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Abstract 

Challenges in treating a lung tumour are related to the respiratory-induced tumour motion and 
the accuracy of the treatment planning dose calculation in non-CPE conditions. The 
dosimetric characteristics across the interface of lung and Perspex media in a moving 
phantom during static, respiratory-gated and non-gated (moving) radiotherapy was 
investigated using Gafchromic EBT2 and the MOSkin detector. The MOSkin detectors 
showed a good agreement with the EBT2 film in the dose profile measurement during static 
and gated radiotherapy. In static radiotherapy, the penumbral widths in Perspex and lung 
media were found to be 3.66 mm and 7.22 mm, respectively. In non-gated (moving) 
radiotherapy, dose smearing effect was observed and the penumbral widths were increased to 
28.81 mm and 26.40 mm, respectively with 40 mm respiratory amplitude. This effect has 
been reduced in gated radiotherapy with 25% gating window’s width, with the penumbral 
widths of 6.85 mm and 9.81 mm, respectively. There were still some dose discrepancies as 
compared to static radiotherapy due to the residual motion. The dose discrepancies should be 
taken into account in the margin generation for the target tumour. The accuracy of different 
dose calculation algorithms near interface region was evaluated. It was found that the root 
mean square error of 6.21%, 3.32%, 2.62%, and 1.73% were found for pencil beam 
convolution, analytical anisotropic algorithm, Acuros XB (dose to water), and Acuros XB 
(dose to medium), respectively compared to EBT2 measured dose across the interface region. 
It was also found that the over-estimation of the dose coverage will lead to the choice of 
small field size and thus, under-dosage to the tumour. For better dose calculation accuracy 
near interface region, better dose calculation algorithms such as analytical anisotropic 



algorithm or Acuros XB are essential. A better understanding and selection of the dose 
calculation algorithms is very important.  
 

1.  Introduction 
 
Lung stereotactic body radiotherapy (SBRT) enables high radiation dose (~60 Gy) to be 
delivered hypo-fractionally to the target tumour while minimizing dose to surrounding 
healthy tissues [1]. Accuracy and precision are needed to ensure high tumour control 
probability while low normal tissue complication. However, when treating a lung tumour, 
tumour motion exists due to involuntary respiratory motion. Previous studies found that the 
tumour motion is greater along the cranial-caudal direction, with an average displacement of 
12 mm [2, 3]. The positional change of the lung tumour leads to dosimetric uncertainty such 
as dose smearing effect such as blurring and deformation of the dose distribution [4], results 
in detrimental effect of the therapeutic ratio.  
 

When the lung tumour has displacement of more than 5 mm, The AAPM Task Group 76 
recommended that respiratory management techniques namely motion-encompassing, breath-
holding, forced-shallow-breathing, gating and tracking method be considered [5-8]. In 
motion-encompassing technique, additional safety margin of clinical target volume (CTV) is 
needed to ensure adequate dose coverage to the target tumour, similar to various systematic 
uncertainties chain in radiotherapy such as patient setup. However, this will potentially 
increase the normal tissue complication probability because of larger normal tissue 
involvement.  

 
By considering the respiratory motion and utilising gating technique or real time motion 

adaptive radiotherapy, the safety margin for intra-fractional tumour motion can be reduced. 
While real time motion adaptive radiotherapy utilizing image guidance and dynamic multi 
leaf collimator for treatment such as lung tumour was proven as an attractive option to 
minimize CTV margins [9, 10]. However, it is still not available for many radiotherapy 
facilities. Gating technique is an interrupting irradiation technique, where the radiation is 
delivered on and off during the pre-defined phase (gating windows) of the respiratory cycle. 
Whilst respiratory gating technique is good in managing the tumour motion, some tumour 
motion (known as residual tumour motion) still occurs within the gating window [11]. The 
selection of the gating window’s width is a trade-off between residual tumour motion and 
treatment time [8, 11-14]. Increasing the gating window’s width will increase the duty cycle 
(shorten the treatment time), but also result in greater residual tumour motion as a larger 
proportion of the total tumour motion will be captured [15]. The residual tumour motion may 
contribute to dosimetric error [16]. Thus, a safety margin is still needed.  
 

Another issue in treating the lung tumour is with regards to the accuracy of treatment 
planning dose calculation. Lung tumours assumed that often embedded in low density lung 
tissues, which the density is between 0.19-0.35 g/ cm3 [17]. Achievement of high accuracy in 
dose calculation for lung SBRT is always challenging due to the lack of lateral electron 
equilibrium near the lung and soft tissue interface. The choice of dose calculation algorithms 
in treatment planning system (TPS) becomes particularly important especially for the 
radiotherapy of tissues with large inhomogeneity. Advanced algorithms such as anisotropic 
analytical algorithm (AAA) and Acuros XB (AXB) are recommended for dose calculation in 
inhomogeneous and interface region such as lung [18-22]. The older algorithms such as 
pencil beam convolution (PBC) may show deviation between actual and calculated dose in 



the order of 20-30% [19, 21]. The uncertainties due to dose calculation algorithms were not 
accounted in the margins generated to form CTV. 

