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ABSTRACT 

 

The archaeological record is a time-averaged palimpsest of material variably influenced by post-

depositional processes. The aim of archaeology is to elucidate and inform on past human behaviour, 

however, the palimpsest nature of the archaeological record limits the potential for events on the 

scale of the individual and day-to-day life to be preserved. While some perceive this lack of temporal 

resolution as a hindrance, it rather presents an opportunity to investigate environmental and 

behavioural processes at a larger, broader scale. The delimiting and constraining of palimpsests to 

access this spectrum of temporal scales poses methodological and conceptual complications. It is 

this challenge that forms the focus of this thesis. 

Shell middens, in many ways, magnify the effects of the palimpsest nature of the archaeological 

record through aspects such as their porosity and frequent lack of clearly visible stratigraphic 

differentiation. Complex and variable formation processes blur the spatial and temporal 

relationships of the material contained within a midden deposit. The vertical displacement of 

midden shell, the time-averaging of previously temporally distinct layers, as well as the muddying of 

the depositional patterning behind midden formation are all issues that complicate behavioural and 

palaeoenvironmental interpretations. The midden within the Brremangurey rockshelter, located in 

the Kimberley region of Western Australia’s far north, embodies this conundrum. During excavation 

and analysis of the midden, clues were identified that pointed towards a far more complex 

formation and transformation history than initially thought. Precisely to what extent, though, would 

be problematic to determine using conventional techniques. 

The typical approach to refining the formation processes of shell middens relies on radiocarbon 

dating. Greater number of samples provide enhanced resolution, but at a considerable cost. Amino 

acid racemisation (AAR) is a low-cost relative dating technique that has not been widely 



incorporated into archaeological investigation. In the context of shell midden archaeology, the 

potential of AAR in resolving issues of site formation and transformation comes from the ability to 

analyse a large number of samples to establish a high resolution relative chronological sequence of a 

midden deposit. Recent refinements to the AAR method improve the technique’s accuracy and 

precision, making it more amenable to the temporal scales at play within these specific 

archaeological contexts. To test the applicability of this novel use of AAR, this approach was applied 

to the material excavated from the Brremangurey rockshelter. 

The use of AAR dating to establish a high resolution relative chronology of the Brremangurey midden 

deposit managed to address a range of problems commonly encountered in shell midden 

archaeology. The temporality and spatial origins of vertically displaced shell could be recognised 

allowing the integration of ex situ material to the archaeological interpretations. A time-averaged 

layer was disentangled, and the relative contributions of each phase of deposition to be identified, 

adding more detail to the formation history of the midden deposit. Most importantly, the 

application of AAR and ‘Temporal Packaging’ presented a detailed picture of the depositional 

patterning of the Brremangurey midden deposit.  

A complicating aspect of the archaeological record is that the scales of temporal resolution recorded 

within a palimpsest are hidden. This denies the investigator the opportunity to appropriately adjust 

their scale of investigation to the scale of evidence the archaeological record can support. Not only 

were AAR and Temporal Packaging able to refine the chronology of a midden deposit, but also 

allowed the previously inaccessible temporal resolution contained within a deposit to be defined.   
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Chapter 1 – Shell middens and the nature of the 
archaeological record 

 

Introduction 

In 2011, in the northern Kimberley region of Western Australia, a shell midden located at a site 

called Brremangurey was excavated. During the examination of the Brremangurey midden, it 

became clear that the deposit as a whole formed through a complex and multiphase series of 

formation processes. These already complex patterns were obscured through the influence of post-

depositional movement of material within the deposit, and further exacerbated by the decision to 

excavate the site in arbitrary levels, or spits. 

 

Figure 1.1 – Location of Brremangurey and surrounding region. 
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The example of Brremangurey is not an unusual case within midden archaeology across the globe. 

Complex formation histories and the impact of transformation processes are common issues that 

need to be addressed. Similarly, the case of Brremangurey also represents the typical approach in 

which shell middens are excavated in some regions of the world. All of these factors potentially 

muddy interpretations regarding the behaviours of the people that created the site. To appropriately 

describe and interpret depositional behaviours, these processes need to be untangled. This thesis 

presents new methodological approaches to analysing and interpreting shell middens within 

archaeological investigation.  

 

Defining shell middens 

Shell middens are often written about, though rarely explicitly defined. It appears as though 

archaeologists studying shell middens have preconceived notions of what shell middens are, and 

what they represent (e.g. Stein 1992:8, Hardy 2016:30 and discussed further later in this chapter).  

The analysis of middens began with Worsaae, who investigated the origins of the large shell mounds 

of the Danish fjords in the mid-19th century, though it was the material culture within the mounds 

that he principally focussed on, and not the shell itself (e.g. Steenstrup et al.  1851, Morlot 1861:14-

23, Troels-Smith 1967:505, Trigger 1989:82, Gräslund 1987:36). This approach to midden analysis, 

almost entirely treating a midden as a receptacle for artefacts, continued well into the 20th century 

(e.g. Earl 1863, Laing 1865, Morse 1879, Ihering 1896, Colson 1905, Uhle 1907, Kroeber 1909, Body 

1913). The view of shell middens among archaeologists began to change in the mid-20th century, 

when the California School of midden analysis introduced an economic perspective, and brought the 

investigation of the shell itself to the forefront of investigating midden deposits (e.g. Cook and 

Treganza 1950, Ascher 1959, Shawcross 1968). Since then, the analysis of shell middens has 

diversified as archaeologists began to understand more and more about these particular deposits, 

and the human behaviours behind their formation.  
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In the archaeological literature, definitions of shell middens largely centre across two main themes: 

the form and composition of a deposit, or the agency of deposit formation. As examples for the 

former, Vila et al. (2009:109) defines shell middens as “… a sort of archaeological site characterised 

by high accumulations of shells”, and Szabó (2016:772) describes shell middens as “a refuse deposit 

in which molluscan shell is one of the major constituent materials”, among others. For the latter, 

Stein (1992:6) defines a midden as “an accumulation of refuse about a dwelling place”, while Aldeias 

and Bicho (2016:1) describe shell middens as “the by-product of human reliance on marine 

resources”. Some authors have presented a definitions centred on both compositional factors and 

processes of formation, for example Bahn’s (1992:453) definition of “an archaeological deposit 

consisting primarily of mollusc shells resulting from food procurement activities” (see also Erlandson 

et al. 1988:102, Álvarez et al. 2011:1).  

All of these definitions are rather generalising in their descriptions of shell middens. In a sense, this 

is necessary, considering the range in which shell middens manifest on the archaeological landscape 

in both form and composition. For example, large mounded middens of northeast Australia and the 

Western Cape of South Africa (e.g. Bailey 1977, Parkington 2012), or the thin and diffuse, but 

spatially broad shell middens of the Lapita cultural complex across the Pacific (e.g. McNiven et al. 

2011), as well as the ring and horseshoe shaped middens of Sapelo in Georgia, North America (e.g. 

Thompson 2007). Similarly, composition in middens can vary substantially as well, with deposits 

being dominated by marine (e.g. Uhle 1907), freshwater (e.g. Balme and Hope 1990, Morey and 

Crothers 1998) and terrestrial (e.g. Lubell 2004, Lombardo et al. 2013) mollusc species. This variety 

in midden deposits also includes the cultural significance and extra-economic importance behind 

midden deposits (e.g. Luby and Gruber 1999, Henderson et al. 2002, Faulkner 2009, Marquardt 

2010, Russo 2014), which includes the growing research into ritualised middening practices (e.g. 

McNiven and Feldman 2003, Milner 2005, McNiven and Wright 2008, McNiven 2004, 2010, 

Thompson and Pluckhahn 2012, Thompson and Moore 2015). With this breadth of midden form and 
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function associated with shell middens in mind, I use the term ‘shell midden’ in a broad sense, most 

closely aligned with Szabó’s (2016:772) definition presented earlier.  

Considering the broad range of shell midden form and function across the archaeological landscape, 

attempts have been made to refine shell middens into more specific categories based on the 

characteristics of the deposit, representing varying types or intensities of depositional behaviour. A 

survey of the literature indicates that there have been three different approaches used in this 

refinement of shell midden types. Firstly, researchers have used the pure metrics of midden 

morphology where deposit size is used to differentiate between classes of midden deposits. Bailey et 

al. (2013) adopts this approach in differentiating between scatters, low mounds and mounds in 

Saudi Arabia’s Farasan Islands, as does Cochrane in separating shell middens and mounds in 

Queensland, Australia (Cochrane 2014, discussed in more detail in Chapter 2 of this thesis).  A 

second approach to categorising middens utilises the characteristics of the archaeological material 

itself. McManamon (1984) uses density indices of cultural material within midden deposits to define 

four different types of midden deposits: primary refuse and limited activities, primary refuse and 

wide range of activities, secondary refuse shell midden, and secondary refuse general midden. 

Widmer (1989 as applied by Claassen 1998) centres his classifications on the interpreted behavioural 

processes behind midden deposition (Claassen 1998:11) in defining his four midden types: shell 

midden site, shell midden, shell-bearing site, and shell-bearing habitation site. 

A third approach in classifying shell middens comes from incorporating ethnographic analogy in 

describing categories of middens and patterns of deposition in archaeological deposits (e.g. Kirch 

and Dye 1979, Waselkov 1987:96-117, Thomas 2002, Jerardino 2012:77). Villagran et al. (2011) 

combine ethnohistorical accounts of shellfish deposition with micromorphological analyses to 

differentiate between differing functional areas of midden deposits in a site in Tierra del Fuego, 

Argentina. Connuaghton et al. (2010) presents a case arguing that a portion of midden assemblages 

of Tongan middens, valves of Anadara antiquata with detached umbos, are the result of a 3,000 year 
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old game played by people in which shells are struck until fractured – an interpretation based on 

observations of contemporary locals. Similarly, Hardy et al. (2016) uses the formation of 

contemporary middens in Senegal whose interpretations raise questions regarding the immediate 

assumption of archaeological middens representing localised subsistence practices, presenting the 

broad range of processes, including the gathering and processing of shellfish for long-distance trade 

as well as ceremonial practices that result in shell midden formation. Betty Meehan’s influential 

anthropological study of the indigenous An-Barra people of Australia’s Northern Territory (1982) is 

arguably the prime example of ethnographic analogy contributing to archaeological interpretations 

and explanations of prehistoric shellfish gathering and midden formation (e.g. Mannino and Thomas 

2002, Thomas et al. 2002, Marquardt 2010). 

 

The representation of time in shell middens 

Ethnographies allow the recording of events in exceptionally high resolution where, with specific 

regards to shell middens, each individual depositional event can be observed as material enters an 

archaeological context (e.g. Meehan 1982, Bird and Bliege Bird 1997, Villagran et al. 2011). The 

ability to capture depositional events on such a fine temporal scale that ethnographic analogy 

provides is an attractive course in interpreting patterns in archaeological deposits; “[i]t is to ethno-

archaeology, however, that we turn for a methodology of control [sic] for an integrating framework 

that permits a more analytically rigorous reconstruction and interpretation of the disparate 

archaeological evidence” (Kirch and Dye 1979:55). However, whether or not our methods in 

investigating the archaeological record can facilitate the level of resolution of individual depositional 

events is another question.  

There exists a spectrum of what is perceived to be preserved in shell middens, and the assumptions 

of what is preserved within a shell midden and how it is preserved directly affects the manner in 

which material is approached and analysed (Claassen 1991:254). On one side of the spectrum are 
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those who perceive shell middens as “a deflated mass of multiple deposits, the stew from millennia 

of activities” (Claassen 1991: 254 citing Begler and Keatinge 1979: 220), and on the other hand, that 

shell middens preserve discrete periods of deposition “each conflated with and separated by the 

shells deposited along with the other debris” (Claassen 1991:254). Put another way, the former sees 

a shell midden as an irreconcilable and homogenised mass, compared with a midden representing 

phases of deposition somewhat distinguishable in both time and space. These perceptions directly 

influence the manner in which excavation strategies are conducted. Those who see a shell midden as 

a homogenised mass will tend to excavate in units of arbitrary thickness as the temporal distinctions 

are taken to have been lost through the process of deposition and subsequent post-depositional 

processes (e.g. Vila et al. 2009:109, Villagran et al. 2011:588). Conversely, an alternative approach to 

excavation is sought by those who see middens as a sequence of discrete depositional episodes 

where units are excavated according to clearly defined and distinct stratigraphic characteristics 

(Claassen 1991:254). 

A unit excavated using natural stratigraphic horizons is defined by the confluence of different 

processes (Estevez et al. 2013). Each stratum is defined by a set of criteria, which can include species 

representation, sediment texture and colour among others, and is treated as an independent 

population to be sampled, thereby seeking to avoid the conflation of material from two distinct and 

separate strata representative of different depositional and chronological episodes (Waselkov 

1987:150). Excavation by arbitrary levels, or spits, imposes spatial boundaries on an archaeological 

deposit regardless of observable features in the material being excavated (e.g. Estevez et al. 

2013:109, Harris 2014:15) and likely combines units with potentially substantial differences in age 

into one time-averaged layer. Harris states that “[b]y imposing the arbitrary strategy of excavation 

on sites with clear stratification, archaeologists destroy the primary data they seek” (Harris 2014:20), 

the primary data being material in, or as close as possible to, their depositional context. In an ideal 

scenario, the excavation process should facilitate the establishment of the heterogeneity of material 

within a deposit (Waselkov 1987:150), and this is compromised when material from distinct layers 
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are combined and homogenised. In saying this, however, excavation via spits is a favoured option is 

when stratification is not present or visible, and spatial control of excavated material needs to be 

forced onto a deposit, rather than defined by it (e.g. Ambrose 1967:177, Waselkov 1987:144, 

Peacock et al. 2005). A third option of sub-dividing distinct individual strata into arbitrary layers has 

also been carried out (e.g. Chadderon 1983). 

With each approach – arbitrary versus stratigraphic units of excavation – the implications regarding 

the temporal range represented within each unit has to be considered. We cannot disentangle shell 

middens to the resolution of individual mealtimes. Instead, we have to work with a series of 

palimpsests – the agglomerated accumulation of previously temporally distinct events into one time-

averaged unit (the “cumulative palimpsest” of Bailey 2007:207, see further discussion below). 

Temporally, by excavating via natural stratigraphy, the time represented within a unit is defined by 

the features of the excavated material (colour, grain size, patterns of fragmentation etc., see Harris 

2014:15), and while extracting depositional events of the resolution of the discarded shell from a 

single mealtime is unattainable (but see Villagran et al. 2011), the separation of temporally discrete 

phases of deposition is possible. Excavating via spits potentially conflates temporal distinctions, 

exacerbating the palimpsest-nature of shell middens, and arguably the archaeological record in 

general, by expanding the envelope of time present in an excavated unit. 

