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Electricity generation from oceanic wave depends on the wave dynamics and the behavior of the ocean. In this paper, a permanent
magnet linear generator (PMLG) has been designed and analyzed for oceanic wave energy conversion.The proposed PMLG design
is suitable for the point absorber type wave energy device. A mathematical model of ocean wave is presented to observe the output
characteristics and performance of the PMLG with the variation of ocean waves. The generated voltage, current, power, applied
force, magnetic flux linkage, and force components of the proposed PMLG have been presented for different sea wave conditions.
The commercially available software package ANSYS/ANSOFT has been used to simulate the proposed PMLG by the finite element
method. The magnetic flux lines, flux density, and field intensity of the proposed PMLG that greatly varies with time are presented
for transient analysis. The simulation result shows the excellent features of the PMLG for constant and variable speeds related to
wave conditions.These analyses help to select proper PMLGparameters for better utilization of sea wave tomaximize output power.

1. Introduction

At present, scientists and engineers are facing twomajor chal-
lenges in the world of energy: electrical energy production
and environmental issue. These problems can be amicably
solved using renewable energy resources (RERs). The vital
factors which have stimulated the use of RERs are energy
independence, financial viability, and mainly environmental
protection [1]. The problem of oil crises (1973–1983) and
environmental pollution concerns urged engineers to harvest
electrical energy from the available RERs, for example, wind
energy [2–5], solar energy [6–9], and hydro power [10]. As
the RER is variable and unpredictable, different types of con-
verters and controls are associated with the RER-based power
plants that are connected with standalone or grid systems
[11, 12].The traditional RERs have the problem of uncertainty
of availability and they require a large land area. On the other
hand, the key advantages of oceanic wave energy (OWE) are
as follows: (i) it has huge potential compared to the solar and
wind energy, (ii) it is easy to forecast, and (iii) it does not need
land area. Hence, it has been of great interest to the industrial

field; particularly, in energy generation, the use of wave power
has been more attractive compared to other RERs [13]. OWE
is a promising environmental pollution-free energy, which
wouldmake significant contribution toward saving biochem-
ical resources and reducing carbon emissions [14]. It is
estimated that the total wave energy resource in the open
sea around the world is 10 TW (10,000GW), a comparable
amount of the total power consumption in the world [15].

Different types of oceanic wave energy converters
(WECs) have been invented and examined for successful
conversion of wave energy into electrical energy [16–19]. The
wave energy device may be of a rotational or a translational
type and each of these devices has different features [20].The
power takeoff devices play a vital role in converting the irreg-
ular wave motion to a regular motion for energy conversion.
Linear generators (LGs) have directly been implemented
to the direct drive wave energy conversion without using
medium devices which has unique advantages over all other
wave energy devices [21]. An LG has twomajor parts, namely,
translator and stator. The translator mounted to a hollow
cylinder is sometimes called a float or floater as shown in
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Figure 1: Drawing of the LG connected with a float.

Figure 1. The stator is mounted to another mechanical body
in order to make it stationary with respect to the sea wave.

The floater tries to float on the surface of the ocean wave
with the translator that moves relative to the stator due to
wave action. The floater utilizes the rise and fall of the sea
wave at a single point for energy conversion. As the translator
moves linearly due to the reciprocating motion of the floater,
the wave energy so extracted is converted into electrical
energy. A lot of mathematicians analyzed and proposed dif-
ferent mathematical models for understanding the nature of
oceanic wave [22, 23].

Different types of permanent magnet linear generators
(PMLGs) have been designed and analyzed for improved
performance. The flat and tubular flux switching permanent
magnet linear generators (FSPMLGs) have been proposed
[21, 24, 25]. Different analyses have shown that the FSPMLGs
made of PMs and steel cores have suffered from the problem
of higher leakage flux leading to the reduction of electrical
power generation. Tubular PMLGs have been proposed [14,
21, 26, 27] to reduce cogging forces and also increase effi-
ciency. The maintenance of tubular PMLG is difficult due to
the presence of the coils inside the periphery. It is seen in the
recent works [28] that the linear switched reluctance gener-
ator (LSRG) has been proposed for high power generation.
Excessive leakage flux and complex control circuit of LSRGs
are responsible for the degradation of overall efficiency and
reliability.