 
Generally, the margin for CTV is a geometrical concept that taking into consideration the 

geometrical variations such as tumour motion to ensure adequate dose coverage to the lung 
tumour. However, it is known that the lack of electronic equilibrium at the interface between 
the low density lung and the tumour causes an under-dosage at the periphery of the tumour 
[23]. It is clinically important to characterise dosimetric uncertainties due to respiratory 
motion near the interface of the lung and tumour.  

 
Alhakeem et al. have investigated the interface dosimetry using several dosimetric 

techniques including a MOSFET-based detector, the MOSkin detector [20]. They used the 
MOSkin detector to study the depth dose near the interface region of water and air, water and 
steel, and water and lung. They found that the MOSkin measurement is in good agreement 
with Monte Carlo calculation, except at the interface with steep dose gradient due to the 
volume averaging effect of the voxels in Monte Carlo calculation. They concluded that a 
detector such as the MOSkin detector with small sensitive volume and tissue-equivalent 
materials could provide accurate dose assessment near the interface region of two different 
media.  

 
In this study, the dosimetric characteristics across the lung and Perspex interface on a 

moving phantom has been investigated, which simulated a moving tumour’s interface or lung 
and soft tissue interface. Specifically, the dosimetric characteristics across the lung and soft 
tissue interface during respiratory-gated radiotherapy were experimentally assessed using 
radiochromic film and the MOSkin detectors. The possible margin reduction using 
respiratory-gated technique was investigated. The dosimetric accuracy of the TPS dose 
calculation algorithms for lung and soft tissue interface was also evaluated.  
 
 

2.  Materials and Methods 

2.1.  Experimental setup 
 

All measurements were carried out under 6 MV photon with 1000 MU/min using a 
Novalis Tx linear accelerator (Varian Medical System, Palo Alto, CA) equipped with 
Exactrac gating system (BrainLAB AG, Heimstetten, Germany). The Exactrac gating system 
used an illuminator to emit infrared toward the infrared reflective (IR) markers attached on 
the phantom or patient. Two cameras was used to track the motion of the reflective markers 
on the phantom [24]. A delay of 1.05 mm of the gating system and the radiation beam trigger 
was found in our previous work [25],  
 

A Perspex slab-based IMRT dose verification phantom positioned on a respiratory gating 
platform (Standard Imaging, Middleton, WI) was used. Two slab of Perspex slab with lung 
equivalent insert (3 cm thick for each slab) was sandwiched with a Perspex slab on top and 
two Perspex slab at the bottom (Figure 1). Since the respiratory motion is usually most 
pronounced in the cranial-caudal direction [2], the phantom was positioned and set to move 
in horizontal direction to mimic lung motion in the cranial-caudal direction. An in-house 
customised platform capable of moving in the vertical direction was designed and attached to 
the respiratory gating platform to mimic the respiratory-induced chest wall motion. The 



pattern of the respiratory movement followed a sine function and there was no offset between 
the vertical and horizontal motion. Five IR markers were positioned on the vertical platform 
as external surrogates for respiratory motion tracking. This phantom combination is 
henceforth called as “moving phantom”.  

 
Considering the moving phantom possesses similar tissue heterogeneity to the lung and 

soft tissue, the dosimetric characteristic across the lung and Perspex interface of the moving 
phantom was assessed. The radiation detectors were positioned in between the Perspex slabs 
with lung inserts and at the lung and Perspex interface. The lung and Perspex interface of the 
moving phantom at its home position (middle position between the peaks of the respiratory 
amplitude) was aligned in coincidence with the radiation isocentre and was exposed with a 
single direct beam (Figure 1). The proportion of the movement in both lung and Perspex 
media is equally distributed. Three types of irradiations were simulated: phantom in non-
moving state with continuous irradiation, phantom in moving state with continuous 
irradiation and phantom in moving state with gated irradiation. For simplicity, these 
irradiations will be referred as static radiotherapy, non-gated radiotherapy, and gated 
radiotherapy, respectively. Details of the respiratory operation’s parameters are shown in 
Table 1. 
 

 
Figure 1. Perspex slabs IMRT dose verification phantom with lung equivalent insert was 
sandwiched with the Perspex slabs. The interface of the lung and Perspex media was 
irradiated with 6 MV photon beam with 4 x 3 cm2 field size. The dots indicate the positions of 
the MOSkin detectors sandwiched in between 2 Perspex slabs with lung insert. 

 



Table 1. Respiratory operation’s parameters during static, non-gated and gated 
radiotherapy. 