With this in mind, how do archaeologists engage with the nature of the material record where 

behaviours and processes are amalgamated in an agglomeration of depositional episodes of variable 

time spans? Many authors have written on the theoretical concepts of time, temporality, and how 

these concepts are represented and interpreted in archaeological contexts (e.g. Bintliff 1991, 

Gosden 1994, Van der Leeuw and McGlade 1997, Thomas 1998, Murray 1999, Bradley 2002, Harding 

2005, Lucas 2005). While there is considerable merit and pedigree to these varying approaches, in 

the specific instance of the Brremangurey midden and the patterns and complexities identified 
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within, Bailey’s ‘time perspectivism’ approach (Bailey 1981, 1983, 1987, 2005, 2007, 2008) to 

temporally contextualising archaeological material is most applicable. 

 

Defining and working with ‘Time Perspectivism’ 

Time perspectivism, as originally defined by Bailey, is “the belief that differing time-scales bring into 

focus different features of behaviour, requiring different sorts of explanatory principles” (Bailey 

1981:103). In a variation on this original definition, Lucas’ (2005:29) interpretation of time 

perspectivism states that “different processes or phenomena operate at quite different temporal 

scales”. Put another way, processes only become observable when viewed through the appropriate 

temporal perspective. Defining time perspectivism in more detail reveals the complexity and 

ambiguity contained behind the term, and Bailey (2007:202-204) outlines four distinct ways in which 

‘time perspectivism’ can be defined and interpreted: 

1) Firstly, the definition that most closely resembles the initial description of ‘time 

perspectivism and how the term is most commonly interpreted: “different phenomena 

operate at different time spans and at different temporal resolutions” (Bailey 2007:202). 

2) Secondly, that “different sorts of phenomena are best studied at different time scales” 

(Bailey 2007:202). Bailey’s argument here is that the time-depth of investigation influences 

the ability to properly describe and interpret processes. For example, small scale 

phenomena, Bailey uses the example of individual agency, is best studied in the present day 

or historic past where the temporal resolution is of a fine enough detail to be able to 

adequately record, describe and contextualise the behaviour. He stresses that this is not to 

say that “these phenomena did not exist in the deeper past and have a similar impact on 

past lives… but that these phenomena are much more difficult to investigate in earlier 

periods because of poorer resolution, quality and detail of the available data” (Bailey 

2007:202).Bailey describes this definition as a methodological definition of time 
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perspectivism, and specifically relates to how archaeologists wield archaeological data in 

building interpretations about the past. 

3) Bailey’s third definition centres on the dual nature of ‘perspectives’ in interpreting time and 

the past (Bailey 2007:203-204). First, things become more and more distorted and obscured 

with increasing distance (be that time or spatial distance); and secondly, how an awareness 

of perspective allows the relationships between processes seem to shift and refocus with 

varying scales of perception based on available information. “’Perspectivism’ in this sense is 

a double concept, conveying both the negative effect of distortion with increasing distance 

that needs to be corrected, and the positive effect of putting into their proper relationship 

different scales of spatial patterning” (Bailey 2007:203). 

4) The fourth definition considers the subjective nature of the perception of time, how 

symbolic and cognitive observation of time is conditioned by various socio-cultural and 

physiological factors. This definition incorporates how people place themselves in relation to 

the past, present and future, as well as how we in the present perceive of people and their 

behaviours in the past. Succinctly summarised by Bailey: “an exploration of the different 

ways in which people, both past and present (including archaeologists), have thought about 

the time dimension and their place within it” (Bailey 2007:204). 

These four definitions offer a theoretical framework through which researchers can structure their 

approach to archaeological investigations based on 1) the temporal/spatial scale of their line of 

questioning and the scale of processes being investigated; and 2) the scale, span and resolution of 

data afforded to them by the archaeological record. It is recognised by Bailey that these differing 

definitions and interpretations of time perspectivism can be problematic in their implementation in 

practical archaeological contexts. The key in successfully applying time perspectivism to the 

archaeological record, he argues, lies in palimpsests (Bailey 2007:204). 
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The use of the term palimpsest in archaeological contexts refers to the aggregation, reworking, 

complete or partial erasure, complete or partial preservation of the material traces of behaviour and 

human activities in the material record (e.g. Wandsnider 2004, Hull 2005, Lucas 2005, Holdway and 

Wandsnider 2006, Bailey 2007, Stern 2008, Sullivan 2008). Palimpsests are the accumulated material 

remains of multiple behaviours, and thus represent a pocket of evidence averaged over the time-

breadth of the palimpsest. Despite the negative stance towards palimpsests as a function of the 

archaeological record (e.g. Wauchope 1966:19), arguments towards palimpsests being an asset to 

archaeological investigation have also been advocated (e.g. Bailey 1981:110, 2007:205, Binford 

1981:197, Foley 1981:14). The “accumulative and transformative properties of palimpsests” (Bailey 

2007:205) offer the opportunity to observe processes and behaviours in an empirical sense on a 

larger scale than what is possible through the lens of ethnographic investigation. With this view in 

mind, palimpsests are consequently the tools by which time perspectivism can be applied to the 

archaeological record. 

Bailey (2007:205-215) distinguishes palimpsests as they appear in archaeological contexts into five 

principle categories, once again, a brief summation of each is presented below: 

1) True palimpsests 

True palimpsests in archaeological contexts are the closest representation to the denotative 

definition of palimpsests:  where all material traces or evidence of previous activities or behaviours 

have been removed except for the most recent. It is recognised by Bailey that it may be impossible 

to distinguish between a true palimpsest as it appears on the archaeological landscape and the 

remains of a single depositional episode (Bailey 2007:206-207), however clues may be present in the 

nearby vicinity that would suggest the presence of a true palimpsest; secondary refuse from 

repeated episodes of sweeping or cleaning for example (Bailey 2007:207).  
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2) Cumulative palimpsests 

Unlike a true palimpsest which is characterised by a loss of material, a cumulative palimpsest is 

where the material from successive behaviours is not lost but is mixed and reworked into a single 

unit. The process of a cumulative palimpsest forming has also been referred to as time-averaging 

(e.g. Stern et al. 1993:215, Stern 1994, Peacock 2000, Lyman 2003), and has been considered to be 

the most commonly used interpretation of palimpsests in archaeological contexts (Bailey 2007:207). 

Bailey states that a feature of the cumulative palimpsest is less a loss of material evidence, as in the 

true palimpsest, but a loss in temporal resolution obfuscating the boundaries between individual 

events (Bailey 2007:207). 

3) Spatial palimpsests 

Spatial palimpsests are defined as “a mixture of episodes that are spatially segregated, but whose 

temporal relationships have become blurred and difficult to disentangle” (Bailey 2007:212). This in a 

sense is similar to a cumulative palimpsest, where there is a general preservation of material, to a 

degree, however it is spread over a relatively broad geographical area. A distinction between the 

spatial palimpsest and the cumulative palimpsest is the interaction and influence of larger 

geomorphological- or landscape-scale processes such as hillslope erosion or deposition in a 

sedimentary basin (Bailey 2007:212). 

4) Temporal palimpsests 

Where a spatial palimpsest describes the spread of segregated pockets of material evidence across a 

broad spatial scale, a temporal palimpsest refers to a unit or site comprised of a spread of 

temporally distinct materials as a direct result of the process of deposition. This is a clear distinction 

from the cumulative palimpsest mentioned above, as the mixing process occurs as one group of 

material intermingles with the other during deposition. In temporal palimpsests, many different 

temporally distinct materials are deposited as a single event (Bailey 2007:212-213). Bailey uses the 

example of Olivier’s (1999) find of the ‘princely’ grave site uncovered at Hochdorf, southern 

Germany, where artefacts spanning many different temporalities were intentionally brought 
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together during the funerary process. Thus, the grave site represents a temporal palimpsest of 

material Bailey 2007:213). 

5) Palimpsests of meaning 

A more subjective form of palimpsest refers to the varied and changing meanings of an object, site, 

or other feature of the archaeological landscape through time. Lucas (2005:41) hints at the changing 

meanings of Stonehenge through the Bronze Age, Roman Period, and the modern day: the same 

feature, but with different meanings attached to it through various points in time. Another example, 

presented by Bailey (2007:214), is of a flint knife that, through use, becomes repurposed as a scraper 

through the attrition of the tool’s use and its re-modification. The same object, albeit in a slightly 

different form, but its meaning changes through time.  

It is not a long draw of the bow to see the applicability of the concept of palimpsests to shell 

middens, though some of the categories of palimpsests are more straightforward in their application 

than others. Cumulative and true palimpsests are the most applicable. Shell middens generally 

represent the repeated deposition of shell in a location, clearly placing them under the banner of a 

cumulative palimpsest. Agents of transformation of shell middens, both natural (e.g. Stein 1983, 

Dwyer et al 1985, Specht 1985, Rick 2002, Robins and Robins 2011, Szabó 2012) and cultural (e.g. 

Meehan 1982:114, Ceci 1984:64, Muckle 1985, Connock et al. 1991, Schiffer 1996, Luby and Gruber 

1999), have been known to completely or partially remove, or displace midden material post-

depositionally, thereby resulting in a true palimpsest as additional episodes of deposition are 

superimposed on top. Spatial palimpsests by definition encompass broad geographic areas, so this 

particular type does not necessarily lend itself as neatly in discussing a discrete deposit such as a 

midden site; however an argument can be made for its applicability in discussing regionally 

associated complexes of shell midden deposits (e.g.  Bailey 1977, Jerardino and Yates 1997:43, Luby 

and Gruber 1999, Rick et al. 2005, Claassen 2012). Temporal palimpsests can manifest in shell 

middens with the inclusion of significantly older material mixed with relatively younger objects in 
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the same episode of deposition, for example old artefacts being deposited along with recently 

collected shellfish (e.g. Rick et al. 2005:1644). Finally, palimpsests of meaning can be explained in 

shell midden deposits as the cultural meaning or interpretations attached to a midden deposit 

potentially changes through time. For example, how the cultural significance of the large shell 

middens of coastal central Arnhem Land in the Northern Territory has been interpreted to have 

shifted from strictly as a by-product of an economic/subsistence behaviour, to then become 

mythologised through time through stories being passed down from generation to generation of 

Indigenous Australians (e.g. Hiscock and Faulkner 2006:216-217).  

In working with palimpsests, particularly with cumulative palimpsests, Bailey describes two differing 

approaches: the ‘macroscopic’ and ‘microscopic’ tendencies. The former sees the archaeologist view 

the palimpsest as a whole data set, or expands the palimpsest to incorporate a broader range of 

processes, whereas the latter aims to reduce a palimpsest into units of higher resolution (Bailey 

2007:216). While there is merit to both approaches, archaeologists typically tend towards the 

microscopic tendency as they look to ‘deconstruct’ archaeological deposits with an aim of 

interpreting behaviours and processes on a smaller, more refined temporal scale. Reducing a site 

into smaller parts provides the opportunity to compare patterns of continuity and change through a 

deposit which would otherwise be obscured with a larger-scale perspective. That is not to say that 

the macroscopic approach is not valid, as stressed by Bailey (2007:217), but is more appropriate in 

identifying, observing, and questioning processes on a larger spatial or temporal scale.  

In implementing the microscopic tendency, an archaeological deposit is ‘deconstructed’ into a series 

of layers or units, either following natural stratigraphic elements such as substrate composition, 

colour or texture, or in excavation units of regular, arbitrary depths (e.g. Harris 2014:15). Each of 

these still represents a palimpsest, though a palimpsest representing a finer spatial and temporal 

resolution compared to the palimpsest of the whole shell midden in its initial form. Spatially, the 

distinction between layers is defined by a set of predetermined criteria, some of which are 
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mentioned above. Temporally, however, in the sense of how much time is represented within an 

arbitrary spit or natural stratigraphic stratum, far less control can be exercised by the excavator. This 

is due to the fact that the temporal range present within an excavated unit only becomes apparent 

after the material is dated; assuming the lack of other indicators of age, such as typologies of 

material culture (e.g. Willey 1939:147, Álvarez et al 2011:1). The reality of temporal ‘knowns’ and 

‘unknowns’ is a complicating aspect of the archaeological record. We cannot appropriately scale our 

level of investigation based on the temporal resolution afforded to us by the material we have 

excavated if we do not have a firm grasp on the chronology of the material in the first place. Put 

another way, no amount of precision with regards to excavation and recovery methodologies can 

circumvent the problem of an unknown temporal span. 

This raises a problematic aspect about dating archaeological deposits. A single age determination 

from a unit will give you a single age (or more appropriately an age range considering the inherent 

error margins of chronometric dating methodologies). Two age determinations will provide a 

maximum and minimum age which then represents an envelope of the time represented within the 

unit. Whether or not this range actually represents the true chronological extent of the material 

being investigated is another question. The likelihood of selecting the oldest and youngest 

specimens from within a sample is low, especially in contexts such as shell middens where vast 

numbers of individual specimens are available for dating.  

A study conducted by Stein et al. (2003) demonstrated the complexities of dating shell midden 

deposits resulting from variable rates of accumulation rates during midden formation and the 

complicating effects of undetected post-depositional movement of midden shell. Borrowing 

approaches from the geological sciences, Stein et al. (2003:298-300) isolate a maximum and 

minimum age from material dated within a shell midden layer and compared this age range with the 

amount of physical archaeological material, measured as depth, to quantitatively establish the time 

layers within a shell midden took to accrete (Stein et al. 2003). One of the major points advocated by 
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Stein et al. is that a more rigorous dating program through the increased number of analysed 

samples will provide a more accurate rate of accumulation (Stein et al 2003:314). In principle, this is 

a fair point, as an increased number of dated specimens of midden shell results in a more 

representative sample of ages of the site as a whole. The approach exercised by Stein et al. (2003) is 

therefore an attempt at chronological refinement – but how far and to what extent must 

chronological refinement be extended to start building reliable interpretations of behavioural 

patterning of ancient people? To what extent can linear accumulation rates expressed as an 

equation be extended towards explaining and describing the behaviours that ultimately created the 

shell midden in the first place? 