This paper has presented the mathematical model of the
wave motion to analyze the behavior of a PMLG that offers
low internal resistance, low loading effect, and high output
power. It is essential to consider the nature of wave motion
for parameter selection of the PMLG, thus maximizing elec-
tricity generation. A relationship between the oceanic wave
motions with the parameters of PMLG is established. Differ-
ent significant parameters, for example, size of PMs, poles,
translator length, and stroke length, of the PMLG are found
from the relationship and the generated voltage, current,
power, applied force, magnetic flux linkage, flux lines, flux
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Figure 2: Position of the translator for time 𝑡
1
.

density, and the applied force with force components of the
proposed PMLG are shown for different sea wave conditions.

2. Design of the PMLG

2.1. Working Principle. The translator moves vertically with
the incident wave; therefore, the direction may be upward
or downward. Considering the translator movement in the
upward direction as shown in Figures 2 and 3 for a particular
time interval, the stator and translator poles are aligned facing
each other.The red and green lines are representing the north
pole (N) and the south pole (S) of the permanent magnet
(PM), respectively. S exists in the upper side and N exists in
the lower side of the stator core for a time 𝑡

1
. The position of

the translator varies with time and the direction of magnetic
flux changes.The translator position changes in Figure 3 from
the position shown in Figure 2. S now exists in the lower side
and N exists in the upper side of the stator cores for another
time 𝑡

2
.
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2
.

Hence, the direction of magnetic flux according to Fig-
ure 2 is opposite for the translator position as in Figure 3
within the time interval 𝑡

2
–𝑡
1
. Therefore, the induced voltage

directions across the conductor are opposite to each other and
due to this reason the PMLG generates AC power.

2.2. Vector Diagram and Equivalent Circuit. The winding
of each phase consists of two coils of opposite phases. The
induced voltages are therefore 180∘ phase shifted to each
other.The coils of each phase are connected in series in addi-
tive polarity to get higher output voltage.The vector diagrams
of induced voltages are represented in Figure 4.

The equivalent circuit diagram of the proposed PMLG
for a three-phase load is shown in Figure 5. The equivalent
series resistances and inductances of each phase winding coil
are considered equal, denoted by 𝑅

𝑎
and 𝐿

𝑆
, respectively.The

winding consists of two series coils; therefore, the equivalent
series resistance and inductance of each coil are denoted by
𝑅
𝑎
/2 and 𝐿

𝑆
/2, respectively. 𝐸

𝑎
, 𝐸
𝑏
, and 𝐸

𝑐
are the induced

voltages of phase-A, phase-B, and phase-C, respectively, for
simplicity. Similarly,𝐸

𝑎
,𝐸
𝑏
, and𝐸

𝑐
are the induced voltages of

phase-A, phase-B, and phase-C, respectively.Themagnetic
excitation is fed from the translator’s PM array as shown in
Figure 6. The terminal voltages, V

𝑎
, V
𝑏
, and V

𝑐
, are measured

across the load.
The induced voltage equation may be represented as

𝐸
𝑖
+ 𝐸


𝑖
= 𝑅
𝑖
𝑖
𝑖
+ 𝐿
𝑆

𝑑𝑖
𝑖

𝑑𝑡
+ V
𝑖

= 𝐾
𝑚
cos(𝜋

𝜏
𝑧 + 𝑗

2𝜋

3
) VV (𝑡) ,

(1)

where 𝑖 = A, B, and C, 𝑗 = 0, 1, and −1, V
𝑖
is the terminal

voltage, 𝑖
𝑖
is the line current, and 𝐿

𝑆
is synchronous induc-

tance.𝐾
𝑚
is the constant representing the machine construc-

tion; VV(𝑡) is the translator vertical velocity or speed; 𝜏 is the
pole pitch; and 𝑧 is the vertical displacement. The terminal
voltage is

