systems," Journal of Applied Physics, vol. 113, pp. 
17A324-1-17A324-3, 2013. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/1081 

https://ro.uow.edu.au/eispapers1/1081


A medium frequency transformer with multiple secondary windings for medium voltage
converter based wind turbine power generating systems
Md Rabiul Islam, Youguang Guo, and Jianguo Zhu

Citation: Journal of Applied Physics 113, 17A324 (2013);
View online: https://doi.org/10.1063/1.4795850
View Table of Contents: http://aip.scitation.org/toc/jap/113/17
Published by the American Institute of Physics

Articles you may be interested in
An amorphous alloy core medium frequency magnetic-link for medium voltage photovoltaic inverters
Journal of Applied Physics 115, 17E710 (2014); 10.1063/1.4864050

 Oxygen-vacancy effect on structural, magnetic, and ferroelectric properties in multiferroic YMnO3 single crystals
Journal of Applied Physics 111, 07D913 (2012); 10.1063/1.3676000

Isotopic exchange in gamma-irradiated mixtures of C24H50 and C24D50: Evidence of free radical migration in
the solid state
The Journal of Chemical Physics 87, 1588 (1987); 10.1063/1.453218

Influence of electron beam irradiation on the microrheology of incompatible polymer blends: Thread break-up
and coalescence
Journal of Rheology 35, 63 (1991); 10.1122/1.550209

Core loss behavior in high frequency high power transformers—II: Arbitrary excitation
Journal of Renewable and Sustainable Energy 4, 033113 (2012); 10.1063/1.4727917

Core loss behavior in high frequency high power transformers—I: Effect of core topology
Journal of Renewable and Sustainable Energy 4, 033112 (2012); 10.1063/1.4727910

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/386502181/x01/AIP-PT/JAP_ArticleDL_092017/scilight717-1640x440.gif/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Islam%2C+Md+Rabiul
http://aip.scitation.org/author/Guo%2C+Youguang
http://aip.scitation.org/author/Zhu%2C+Jianguo
/loi/jap
https://doi.org/10.1063/1.4795850
http://aip.scitation.org/toc/jap/113/17
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4864050
http://aip.scitation.org/doi/abs/10.1063/1.3676000
http://aip.scitation.org/doi/abs/10.1063/1.453218
http://aip.scitation.org/doi/abs/10.1063/1.453218
http://aip.scitation.org/doi/abs/10.1122/1.550209
http://aip.scitation.org/doi/abs/10.1122/1.550209
http://aip.scitation.org/doi/abs/10.1063/1.4727917
http://aip.scitation.org/doi/abs/10.1063/1.4727910


A medium frequency transformer with multiple secondary windings for
medium voltage converter based wind turbine power generating systems

Md Rabiul Islam,a) Youguang Guo, and Jianguo Zhu
Centre for Electrical Machines and Power Electronics, University of Technology Sydney, 15 Broadway,
Ultimo, NSW-2007, Australia

(Presented 16 January 2013; received 30 October 2012; accepted 14 December 2012; published

online 22 March 2013)

Recent advances in magnetic materials have led to the development of compact and light weight,

medium and high frequency transformers, which would be a possible solution to reducing the size

and weight of wind turbine power generating systems. This paper presents the overall design and

analysis of a Metglas amorphous alloy 2605SA1 based medium frequency transformer to generate

the isolated balanced multiple DC supplies for medium voltage converter systems. A comprehensive

electromagnetic analysis is conducted on the proposed design based on experimental results.

The test stand, data analysis, and test results are discussed. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4795850]

I. INTRODUCTION

The power generated by most commonly used wind tur-

bine generators is at low voltage levels of 380–690 V.1 To

reduce the electrical power transmission losses, a low fre-

quency transformer is usually used to step-up the voltage up

to the voltage levels of 11–33 kV. This heavy and bulky low

frequency transformer significantly increases the weight and

volume of the nacelle as well as the mechanical stress of the

tower. The weight and volume of a 33/0.69 kV, 2.6 MVA

transformer is typically in the range of 6–8 tons and 5–9 m3,

respectively.2 Hence, a step-up transformer-less, medium

voltage converter based high power density nacelle would be

an attractive technology for the future wind turbine systems.