Figure 1.2 - A demonstration of site formation of a shell midden using rates of 
accumulation as an explanatory device as presented by Stein et al. (2003:308). Figure 

presented is of 45SJ24, English Camp, Operation A site. “Graphs show depth below 
surface versus 2σ calibrated radiocarbon age for individual units. Slopes of regression 
equations represent accumulation rates in cm/yr” (Stein et al. 2003:308 – Figure 4). 
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The approach presented by Stein et al. (2003) averages the patterns of deposition through a series 

of lines, clines and plateaus, though offers very little interpretative value to describing the human 

behaviours behind midden formation. In one example, see Figure 1.2 above, Stein et al. (2003:308) 

calculates the accumulation for a particular unit within a midden to be rapid at a rate of 58.54 

cm/100 yr, while another unit from another site results in a slower rate of accumulation of 4.14 

cm/100 yr. What do these calculations represent behaviourally? Immediately, the use of cm/yr to 

describe midden formation gives the impression of a constant accretion of midden material between 

two points in time and space – an unlikely scenario in reality. On its own, the approach presented by 

Stein et al. (2003) would not be able to differentiate between discrete depositional episodes in a 

seasonal, annual or decadal scale as they would all be averaged into one calculation. Nor would it be 

likely be able to detect a time-averaged unit that could potentially exhibit a slow rate of 

accumulation as two similarly aged specimens of shell spatially separated by some vertical distance. 

 

Temporal Packaging: an introduction 

Stein et al. (2003), in their study, incorporated a dating program that consisted of 82 radiocarbon 

age determinations on charcoal, 20 of which were AMS dates, spread over six midden deposits 

(Stein et al. 2003:302-304). While a dating program of this scale is indeed a departure from the 

typical approach to dating shell middens which generally involves only a handful of age 

determinations, the results still restrict interpretations of site formation to that of the broadest 

sense. Despite this expanded and refined chronological framework for each of the study sites, with 

one of the six sites contributing 22 individual age determinations (Stein et al. 2003:302), there is still 

not enough data to decisively and convincingly ‘envelope’ or ‘package’ the temporality of phases of 

deposition. Again, expanding the number of radiocarbon age determinations for each site even 

further will facilitate the isolation of these depositional phases, however, considering the nature of 
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sampling shell midden deposits and the reality of representative samples, this approach is only 

possible “given a sublime disregard for time and money” (Waselkov 1987:152).  

In taking the dating of shell midden deposits to the extreme, in the magnitude of potentially several 

hundred individual age determinations per site, new opportunities present themselves in 

approaching and analysing shell middens beyond simply refining the chronology of the deposit. The 

subtle changes in the patterning of deposition of midden shell, which would otherwise have been 

averaged out with a coarser outlook towards dating a shell midden, instead become apparent 

through such a high-resolution approach. With these subtleties exposed, more refined packages of 

similarly aged specimens, representative of an equally refined series of behavioural processes can be 

established. This resulting dataset will present a clearer, more robust picture of the temporality of 

the material that comprises a midden assemblage directly attributed to such a large sample size of 

age determinations. Comparing the ages of the dated material from the deposit, phases of shell 

deposition become differentiated from each other in ‘Temporal Packages’ – or groupings of similarly 

aged material. This process of ‘Temporal Packaging’ effectively offers a new approach to 

deconstructing a midden into its constituent parts. In other words, reducing a midden deposit, or 

cumulative palimpsest, into palimpsests of finer temporal and spatial resolution than what was 

previously possible (Bailey 2007:207-208).  

This is an overt adoption of the microscopic tendency towards approaching archaeological deposits, 

as described by Bailey (2007:216). Though what separates Temporal Packaging from a simple 

refining of a chronology or production of accumulation rate data (e.g. Stein et al. 2003) is the 

interpretive value provided by Temporal Packaging. Each Temporal Package provides a temporally 

discrete universe of samples from which investigation and lines of questioning can be appropriately 

scaled to the temporal span represented by each Temporal Package. Following on from this, 

temporal packages can then be compared and contrasted as patterns of continuity and change are 

identified throughout a deconstructed deposit. As each Temporal Package represents the material 
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evidence of a restricted and defined span of time, each Temporal Package therefore represents a 

period of time representing behavioural continuity which can be scrutinised largely independently of 

other Temporal Packages. 

A key feature of Temporal Packaging is how it allows an alternative approach to working with 

material displaced by post-depositional processes centred on how individual packages of time sit 

spatially within a deposit. As Temporal Packaging is largely independent of the spatial positioning of 

samples, instead focussing on the relative temporalities between specimens, Temporal Packaging 

offers a method in which displaced or time-averaged material, removed from its original context, is 

re-established within its appropriate Temporal Package regardless of how far the specimen has 

moved. This opportunity to re-establish displaced samples back into a grouping of temporally 

comparable samples allows disturbed material to still be incorporated into investigations as 1) 

temporality relative to other specimens from within the deposit is clearly established, and 2) adds an 

additional aspect of the history of the deposit, namely the timing and extent of influence of post-

depositional processes, to be explored.  

In applying Temporal Packaging to shell midden deposits, as mentioned above, a substantial number 

of ages are required. A dating program of that size therefore renders radiocarbon dating, both AMS 

and conventional, completely unfeasible purely down to cost of those particular dating methods. 

The basis of Temporal Packaging is on the relative temporalities between phases and episodes of 

deposition in archaeological deposits. As such, numerical dating techniques, such as radiocarbon, are 

not necessarily required in using the Temporal Packaging approach resulting in relative dating 

methods becoming more applicable, with numerical dating techniques such as radiocarbon dating 

acting more as a complementary role rather than the focus. With specific regards to shell middens, 

amino acid racemisation (AAR) is a clear substitute for radiocarbon, especially considering the 

composition of these deposits being dominated by molluscan shell providing an abundance of 

dateable material.  
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Amino acid racemisation (AAR) centres on the rearranging of the molecular forms of specific 

proteins in biogenic material. After an organism dies, amino acids reorientate themselves from one 

form to another. This process, called racemisation, occurs at a regular rate over time, and measuring 

the relative proportions between the two forms of specific amino acids provides a relative indicator 

of the time since the death of the animal (e.g. Wehmiller 1977, Masters and Bada 1977, see Section 

4.4 of this thesis for a more detailed description of the method). A key advantage of AAR is the 

method’s cost-effectiveness, allowing a large number of samples to be analysed to create a relative 

age sequence that makes Temporal Packaging possible. Recent methodological developments in the 

AAR technique have improved the reliability, accuracy, and precision of results (Sykes et al. 1995, 

Penkman et al. 2008).  

While AAR is not a numerical dating method like radiocarbon, for the purposes of Temporal 

Packaging and shell midden deposits, it does not have to be. It needs to be stressed that Temporal 

Packaging is not an exercise in refining chronologies in a deposit. Rather the approach intends to 

better understand the ebbs and flows of depositional behaviours through time in midden deposits 

using Temporal Packaging.  

 

Thesis aims 

The study discussed above by Stein et al. (2003) attempted to refine the chronology of a shell 

midden deposit, but in doing so, reduced the human behaviours behind midden formation into an 

equation and a series of clines and plateaus. Exactly which behavioural questions such a study could 

address, and how, is unclear. This thesis takes a different approach, attempting to use a high-

resolution relative dating program focussed on AAR, anchored by strategic radiocarbon 

determinations, to present a more detailed and more representative depiction of the behaviours of 

shell deposition that results in shell midden formation.   
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This aim will be presented within the context of Holocene coastal archaeology of Australia’s tropical 

north. There, shell middens are ubiquitous, though debate still rages regarding the timing and nature 

of midden formation, and the interplay between ancient Aboriginal Australians and the dynamic 

nature of the environments. A critical survey of these themes, including previous research 

conducted on shell middens in Australia’s north will be presented. The Brremangurey midden will 

then be introduced, and framed within the regional setting of the northern Kimberley region of 

Western Australia. The results of the excavation of the Brremangurey midden will be presented 

relative to addressing a series of specific questions. These questions include: 

1) Can a shell midden be deconstructed using Temporal Packaging to isolate the formation 

processes and behavioural patterning of a site? 

2) Can a time-averaged unit be untangled into its constituent parts to facilitate a finer temporal 

scale of investigation? 

3) Can vertically displaced midden shell from within a midden deposit be identified as such, and 

if so, can temporally comparable material be identified within the rest of the midden 

assemblage? 

Following this, a similar methodology will be applied to a regionally associated midden. This midden, 

called Idayu (Veitch 1999a, 1999b), exhibits a number of similarities compared to Brremangurey with 

regards to morphology and broad species composition, yet distinct differences in the formation 

histories of each site suggest that a direct comparison between deposits may not be so simple. The 

results from the analysis of both Brremangurey and Idayu will then be synthesised, and those 

interpretations will be contextualised back into larger scale themes and discussions centred on 

middens in Australia’s north. To conclude, a final discussion about the strengths, possibilities and 

capabilities of AAR and Temporal Packaging will then be presented within the scope of suggesting a 

new and powerful perspective in the way shell middens are approached and perceived. 
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Chapter 2 – The investigation of shell middens in north 
Australian archaeology 

 

Introduction 

Few archaeological features of the Australian landscape match the visibility and ubiquity of 

anthropogenic shell mounds. The scale of examples of these cultural features rival the massive shell 

mounds of the Americas (e.g. Sandweiss 1996, Luby and Gruber 1999) and South Africa (e.g. 

Buchanan 1988).  The analysis of prehistoric cultural accumulations of shell has long received 

attention in Australian archaeology as their potential to inform on a range of significant themes of 

study related to the interaction of humans with the coastal environment they inhabited. While early 

studies of shell middens focussed on the artefacts contained within (e.g. McCarthy and Setzler 1960, 

Wright 1963), it was with Bailey’s research into the Weipa shell mounds (Bailey 1975, 1977) that the 

potential of analysing the midden itself became apparent; where shell middens themselves became 

a focus of investigation as opposed to the material culture they contained (Bourke 2012).  

Over the years, the analysis of shell middens has become a staple of archaeological investigation in 

Australia, and the results of midden investigation have been applied to significant discussions in 

Australian archaeology. The impressively large shell middens of Australia’s tropical north have 

remained in constant focus, while other scattered research has hinted at the variability shell 

middens can display: morphologically, compositionally, spatially and temporally. Linking this 

variability to environmental or behavioural processes remains problematic, as the difficulty in 

isolating a deposit’s formation history muddies this connection. This chapter will discuss this 

complication and its effects, and will propose a new approach to investigating shell middens that has 

the potential to circumvent these issues. 
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Defining shell middens in Australia 

As was the case with the international literature described in Chapter 1, a definition for shell 

middens originating from Australian contexts has only been presented in the broadest sense. 

Edmund D. Gill (1954) was the first to explicitly outline the parameters of what defines a shell 

midden in Australian contexts. Authors in the early 20th century (e.g. Pritchard 1909, Kenyon 1927) 

wrote about the difficulties in distinguishing between the common shell-dominated beach ridges 

and cheniers, and culturally deposited shell middens, in particular across the tropical northern 

coastlines of Australia, due to strikingly similar morphological and compositional features. In 

response to this, Gill (1954) proposed a series of criteria that could be used to assist in 

differentiating between natural and cultural deposits dominated by molluscan shell.  Criteria such as 

the presence of items of material culture, discrete lenses of charcoal and a bias towards certain 

‘economic’ classes of shell size were proposed (Gill 1954:249). In contrast, shelly deposits were said 

to exhibit features such as a more varied species representation and a wider range of shell size 

classes, as well as structural features such as fine-grained sedimentological stratigraphic features 

(Gill 1954:252-253). 

The discussion of natural versus cultural origins of shell-dominated deposits continued in the coming 

decades, especially in Australian contexts. Methods and approaches to distinguish between naturally 

occurring shell-dominated deposits and those formed through human agency appear regularly in the 

archaeological literature (e.g. Attenbrow 1991, Sullivan and O’Connor 1993, O’Connor and Sullivan 

1994, Carter 1997, Rosendahl et al. 2007). A particularly prominent debate on the issue centred on 

the origins of the Weipa shell middens. The position of Stone’s (e.g. Stone 1989, 1991a, 1991b, 

1995) that the often large shell mounds were the result of scrub-fowl (Megapodius reinwardt) 

nesting habits was disproven by Bailey (e.g. Bailey 1977, Bailey 1991, Bailey et al. 1994) using 

multiple directions of evidence, such as deposit formation processes, taphonomy and composition, 

to demonstrate an origin through human agency (Szabó 2016: 774). 
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With regards to explicitly defining a shell midden, a survey of the more recent archaeological 

literature suggests that authors in Australia tend to typically favour a looser, less restrictive 

definition. Bowdler states a shell midden is a deposit that “contains 50% or more by weight of 

shellfish remains” (2006:316, see also Bowdler 1983:135). This definition seems to be the most 

widely used definition in Australian archaeology, and has been sometimes adapted to include 

further specific stipulations, including the requirement of specific size classes and edible species (e.g. 

Bowdler 1983:137) and the explicit inclusion of human agency as a mechanism of shell deposition 

(Faulkner 2013:43, Bourke 2012:28).  

 

Variability and the implications of variability in shell middens 

It appears that, over the last few decades, an increasing focus has been directed towards the 

variability in shell middens across northern Australia. While the stereotype of massive mounded 

deposits of soft-shore bivalves deposited during the late Holocene seems to characterise shell 

middens in tropical northern Australia and still dominates the archaeological literature (e.g. Bailey 

1977, Veitch 1999a, Bourke 2004, Faulkner and Clarke 2004), more and more cases of the true 

variability of shell midden deposits across this region is becoming apparent. Despite this variation, 

no attempt has been made to systematically organise and categorise shell middens of north 

Australian contexts. 

This variability in shell middens can take a number of forms. Temporally, marine/coastal shell 

midden deposits have been dated to the terminal Pleistocene on islands off the coast of northern 

Western Australia (e.g. O’Connor 1999a, Manne and Veth 2015, Veth et al. 2016), and in all 

likelihood countless other sites have since been destroyed by rising sea levels associated with 

interglacial time periods (e.g. Bailey and Flemming 2008, Ulm 2011, Manne and Veth 2015, see also 

Bowler and Price [1998] for an example of a Pleistocene dated freshwater shell midden). 

Compositionally, middens comprised of the soft-shore bivalves Tegillarca (=Anadara) granosa and 
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Marcia hiantina are the most commonly reported taxa. Mangrove, estuarine as well as rocky shore 

species of shellfish have been identified to dominate midden assemblages in specific locales (e.g. 

Schrire 1982, Kendrick and Morse, 1982, Woodroffe et al. 1985, Bowdler 1990a and 1990b, 

Lorblanchet 1992, O’Connor 1999, Clune and Harrison 2009:71). Finally, morphologically, middens 

exist in a large spectrum of sizes and forms (e.g. Bailey 1977, Alexander 2009, Hiscock and Faulkner 

2006); from small scatters (e.g. Rowland 1985, Morse 1988, Sim and Wallis 2008) to large mounded 

deposits (e.g. Bailey 1977, Morrison 2003, Bourke 2012, Faulkner 2013).  