�⃗�
𝑖
= �⃗�
𝑖
+ �⃗�


𝑖
− 𝑗𝑋
𝑆
�⃗�
𝑖
− 𝑅
𝑖
�⃗�
𝑖
. (2)

2.3. Construction Details. The vertical cross section of the
PMLG (front side) is shown in Figure 6. The PMLG basically
contains a translator which is made by some PMs with the
steel core.The stator contains some copper coils wounded on
the stator cores of steel situated on both sides of the translator.
Phase-A, phase-B, andphase-C are located on the right side of
the translator. Phase-A, phase-B, and phase-C are located
on the left side of the translator which are 180∘ phase shifted
from phase-A, phase-B, and phase-C, respectively. The con-
struction supports the translator to move in the vertical
direction with respect to the stator.The orientation of the PM
array should be such that N and S can be formed one after
another as shown in Figure 6.

3. Model of the Oceanic Wave

In most of the cases, constant speeds or sinusoidal speeds
having sinusoidal shapes are common approximations for
simulating PMLGs [25–27]. The typical range of vertical
velocity of wave is 0–2m/s with a time period from 4 to 6 s
[28–30]. Therefore, a free oceanic wave neither forced nor
dissipated on a flat seabed is presented for analysis of the LG
as shown in Figure 7 following the mentioned approxima-
tions. The amplitude of waveform is 𝐴. Hence, the vertical
distance between the wave crest and the trough is 𝐻 which
is equal to twice the amplitude 𝐴. According to the point of
view of oceanographers, it is considered as a linear wave.The
sea surface is lying on 𝑥𝑦 plane, where 𝑦 components are
considered zero as the wave propagates in 𝑥-direction, 𝜆 is
wavelength, 𝑑

𝑊
is water depth of the ocean with respect to 𝑥𝑦

plane or water surface, seabed is at 𝑧 = −𝑑
𝑊
, and the ocean

surface coincides with 𝑧 = 0.

3.1. GeneralizedWave. The general description of almost any
type of oceanic wave may be considered as, depending only
on the interpretation of 𝜁,

𝜁 = 𝐴 cos (𝑘𝑥 − 𝜔𝑡) (3)

𝜔 = √𝑔𝑘 tanh (𝑘𝑑
𝑊
). (4)

Here, the number of waves 𝑘 = 2𝜋/𝜆 and 𝜔 is the frequency
that asserts the physics and describes consideration of a water
wave relating frequency and wave number. Alternatively, it
can be considered as a relation between the phase speed or
oceanic wave velocity, V, and the wavelength. Considering
gravitational acceleration, 𝑔 = 9.8m/s2, the phase speed
which is a single basic wave that moves along the 𝑥-direction
can be expressed as

V = √
𝑔𝜆

2𝜋
tanh(2𝜋

𝜆
𝑑
𝑊
). (5)

According to (3) and (5), the wave velocity is along 𝑥-
direction only although it has the velocity along 𝑧-direction.
So, the velocity of oceanic wave is a vector that depends on
𝑥, 𝑦, and 𝑧 and time, 𝑡. To obtain a complete description of
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oceanic wave, the components along 𝑥, 𝑦, and 𝑧 have to be
calculated. The motion can be expressed as

𝑉 (𝑥, 𝑦, 𝑧, 𝑡)

= (𝑋 (𝑥, 𝑦, 𝑧, 𝑡) , 𝑌 (𝑥, 𝑦, 𝑧, 𝑡) , 𝑍 (𝑥, 𝑦, 𝑧, 𝑡)) ,

(6)

where𝑉(𝑥, 𝑦, 𝑧, 𝑡) represents the velocity of oceanic wave and
𝑋(𝑥, 𝑦, 𝑧, 𝑡),𝑌(𝑥, 𝑦, 𝑧, 𝑡), and𝑍(𝑥, 𝑦, 𝑧, 𝑡) are the components
along 𝑥, 𝑦, and 𝑧. The 𝑦 components may be considered as
zero for the oceanic wave and the 𝑥 and 𝑧 components can be
expressed as follows:

𝑋 = 𝐴𝜔
cosh {𝑘 (𝑧 + 𝑑

𝑊
)}

sinh (𝑘𝑑
𝑊
)

cos (𝑘𝑥 − 𝜔𝑡) (7)

𝑍 = 𝐴𝜔
sinh {𝑘 (𝑧 + 𝑑

𝑊
)}

sinh (𝑘𝑑
𝑊
)

sin (𝑘𝑥 − 𝜔𝑡) . (8)

The𝑥 and 𝑧 components from (7) and (8) can be simplified for
individual consideration of shallow water wave, intermediate
depth wave, and deep sea wave.

3.2. Shallow Water Wave. In shallow water, water depth is
much lower than the wavelength, 𝜆; that is, 𝑑

𝑊
≪ 𝜆 or

𝑘𝑑
𝑊
≪ 1. Another property of shallow water wave is that

the amplitude of wave is much smaller than wavelength; so,
𝐴 ≪ 𝜆 or 𝐴𝑘 ≪ 1. So, (7) and (8) may be written as

𝑋
𝑆
= 𝐴𝜔

𝑒
𝑘(𝑧+𝑑𝑊) + 𝑒

−𝑘(𝑧+𝑑𝑊)

𝑒
𝑘𝑑𝑊 − 𝑒

−𝑘𝑑𝑊

cos (𝑘𝑥 − 𝜔𝑡) (9)

𝑍
𝑆
= 𝐴𝜔

𝑒
𝑘(𝑧+𝑑𝑊) − 𝑒

−𝑘(𝑧+𝑑𝑊)

𝑒
𝑘𝑑𝑊 − 𝑒

−𝑘𝑑𝑊

sin (𝑘𝑥 − 𝜔𝑡) . (10)

Now, (9) and (10) may be reduced as

𝑋
𝑆
≅
𝐴𝜔

𝑘𝑑
𝑊

cos (𝑘𝑥 − 𝜔𝑡) (11)

𝑍
𝑆
≅ 𝐴𝜔(1 +

𝑧

𝑑
𝑊

) sin (𝑘𝑥 − 𝜔𝑡) . (12)

Again, if 𝑘𝑑
𝑊
≪ 1, 𝜔 = √𝑔𝑘 tanh(𝑘𝑑

𝑊
) can be simplified as

𝜔 = 𝑘√𝑔𝑑
𝑊
because

tanh (𝑘𝑑
𝑊
) =

𝑒
𝑘𝑑𝑊 − 𝑒

−𝑘𝑑𝑊

𝑒
𝑘𝑑𝑊 + 𝑒

−𝑘𝑑𝑊

=
2𝑘𝑑
𝑊

2
= 𝑘𝑑
𝑊
. (13)

As V = 𝜔/𝑘, phase speed can be expressed as V = √𝑔𝑑
𝑊
.
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Figure 6: Construction of the PMLG.

3.3. Deep Water Wave. In deep water, water depth is much
higher than wavelength; that is, 𝑑

𝑊
≫ 𝜆 or 𝑘𝑑

𝑊
≫ 1. So,

𝑒
𝑘(𝑧+𝑑𝑊) + 𝑒

−𝑘(𝑧+𝑑𝑊)

𝑒
𝑘𝑑𝑊 − 𝑒

−𝑘𝑑𝑊

≅
𝑒
𝑘(𝑧+𝑑𝑊)

𝑒
𝑘𝑑𝑊

= 𝑒
𝑘𝑑𝑊

,

𝑒
𝑘(𝑧+𝑑𝑊) − 𝑒

−𝑘(𝑧+𝑑𝑊)