The series connected H-bridge (SCHB) topology has

gained popularity for the medium voltage applications.3,4

However, the SCHB converter requires multiple-isolated and

balanced DC sources. To couple the wind turbine generator

to the multi-level SCHB converter, a medium-frequency

transformer with multiple secondary windings is developed

and reported in this paper. Compared with the conventional

transformers operated at the power frequency (50 or 60 Hz),

the medium frequency (in the range of a few kHz to MHz)

transformers have much smaller and lighter magnetic cores

and windings, and, thus, much lower costs. The proposed

medium frequency transformer-link based wind turbine

power generating systems will have the following advan-

tages: (i) inherent DC-link voltage balancing due to single

DC supply, (ii) compact and light overall system, and (iii)

simple installation and low maintenance cost.

II. DESIGN AND CONSTRUCTION OF MEDIUM
FREQUENCY TRANSFORMER

In transformer design, because the winding electromo-

tive force (emf) is proportional to the number of turns, fre-

quency, and magnetic flux linking the winding, for a given

power capacity; as the operating frequency increases, the

required cross sectional area of magnetic core and the num-

ber of turns of the primary and secondary windings can be

dramatically reduced. To verify the feasibility of the new

concept of voltage step-up using the SCHB converters, in

this paper, a 1.26 kVA 10 kHz transformer-link prototype

with 6 secondary windings is developed to generate the iso-

lated and balanced 6 DC supplies for a 5 level SCHB con-

verter, which would convert 216 V DC into 3 phase 1 kV rms

AC. The same concept can be used to model the practical

system by only changing the number of secondary windings

as well as the number of levels of the converter.

The grain oriented silicon sheet steels, which are com-

monly used as the core material for power frequency trans-

formers, are not suitable for medium frequency applications

because of the heavy eddy current loss.5 The soft ferrites have

been widely used in medium and high frequency inductors

and transformers due to the low price and general availability.

Because of the low saturation flux density (only 0.3 to 0.5 T),5

which would make the transformer bulky, they are not suitable

for large power applications. On the other hand, the amor-

phous alloy and nanocrystalline materials have excellent mag-

netic characteristics for medium frequency applications, such

as high permeability, high saturation flux density, and rela-

tively low core losses. The nanocrystalline alloy Vitroperm

55Z has lower specific core loss than that of Vitroperm 500F.

Of the other amorphous alloys 2605SA1 and 2605S3A, the

alloy 2714A has the lowest specific core loss but its saturation

flux density is only 0.57 T.6 Although nanocrystalline alloy

has lower specific core loss than amorphous alloy, its satura-

tion flux density (about 1 T) is much lower than that of amor-

phous alloy 2605SA1, which is 1.56 T. Up to now many kinds

of soft magnetic alloys with high magnetic flux density com-

bined with low core loss have been developed.7,8 Taking into

account the flux density, specific core loss, cost, and availabil-

ity, we chose Metglas 2605SA1 stripe of 30 lm thickness and

25 mm width as the core material. The other parameters are

mass density of 7.18 g/cm3, saturation flux density of 1.56 T,a)Electronic addresses: Md.Islam@uts.edu.au and Rabiulbd@hotmail.com

0021-8979/2013/113(17)/17A324/3/$30.00 VC 2013 American Institute of Physics113, 17A324-1