Elsewhere around the world, classifications have been posited that attempted to establish types of 

shell middens. For example, Bailey et al. (2013:245-248) separate types of middens of the Farasan 

Islands into scatters, low mounds and mounds based on overall deposit size and spatial segregations 

of dominant species. Marquardt (2010) describes a range of differing midden types commonly 

referred to across the American southwest: for example shell mounds, shell works and temple 

mounds. Dupont (2006) defines three classes of middens – Amas coquillier, Dépôt coquillier, and Lit 

coquillier – based on volume alone. The schemas proposed by McManamon (1984) and Widmer 

(1989 in Claassen 1998) attempted to link compositional and morphological features of shell 

middens to varying behavioural processes driving midden formation. It must be stated that the 

intent of McManamon (1984) and Claassen’s (1998) application of Widmer (1989) was to apply 

these classifications of midden types to other contexts beyond the site-scale focus from which the 

initial types were described.  

There has been little attempt by Australian archaeologists to develop a systematic schema of shell 

midden deposits that speak to behavioural variations in midden formation across a broad spatial and 

temporal scale. From geomorphological quarters, a schema devised by Woodroffe et al. (1988: 96) 

which includes midden deposits as a category, has sometimes been adopted. Woodroffe et al. 

(1988:96) propose four classes of shell middens near the Alligator Rivers, Northern Territory: coastal 

middens, surface mounds, palaeochannel middens and surface scatters. The classification of each 
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midden type was based on the size and shape of the deposit, as well as its 

geomorphological/environmental setting with regards to the deposit’s position on dunes, river 

banks or palaeochannels.  

These four midden types were used by Mowat (1995) in investigating the shell middens of western 

Arnhem Land, though no attempt was made in linking observed midden variation to human 

behavioural processes. The classifications of Woodroffe et al. (1988) were adapted by Roberts 

(1991), who also incorporated the terminologies and descriptions used by other midden researchers 

(e.g. Cribb 1986, Meehan 1982, Beaton 1985). In his research of the Millingimbi shell middens, also 

of the Northern Territory, he proposed five different forms of shell middens in the area (Roberts 

1991:101-102): mudflat mounds, midden (dune) mounds, conical shell heaps, base site mounds and 

midden scatters. Roberts’ extension of Woodroffe’s schema incorporated ethnographic accounts, 

specifically those recorded by Meehan (1982, 1988). Interestingly, Roberts’ (1991:146) terminology 

makes it clear that he recognises the potential of a behavioural explanation of midden variation in 

his research area, however does not develop this further.  

 

Types and typologies 

Typologies and their use in archaeological research have been, and still are, a critical part of 

archaeological investigation (e.g. Klejn 1982, Dunnell 1986, Read 2007). Human material 

manifestations are grouped into classes or types based on pre-selected attributes of those artefacts; 

be those attributes constitute physical, cultural or temporal features and characteristics (Bahn 

1992:519). Such attributes are inscribed with meaning. For example, Kroeber’s (1916) analysis of 

pottery types in archaeological assemblages from New Mexico was used to infer relative 

chronologies of prehistoric occupations. Another prominent example is the typology established by 

Bordes (1950) which describes the stone artefacts of the European Palaeolithic, which was intended 

to carry with them specific reference to the stage of technological capability of the hominin creating 
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the artefact (Bisson 2000:2). Typologies, therefore, represent distillations of archaeological 

interpretations that can be applied to artefacts and features found on the archaeological landscape 

(Trigger 1989:21-22, Read 2007:204).  

Typologies and types within a typology should act as a heuristic device. In an ideal setting, drawing 

upon a type in describing an artefact or archaeological feature should implicitly attach a suite of 

additional meaning relevant to the cultural processes behind the physical/morphological, cultural or 

temporal features of that artefact which defines the typology used (Gifford 1960:341). In short, 

typologies allow the use of one word or term to impart a large amount of information and most 

importantly a critical interpretation and inferred meaning. To quote Gorodzov (1933:102), “…the 

purpose of the typological method is the accurate determination of each type in space and time, so 

that in the final analysis it will be possible to give each type of archaeological objects the meaning of 

a hieroglyph, with the help of which one will be able to read the history of the material and social 

culture of all extinct generations of humanity”. 

Taking the position that shell middens are artefacts of ancient human behaviour, and potentially its 

temporal or and environmental context, and that they display variation, midden form and 

composition is therefore representative of a range of processes. As described above, shell middens 

of Australia’s tropical north exhibit a range of temporal, compositional and morphological variation. 

It stands to reason that therefore a range of processes have been at play in the formation of 

Holocene shell middens in northern Australia. In itself this is not necessarily the issue, the manner in 

which the variations of midden form and composition have been mobilised in describing ancient 

human behaviours Australian archaeology is. 

Across the archaeological literature on Australian shell middens, the terms shell scatter, midden and 

mound are frequently used as descriptors. Although these three terms are used in a manner similar 

to a typology, without an explicit and clear description of what information is being carried by the 

use of a typology, the use of these terms is in fact not. For example, the distinction between shell 
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middens and shell mounds is often based on an arbitrary measurement of height that varies 

between investigators (e.g. Cochrane 2014:48, Bowdler 1983:135, Sullivan 1989:49, Bourke 

2000:60). Fundamentally, however, no behavioural explanation is attached between the potentially 

varying cultural processes between shell middens and shell mounds. Basically, the use of these 

terms in Australian archaeological explanations fails to do the primary point of what a typology 

should do: explicitly link and describe artefact form and composition with the processes behind the 

artefact’s creation/formation. 

This lack of clarity between what a “shell mound” is, and particularly what distinguishes it from a 

“shell midden” problematizes the interpretations of midden investigation. Without a clear and 

explicit interpretation or classification of what a shell mound is, and what distinguishes a shell 

mound from a shell midden, how useful are these terms beyond describing that one type is larger 

than the other? Neither term gives any information regarding the composition, temporality, position 

on the landscape, or infers behaviours 

Without a schema that provides clear definitions accompanied by inferences about reasons for 

variation, how can we approach describing the variations we observe in shell middens as evidence of 

human behaviour? At present, our models of midden formation processes are arguably not sufficient 

to account for 1) the variation in midden deposits we can observe, and 2) the potential variation that 

we cannot confidently constrain using modern methods and approaches to shell midden 

archaeology, for example the debate between steady accumulation versus punctuated accretion of a 

large midden deposit (see discussion in Morrison [2003] of competing models of this concept). Each 

of these factors has significant ramifications in the behavioural explanations of how people and 

populations created these deposits. Once again, if we take the position that variation in midden 

deposits are the result of a suite of behaviours and/or processes, a strong understanding of the 

formation processes behind midden accumulation is necessary. Teasing apart these formation 
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processes is therefore critical to bridge the gap between ancient human behaviour and the material 

evidences that are left behind. 

 

Linking midden patterning to behaviour 

The describing of shell midden formation processes in north Australian contexts typically falls on two 

opposing ends of a scalar spectrum. On the one hand, large scale environmental processes are 

posited to drive patterns of resource availability, subsistence gathering, and the subsequent 

variation in midden form and composition. In a contrasting perspective, short-term ethnographic 

accounts of shellfish collection and deposition are used to model the patterns observed on the 

archaeological landscape. While in the end, both perspectives aim to address the same issue, that 

being the describing of midden formation as well as offering explanations for variability in midden 

deposits, neither is able to tell the complete story.  

Environmental processes are commonly drawn on to explain patterns and variations in shell midden 

deposits, particularly in sites along the coasts of Australia’s tropical north. For example, the surge in 

mangrove forests in estuarine locations in the early- to mid-Holocene immediately post-sea-level 

stabilisation (e.g. Woodroffe et al. 1985, Lambeck and Nakada 1990) has been interpreted to have 

initiated the gathering of molluscan fauna associated with this biome, resulting in mangrove-species-

dominated midden features (e.g. Lorblanchet 1977, Kendrick and Morse 1982, Schrire 1982, 

Woodroffe et al 1988, Bowdler 1990a, Morse 1993, O’Connor 1999a). Similarly, the decline of 

mangrove forest extent towards the late-Holocene is argued to have made the previously 

inaccessible seaward margin of mangrove-associated mudflats reachable and targeted gathering of 

shell beds could occur (O’Connor 1999b:47). This then drove a species turnover in available 

molluscan fauna from mangrove dominated taxa, to soft-shore bivalves – in particular T. granosa 

and M. hiantina (O’Connor 1999b). 
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O’Connor (1999b) has also proposed that a cline exists of ages in midden deposits dominated by 

soft-shore bivalves along the northern coast of Western Australia. Midden formation is posited to 

have occurred along a cline from the south to the north through time. Middens typically comprising 

of T. granosa have been dated to approximately 4,270 BP (Veitch and Warren 1992) in the Pilbara. 

Yet further north, the earliest midden sites in the northern Kimberley containing similar species of 

bivalves date closer to 3,000 years BP (Veitch 1994). O’Connor (1999b), citing a suite of 

environmental literature (e.g. Jennings 1975, Semenuik 1982, 1993, Wyrwoll et al. 1986, Lees 1992) 

attributes this northward trend to a weakening of the monsoonal regime of the region caused by 

increasing climatic variability of the mid- to late-Holocene in northern Australia. Increased climatic 

variability is also argued to have placed increasing pressure on the subsistence base of Aboriginal 

populations therefore forcing a reorganisation of gathering strategies with an increasing focus on 

foods of a lower trophic level that would be more reliable resource base (e.g. Bailey 1993, Veitch 

1999b). A comparable refocussing of subsistence resources is also noted to have occurred in the arid 

regions of the Australian interior through the increasing prevalence of seed grinding technology (e.g. 

Smith 1986, 1988, 1989, Veth 1989). 

On a similar broad temporal and spatial scale, increasing population has also been attributed as a 

major influence instigating the phenomena of ‘intensification’ across the Australian continent 

(Lourandos 1983, 1985, see also Bourke 2012: 6). Considering the drive for population growth to be 

an inherent characteristic of all living things, Beaton argues that while remaining relatively stable up 

until the late Holocene, a significant population increase forced terrestrial communities to begin 

exploiting previously neglected environments (Beaton 1985). In a now famous quote, Beaton (1985: 

18) states “the late Holocene sites on our coast are not just some tail end of our coastal history they 

are it”. Beaton argues that increasing populations, due to spatial pressures forced groups to relocate 

to marginal and less favourable environments; in this case coastal regions. Social dynamics between 

cultural groups became increasingly competitive and forced a reliance on different sources of 

subsistence; in this instance the bivalve colonies of estuaries and mudflats.  
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These examples clearly relate to processes acting at a large scale, both temporally and spatially. In 

contrast to these, the use of ethnographic analogy as mobilised through ethnoarchaeological study 

has also been called upon in explaining shell midden formation and variation. For example, Bird and 

Bird (2000) describe the contemporary shellfishing strategies of children of the Merian, eastern 

Torres Strait. The authors note that children typically gather a wider range of shellfish taxa, with a 

notable lack of higher ranked species typically targeted by mature adults, a fact attributed to the 

physiological inability of collecting species such as giant clams (Tridacna spp.) (Bird and Bird 

2000:468). The resulting midden post-processing, they argue, could potentially be interpreted as the 

result of an ‘intensification’ of resources (sensu Lourandos 1983:82), rather than an incidental by-

product of a child’s physiology. In a similar study, the gathering habits of adults of the Meriam 

demonstrated that that the processing of different species of shellfish occurred at different locations 

(Bird and Bird 1997). In particular the in situ processing of large Tridacna spp. specimens on the reef 

flats resulted in an underrepresentation of the taxa in mainland midden deposits. Applying this 

observation to archaeological deposits, Bird and Bird (1997:52) suggest that the potential exists that 

the calorific importance of these large and remotely processed taxa may not be appropriately 

incorporated into dietary reconstructions of past communities based on the lack of evidence in 

‘dinner-time camps’ on land (Bird and Bird 1997:54). 

Early anthropological observations of northern Australian Aboriginal populations have also been 

used in an attempt to glean patterns and explanations for ancient human behaviours related to 

middening behaviour. Faulkner (2013) cites a number of these early ethnographic accounts (e.g. 

Thomson 1949 and 1983, McArthur 1960, McCarthy and McArthur 1960, Warner 1969), which 

describe the gender- and age-based structural nature of local Aboriginal groups of Arnhem Land and 

how the wet-dry cycles influence social dynamics, with particular focus on the changing resource 

base associated with these seasonal cycles. Patterns of movement and mobility as well as locations 

of gathering are similarly recorded. Likewise, Morrison (2003) uses Roth’s (1901) accounts of 

Aboriginal Australian ceremonial activities as a means by which shell midden formation occurs. Roth 
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(1901) describes intermittent gatherings of indigenous people coinciding with in ecologically driven 

booms in T. granosa populations. Morrison (2003:4) argues that this explains why one specific taxon 

dominates shell middens due to the intermittent abundance and subsequent focussed collection of 

this T. granosa. This hypothesis also offers a model by which midden formation can be inferred – 

punctuated events of intensive deposition of shell as opposed to a slower and more steady accretion 

of midden material. 

Possibly the most prominent ethnographic study that has then been incorporated into 

archaeological investigation is Meehan’s (1982) seminal research into the subsistence behaviours of 

the An-Barra people of Blyth River, central Northern Territory. In Shell Bed to Shell Midden, Meehan, 

in great detail, records the entire gathering process of shellfish; including the taxa being collected, 

the weights of shellfish collected and their calorific contribution to the overall diet of the An-Barra. 

Of particular note, and of particular relevance to the archaeological record, Meehan also records the 

manner in which shellfish are processed, including cooking methods, and how shellfish are 

discarded. Meehan’s description and observations of ‘dinnertime camps’ (Meehan 1982:26) has 

featured prominently, although sometimes implicitly visible through choices of terminology, in 

interpreting archaeological deposits both in Australia (e.g. McDonald 1992, Nicholson and Cane 

1994, Brockwell 2006) and in international contexts (e.g. Reitz 1988, Thomas 2002, Mannino and 

Thomas 2002, Erlandson et al. 2009, Marquardt 2010).  

 

The problem of scale and interpretation 

It is critical that the interpretations generated from the analysis of archaeological material have are 

grounded in the appropriate scales of investigation and the use of suitable methodologies to answer 

the questions being asked. As discussed in the previous chapter, different processes occur at 

different time scales and time spans, and therefore these processes should be investigated only 

once framed within the appropriate time scale (Bailey 2007:201). Coarser resolutions of evidence 



34 
 

naturally tend to strengthen or favour larger scales of interpretations and processes. Conversely, 

events reflecting smaller temporal spans are best investigated within a higher resolution of time 

scales (sensu Bailey 2007:201). These concepts are termed the macro- and microscopic tendencies 

respectively (Bailey 2007:210). Recognition of the macro- and microscopic tendencies therefore 

becomes a key step in approaching and engaging with archaeological deposits.  