 Amplitudes Gating windows (range) 
Static 0 mm - 
   
Non-gated 10 mm, 20 mm, and 40 mm - 
   
Gated 10 mm, 20 mm, and 40 mm 25% (37.5%-62.5%), 50% (25%-

75%), and 75% (12.5%-87.5%) 
 

 

2.2.  Gafchromic EBT2 film and the MOSkin detector 
 
Selection of a suitable detector is very important to characterise the lung and soft tissue 
interface dosimetry. The size of the detector must be small, especially the sensitive volume in 
order to provide high spatial resolution. In this work, Gafchromic EBT2 film (International 
Specialty Products, Wayne, NJ) and MOSkin detector were used to measure the dose near the 
lung and Perspex interface. The EBT2 films were cut into sizes of 40 (lateral) x 50 
(longitudinal) mm2 for dose profile measurement. All films were placed in landscape 
orientation at the centre of an Epson Expression 10000XL flatbed scanner (Epson America, 
Long Beach, CA) to reduce film and scanner-induced change in pixel values. The films were 
scanned in RGB format with a resolution of 96 pixels per inch. A median filter of 5x5 pixels 
was applied. Only the red channel was used for analysis. Image analysis was performed using 
ImageJ version 1.43U (National Institute of Health, Bethesda, MD). The overall uncertainty 
for EBT2 film for dose measurement in radiotherapy was 2.8% (1 SD) [26].  
 

MOSkin detector, a special design of p-MOSFET-based detector, developed at the Centre 
for Medical Radiation Physics, University of Wollongong, Australia. The silicon chip with 
dimension of 0.6 x 0.8 x 0.35 mm3 is “dropped-in” a kapton pigtail strip and was sealed with 
a layer of thin polyamide film with water-equivalent thickness of 0.07 mm. The MOSkin 
detector is known for its capability for skin dose measurement [27-29]. It is also suitable for 
dose measurement in steep dose gradient region such as small radiation field [30] and 
interface [20] due to its small sensitive volume (0.002 mm3), water-equivalent packaging, and 
minimal perturbation effect. Additional, it also has the ability of instant or real-time readout. 
In this work, together with EBT2 film, the MOSkin detectors were used as an independent 
check for interface dosimetry. The agreement between the MOSkin and EBT2 film 
measurement was evaluated using:  

 

𝑅𝑅𝑅𝑅 = �∑(𝐷−𝐷𝐸𝐸𝐸2)2

𝑛
                                          Equation 1 

 
where  𝑅𝑅𝑅𝑅 is the root mean square error, 𝐷 is the MOSkin detector measured dose and 
𝐷𝐸𝐸𝐸2 is the EBT2 film measured dose over the nine measurement points (𝑛). 
 

2.3.  Output constancy 
 



Both EBT2 films and the MOSkin detectors were calibrated in a solid water phantom under 
the linear accelerator with 6 MV photon beam at source to surface distance of 100 cm and 
field size of 10 x 10 cm2. The films and detectors were always in ‘face-up’ orientation to 
avoid dosimetric error due to asymmetric structure of the detectors. A set of standard film 
were irradiated to establish a calibration curve (dose range from 0 to 1000 cGy) for EBT2 
film while an average calibration factor of 2.323 ± 0.115 mV cGy-1 was used for all MOSkin 
detectors. 
 

Before evaluating the dosimetric characteristics near the interface region, the radiation 
output constancy of a linear accelerator in non-gated or gated operation has to be assessed. 
According to AAPM Task Group 142, the radiation output of a linear accelerator should be 
within ±2% during gated operation as compared to standard radiation delivery (static 
radiotherapy) [31].  

 
The dosimetric comparison of gated and non-gated mode of a linear accelerator was 

performed. The lung inhomogeneity slab of the moving phantom was replaced with Perspex 
slab. Two hundred monitor units were delivered for all irradiation conditions. The radiation 
output at the isocentre was measured with the EBT2 film and the MOSkin detector at depth of 
6 cm in the moving phantom. The average of the central 5x5 pixels area around the central 
axis of the film was taken and analysed. All measurements were repeated twice.  
 
 

2.4.  Dose profile measurement 
 
EBT2 film and the MOSkin detectors were used to measure the dose profile at depth of 6 cm 
(between the Perspex slabs with lung insert) in the moving phantom along the longitudinal 
direction across the lung and Perspex interface. Nine MOSkin detectors were used and 
positioned along the centre axis of the radiation beam with interval of 5 mm between the 
detectors, with one detector at the isocentre (Figure 1). The positioning accuracy of the 
MOSkin detector is estimated to be within ±1 mm. All MOSkin measured dose profiles were 
normalised to the dose measured with the MOSkin detector at the central axis of the radiation 
beam while EBT2 dose profiles were normalised to the average of the central 5x5 pixels area 
around the central axis. This is to aid the identification of the desired isodose level for 
evaluation. The penumbral width of the dose profile for non-gated/gated and static 
radiotherapy were calculated to evaluate the dosimetric properties.  
 