JOURNAL OF APPLIED PHYSICS 113, 17A324 (2013)

http://dx.doi.org/10.1063/1.4795850
http://dx.doi.org/10.1063/1.4795850
http://dx.doi.org/10.1063/1.4795850
mailto:Md.Islam@uts.edu.au
mailto:Rabiulbd@hotmail.com
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4795850&domain=pdf&date_stamp=2013-03-22


and specific core loss of 180 W/kg at 10 kHz sinusoidal excita-

tion of 1 T.9

The Metglas sheet was glued with Araldite on the surface

of each layer, providing both the electrical insulation and me-

chanical bonding. The core volume and mass are 133.52 cm3

and 0.96 kg, respectively. Figure 1 shows a photo of the

Metglas core. To minimize the proximity effect, Litz wires

are used for windings with single layer placement as shown in

Figure 2. The electromagnetic performances were analyzed

and compared with the experimental results in Sec. III.

III. EXPERIMENTAL TESTING AND RESULTS
ANALYSIS

The transformer is excited by a 10 kHz square wave pri-

mary voltage, which is generated by an insulated gate bipolar

transistor (IGBT) based H-bridge inverter supplied by a

216 V DC voltage source. According to Faraday’s law, the

flux density waveform is triangular. If f is the excitation fre-

quency, Bmax is the maximum flux density, and A is the cross

sectional area of the transformer core, then the number of

turns of a winding can be deduced as

N ¼ Vrms

4 f Bmax A
: (1)

The theoretical result of voltage transformation ratio,

which is calculated as 1.781, was verified by measuring the

voltage transformation ratios of all 6 secondary windings

versus the primary, and they were found highly consistent

with the theoretical value (variation less than 60.3%). This

is obligatory for the SCHB converter system.

An Agilent Technologies DS06034A oscilloscope with

P5200 high voltage differential probe and Tektronix

TCPA300 current probe was used to observe the voltage and

current waveforms. The total loss (core loss plus copper

loss) was measured by a Voltech PW3000A universal power

analyzer. From the oscilloscope data, the copper loss of each

winding at different frequency ranging from 4 to12 kHz was

calculated by using the DC resistances (0.024 X for the pri-

mary and 0.16 X for the secondary), since the AC/DC resist-

ance ratios, Kr, in this design is almost unity due to the use

of Litz wires.

In a conductor, the ratio Kr depends strongly on both the

number of layers and the conductor diameter (Ref. 10). It

shows that at medium or high frequencies, associated with a

small skin depth and proximity effect, the number of layers

as well as conductor diameter should be kept as small as pos-

sible. Moreover, the insulated strands should be twisted or

braided together to equalize the flux linkages throughout the

conductors. To achieve this, so as to reduce the winding loss

a Litz wire with small number of layers should be always

used in a medium-frequency power transformer.

Figure 3 shows that the total losses of all secondary

windings measured at different excitation frequencies rang-

ing from 4 to 12 kHz are almost the same. Measurements

were also conducted by exciting the secondary windings one

by one with different excitation currents (0.1–0.6 A) and a

fixed frequency of 10 kHz. As shown in Figure 4, at 10 kHz,

all secondary windings have also very similar total losses.

Such similarity of characteristics is also obligatory to gener-

ate balanced multiple sources for the SCHB system.

FIG. 1. Photo of the transformer core, where OD is the outer diameter, ID

the inner diameter, and HT the height.

FIG. 2. Photo of transformer, where P is the primary coil and A-F the 6 sec-

ondary coils.

FIG. 3. Measured total losses against excitation frequencies at excitation

current of 0.5 A; only one coil is energized at a time while others open

circuited.

FIG. 4. Measured total losses against excitation currents of 10 kHz; only one

coil is energized at a time while others open circuited.
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The magnetic field intensity and magnetic flux density

are calculated by measuring the P-coil excitation voltage and

current and the open circuit terminal voltage of the second-

ary side D-coil. As the coils are uniformly wound on the to-

roidal core, the magnetic field intensity H and magnetic flux

density B within the core can be considered as uniform. By

Ampere’s law, the field intensity can be calculated as

H ¼ N1iðtÞ
le

; (2)

where N1 is the number of turns in the primary coil, i(t) is

the excitation current, and le is the mean length of the core.