In attempting to build interpretations of large-scale processes, the methods we employ need to be 

appropriately resolved. Similarly, if the focus of investigation is on events or processes of a finer 

resolution, the methods need to be altered accordingly. Using middens to describe large scale 

environmental processes over long timescales, such as climate change, a broad and generalised 

chronological control of the deposit can be considered acceptable. Modern day approaches to 

excavating and in particular dating shell middens (discussed in Chapter 1) typically fail to establish 

anything more than a very broad and generalising chronological framework of a deposit (e.g. Stein et 

al. 2003). This broad scale macroscopic approach, whether intentional or as a result of inadequate 

approaches to dating, comes at the expense of identifying or engaging with processes on a finer 

temporal scale, which are often behavioural, and therefore results in a bias towards environmental 

explanations. 

Turning this example on its head, the realities of what the archaeological record actually preserves 

with regards to human behaviour becomes an issue. Whether or not the archaeological record can 

preserve individual episodes of deposition, and whether or not we as archaeologists can disentangle 

these episodes to the highest resolution has long been a focus of discussion (e.g. Ascher 1961, 

Wauchope 1966, Binford 1981, Schiffer 1985). While examples of ‘the Pompeii Premise’ (Ascher 

1961:324) have been identified in exceptionally rare occurrences, the vast majority of archaeological 

deposits, in particular shell middens, cannot preserve depositional events on the scale of individual 

events due to the complex formation and transformation processes of shell middens deposits. 

Adopting a microscopic tendency, a shell midden can be gradually reduced into phases of midden 
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deposition on increasingly smaller temporal resolutions. However there exists a point where the 

further honing of temporal resolution becomes impossible, and this point can vary between contexts 

due to the varying nature of formation, transformation and preservation in individual deposits. In an 

ideal setting, this point of diminished returns is identified and what is achieved is the entire temporal 

spectrum preserved within a shell midden deposit with which questions and investigations can be 

appropriately scaled. This point of diminished return, however, is something that needs to be 

actively sought. 

Herein lies the paradox in building archaeological interpretations using shell midden assemblages. 

We as archaeologists aim to investigate processes that function across a broad range of time scales, 

yet the methods we employ in engaging with shell middens do not allow the isolation of the true 

spectrum of time within a deposit. A broad, macroscopic perspective of a deposit is relatively simple 

to achieve, as only the coarsest temporal framework is necessary to engage with processes of an 

equally large scale. In this respect, “standard” approaches to midden analysis, including basic 

identification and quantification (e.g. O’Connor 1999a) will suffice. A microscopic tendency (sensu 

Bailey 2007:210), requires a higher resolution of temporal understanding of the deposit. However, 

the techniques we employ, such as micromorphology, in approaching and analysing shell middens, 

as well as the nature of the archaeological deposit itself and the resolution of processes it can 

preserve, complicate the building of interpretations of processes across a temporal spectrum. 

It is possible to restrict our level of investigation to the broadest scale of inference that is facilitated 

by establishing an equally broad chronological framework of a midden deposit. This perspective 

however, outside of extreme cases, renders any discussion of human behaviour largely obsolete and 

is generalised and averaged to the point of being lost amidst large-scale processes (see Hodder 

2000). Speaking on the loss of detail of human behaviour in the archaeological record, Hodder 

(2000:31) states “[t]he data are often to scanty to allow anything else, and the ability of 

archaeologists to paint grand syntheses with a broad brush is impressive”. In the case of north 
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Australian shell middens, interpretations and models spanning thousands of kilometres of coastline 

are deduced from a relatively small number of samples and dates (e.g. O’Connor 1999b). 

To properly engage with questions at either end of the temporal spectrum, we need to first 

determine the scale of time that is represented within the deposit being investigated. As discussed 

in Chapter 1, if we want to progress beyond the gross over exaggeration of an environmentally 

deterministic perspective towards processes behind midden formation, we need to readdress the 

manner in which we approach and date shell middens. Similarly, more detailed interpretations of a 

much finer temporal resolution need to be grounded in demonstrable evidence. Temporal 

Packaging, once applied to midden deposits, will reveal the temporality of shell midden material that 

would previously have remained undetected, allowing an opportunity to appropriately scale an 

investigator’s level of questioning (sensu Bailey 2007:210). 

It is not the purpose of this thesis to develop a typology for the shell middens of northern Australia. 

What this thesis aims to achieve in its applicability to shell midden archaeology on northern Australia 

is to offer a method in which a shell midden can be approached to gain a deeper understanding of 

the temporal spectrum represented from within a shell midden deposit. This allows the appropriate 

scale/level of questioning of the midden to be set up to best accord with the temporal resolution 

that is preserved in the midden itself. Using this new information, a more detailed picture of midden 

formation can be drawn, and a wider range of processes across a broader temporal range can be 

engaged with while being grounded in demonstrable evidence.  

This thesis presents a new method by which the spectrum of temporal resolution preserved in a 

midden deposit can be elucidated to establish the most appropriate scale of questioning. As 

described in Chapter 1, the concept of Temporal Packaging mobilised through the novel application 

of amino acid racemisation (AAR) has the potential to change the manner in which shell middens are 

approached by offering a mechanism by which the phases of deposition, previously hidden, can be 

isolated.  
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In this thesis, Temporal Packaging is applied to a shell midden that was excavated in the northern 

Kimberley region of Western Australia at a rockshelter called Brremangurey. During excavation and 

analysis, it became clear that the Brremangurey midden had a complex formation history and 

exhibited evidence of post-depositional transformation. To best engage with this deposit and the 

environmental and behavioural processes behind midden formation and the variability within, these 

complexities occurring at a range of time scales need to be disentangled. However, in a rather 

typical example of the manner in which shell middens are approached, the excavation strategies, as 

well as the nature of the midden itself prevented the straightforward establishing of the spectrum of 

temporal resolution preserved within the deposit. The following chapters will demonstrate how 

Temporal Packaging, mobilised through AAR, can resolve these issues. 
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Chapter 3 – Brremangurey: Regional setting and site report 

 

This chapter is split into two parts. The first will describe the regional setting of the area in which 

research was conducted, as well as contextualising the main study site of Brremangurey within its 

local environments. The second part of the chapter will then focus on the Brremangurey rockshelter 

itself, where the excavation of a dense shell midden in 2011 was conducted. Firstly, the rockshelter 

will be described, followed by an account of the excavations including justifications of excavation 

squares and sampling strategies. Following this, the results of the analysis of the excavated midden 

material will be presented, including the results of the faunal analysis as well as the results from the 

dating programs implemented using material sourced from the Brremangurey midden. Patterns and 

issues pertaining to these analyses will then be isolated with specific questions regarding the 

chronological and behavioural patterning of Brremangurey outlined. Finally, a research agenda to 

address these questions will then be proposed. 

Chapter 3 – Part 1: The regional setting of Brremangurey 

 

Wunambal Gaambera country 

Wunambal Gaambera country covers an area of approximately 2.5 million hectares of land, islands 

and ocean in the northern most portion of the Kimberley region of Western Australia. In modern 

times, the Wunambal and Gaambera groups of the area collectively refer to themselves as 

Wunambal Gaambera people.  Wunambal Gaambera country extends from Prince Fredrick Harbour 

in the southwest, to Napier Broome Bay in the northeast.  

Wunambal Gaambera country is bounded by Dambimangari country in the southwest, and 

Willinggin country to the south. These three areas collectively form the Wanjina Wungurr cultural 
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bloc who share creator ancestors (Wunmabal Gaambera Aboriginal Corporation [WGAC] 2011: 8). To 

the southeast, Wunambal Gaambera country is bordered by the closely related Belaa language 

families of the Balanggarra people. Today, people of Wunambal Gaambera country mainly live in the 

communities of Kandiwal, Kalumburu and Mowanjum – the former being situated within Wunambal 

Gaambera land, while the latter two fall outside of the extent of Wunambal Gaambera country.  

 

Figure 3.1 – Map of the northern Kimberley region of Western Australia depicting 
areas and land features mentioned in text 

Climate 

The climate of Wunambal Gaambera Country has been described as wet-dry monsoonal (WGAC 

2011), dry tropical (Beard 1976) and tropical savannah (Slatyer 1960: 12). While maintaining 

uniformly high temperatures year round, the region’s climate is characterised by markedly seasonal 

rainfall. The majority of the area’s annual rainfall occurs in the months between November and 

April, but particularly in January and February (Figure 3.2c). Strong, potentially destructive storms 
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are experienced at the beginning of the wet season and tropical cyclones typically occur at a 

frequency of one per annum (Wilson 1981: 5-6). 

Climatic data gathered by the Bureau of Meteorology for Kalumburu (Figures 3.2a-c) show a pattern 

typical of the Kimberley region with regards to temperature and precipitation. Average annual 

maximum temperatures between 1999 and 2012 reached 32.8 degrees Celsius. Monthly maximum 

temperature reached 36.6 in the early summer months of October and November, and 28.5 in the 

winter months of June and July. Patterns of rainfall at Kalumburu exhibit a clearly monsoonal regime 

with 85% total annual precipitation falling between the months of December and March. The north-

western Kimberley has been noted to enjoy higher total rainfall than more southern regions, and the 

coast more so than inland areas (Beard 1976). 

Local indigenous groups of Wunambal Gaambera recognise four major seasons, and are described 

below (WGAC 2011: 14-15): 

1) Wunju (January to mid-March) 

The wet season, characterised by monsoonal rains and consistently hot temperatures. 

2) Bandemanya (mid-March to May) 

The early dry season. Monsoonal rains cease, though episodes of heavy, driving rain are 

experienced. Temperatures remain hot. 

3) Yurrma (May to September) 

Dry season. Temperatures fall and rains effectively cease. Southeast winds are prevalent.  

4) Yuwala (September to January) 

Referred to as the storm season as thunderstorms, originating from inland, signal the first 

indicators of the coming monsoonal rains. Temperatures begin to rise as winds fall.   
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Figure 3.2a-c - Climate data generated by the Bureau of Meteorology, Australia.  
Readings were taken at a station in Kalumburu. 

 

  

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
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a) Annual mean temperature (1999-2012) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Maximum 32.9 32.3 32.4 33.0 30.9 28.5 29.5 31.2 35.3 36.7 36.6 34.4
Minimum 24.6 24.4 23.5 21.0 16.7 13.7 13.8 14.6 19.0 22.4 24.6 24.9
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b) Monthly mean temperature (1999-2012) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Rainfall 305 305 248 42 18 4 0 0 2 41 78 216
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c) Mean Monthly Rainfall (1999-2012) 
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Physical setting 

The geology of the Kimberley region in northern Western Australia is limited by the King Leopold 

Orogen in the southwest, and the Halls Creek Orogeny in the southeast. The geology of the north of 

the Kimberley includes of Palaeoproterozoic Era siliciclastic sedimentary rocks and mafic volcanics 

comprising the Kimberley Basin block (Tyler et al. 2012). In Wunambal Gaambera country, three 

distinct geological units dominate the landscape, the King Leopold Sandstone at sea-level, overlain 

by Carson Volcanics, and Tertiary laterite in the topographically highest parts of the area (Dow and 

Gamuts 1969, Wilson 1981, Tyler et al. 2012). 

The King Leopold Sandstone is predominantly comprised of fine to coarse grained quartz sandstone 

derived from marine delta deposits, with minor instances of fine conglomerates and rare examples 

of thin siltstone layers (Beard 1976, Dowens et al. 2007). Restricted outcrops of dolomite have also 

been observed within the King Leopold Sandstone (Tille 2006: 110). Harder portions of the exposed 

exposed King Leopold Sandstone outcrops across Wunambal Gaambera country are quartzarenite – 

a technical distinction from the more commonly known quartzite rock type (Huntley 2014: 44). 

While both rock types are considered highly silicified quartz dominant rocks, the process of their 

silicification drives this distinction (Schmidt and Williams 2008). Quartzite is a metamorphic rock 

formed through the chemical alteration of deeply buried quartz dominant sandstones. This 

metamorphism is driven by the extreme pressure and temperatures associated with deep 

subterranean burial silicifying matrix and clasts. On the other hand, quartzarenite, despite being 

visually and chemically comparable to quartzite, silicifies through the dissolution and precipitation of 

dissolved silica mobilised by groundwater (Jennings 1983). The King Leopold Sandstone exhibits 

essentially no tectonic deformation, aside from minor folding and faulting at contacts between 

adjacent orogens, indicative of deep burial reinforcing the identification of quartzarenite over 

quartzite (Huntley 2014: 44). A recurring feature of the King Leopold Sandstone is its strong bedding, 

cross-bedding and jointing, leading to the tendency to fracture in large angular blocks resulting in  
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Figure 3.3 - Map of the Admiralty Gulf depicting locations and land features mentioned in text. Areas in green represent 
modern mangrove forests. Hashed area represents the extent of the Carson Volcanics and the Mitchell Plateau. 
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the landscape so characteristic of the Kimberley region (Figure 3.4). Overlying the King Leopold 

Sandstone are the rocks of the Carson Volcanics. This unit is characterised by fine-grained and 

massive amygdaloidal basalts interbedded with micaceous siltstones with minor pyroclastic rocks 

and feldspathic sandstones (Wilson 1981, Williams 2005, Dowens et al. 2007). This rock unit extends 

up to approximately 300 metres above sea level and forms the flanks of the Mitchell Plateau (Griffin 

and Grey 1990). Finally, overlying the Carson Volcanics is a layer of laterite deposited in the Tertiary 

period. This 3-15 metre thick unit forms an undulating cap on the topographically highest portions of 

the Mitchell Plateau between the 300 and 350 contour lines (Allen 1971: 10-11, Stewart et al. 1960: 

28, Wilson 1981: 4). 

Two major rivers flank the eastern and western sides of the Mitchell Plateau: the Mitchell River to 

the west, and the Lawley River to the east. The Mitchell River flows directly into the Indian Ocean. 

The Lawley River, partially fed by Mindjau and Rail creeks, flows into the Admiralty Gulf to the 

northeast of the Mitchell Plateau. Both the Mitchell and Lawley Rivers flow into landscapes 

dominated by King Leopold Sandstone on either side of the Mitchell Plateau. Mangrove stands occur 

Figure 3.4 - Typical landscape of the northern Kimberley. Photo taken by Koppel during surveys in 2012 of the Mitchell 
Plateau. 
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regularly along the extents of both Mitchell and Lawley rivers, and an especially expansive system is 

found at the mouth of the Lawley River where it contacts the Admiralty Gulf (Wells 1981). 