 

2.5.  Dose calculation near interface region 
 
In addition to experimental measurements, dose profiles along the longitudinal direction 
across the lung and Perspex interface of the phantom were calculated in an Eclipse TPS 
(Varian Medical System, Palo Alto, CA). Three dose calculation algorithms available in 
Eclipse TPS were used: PBC version 10.0.28 with modified batho, AAA version 13.6.23 and 
AXB version 13.6.23. These algorithms shared the same photon beam data, which were 
acquired using a CC13 ionisation chamber in a water phantom (Blue Phantom, IBA).  

 
The moving phantom was scanned with a big bore computed-tomography (CT) scanner 

(Brilliance CT Big Bore, Philips Healthcare, Andover, MA) with slice thickness of 1.0 mm 



and pitch of 1. The image set were then imported into the TPS. The calculations were scored 
with resolution of 1 mm (smallest of 1.25 mm for PBC). For PBC and AAA, the dose in 
water was reported. For AXB, the dose was reported as dose in water and medium (AXBw 
and AXBm). The calculated dose profiles were compared against experimental measurement 
using EBT2 film and the MOSkin detectors. Quantitative evaluation of the agreement 
between The TPS calculated dose (𝐷) and the experimental measurement using EBT2 film 
(𝐷𝐸𝐸𝐸2) was performed using the root mean square error (RMSE). 
 
 

3.  Results and discussion 

3.1.  Output constancy 
 
Figure 2 shows the measured radiation output of the linear accelerator under static, gated and 
non-gated radiotherapy. All measured doses were normalised to 1 at the EBT2 film measured 
dose during static radiotherapy. In static radiotherapy, the measured doses at the isocentre of 
the radiation beam were 144.92 ± 1.58 cGy and 145.69 ± 1.96 cGy with EBT2 film and the 
MOSkin detector, respectively.  
 

In non-gated radiotherapy, the radiation output measured with EBT2 film for 20 mm and 
40 mm respiratory amplitudes were lower with deviation of -6.5% and -17.9%, respectively. 
No significant difference was observed for 10 mm respiratory amplitude. When the radiation 
was delivered in gated mode (25% gating window’s width), the radiation outputs 
corresponded well to static radiotherapy with the deviation of <2%. Gated radiotherapy with 
gating window’ width of 50% and 75% shows deviation of 4.8% and 9.4%, respectively. This 
shows that the gated radiotherapy reduced the effect of respiratory motion on dose delivery 
accuracy during non-gated radiotherapy. However, larger gating window’s width retains the 
residual motion, thus reduced the dose delivery accuracy.  

 
Meanwhile, the agreement of between the MOSkin and EBT2 film measurement for 

radiation output constancy was also evaluated (Figure 2). Similarly, the MOSkin detector was 
found to be in good agreement with EBT2 film measurement during static radiotherapy and 
gated radiotherapy with different respiratory amplitudes, with the deviations of <2%, except 
for 40 mm respiratory amplitudes (>3%).  

 



 
Figure 2.Radiation output constancy during respiratory-gated radiotherapy using both 
MOSkin detector and EBT2 film. The error bars show 1 SD of 3 repeated measurement.  

 
 

3.2.  Dose profile during static, non-gated radiotherapy and gated radiotherapy 
 
Figure 3 shows an example of the measured dose distribution using EBT2 film during static 
(no motion), non-gated and gated radiotherapy. In the case of non-gated radiotherapy, the 
moving phantom was set to move with motion amplitude of 40 mm. Comparing to static 
radiotherapy, there was a significant difference in the dose distribution. In non-gated 
radiotherapy, dose smearing effect was illustrated at the edge of the dose distribution along 
the moving direction, leads to the blurring of the high dose gradient region at the edge of the 
radiation field (penumbra region). Dose decrement was observed inside the radiation field 
while dose increment was observed outside the radiation field, results in under-dosage inside 
the target tumour while overdosing the surrounding tissue. Figure 4 demonstrates the 
measured dose profile along the longitudinal direction during static, non-gated, and gated 
radiotherapy with different tumour motion amplitudes. Similar to Figure 3, dose smearing 
effect was observed in non-gated radiotherapy and this dose smearing effect is more 
pronounced with the increasing in the respiratory amplitude.  

 
Unlike non-gated radiotherapy, the dose smearing effect has been reduced during gated 

radiotherapy with gating window’s width of 25%. The delivered dose distributions during 
gated radiotherapy and static radiotherapy are similar. However, there is still some dose 
discrepancies of the dose profile due to the residual motion within the gating window during 



gated radiotherapy compared to static radiotherapy [16]. The residual tumour motion in the 
gating windows is dependent on the width of the gating window and the respiratory 
amplitude [7, 12, 16]. The residual motion is greater when the gating window’s width 
increased, results in more pronounced dose smearing effect as shown in Figure 5. If the 
gating window is 100%, implying there is no gating, the residual tumour motion can be very 
large as in non-gated radiotherapy. Smaller gating window should be used in order to retain 
accurate dose distribution. However, this will prolong the treatment time. Falk et al. reported 
that the treatment time for amplitude-based gated SBRT is 3.5 times longer than non-gated 
radiotherapy [16]. 
 