By Faraday’s law, the magnetic flux density in the core can

be calculated as

B ¼ 1

N2Ae

ð
VLdt; (3)

where N2 is number of turns in the pick-up coil (D-coil), Ae

is the cross sectional area of the core, and VL is the pick-up

coil voltage.

Different magnitudes of 10 kHz excitation currents

(1–3 A) are applied to the primary windings. B-H curves are

plotted based on experimental data. Up to 0.5 T, the flux den-

sity rises sharply with a constant field intensity of about

50 A/m as shown in Figure 5. At 3 A, the maximum mag-

netic flux density is about 0.8 T with the field intensity of

about 600 A/m which satisfies the design. B-H curves are

also analyzed at different temperatures ranging from 40 �C
to 100 �C. The maximum flux density remains approximately

constant for this temperature range, as illustrated in Figure 6.

The plotted B-H curves have been compared with the mate-

rial manufacturer’s data and found highly consistent. The

core loss against flux density was measured within the fre-

quency range from 6 kHz to 12 kHz. The specific core loss

measured was 157 W/kg under 10 kHz square wave excita-

tion of magnitude 0.8 T as shown in Figure 7, while the spe-

cific core loss of 125 W/kg is reported by the material

manufacturer under 10 kHz sinusoidal excitation of magni-

tude 0.8 T. In comparison with material manufacturer’s data,

about 20%–30% extra loss is observed due to non-sinusoidal

excitation waveform.10 The output of each secondary wind-

ing is connected to a fast recovery diode based rectifier with

a low pass RC filter circuit. The DC-link voltages were

found approximately equal at about 370 V, which can serve

satisfactorily as the isolated and balanced DC sources for the

proposed SCHB converter.

IV. CONCLUSION

The proposed amorphous alloy based medium frequency

transformer-link can be a good solution to provide multiple

isolated and balanced DC supplies for the SCHB converter

to step-up the low voltage of a commercially available wind

generator to medium 3 phase AC voltage suitable for power

transmission from remote (e.g., off-shore) wind farms to the

main grid transmission lines. Without the heavy and bulky

low frequency step-up transformer, the proposed architecture

leads to a compact and light weight environmentally friendly

design, which may save large amount of installation, running

and maintenance costs of off-shore wind turbine power gen-

erating systems.
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FIG. 5. Measured B-H curves at 40 �C: maximum magnetic flux density at

1, 2, and 3 A is 0.65, 0.74, and 0.80 T, respectively.

FIG. 6. Measured B-H curves at different temperature ranging from 40 �C to

100 �C: maximum magnetic flux density at 40 �C, 60 �C, 80 �C, and 100 �C
is 0.65, 0.65, 0.64, and 0.63 T, respectively.

FIG. 7. Measured core losses at different frequency ranging from 6 kHz to

12 kHz; experiments were carried out at 40 �C.

17A324-3 Islam, Guo, and Zhu J. Appl. Phys. 113, 17A324 (2013)

http://dx.doi.org/10.1109/TSTE.2012.2184806
http://dx.doi.org/10.1109/TMAG.2012.2198912
http://dx.doi.org/10.1063/1.4727917
http://dx.doi.org/10.1063/1.2173214
http://dx.doi.org/10.1063/1.4765718
http://dx.doi.org/10.1063/1.3535169
http://metglas.com
http://dx.doi.org/10.1109/TPEL.2002.802193

	A medium frequency transformer with multiple secondary windings for medium voltage converter based wind turbine power generating systems
	Recommended Citation

	A medium frequency transformer with multiple secondary windings for medium voltage converter based wind turbine power generating systems
	Abstract
	Keywords
	Disciplines
	Publication Details

	s1
	s2
	n1
	s3
	d1
	f1
	f2
	f3
	f4
	d2
	d3
	s4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	f5
	f6
	f7