Shoreline types vary across the coastline of Wunambal Gaambera country; ranging from steep, rocky 

headlands, mangroves and wide soft shore beaches tending towards finer muds and silts as a result 

of the very sheltered nature of the Admiralty Gulf and the shallow water depth (Wilson 1981). A 

substantial amount of coarse shell grit is found from slightly below the low tide mark to well beyond 

the high tide line. The origin of this shell grit found across the region has been attributed to 

parrotfish (Family: Scaridae) crushing and eating shell and coral (Robert Vaughn personal 

communication 2012). The parrotfish’s beak-like teeth crushes and grinds coral which is then eaten 

and associated algae is digested (Morton 2004: 448). Pristine coral sand and grit is then excreted by 

the fish post digestion (Ryan 1994: 148). The grit is then carried by water currents to be deposited 

on the shores. Highly sheltered beaches, such as those in small enclosed bays have little to no shell 

grit apparent, whereas in relatively open beaches exhibit huge amounts of shell grit, especially 

towards the high tide marks of the intertidal fining to silts and muds towards the subtidal region of 

the shoreline. 

One of the defining characteristics of the Kimberley coast is the extreme tidal range of the ocean; 

the largest in the southern hemisphere (Garrow 2002: 1). Vertical difference in water levels between 

high and low tide upwards of 10 metres have been observed in the shorelines of the Kimberley 

region (Cresswell and Badcock 2000), and similar tidal amplitudes in the Admiralty Gulf have been 

recorded in the Admiralty Gulf (Wells 1981). Translating this vertical difference to horizontal 

distance results in over 100 metres separating the high and low tide marks. This is further increased 

in shorelines with exceptionally shallow gradients, such as the mangrove system at the mouth of the 

Lawley River with well over 150 metres separating high and low tide positions (Koppel pers. obs. 

2011). Tidal amplitudes of the Lawley River have reached 7 metres, with a maximum range of tidal 

influence upriver reaching a distance of 10-20 kilometres (Wells 1981: 97). 
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Brremangurey 

On the eastern banks of the Lawley River and extending along the eastern coastline of the Admiralty 

Gulf lies an area called Brremangurey (Figures 3.3 and 3.5). Brremangurey is a subdivision, or graa, 

of Wunambal country taken care of by a family group (WGAC 2010). Within the Brremangurey area 

lies a rockshelter approximately 70 metres from the present day coastline and formed through the 

undercutting and internal collapse of softer layers of an outcrop composed of King Leopold 

Sandstone. This rockshelter was the focus of archaeological excavations in 2011 and local ecological 

surveys in 2012, both feed into the core themes of this thesis.  

As this was the first major archaeological investigation to be conducted in the area, the rockshelter 

was named Brremangurey (Moore in Ross et al. 2011: 63). From this point on of this thesis, 

Brremangurey refers to the name of the rockshelter rather than the graa name for the area the 

rockshelter is located unless stated otherwise. A report of the excavation of the Brremangurey 

rockshelter, as well as the chronological and faunal analyses of the shell midden that was excavated 

is presented in Part 2 of this chapter. 

The importance of marine resources and coastal environments to the ancient inhabitants of 

Brremangurey was clearly demonstrated by the size and density of the midden deposit found within 

the rockshelter. During the field seasons of 2011 and 2012, rapid environmental surveys were 

carried out. The main aim of these surveys was to identify the nature of the different shoreline 

environments (relative water energy levels, substrate type etc.) near the Brremangurey rockshelter 

that could have feasibly been targeted by the ancient occupants of Brremangurey for shellfish 

gathering. Specific focus was placed in identifying contemporary communities of live molluscs with 

the intention of comparing modern populations with the findings of the analysis of the midden 

material excavated at Brremangurey. A brief discussion of these surveys is presented here. 
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Figure 3.5 - Schematic of the varying coastal ecologies surrounding Brremangurey: 1) the rocks at the southern end of 
One Tree Beach; 2) soft intertidal sands at northern extent of Breezy Beach; 3) the mudflats and mangroves further 

north of Breezy Beach. 



49 

Coastal environments near Brremangurey 

Wunambal Gaambera Country has been “recognised as one of Australia’s intact biodiversity hot-

spots” (WGAC 2011: 13) with a broad range of landscape and vegetation types being found within 

the region. Coastal ecologies of the Admiralty Gulf exhibit similar diversity. A broad range of 

shoreline types results in a wide range of fauna that can potentially be gathered as part of a 

subsistence regime of people inhabiting the area. Within walking distance from the Brremangurey 

rockshelter, a number of different shoreline environments were identified. As expected, a range of 

different species of molluscan fauna were observed in varying abundances and with associations 

between specific taxa. The results and observations of the surveys across the different shorelines 

visited are presented here.  

It should be noted that during the time of surveying, with the exception of the mangroves at the 

Lawley River mouth which will be discussed separately,  a period of neap tides were in effect. While 

each of the beach environments was assayed during a low tide, the typical low-tide mark was still 

submerged. Despite this, a useable dataset was gathered of the representative faunal assemblage of 

the various shoreline environments for comparison with the archaeological assemblage excavated 

from the Brremangurey midden. 

1) One Tree Beach 

North of the Lawley River mouth lies One Tree Beach. One Tree Beach is characterised by a stretch 

of beach of predominantly coarse shell grit and sand progressing to fine sands and muds past the 

low-tide mark. Like all coastal regions of the Admiralty Gulf, One Tree beach experiences an 

exceptionally large tidal range; upwards of 10 vertical metres separating the high and low tide (Wells 

1981).  

Enclosing the stretch of soft-shore is a rocky headland to the north, and a rock platform to the south 

composed of coarse quartz sandstones of the King Leopold Sandstone (Beard 1976). Surrounding the 

southern rock platform are boulders of the same rock unit partially buried by beach sand. Numerous 
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fissures, crags and depressions cover the rock surface creating rockpools, as well as providing some 

degree of cover from direct sunlight. Only one crag is sufficiently deep enough to provide complete 

protection from sunlight over the entirety of a day.  

Surveying of this location was broken up into two parts: 1) the soft, sandy beach, and 2) the rock 

platform to the south. A transect across the extent of the intertidal zone of the soft-shore of One 

Tree Beach was established, and at four metre intervals, a one by one square quadrat was placed. 

The area enclosed by the quadrat was then excavated to a depth of approximately thirty 

centimetres. Sands were sieved to isolate any molluscs from the sandy substrate. Survey of the rock 

platform involved visual inspection over the entire extent of the structure with species distributions 

recorded. 

The transect survey of the sandy shore of One Tree Beach yielded no evidence of live molluscan 

fauna within the sands. Considering the survey was undertaken during a neap tide where the low 

tide mark of the day was considerably higher than usual, it is possible that populations of live  

Figure 3.6 - One Tree Beach from its southern extent. The rock platform surveyed is slightly further south. 
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molluscs inhabit sands below the neap low tide mark, closer to typical low-tide levels. Due to the 

threat of saltwater crocodiles (Crocodylus porosus) in the area, surveying the submerged sands could 

not be attempted. Digging the quadrat to a greater depth was attempted but rapid and relentless 

infilling of the soft and waterlogged sands prevented progress.   

The survey of the rocky portion at the southern end of One Tree Beach proved more productive with 

a range of different taxa identified and distinct habitat niches and species associations identified. 

Like the survey of the soft beach sands, the survey of the rock platform was undertaken during a 

neap tide. The entirety of the platform was exposed which allowed observation of the entire 

structure. At high tide, only the highest and landward-most extent of the rock platform remains 

exposed while the rest is submerged. 

With regards to abundance, the most numerous species present on the rock platform was Planaxus 

sulcatus. Large clusters of this gastropod were found adhering to the rock, confining themselves to 

crags and crevices which would offer partial relief from the sun at particular times in the day. Similar 

behaviours were observed in the chitons Acanthopleura spinosa and Acanthopleura gemmata which 

adhere themselves into similar crevices out of direct sunlight for a portion of the day. Interestingly, 

both chiton species were only found on algae covered portions of the rock platform, which is to be 

expected due to their grazing feeding habits. The chitons were also confined to the seaward extent 

of the platform to a range of approximately 7 metres from the neap-low tide mark. Small 

communities of the gastropods Peristernia fastigium and Nerita balteata were scattered across the 

rock platform often in association with the P. sulcatus and both chitons (see Figure 3.7). Individuals 

of Thais echinata were identified in small individual cases across the platform, as was the limpet 

Patelloida saccharina. 
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The pearl oysters Pinctada c.f. albina and Isognomon ephippium were also identified, and both had 

contrasting niches of habitation. Pinctada c.f. albina were only noted in small rockpools that were 

filled with seawater throughout the low tide cycle, and were constantly exposed to sunlight 

throughout the day. This species was regularly found as single individuals not displaying any 

clustering behaviours, though up to three individuals were recorded to inhabit the same small 

rockpool. In contrast, I. ephippium was noted to form dense clusters bysally attaching to one 

another. Clusters of this species were found attached to the rock platform in the deep crag 

completely out of both direct sunlight and not protected by any water body during low tide.   

2) Breezy Beach  

Following the coastline just north of One Tree Beach is Breezy Beach, a stretch of sandy shoreline 

bordered by rocky outcrops. As with One Tree Beach, very low wave energy acts on the shoreline at 

Breezy Beach. The sediments are principally coarse shell grit at the upper reaches of the beach 

profile which gradually become finer to muddy silts at the low tide mark. Like the survey of One Tree 

Beach, the survey at Breezy Beach was conducted during a neap low tide which prevented access to 

the typical low tide sediments. The sandy portion of this part of the coastline was targeted, and 

using spades, buried communities of mollusc could be collected for identification. 

The sands at Breezy Beach proved shallow, with bedrock being reached at a depth at approximately 

20 centimetres. Despite this, abundant populations of the venerid clams Marcia hiantina and 

Gafrarium tumidum were collected in a very short period of time. There is little doubt that further 

populations of these species would have been identified below the neap-low tide mark. 

Interestingly, only these two species were identified in the sands at this extent of shoreline. Whether 

or not deeper sediments or sediments beyond the low-tide mark would yield further taxa, we could 

not determine at the time of the surveys. 
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Figure 3.8 - Soft sands at the northern extent of Breezy Beach. Live populations of M. hiantina and G. tumidum were 
found in abundance buried at this site. 

 

Figure 3.9 - Upper mudflat north of Breezy Beach, overlooking the lower mudflat in the background. 
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3) Mangrove stand north of Breezy Beach 

Slightly further north of the rocks at the northern extent of Breezy Beach are two relatively small 

mudflats enclosed by rocky outcrops and Rhizophora sp. mangrove trees. The sediments that infilled 

the enclosed area were notably finer than the beaches surrounding the mudflats, presumably due to 

the rocks surrounding the mudflats reducing the energy levels of water flow. Clusters of Rhizophora 

sp. trees, including saplings, scatter the upper landward mudflat, while smaller clusters are present 

at the lower seaward mudflat. 

The neap tide that was in effect at the time of survey had relatively little influence with regards to 

the investigation of the mudflats compared to the other previously mentioned survey sites. The 

rocky outcrops that form the natural boundary of the lower-most mudflat’s seaward extent lie above 

the neap low tide mark. The implications of this are that the same conditions are present at these 

mudflats with regards to low-tide exposure during neap tide as well as typical tidal situations, unlike 

the other sites surveyed.  

The rock oyster Saccostrea cucullata is abundant throughout this location with specimens being 

found adhering to hard substratum such as rocks and the stems, trunks and roots of Rhizophora sp. 

trees. Clusters of the gastropod Clypeomorus bifasciata were also found on the rocks surrounding 

the mudflat. Articulated and disarticulated valves of the clam G. tumidum were found clustered at 

the base of Rhizophora sp. trees throughout the upper landward mudflat. Live specimens of G. 

tumidum were found exposed at the base of the Rhizophora sp. trees as well as some being found 

buried in the surrounding muds. Alongside the dead G. tumidum at the base of Rhizophora sp. trunks 

were shells of the gastropod Volegalea cochlidium, however on closer inspection these were 

occupied by hermit crabs. As with G. tumidum, no live examples of V. cochlidium were found. 

Despite the presence of the Rhizophora sp. mangroves, the typically mangrove-associated oyster I. 

ephippium was absent in this area (Carpenter and Niem 1998: 191). 
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Populations of the whelks Telescopium telescopium and Terebralia palustris were also abundant in 

this area. Interestingly, the populations of T. telescopium that were identified were mostly confined 

to pools of standing water that remained after the tide dropped. In contrast, T. palustris seemed to 

largely avoid pools of water and were found exposed on the surface of the mudflat. While specimens 

of both T. Telescopium and T. palustris were noted to occupy spaces in full, direct sunlight, dense 

clusters of T. palustris were found in the shade created from the Rhizophora sp. trees scattering the 

area.  

4) Lawley River mouth 

Approximately 10 km south from Brremangurey is the mouth of the Lawley River and its juncture 

into the Admiralty Gulf. This location is characterised by an extensive mangrove forest directly 

adjacent to an expansive mudflat from the forest’s seaward boundary. The tidal range at this 

particular site is substantial, even by the typical standards of the Kimberley region. With an 

exceptionally shallow shoreline gradient, coupled with the massive tides of the area, the distance 

between high and low tide can extend beyond 200 metres. Unfortunately, due to the very real 

threat of saltwater crocodiles which were observed to frequent the area, this location was deemed 

unsafe and could not be surveyed.
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Chapter 3 – Part 2: The excavations at Brremangurey 

 

The Brremangurey Rockshelter 

The Brremangurey rockshelter lies within a flat-lying quartzite outcrop which forms a ridge-like 

feature rising approximately 8 metres from the ground at the southern main entrance. The shelter 

itself formed through the internal collapse of the bedrock forming internal cavity with a varying roof 

height ranging from approximately 1.2 to 4.5 metres in height, though these measures are as much 

influenced by the undulating and uneven floor surface as the roof of the shelter itself (Moore 2011: 

64). The primary entrance to the shelter is its southern extent, while a smaller, less accessible 

entrance is found in the shelter’s rear. Both the eastern and western extents of the shelter are 

closed off due to the roof and floor contacting. The southern entrance is ca. 23 metres in width and 

the rockshelter extends approximately 31 metres towards the northern entrance in the rear of the 

shelter. A shelf or bench of bedrock extends across the southern entrance of the shelter in a 

westerly direction and acts as a platform up to 3 metres in width protected by an overhang of 

quartzite bedrock. A talus slope of midden material approximately 2 metres in height is present 

outside the southern entrance to the shelter, extending past the dripline. The talus slope contacts a 

sandsheet outside the southern entrance of the shelter that, in contrast with the interior of the 

rockshelter, appears largely devoid of shell material or significant boulders. 