The dose profiles were measured with the MOSkin detectors during respiratory-gated 
radiotherapy and compared against EBT2 film measured profiles as shown in Figure 4. The 
MOSkin measured dose profiles corresponded well with the EBT2 film measurement during 
static radiotherapy and gated radiotherapy, with the RMSE of <3%. The result is consistent 
with the reported result in previous studies who used MOSFET in lung and water interface 
[20, 32]. Alhakeem et al. have found the difference between the MOSkin measurement and 
Monte Carlo (MC) simulation was within ±3% for depth dose measurement near lung and 
water interface in a lung and water phantom [20].  

 

 
Figure 3. Measured dose distribution using EBT2 film across the lung and Perspex interface 
during static radiotherapy (no motion), non-gated radiotherapy (motion amplitude of 40 mm) 
and gated radiotherapy(motion amplitude of 40 mm). The vertical dot line indicates the 
measured dose profile along the central of the radiation field in each case.  

 



 

 



 

 



Figure 4. Dose profiles measured with EBT2 film and the MOSkin detectors during static (a), 
non-gated and gated radiotherapy with tumour motion amplitude of 10 mm (b), 20 mm (c), 
and 40 mm (d). The vertical error bar shows 1 SD of three repeated measurements for each 
irradiation condition. The horizontal error bars represent the positioning error of 1 mm for 
the MOSkin detector. 

 

3.3.  Penumbral width 
 
The penumbral width (distance between 20% and 80% isodose of the profile) in both the 
Perspex and lung media was measured and summarised in Table 2. During static 
radiotherapy, steeper dose gradient (narrower penumbral width) appears in Perspex media 
than lung media as illustrated in Figure 4. The asymmetrical dose profiles can be explained 
by the longer range of the lateral scattered electron in the low density media (lung), compared 
to water equivalent material (Perspex) [33-35]. This resulted in the lateral electronic 
disequilibrium occurring at a larger distance from the geometrical beam edge in lung media 
compared to in Perspex media, therefore a decrease in the sharpness of the dose profile 
(wider penumbral width) was observed in lung media.  

 
When the radiation was delivered in non-gated mode, dose smearing effect appeared. The 

penumbral widths of the dose profiles were wider in both lung and Perspex media than static 
radiotherapy. The dose smearing effect was found to be less pronounced in lung media 
compared to Perspex media with increasing tumour motion amplitudes. This is probably due 
to respiratory amplitude (phantom motion) used in this study is relatively smaller than the 
range of the lateral scattered electron in lung media compared to in Perspex media. Assuming 
the range of scattered electron is equal to the CSDA (continuous slowing down 
approximation) range [36] of 6 MeV electron, which is 3.162 g cm-2 and 3.088 g cm-2, 
respectively in Perspex (density of 1.18 g cm-3) and lung (~0.3 g cm-3) media. The scattered 
electron may travel 2.68 cm laterally in Perspex media and 10.29 cm in lung media and this 
distance is assumed to be the starting point of lateral electronic disequilibrium from the 
geometrical edge of the radiation beam. In the case of 40 mm respiratory motion in this study 
(Figure 4(d)), the range of the scattered electron in lung media is relatively greater than the 
motion, thus, the dose smearing effect is less to the penumbra of the dose profile in lung 
media compared to Perspex media.  
 

The penumbral width of the dose profiles during gated radiotherapy were significantly 
reduced. During non-gated radiotherapy with 10 mm tumour motion amplitude, the 
penumbral width was 9.13 mm and 11.52 mm in Perspex and lung media, respectively. The 
penumbral width was reduced to 4.26 mm and 7.92 mm during gated radiotherapy with 25% 
gating window, with an effective reduction of 53% and 31%, respectively.  

 
For respiratory amplitude of 40 mm, the penumbral widths were reduced from 28.81 mm 

and 26.40 mm to 6.85 mm and 9.81 mm in Perspex and lung media, with effective reduction 
of 76% and 63%, respectively during gated radiotherapy with 25% gating window. The 
effectiveness of respiratory-gated radiotherapy is more pronounced for larger tumour motion 
amplitude. However, the effectiveness of the gated radiotherapy was decreased as the gating 
window increased. The residual motion within the gating window results in dosimetric error 
such as blurring and deformation of the dose distribution and hence, degrade the actual dose 
distribution especially at the steep dose gradient region.  



 

 
Figure 5. Dose profiles measured with EBT2 film during respiratory static, non-gated and 
gated radiotherapy with different gating windows’ width. 