𝑒
𝑘𝑑𝑊 − 𝑒

−𝑘𝑑𝑊

≅
𝑒
𝑘(𝑧+𝑑𝑊)

𝑒
𝑘𝑑𝑊

= 𝑒
𝑘𝑑𝑊

,

tanh (𝑘𝑑
𝑊
) =

𝑒
𝑘𝑑𝑊 − 𝑒

−𝑘𝑑𝑊

𝑒
𝑘𝑑𝑊 + 𝑒

−𝑘𝑑𝑊

≅
𝑒
𝑘𝑑𝑊

𝑒
𝑘𝑑𝑊

= 1.

(14)

Therefore, (7) and (8) can be expressed as follows:

𝑋
𝐷
≅ 𝐴𝜔𝑒

𝑘𝑑𝑊 cos (𝑘𝑥 − 𝜔𝑡) (15)

𝑍
𝐷
≅ 𝐴𝜔𝑒

𝑘𝑑𝑊 sin (𝑘𝑥 − 𝜔𝑡) . (16)
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Table 1: Comparison of the oceanic wave parameters.

Wave type Shallow water Intermediate depth wave Deep water

Relative depth
𝑑
𝑊

𝜆
< 0.05 0.05 <

𝑑
𝑊

𝜆
< 0.5

𝑑
𝑊

𝜆
> 0.5

Wave speed √𝑔𝑑
𝑊

√
𝑔𝜆

2𝜋
tanh(2𝜋

𝑑
𝑊

𝜆
) √

𝑔𝜆

2𝜋

Wave length √𝑔𝑑
𝑊
𝑇

𝑔𝑇
2

2𝜋
tanh(2𝜋

𝑑
𝑊

𝜆
)

𝑔𝑇
2

2𝜋

z

x

y

A

0

𝜆

𝜆

Wave trough

H

Wave crest

Seabed

dW

2𝜆

Figure 7: Waveform of a free oceanic wave.

Again, if 𝑘𝑑
𝑊
≫ 1, 𝜔 = √𝑔𝑘 tanh(𝑘𝑑

𝑊
) can be simplified as

𝜔 = √𝑔𝑘. Phase speed, V, can be expressed as V = √𝑔/𝑘.The𝑥
and 𝑧 components, both for shallow and for deep water from
(6)–(12), (15), and (16), are explained in [31]. Comparisons of
relative depth, wave speed, and wavelength of shallow water
wave, intermediate depth wave, and deep sea wave are shown
in Table 1.

4. The PMLG and Wave Model

4.1. Selection of Translator Length. The translator lengthsmay
be shorter, equal, or longer compared to the stator. The com-
mon lengths of the stator and the translator affect the power
rating of the PMLG.The power rating increases with increase
in the common length. Longer translator has been chosen
to obtain the same common length as shown in Figure 8
for different translator positions. The vertical displacement
of translator with the incident sea wave is known as stroke
length, 𝐿 st. There is a relationship between the wave ampli-
tude,𝐴

𝑤
, and 𝐿 st during the energy conversion as 𝐿 st = 2𝐴𝑤.

𝐴
𝑤
is smaller than the amplitude of free oceanic wave as in

(7)–(12), (15), and (16) because of power dissipation.

4.2. Determination of Frequency. The translator pole pitch
is the summation of the PM thickness and translator pole
thickness of the PMLG as shown in Figure 9. The stator pole
pitch and translator pole pitch may be the same or different
depending on the design strategy. In the proposed design, the
stator pole pitch is the same as the translator pole pitch and
the stator pole width is the same as the translator pole width.
The pitch and pole width have a vital effect on the generated

voltage, shape, power, frequency, and forces. The frequency,
𝑓, of the PMLG is determined by

𝑓 =
VV (𝑡)
2𝜏

. (17)