Rock art is abundant at this location, with motifs covering the internal wall and roof panels, as well 

as extending across the quartzite wall along the quartzite shelf to the shelter’s west. The art present 

at Brremangurey will not be discussed in this thesis, though is presented elsewhere (Ross et al. 2011, 

Ross and Travers 2013, Huntley 2014, Travers 2015, Ross et al. 2016, Travers and Ross 2016). 
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Overall the entire surface area of the shelter is approximately 1200m2 (Moore 2011, Ross et al. 

2011). Except for a few quartzite boulders, the floor surface inside the rockshelter is loose shell 

midden with an ash/silt matrix, as seen in Figures 3.10 and 3.11. The surface midden deposits appear 

dominated by equal proportions of M. hiantina and T. granosa, with smaller proportions of the 

mangrove pearl oyster I. ephippium. The shelter floor is largely flat, however some undulations are 

apparent. A zone of subsidence is apparent towards the centre of the shelter that is potentially the 

result of water flowing into the rear of the shelter during periods of abundant rainfall, such as during 

the summer monsoons (Robert Vaughn personal communication 2011). Towards the western 

portions of the shelter where the roof is considerably lower than the central and eastern parts, 

isolated patches of burnt shell is common across the surface – likely the remains of fireplaces. 

 

Figure 3.11 - Surface of the midden deposit inside the Brremangurey rockshelter. Photo taken from the shelter's 
southeast corner facing north. The northern entrance can be seen in the background. 
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Along the bedrock shelf, approximately 11 metres to the east of the rockshelter’s southern entrance, 

another smaller midden was identified. This midden forms a shallow mounded deposit 3.5 metre in 

diameter and approximately 35 centimetres in depth (Moore 2011: 67).  

An alphanumeric grid was applied to the site, inclusive of the bench to the east as well as the 

sandsheet to the south. The datum point by which the alphanumeric grid was structured was carved 

into a portion of bedrock near the shelter’s eastern wall (Moore 2011: 67-68). This datum point also 

acted as a control of Z-coordinates by which the depths recorded during excavation (discussed 

below) were measured against. 

 

The excavations 

Justification of square placement 

A total of five 1x1 metre squares were excavated at Brremangurey; three squares (K26, K27 and K30) 

within the rockshelter’s principal occupation zone; one square (S44) centred on the small, mounded 

midden located on the bedrock shelf east of the shelter’s main entrance; and one (S44) on the 

sandsheet outside of the rockshelter beyond the talus slope. The justification for the positioning of 

these squares, as initially presented by Moore (2011: 68-69) is discussed below: 

- Squares K26, K27 and K30 were placed at what was initially thought to be the area where 

cultural deposits were deepest. As well as this, K30 was positioned directly underneath a 

principal motif of rock art where ochre crayons and other pieces of material culture 

associated with the production of art could be found. K27 was similarly deliberately 

positioned underneath other motifs, though motifs where the underlying rock had spalled 

and detached with the art itself were specifically targeted. K26 was only excavated after K27 

reached bedrock at a much shallower depth than initially posited and the remaining time 

and manpower left after the shorter-than-expected excavation of K26 facilitated the 

possibility of excavating another square. 
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- The placement of S44 was justified using a similar argument as the placement of K27. The 

roof/wall of the overhang directly above the small midden exhibited substantial spalling and 

exfoliation. The excavation of S44 hoped to extract pieces of art-covered roof fall in a 

dateable context. 

- Y38, in contrast to the other four squares, did not target a shell midden, nor was it placed 

underneath the protection of the shelter’s roof or overhang. Rather, Y38 was placed on the 

sandsheet outside of the shelter, beyond the talus slope. Previous excavations elsewhere in 

the northern Kimberley that were conducted as part of this project (though are not relevant 

to this thesis) used a similar justification of excavation square placement and yielded the 

positive results of assemblages of material culture. With a similar depositional context being 

apparent at Brremangurey, the same was expected here as with those other excavations. 

 

Excavation methods 

Prior to excavation, measures were undertaken in an effort to protect the rock art of the shelter 

from the dust generated during the process of excavation. Directly over and behind squares K26, K27 

and K30, a sheet of doubled-over shadecloth was erected to act as a physical barrier between the 

dust and art. At the sieving station, a tarpaulin was hung to direct the flow of air, as well as 

suspended dust in the moving air, away from the rockshelter, specifically away from S44 and 

adjacent motifs. 

The excavation across all squares at Brremangurey was conducted in 5 centimetre arbitrary levels, or 

spits. The reasoning behind this decision was that due to the apparent visual homogeneity of the 

midden deposits as well as the sandsheet outside the shelter, natural stratigraphic layers may not 

have been preserved in a fashion visible to the digger during the excavation process (Moore 2011: 

71). Despite this, excavators were instructed to cease further excavation of a spit when changes in 

deposit composition or form were observed. Distinct features, such as hearths, were excavated and 
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 analysed as discrete features where possible. At the conclusion of each spit, 5 measures of depth 

were recorded measured against a fixed datum; 4 in each of the square’s corners, as well as 1 in the 

centre of the square. Spit thickness was reduced to 2.5 centimetres only in K26 after the coarse 

midden deposit transitioned into a finer sand-dominated layer and a higher resolution of excavation 

through smaller spits could successfully commence (Moore 2011: 71). Excavation was undertaken 

using trowel and dustpan, with particularly small or delicate finds, such as articulated animal bones, 

being excavated using shaped bamboo chopsticks. Excavation proceeded in each of the 5 squares 

until impenetrable bedrock was reached (Moore 2011: 74). 

For each spit or feature across all squares excavated at Brremangurey, a small bulk sample was 

collected. These samples weighed approximately 160 grams each and were not sieved. Munsell 

colour readings were recorded for each spit, as well as pH readings. Carbon samples in the form of 

Figure 3.12 - Excavation in progress at Brremangurey. Square to the left is K26, and to the right is K27. K30 is situated 
behind man overlooking the excavation. Note the shadecloth protecting the rockart from airborne dust. Photo by Yinika 

L. Perston. 
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charcoal were also collected during the excavation of each spit using tea-strainers to avoid bodily 

contact that may adversely impact further analyses using the charcoal (Moore 2011: 73). 

At the conclusion of each spit, all of the material excavated from that level was weighed using a 

spring scale to the nearest half kilogram. Large rocks were removed and the material was dry-sieved 

through both 5mm and 3mm nested sieves. The 5mm sieved fraction underwent a preliminary sort 

on-site to remove any obvious stone (both modified and unmodified), bone and other organics from 

the remaining shell. Each component was then separately weighed. The remaining ash/sediment 

was kept in a spoil heap until it was ready to be used as backfill for each of the squares once 

excavation had concluded.  

 

The results of excavation 

Squares K26, K27 and K30, as a result of being situated adjacent to or close to one another, shared 

common characteristics of stratigraphy and faunal composition. Similar patterns were observed in 

S44 located nearby. The square Y38, located in the sandsheet outside of the rockshelter, stood out 

from the others as it was the only square not placed into a shell midden.  For this reason, the results 

of the excavation of Y38 will be discussed briefly first, and then a detailed description of the other 

four squares will follow.  

Y38 

The excavation of Y38 reached a total depth of 145 cm when bedrock was reached. The sediments 

uncovered were principally composed of homogenous medium sand initially grey/brown in colour, 

but fading to a pale yellow as the excavation progressed. Material culture, in the form of stone tools 

and ochre crayons, was found throughout the deposit, though appeared to concentrate at specific 

points in the sequence. The uppermost extent of the sandsheet contained large quantities of marine 

shell, however no shell was found below the first three spits. Unmodified rock fragments were found 
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throughout the sequence, but increased in abundance rapidly towards the lowest 20-30 cm of the 

deposit. The sediments were initially alkaline in nature with a pH of 8. At lower levels, the pH of the 

sediments became more acidic, with a pH reading of 6 being recorded at Spit 8. Below this, until 

bedrock, pH levels fluctuated between 5.5 and 6, and are likely the reason why no shell was 

recovered from the lower levels of the deposit (Moore 2011: 88-90).  

The presence of the shell uncovered at Y38 is likely the result of a natural, rather than cultural, 

process. The shell found was highly fragmented in nature, and closely resembles the shell grit that is 

common across beaches of the area. Considering the close proximity of One Tree Beach to the 

Brremangurey rockshelter, a distance of approximately 70 m, it is likely that the shell found at Y38 

was blown to the site during strong winds (Moore 2011: 88). 

No midden shell was present at Y38, and as such, this square will not be discussed further in this 

thesis.  

K26, K27 and K30 

All three of these squares were excavated either adjacent to one another, in the case of K26 and 

K27, or in close enough proximity for patterns of stratigraphy to be shared across squares, as with 

K30. Because of this, for the purposes of describing the preliminary results and observations of 

stratigraphic patterning, all three of these squares will be discussed together. 

Squares K27 and K30 terminated at the relatively shallow depth of 91 cm below surface (BS) for the 

former, and 66 cm BS for the latter. In excavating K27, it became clear that both of these squares 

were situated on top of either a large slab of roof-fall, or an uplifted portion of the underlying 

bedrock. This platform, however, was noticed to drop off suddenly along the western edge of K27 

indicating the presence of deeper sediments to the side of the rock platform. With this in mind, the 

K27 excavation was expanded along that western edge forming the K26 square to specifically target 

these deeper deposits. At the termination of the K26 excavation where bedrock was reached, a 

depth of 181 cm BS was recorded. 
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Across all three squares, two distinct horizons were identified. Horizon 1 is characterised by a dense 

shell midden deposit supported by a fine-grained ash/silt matrix. Lenses of ash, charcoal and burnt 

shell were common throughout the midden of Horizon 1, however discrete hearth features proved 

rare during excavation. It is likely that hearths were completely or partially dispersed during the 

occupation of the Brremangurey rockshelter prior to the features being buried by subsequent 

deposition of material (Moore 2011: 77). While demarcating ash- and charcoal-heavy lenses was 

problematic during excavation, these features were more noticeable in section view in the square 

walls once excavation had concluded. The pH of Horizon 1 remained high throughout its extent, with 

values of 8-9 being recorded. The alkalinity facilitated excellent preservation of organic remains, 

which included bone, plant material and the abundant molluscan shell.  

Horizon 2 underlies the midden-rich deposit of Horizon 1, and was only observed in K26. The 

basement rock that terminates both K27 and K30 rests above the juncture between Horizons 1 and 

2, and is therefore only found in the deeper sediments of K26. Horizon 2 is characterised by a weak-

structured medium quartz sands with a subangular shape (Moore 2011: 85). Unlike Horizon 1, 

Horizon 2 contained abundant examples of material culture, particularly bipolar artefacts created 

through shaping crystal quartz and metavolcanics, as well as ochre crayons (Moore 2011: 84). Shell is 

largely absent through Horizon 2, except for a zone of transition at the contact between both 

horizons. Fragments of M. hiantina were identified throughout Horizon 2, and will be discussed in 

more detail in the following section where the faunal analysis of the excavated Brremangurey 

material is presented. 

A number of layers within both horizons were identified, and are described below. The descriptions 

of each layer are adapted from the preliminary report by Moore (2011: 84-88). 

Layer 1A – This thin layer forms the uppermost extent of the Brremangurey rockshelter 

deposit and includes the shelter’s surface. Crushed shell is abundant, and is the likely result 
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of both human and animal trampling and foot-traffic within the shelter. Shell is supported by 

loose ash and silt 

Layer 1B – Underlying Layer 1A is an approximately 25 cm thick layer of interbedded layers 

of clast-supported midden shell. Plant remains are abundant, and the pH of this layer is 

particular high, with readings of 9 being recorded. The colours of the sediments of this layer 

vary slightly, ranging from greys (2.5Y 6-1), to dark greys (2.5Y 4/1) to greyish brown (2.5Y 

5/2) in colour. Layer 1B was continuous across squares K26 and K27, but was discontinuous 

in the nearby K30 where the layer tails off.  

Layer 1C – Similar in composition to Layer 1B, the underlying Layer 1C is characterised by an 

increase in the number of hearth features compared with the overlying layer. The colours of 

Layer 1C are comparable to Layer 1B, however the range of pH values drop slightly to 8-8.5. 

The thickness of Layer 1C is approximately 10 cm in squares K26 and K27, and expands out 

to approximately 20 cm in K30.  

Layer 1D – This layer consists of two principal lenses of clast-supported midden shell 

separated by a dense shell layer almost entirely composed of the pearl oyster P. c.f. albina. 

Within this layer, a small pearl was discovered. This pearl was analysed and published 

independently of this thesis (Appendix 3). Layer 1D range in thickness from 20 to 26 cm 

between K26 and K27. The colour of the sediments are similar to the overlying two layers, 

and like Layer 1C, pH values range from 8 to 8.5 throughout Layer 1D. Layer 1D represents 

the lowermost layer of Horizon 1. 

Layer 2A – This layer marks the upper most extent of Horizon 2, and as such acts as a 

transitionary layer between the shell dominated layers above, and the sand dominated 

layers below. Shell is initially abundant in the upper extent of this layer, though this 

abundance drops towards the bottom of this layer. Interestingly, the midden shell is less 

preserved in this layer compared with the upper layers despite the pH remaining alkaline 

with pH values of 8 being recorded.  Layer 2A also represents the lowest-most layer of 
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deposit in squares K27 and K30 where contact is reached with the underlying bedrock. A pit-

feature was observed in the western wall of K26, where material from Layer 2A cuts into the 

underlying Layer 2B, as seen in Figure 3.13. The surface of the rock of squares K27 and K30 

appears exfoliated, likely heat generated due to the placement of fires directly onto the 

bedrock surface. The adjacent sands are also organic rich, potentially as a result of 

decomposed charcoal further adding weight to the interpretation of extensive fire-building 

behaviours at this location. The transition from Horizon 1 to Horizon 2 occurred during the 

excavation of Spit 18. Because of this noticeable shift in the nature of the material being 

excavated, Spit 18 was split into two separate excavation units; Spit 18A and 18B with the 

juncture between the two representing when the sediments coarsened from ashy-silts to 

medium sands. 