 
Table 2. Penumbral width of the dose profiles across the lung and Perspex interface during 
non-gated and gated radiotherapy.  

  Penumbra width, mm 
  Non-gated   Gated 
  Perspex Lung   Perspex Lung 

Static  3.66 7.22     
     Gating 

windows 
  

Amplitude 10 mm 9.13 11.52  25% 4.26 7.92 
 20 mm 16.53 17.37  25% 4.59 7.80 
 40 mm 28.81 26.40  25% 6.85 9.81 
 40 mm    50% 12.03 14.03 
 40 mm    75% 19.42 19.49 

 
 

3.4.  Margin for respiratory motion 
 



As demonstrated in Figure 3 and Figure 4, the dose smearing effect due to the respiratory 
motion resulted in under-dosage inside the target tumour while over-dosage to the 
surrounding normal tissue, especially with larger respiratory amplitudes. The under-dosage 
inside the target tumour should be taken into account in radiotherapy. As recommended by 
AAPM Task Group 76, respiratory management techniques such as motion encompassing or 
respiratory-gating techniques should be considered when the lung tumour has displacement 
more than 5 mm [5].  
 

It is interesting to understand the additional safety margin for respiratory motion needed 
for motion encompassing technique and also how much margin reduction is possible by using 
gated radiotherapy. According to Engelsman et al., the margin for intra-fractional respiratory 
motion is defined as the increase in margin between CTV and planning target volume (PTV) 
necessary to ensure the same tumour coverage as without intra-fractional motion [37].  

 
In this study, the additional safety margin for the intra-fractional respiratory motion 

(Mresp)was determined by evaluating the agreement between 95% isodose levels of the dose 
profiles during non-gated or gated radiotherapy with static radiotherapy in term of dose-to-
distance agreement (DTA) [38, 39]. The measured margin (Mresp) was then compared against 
the calculated margin using van Herk’s margin recipe [40, 41]. By accounting the random 
uncertainties only, the notation that describes the additional margin for the intra-fractional 
respiratory motion (Mresp) is: 
 

𝑅𝑟𝑟𝑟𝑟 = 𝑅𝑛𝑛𝑛−𝑔𝑔𝑔𝑟𝑔/𝑔𝑔𝑔𝑟𝑔 − 𝑅𝑟𝑔𝑔𝑔𝑠𝑠                              Equation 2 
 

𝑅 = 𝛼�𝜎 − 𝜎𝑟�                                               Equation 3 
 

𝜎 = �𝜎𝑚𝑛𝑔𝑠𝑛𝑛 + 𝜎𝑟𝑟𝑔𝑠𝑟 + 𝜎𝑟                                       Equation 4 
 

where M is the margin during static (𝑅𝑟𝑔𝑔𝑔𝑠𝑠), non-gated (𝑅𝑛𝑛𝑛−𝑔𝑔𝑔𝑟𝑔) or gated radiotherapy 
(𝑅𝑔𝑔𝑔𝑟𝑔), α is the value corresponds to the coverage of the tumour (1.64 for 95% isodose 
level, respectively), and σ is the quadratic summation of the standard deviation of respiratory 
motion (𝜎𝑚𝑛𝑔𝑠𝑛𝑛), setup uncertainty (𝜎𝑟𝑟𝑔𝑠𝑟), and the width of penumbra (𝜎𝑟).  
 

The 𝜎𝑚𝑛𝑔𝑠𝑛𝑛 is assumed to be about 0.4 times the amplitude of respiratory motion, which 
can be assumed to have a Gaussian probability density function [37]. For 𝜎𝑚𝑛𝑔𝑠𝑛𝑛 >5 mm, a 
correction factor as suggested by Engelsman et al. was applied [37]. Since the proportion of 
the movement of the moving phantom in lung and Perspex media is equal, the respiratory 
amplitude will be equalled to half of the total respiratory amplitude. The 𝜎𝑟𝑟𝑔𝑠𝑟 is assumed to 
be 3 mm, which is the typical patient setup error [3]. The 𝜎𝑟 was obtained based on the 
penumbral width of the dose profile during static radiotherapy, which is 7.22 mm and 3.66 
mm in Perspex and lung media, respectively. For gated radiotherapy, the respiratory motion 
of the moving phantom is uniform. The 𝜎𝑚𝑛𝑔𝑠𝑛𝑛  of the residual tumour motion was 
determined since it is known and corresponded to the width of the gating windows.  

 
Table 3 shows the additional margin (𝑅𝑟𝑟𝑟𝑟) for the respiratory motion calculated using 

van Herk’s margin recipe and our measurement. Our measured margins are in good 
agreement (within 1 mm difference) with the calculated margins using van Herk’s margin 
recipe, for both non-gated and gated radiotherapy. In non-gated radiotherapy, larger 𝑅𝑟𝑟𝑟𝑟 is 
required and increased with the respiratory amplitude.  