4.3. Direction of Forces. The simulation setup of the PMLG
design is represented using a 3DCartesian coordinate system.
The applied force is working along 𝑧-axis, as shown by
bidirectional arrow in Figure 10. The width and thickness of
this design are along 𝑦-axis and 𝑥-axis, respectively. Cogging
forces between stator and translator core act along 𝑦-axis.
Other force components except for applied force and cogging
forces work along 𝑥-axis. The PMLG converts mechanical
energy to electrical energy due to the force along 𝑧-axis and
the forces along 𝑥-axis and 𝑦-axis are generated which is the
cause of mechanical power loss. In the oceanic wave model,
the direction of wave elevation is also along 𝑧-axis according
to (8), (10), (12), and (16).

4.4. Generated Voltage with Waves. According to Faraday’s
law of electromagnetic induction, the induced voltage is
found as

𝐸
𝑖
(𝑡) = −𝑁

𝑑Φ⃗

𝑑𝑡
. (18)

In the wave model, the wave elevation is described with
respect to 𝑥-axis that represents the direction of wave prop-
agation. The induced voltage and related parameters of the
PMLG are related to time. The vertical wave displacement
is assumed to be sinusoidal and the translator connected to
buoy tries to follow the wave elevation; therefore, the vertical
displacement, 𝑑tr, and velocity, 𝑠tr, of the translator can be
expressed as given in (19) and (20), respectively [14]. Hence,

𝑑tr (𝑡) = 𝐴𝑤 sin(
2𝜋

𝑇
𝑡 ± 𝜃
𝑖
) (19)

𝑠tr (𝑡) = 𝐴𝑤
2𝜋

𝑇
cos(2𝜋

𝑇
𝑡 ± 𝜃
𝑖
) . (20)

Here, 𝐴
𝑤
, 𝜃
𝑖
, and 𝑇 represent wave amplitude, initial

phase angle, and period of oceanic wave, respectively. The
translator and buoy move with the wave elevation; therefore,
the flux variation with respect to time can be expressed as

Φ (𝑡) = Φ⃗
2𝜋

𝜆
𝑑tr (𝑡) . (21)
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Figure 8: Translator position at different time.

If 𝑉
𝑚

is the peak voltage, combining (18) and (21), the
generated EMF per phase and 𝑉

𝑚
of the PMLG, Vlg, are

obtained as [32]

Vlg (𝑡) = �⃗�𝑚 cos(
2𝜋

𝑇
𝑡) cos {

2𝜋𝐴
𝑤

𝜆
sin(2𝜋

𝑇
𝑡)}

𝑉
𝑚
= 𝑁Φ⃗

2𝜋

𝜆

2𝜋

𝑇
𝐴
𝑤
.

(22)

5. Simulation Results

Two types of speed settings have been used in this simu-
lation; one is consideration of constant translator speed for
observation of the performance of the PMLG and the other
is translator motion changed with the incident sea wave. The
default air gap length is 2mm, load is 4Ω, and the translator
speed is 1m/s for the PMLG unless otherwise specified. The
input of the PMLG is mechanical thrust, 𝐹, in newton. From
mechanical power, 𝑃

𝑚
= 𝐹 × 𝑠tr, and electrical power, 𝑃

𝑒
,

efficiency, 𝜂, is calculated by 𝜂 = 𝑃
𝑒
/𝑃
𝑚
.

5.1. Constant Translator Speed. The terminal voltage and load
current for default condition are shown in Figure 11.

The load voltage and current are in the same phases due
to the resistive load. The applied force, 𝐹

𝑧
, cogging force,

𝐹
𝑦
, and force component along 𝑥-axis, 𝐹

𝑥
, are shown in

Figure 12. The induced voltage, current, and magnetic flux

Translator pole pitch

Thickness of the PM

Coil

Coil
Coil

Coil

Stator pole pitch

Stator pole thickness

Translator pole thickness

Figure 9: Stator and translator pole pitch.

linkage are shown in Figure 13.The generated power is shown
in Figure 14.

5.2. Voltage Regulation. The terminal voltage depends on the
load for a specific PMLG as in (2), which is shown in Figure 15
to observe the terminal characteristics.
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Table 2: Numerical values for legend of Figure 16.

Legend name Load (Ω) RMS current (A) DC offset (A) Period (ms)
𝐼
1

4 8.6656 0.0377 79.9355
𝐼
2

5 7.1327 0.0269 81.7782
𝐼
3

8 4.6401 0.0151 81.2897
𝐼
4

10 3.7586 0.0118 81.1431
𝐼
5

15 2.5455 0.0077 80.85
𝐼
6

20 1.9233 0.0057 80.7523
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Figure 10: Direction of different forces.
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Figure 11: Load voltage and current waveforms.

Different loads ranging from 2Ω up to 1MΩ are shown
on a semilog graph. Load voltages measured from any one
of the three phases are similar and remain almost unchanged
from 25Ω to 1MΩ. The RMS values of currents and power of
phase-A for different load conditions are shown in Figures 16
and 17, respectively. The numerical values of the current and
power graphs used in the legend are tabulated in Tables 2 and
3, respectively.

5.3. Variable Translator Speed. According to the oceanicwave
model, the vertical position of the wave is sinusoidal, so the
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Figure 12: Different forces of the PMLG.
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Figure 13: Induced voltage, current, and flux linkage.
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Figure 14: Generated power with voltage and flux.



Journal of Energy 9

Table 3: Numerical values for legend of Figure 17.

Legend name Load (Ω) RMS power (W) Period (ms) Maximum power (W)
𝑃
1

4 242.0785 40.0733 691.9896
𝑃
2

5 204.3384 40.0488 586.9683
𝑃
3

8 137.9347 40.0488 398.2045
𝑃
4

10 113.0125 40.0366 328.8075
𝑃
5

15 77.636 40.0366 228.3736
𝑃
6

20 59.0638 40.0244 174.9611
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Figure 15: Terminal voltage for different loads.
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Figure 18: Position and velocity of the translator.
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Figure 20: Relation between induced voltage and speed.

vertical velocity of the wave elevation is a cosine function.
The vertical position and velocity of the translator are shown
in Figure 18. The time period 𝑇 = 4 s and 𝐿

𝑆
= 1.6m which

means𝐴
𝑤
= 0.8m.Themagnitude of the generated voltage of
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Figure 21: The induced voltage and current.
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Figure 22: Magnetic flux linkage and terminal voltage.
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Figure 23: Terminal voltage and current.

the PMLG depends on velocity according to (20) and is
shown in Figure 19.

As 𝑇 = 4 s, the voltage waveform is repeated in each half
cycle or 𝑇/2 = 2 s as shown in Figure 19. The voltage wave-
form due to the translator velocity for the time period of one
cycle is shown in Figure 20. The induced voltage and current
for a half-cycle time interval are shown in Figure 21. The
terminal voltage lags by 90∘ from themagnetic flux linkage as
shown in Figure 22.

The voltage magnitude is directly proportional to the
translator velocity. According to (17) and (20), the frequency
of voltage increases with the increase in velocity.The terminal
voltage and current in a winding are shown in Figure 23. The
cogging force is the reason of force ripples and is liable for
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Figure 26: Magnetic flux density at 𝑡 = 20ms.

abnormal operation of the PMLG, so it is maintained at a
lower value as shown in Figure 24 with the applied force. The
magnitude of power is related to the frequency. The power
generation due to the applied force is shown in Figure 25.

Different dimensions of the PMLG active materials of the
stator and translator as shown in Figure 6 are given in Table 4.
The significant parameters that mainly affect the PMLG
performance are given in Table 5.

5.4. Selection of the PM Size. According to Figure 18, the
vertical displacement of the translator is 1.6m owing to the
minimum and maximum vertical displacement of −0.8m
and 0.8m, respectively. On the other hand, the translator
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Figure 27: Magnetic flux density at 𝑡 = 30ms.