 
Compared to non-gated radiotherapy, the measured and calculated margins are much 

smaller for gated radiotherapy. This shows that the margin reduction was attainable for gated 
radiotherapy and the dose smearing effect has been reduced. However, small margin is still 
needed for the residual motion and this residual motion increases with the gating window’s 
width. For example, using 50% gating window’s width for 40 mm respiratory amplitude 
requires margins of 4.07 mm and 2.48 in Perspex and lung media, respectively. The margins 
increased to 7.02 mm and 4.64 mm for 75% gating window’s width. The true value of gated 
radiotherapy can only be retained with smaller gating window with the expense of  
prolonging the treatment time.  
 
Table 3. Comparison of our measured margin with the calculated margin using van Herk’s 
margin recipe for 95% isodose level. All values are in mm. 

 Perspex Lung 
Amplitude 10 20 40 10 20 40 
Mstatic 0.22 0.22 0.22 0.11 0.11 0.11 
Mnon-gated 2.46 4.29 10.27 1.40 2.59 7.17 
Mgated 1.80 1.94 2.46 1.01 1.09 1.40 

       
Non-gated       
Mresp, calculated 2.24 4.07 10.05 1.29 2.48 7.06 
Mresp, measurement 3.14 4.54 10.80 1.96 3.40 8.02 

       
Gated       
Mresp, calculated 1.58 1.72 2.24 0.90 0.97 1.29 
Mresp, measurement 0.70 1.20 1.80 0.60 0.20 0.44 
 
 

3.5.  TPS calculation algorithms for interface dosimetry 
 
Three dose calculations available in Eclipse TPS for lung and Perspex interface dosimetry 
were evaluated for comparison against EBT2 film measurement. Figure 6 shows the dose 
profiles across the lung and Perspex interface in the moving phantom during static 
radiotherapy. All dose profiles were normalised to 100% at the isocentre.  
 

Overall, the RMSEs of 6.21%, 3.32%, 2.62%, and 1.73% were found for PBC, AAA 
AXBw, and AXBm, respectively. All algorithms were in agreement with the EBT2 film 
measurement in the Perspex media, except at the penumbra regions. Maximum deviations of 
-5.45%, 4.29%, 3.98%, and -2.44% were observed for PBC, AAA, AXBw and AXBm, 
respectively within the central 80% of the radiation field.  
 

In the lung media, excluding the penumbral region, AAA, AXBw and AXBm were in 
agreement with EBT2 film measurement. The maximum deviations were 6.01%, 4.13%, and 
1.84% for AAA, AXBw, and AXBm respectively. Similar results were observed in previous 
studies that AXBm was in better agreement than AAA [20, 42]. PBC over-estimated the dose 



in lung media of up to 12.67%. Large deviations were observed for all TPS calculation 
algorithms at the penumbral region. This is due to the dose volume averaging effect of the 
ionisation chamber during the commissioning of the TPS.  

 

 
Figure 6. The measured and calculated dose profiles across the lung and Perspex interface 
during static radiotherapy.  

 
It is known that accurate dose calculations for lung SBRT are challenging due to the lack 

of lateral scattered electronic equilibrium in the lungs. The PBC algorithm, which is a 
correction-based algorithm, accounted the tissue inhomogeneity based on the equivalent path 
length, without taking into account the change in the lateral electron transport [43-45]. It 
significantly over-estimated the dose near the lung and Perspex interface, especially in the 
lung media.The inhomogeneity correction was only accounted in the direction parallel to the 
incident beam. Our result was consistent with previous published data [18, 33, 43].  

 
The AAA algorithm, which is a model-based algorithm, has lateral electron transport 

modelled as variable direction and considerably improved the dose accuracy in lung media 
[43, 46]. The over-estimation of PBC in lung media was improved by AAA, with the 
maximum deviation of 12.76% reduced to 6.01%. This result was comparable with the result 
reported by Han et al. [42] where average differences of 2.8% and 5.7% were observed 
between the lateral dose profile in heterogeneous slab phantom calculated by AAA and MC 
simulation for 6 MV and 18 MV photons, respectively.  
 

The AXB algorithm is a grid-based linear Boltzman transport equation solver [47, 48] and 
has been proven to be able to predict the dose in inhomogeneous media with comparable 



accuracy to Monte Carlo method [49]. Our result shows that the dosimetric accuracy was 
further improved by AXB as compared to PBC and AAA. The AXB was able to predict the 
dose in lung media with the deviation of <5%, with either reporting the dose in water (AXBw) 
or medium (AXBm). Similar result was observed in Han et al. [42] where average differences 
of 1.6% and 3.2% between the lateral dose profile in heterogeneous slab phantom calculated 
by AXB and MC simulation for 6 MV and 18 MV photons, respectively [42].  