Figure 28: Magnetic flux density at 𝑡 = 40ms.
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Figure 29: (a) Scale of 𝐵 and (b) magnetizing curve.

Table 4: Dimensions of the PMLG.

Name of the item Value Unit
Width of the translator 8 cm
Width of the stator 5.6 cm
Width of the PMLG 19.6 cm
Thickness of pole shoe 1.6 cm
Depth of the PMLG 10 cm
Thickness of PM 2.4 cm
Cross section of the conductor 2.5 mm2

Stroke length 1.6 m

length is the summation of stator length and stroke length.
Combining the stroke length of 1.6m and the stator length

of 1.4m, the translator length becomes 3m. From Table 5,
the translator and stator pole pitch is 4 cm which is the sum-
mation of the PM and the pole thickness. Therefore, 75 PMs
and poles are required to make 3m length of translator. The
dimension of the translator PMs is selected as 8 × 10 × 2.4 cm.

6. Analysis of Magnetic Flux

The magnetic flux density, 𝐵, flux lines, and magnetic field
intensity of the PMLG are analyzed to observe 𝐵 in the differ-
ent portions. The value of 𝐵 for different time, 𝑡, is shown in
Figures 26–28.𝐵 varies for different positions of the translator
which can be realized from the scale given in Figure 29(a).
The magnetizing curve of the steel used in the stator and
translator core is shown in Figure 29(b).
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Figure 30: Magnetic flux at 𝑡 = 20ms.

Figure 31: Magnetic flux at 𝑡 = 30ms.

The translator position varies with time and the flux lines
travel through the low reluctance path. The magnetic flux
lines for different times are shown in Figures 30–32.

There is a relation between magnetic flux lines and 𝐵.
Figures 33(a)–33(c) represent the scale of flux lines for 𝑡 =
20ms, 30ms, and 40ms, respectively. The magnetic proper-
ties inside the PMLG are needed for analyses, proper design,
and performance check.

The values for the magnetic field intensity at different
times are shown in Figures 34–36 and the scale is shown in
Figure 37. The magnetomotive force mainly exists in the air
gap.When the stator and translator cores come close together,
the magnetomotive force reaches a high value. Neodymium
iron boron (NdFeB) permanent magnets have been used for
magnetic excitation.

7. Conclusions

The simulation results with synchronized translator vertical
velocity with wave velocity reflect the model presented in
this paper. Different voltages, currents, power, and magnetic

Table 5: The parameters of the PMLG.

Name of the item Value Unit
Pole pitch of translator and stator 4 cm
Pitch factor of pole shoe 0.4
Turn number of copper coil 70 Turns
Number of coils in a winding 2
Winding factor 0.6
Velocity/speed of the translator 0–1.5 m/s
Air gap length 2 mm
Internal resistance of windings 0.3 Ω

Load resistance 2–25 Ω

Maximum power (depends on some factors) 175–692 W

Figure 32: Magnetic flux at 𝑡 = 40ms.
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Figure 33: Scale of magnetic flux.

flux linkages of phase-A are shown for the three-phase PMLG
because the other two phases are just 120∘ phase shifted from
each other and are not necessary to explain the dynamics of
energy conversion fromwave energy to electrical energy.The
cogging force and force ripples are low compared to applied
force that helps to prevent mechanical vibration and also
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Figure 34: Magnetic field intensity at 𝑡 = 20ms.

Figure 35: Magnetic field intensity at 𝑡 = 30ms.

Figure 36: Magnetic field intensity at 𝑡 = 40ms.
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minimize mechanical power loss. Low core loss is achieved
(1.27%) which would produce less heat to prevent overheat-
ing of the PMLG and increase service life. The maximum
efficiency is calculated as 83% for full-load condition. The
loading effect is low and voltage regulation of the PMLG is
13.93%measured from terminal characteristics.Thick copper

conductor with smaller turn number is used in the coil to
minimize internal resistance.
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