 
To understand the consequence of the accuracy of dose calculation algorithms near the 

interface region for margin generation, the positions of 95% isodose level for each 
calculation algorithms has been located and compared with the positions of 95% isodose 
level as measured using EBT2 film (Table 4). The positions of 95% isodose level measured 
with EBT2 film during static radiotherapy were -16.20 mm and 9.60 mm in Perspex and lung 
media, respectively. These positions were assumed to have adequate dose coverage with 95% 
isodose level at the edge of the target tumour volume. The PBC underestimated the dose 
coverage in Perspex media by 3.20 mm while overestimated the dose coverage in lung media 
by 5.0 mm. Advanced dose calculation algorithms have shown to improve the dose accuracy 
near interface region, particularly in lung media. However, there were still some 
discrepancies compared to the measurement. both AAA and AXBw still over-estimated the 
dose coverage while AXBm underestimated the dose coverage in Perspex and lung media. To 
understand the actual dose of the corresponding position, the dose was measured with EBT2 
film and shown in Table 4. Assuming the setup uncertainty for this measurement was ±1 mm, 
the average dose within ±1 mm of the correspond position was determined. The over-
estimation of the dose coverage to the tumour will lead to a choice of a field size which is too 
small and subsequently lead to under-dosage to the target tumour. Therefore, the 
understanding and selection of the dose calculation algorithm is very important.  

 
 
 
Table 4. Positions of 95% isodose level calculated using different dose calculation 
algorithms. The right column shows the average measured dose over ± 1 mm of the 
corresponding position. 

 Positions of 95% isodose level, mm  EBT2 Measured dose, % 

 Perspex Lung  Perspex Lung 
EBT2 -16.20 9.60  - - 
PBC -13.00 14.60  99.07 ± 0.38 84.78 ± 1.94 
AAA -17.00 11.40  91.97 ± 2.91 92.54 ± 1.12 
AXBw -17.40 10.40  89.90 ± 3.93 94.04 ± 0.88 
AXBm -15.60 8.80  95.75 ± 0.96 95.90 ± 0.67 
 

The accuracy of PBC and AAA are beam model dependent [50]. AXB showed better dose 
accuracy compared to PBC and AAA, with a minimal dose difference between AXBw and 
AXBm. Although the difference between AXBw and AXBm was minimal in most tissue, dose 
difference of up to 15% may be observed in bone region [42]. Therefore, the selection these 
two reporting modes is important especially when reporting the dose of inhomogeneous 
tissue. The default mode for AXB is dose to medium (AXBm) as it is a linear Boltzman 
transport equation solver for specific materials in patient. In most TPS, only one of these dose 
reporting mode is available. A thorough comparison between AXBw and AXBm is beyond the 
scope of this study. For dose calculation in lung media, better TPS dose calculation 



algorithms such as AAA or AXB are essentially within dosimetric expectation for planning-
related uncertainties. To note, not only the dose calculation algorithms itself will introduce 
errors, but the implementation of the algorithm in the TPS such as beam model parameters 
plays a role as well. 
 
 

4.  Conclusion 
 
This study has explicitly investigated the dosimetric characteristics near interface region in a 
moving phantom during non-gated and gated radiotherapy. Dose smearing effect was 
observed during non-gated radiotherapy and more pronounced with larger respiratory 
amplitude. This effect can be reduced with gated radiotherapy, but it cannot be fully 
eliminated due to the residual motion within the gating windows. The residual motion is 
greater in larger gating window’s width.  
 

The dose smearing effect due to the respiratory motion which resulted in under-dosage 
inside the target tumour should be taken into account in radiotherapy, either by increasing the 
margin (motion encompassing technique) or using respiratory tracking system to gate the 
beam to the moving target (respiratory-gating). In motion encompassing technique for 
respiratory motion of 40 mm, margins of at least 10.80 mm and 8.02 mm in Perspex and lung 
media, respectively are needed to ensure full dose coverage to the target tumour with 95% 
isodose level. The margin can be furthered reduced by 1.80 mm and 0.44 mm in Perspex and 
lung media, respectively by using 25% gating window’s width during gated radiotherapy. A 
small margin is still needed to compensate for the residual motion.  

 
All PBC, AAA, and AXB showed a good agreement with EBT2 film measurement in the 

dose determination near the Perspex media. PBC showed an over-estimation of the dose in 
near the lung media compared EBT2 film measurement. The over-estimation of the dose near 
the lung media has been improved by using modern dose calculation algorithm, which AXB 
is more accurate compared to AAA. Therefore, it is essential to use better algorithm for dose 
determination near the lung interface. 

 
The MOSkin detector has small sensitive volume, water-equivalent packaging and 

minimal perturbation effect is suitable for dose assessment near the interface region of 2 
different media. This has been shown in the good agreement of The MOSkin detectors with 
the EBT2 film in the dose profile measurement during static and gated radiotherapy.  
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