Layer 2B – This layer is only apparent in K26. The contact between layers 2A and 2B is 

distinct, and potentially represents a “significant behavioural and depositional disconformity 

at Brremangurey” (Moore 2011: 86). Shell is near absent, with only isolated examples of 

fragmented M. hiantina being uncovered. Colours range between brown (7.5YR 4/3) and 

very dark grey (5YR 3/1), while pH values of the deposit range from 8.5 to 9. 

Layer 2C – The lowest most layer of K26 and is characterised by dark, organic rich sands and 

discontinuous lenses of lighter coloured sediments. Like Layer 2A in squares K27 and K30, the sands 

directly overlying the bedrock of K26 are stained black by organic material, which potentially 

suggests hearth-building activity directly on the rock surface; however the exfoliation of the bedrock 

itself is not apparent.  
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S44 

The small mounded midden to the east of the main rockshelter was also excavated, and the square 

labelled S44. From a surface view, the midden appeared comparable to the surface of the much 

larger deposit within the rockshelter with regards to species composition; dominated by M. hiantina 

and T. granosa. As well as this, the surface of this deposit was consolidated slightly with a thin algal 

coating. Upon excavation, the stratigraphic patterning observed seemed to mirror the patterning of  

Figure 3.16 - Western wall of square K26 showing clear distinction between 
Horizons 1 and 2. Note the shell-filled pit feature intruding into the brown 

sands from Horizon1 into Horizon 2. 
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Layer 1A of the squares excavated within the rockshelter, and described above – principally being 

dominated by shell midden material supported by an ash/silt matrix. Layers 1B, 1C and 1D, on the 

other hand, were not separately identified at S44. Interestingly, towards the lowest extent of S44, 

the sediments supporting the shell midden material coarsened, from ashy silts to medium sand, 

again similar to layers identified in the other squares; specifically Layer 2A. Exfoliation of the rock 

surface on which the midden was deposited generated by fire was not observed. 

 

Chronology of Brremangurey 

The preliminary radiocarbon dating program incorporated 20 specimens sampled from the 

Brremangurey excavations: 18 sourced from K26, and 2 from K27. No specimens from either K30 or 

S44 were sampled for dating. Furthermore, an additional 3 ages were generated using optically 

stimulate luminescence (OSL) dating using the quartz sands towards the lower extent of Horizon 2. 

The results of this dating program are presented in Table 3.1, and are discussed below. Radiocarbon 

dates were calibrated using Calib 7.02 software with a delta-R value of 60 ± 31 years applied on 

marine shell (Alan Hogg, pers. comm. 2014). 

The archaeological material within the Brremangurey rockshelter can largely be differentiated into 

two distinct phases of deposition. The earliest material within the Brremangurey rockshelter was 

deposited in the late Pleistocene. These deposits, stratigraphically, accord with Horizon 2, and were 

deposited from approximately 14,200 and 12,700 cal. BP, as indicated by the oldest radiocarbon 

ages sampled from in situ hearth features within Horizon 2 and presented in Figure 3.18. The age of 

two samples, Wk-32411 and Wk-32410 respectively, were validated by OSL ages generated from 

quartz sands which returned age determinations of approximately 13,000 years BP. 
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# Sample code Material 
Depth 

(cm. below 
surface) 

Layer/ 
Horizon 

14C Age 
(uncal.) 

Calibrated 14C Age  
(1 sigma) 

Calibrated 14C Age  
(2 sigma) 

1 Wk-32405a Charcoal 8.6 1 493 ± 33 511 - 534 498 - 552 (99.4%) 
614 - 617 (0.6%) 

2 OZQ-185b Charcoal 24.1 - 28.1  
(Spit 6) 1 930 ± 25 

796 - 834 (44.7%) 
842 - 874 (37.8%) 
893 - 909 (17.5%) 

791 - 918 

3 OZQ-181b T. granosa 24.1 - 28.1  
(Spit 6) 1 1,415 ± 25 853 - 950 785 - 988 

4 OZQ-188b M. hiantina 24.1 - 28.1  
(Spit 6) 1 1,305 ± 25 729 - 840 695 - 892 

5 OZQ-191b P. c.f. 
albina 

24.1 - 28.1  
(Spit 6) 1 1340 ± 25 780 - 883 728 - 913 

6 Wk-32406b Charcoal 38.1 1 1,069 ± 28 934 - 982 (89.8%) 
1035 - 1043 (10.2%) 

930 - 1,008 (80.5%) 
1,024 - 1,053 

(19.5%) 

7 Wk-32407a Charcoal 57.6 1 1,896 ± 33 1,817 - 1,886 
1,733 - 1,899 

(98.9%) 
1,913 - 1,920 (1.1%) 

8 OZQ-192b P. c.f. 
albina 

64.4 - 69.9  
(Spit 13) 1 2305 ± 25 1800 - 1906 1,730 - 1,954 

9 OZQ-186b Charcoal 75.9 - 80.3  
(Spit 15) 1 2,210 ± 30 

2,155 - 2,209 (48.4%) 
2,223 - 2,270 (41.1%) 
2,295 - 2,308 (10.6%) 

2,148 - 2,319 

10 OZQ-182b T. granosa 75.9 - 80.3  
(Spit 15) 1 2,615 ± 30 2,176 - 2,292 2,115 - 2,326 

11 OZQ-189b M. hiantina 75.9 - 80.3  
(Spit 15) 1 2,495 ± 30 2,005 - 2,132 1,942 - 2,215 

12 OZQ-183b A. spinosa 75.9 - 80.3  1 2,565 ± 30 2,115 - 2,255 2,048 - 2,298 

13 WK-32408a Charcoal 90.5 1 2,444 ± 34 

2,369 - 2,370 (0.4%) 
2,377 - 2,497 (63.0%) 
2,596 - 2,612 (9.0%) 

2,637 - 2,685 (27.5%) 

2,358 - 2,543 
(60.2%) 

2,559 - 2,618 
(14.5%) 

2,630 - 2,702 
(25.3%) 

14 Wk-32409b Charcoal 91.0 1 3,394 ± 25 
3,595 (1.1%) 

3,607 - 3,646 (61.2%) 
3,662 - 3,688 (36.9%) 

3,579 - 3,694 

15 OZQ-187b Charcoal 91.0 - 95.9  
(Spit 18A) 1 1,875 ± 25 

1,742 - 1,754 (8.9%) 
1,784 - 1,791 (5.2%) 

1,810 - 1,871 (85.9%) 
1,733 - 1876 

16 Wk-37137b T. granosa 91.0 - 95.9  
(Spit 18A) 1 7,828 ± 25 8, 187 - 8,288 8,152 - 8,334 

17 OZQ-190b M. hiantina 91.0 - 95.9  
(Spit 18A) 1 2,850 ± 30 2,462 - 2,618 (89.9%) 

2,622 - 2,643 (10.1%) 2,375 - 2,682 

18 OZQ-184b A. spinosa 91.0 - 95.9  
(Spit 18A) 1 2,745 ± 30 2,320 - 2,435 2,282 - 2,543 

19 Wk-32410b Charcoal 108.3 2 10,867 ± 39 12,708 - 12,760 12,694 - 12,801 

20 Wk-32411b Charcoal 125.5 2 12,303 ± 44 14,113 - 14,308 14,059 - 14,564 

Table 3.1 – Ages of the intial radiocarbon dates of charcoal sourced from the wall of the excavation, and shell from 
excavated midden material post-excavation presented in stratigraphic order. Sample codes marked with superscript ‘a’ 

were analysed using conventional radiocarbon dating, whereas those marked with superscript ‘b’ used AMS. Where 
depths are marked with an asterisk, specimens were sampled directly from the wall of the square. Where a depth range 

is given, specimens were sampled from already excavated during the faunal analysis in the laboratory. 
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The Pleistocene/terminal Holocene ages of the sandsheet layer of Horizon 2 contrast with the largely 

younger ages of the overlying midden deposit of Horizon 1. Almost all of the radiocarbon ages across 

both marine shell and charcoal samples fall between approximately 3,600 and 500 cal. BP bracketing 

the most intensive period of midden deposition at Brremangurey. This pattern of late Holocene 

midden formation is not uncommon, and is rather typical of archaeological deposits of Australia’s 

tropical north (e.g. Bailey 1977, Veitch 1999, Bourke 2012, Faulkner 2013). What is not typical of 

midden deposits in northern Australia is the age returned from a specimen of T. granosa (Wk-37137) 

dating to between 8,152 and 8,334 cal BP. This particular specimen was sampled from the same 

stratigraphic level as samples OZQ-184, OZQ-187, OZQ-190 and Wk-32409, yet all of these samples 

returned ages ranging from approximately 1,800 to 3,600 cal. BP. The implications of this early 

Holocene age from a T. granosa valve at Brremangurey, with specific regards to formation and 

transformation processes at Brremangurey, as well as subsequent interpretations of gathering 

practices of the prehistoric occupants of Brremangurey and their environment will be discussed 

towards the end of this chapter.  

 

Faunal analysis of midden material excavated at Brremangurey 

Approach to investigation 

A total of 950.5 kg of shell material was excavated from all 4 squares at Brremangurey: ca. 325.5 kg 

from K26, ca. 364 kg from K27, ca. 157 kg form K30 and ca. 44 kg from S44. The strategy of sub-

sampling the midden material evolved as excavation proceeded. Initially, a 100% sample was 

collected. As excavation progressed, it became clear that continuing with this approach would result 

in a logistically unfeasible quantity of midden shell, it was decided that a 50% sub-sample would be 

more appropriate. As some levels had already been excavated and transported off-site when this 

decision was made, the method in which a 50% sample was applied varied between sections of each 

square, and are summarised in Table 3.2 below. For the spits where 100% of the midden sample was 
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already transported off-site, sub-sampling to 50% was conducted by weight in the laboratory prior to 

the material being sorted and quantified. For the spits that were not already excavated when the 

decision to reduce sample size was made, sub-sampling proceeded by volume, where the 1x1 m 

square was split into left east/west halves, with the material from one being kept for further 

analysis. The half that would not be kept was still sieved on-site and visually inspected for the 

presence of artefacts and other material culture. 

Square 100% sample 50% by weight 50% by volume 
K26 Spits 19 - 41 - Spits 1 - 18B 
K27 Spits 1 - 7 Spits 8 - 11 Spits 12 - 16 
K30 - Spits 1 - 13 - 
S44 - Spits 1 - 6 - 

 

Table 3.2 - Sub-sampling data of squares excavated at Brremangurey 

 

It should be noted that spits below Spit 18B in square K26, sampling was reverted back to 100%. At 

this level, the abundance of midden shell rapidly decreased in subsequent excavation units which 

resulted in the 100% sampling of midden shell to become feasible. 

Following the excavations at Brremangurey, the midden shell was transported to the University of 

Wollongong’s Zooarchaeology Laboratory for sorting, quantification, and further analysis. As K26 

and S44 were the only squares to provide a complete cross-section of the archaeological deposits of 

Brremangurey, only the quantification results for these two squares will be presented here, and only 

the 5 mm sieved fraction has been analysed.  Initial analyses involved separation and identification 

to the lowest possible taxonomic level, and isolation and quantification of non-repeating elements 

(NRE) to provide a minimum number of individuals (MNI) estimate for each taxon that contributed 

to the assemblage. Quantification of the total number of identified specimens present (NISP) for 

each taxon was also undertaken. The abundance of burnt shell specimens using the same NRE and 

NISP quantification methods was also established. The NRE selected for quantifying bivalves of the 

Brremangurey assemblage was both the left and right hinges, for gastropods the spire was selected, 
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and for chitons both the anterior and posterior plates were individually quantified. In consideration 

of Grayson’s ‘division of aggregates’ problem (1984), the totals of each NRE throughout the 

assemblage was tallied, and the higher of the two being used for individual excavation unit’s MNI 

values. This will consequently under- rather than over-estimate MNI values. Charcoal separated 

from each spit’s material during sorting was also quantified by weight to the nearest gram. 

 

Results of quantification – K26 

A total of 207 kg of shell excavated from the 5 mm sieved fraction was analysed as part of the 

quantification process of the Brremangurey midden. The weights of shell from each spit of K26 are 

presented in Figure 3.20. 

 

 

 

Figure 3.20 - Kilograms per spit of >5mm shell material excavated from K26. Weights of shell below spit 18B were too 
small to adequately display on this figure. Dashed line denotes transition from Horizon 1 to Horizon 2. 
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Figure 3.21 - Grams per spit of charcoal excavated from K26. Weights of charcoal below Spit 18B were too small to 
adequately display on this figure. Dashed line denotes transition from Horizon 1 to Horizon 2. Dashed line denotes 

transition from Horizon 1 to Horizon 2. 

 

Across all of the analysed material, 86 separate taxa were identified in varying abundances. As can 

be seen in Table 3.3, bivalves dominated the assemblage. The soft-shore venerid M. hiantina was by 

a large margin the most abundant species present in the assemblage, comprising 70% of MNI and 

81% of NISP counts in square K26. Much smaller quantities of the pearl oysters Pinctada cf. albina 

and Isognomon ephippium were identified representing 2.2% and 1.4% of total MNI counts 

respectively. In contrast to the typical shell accumulations reported in northern Australian 

archaeological research (e.g. Bailey 1977, Faulkner 2006, Veitch 1999; but see Cochrane 2014), the 

estuarine cockle T. granosa comprises only a small proportion of the overall assemblage with less 

than 1% of total MNI and NISP counts across all taxa present, despite the appearance of equal 

proportions of T. granosa and M. hiantina on the rockshelter’s surface. The vast majority of shell 

material was concentrated within the upper midden layers of the site of Horizon 1, between Spits 1 

and 18A, though minor instances of shell were discovered within the underlying sandsheet of 

Horizon 2.  The summarised results of the quantification of the K26 midden material is presented in 

Table 3.3 below. 
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Bivalvia 
MNI NISP 

Counts % of total 
MNI 

% MNI 
Burnt Counts % of total % Burnt 

Marcia hiantina 
Left 27,706 69.6 7.2 

259,556 81.1 13.0 
Right 27,906 70.1 6.9 

Pinctada c.f. albina 
Left 748 1.9 0.8 

27,831 8.7 3.1 
Right 878 2.22 2.7 

Isognomon ephippium 
Left 564 1.4 1.1 

4,082 1.3 2.5 
Right 570 1.4 1.6 

Tegillarca granosa 
Left 308 0.8 11.7 

2,192 0.7 42.1 
Right 316 0.8 8.9 

Septifer bilocularis 
Left 258 0.7 1.2 

952 0.3 2.1 
Right 250 0.6 0.4 

Saccostrea cucullata 
Upper 24 0.1 - 

220 >0.1 9.6 
Lower 13 >0.1 7.7 

Saccostrea cucullata 
(juvenile) 

Upper 132 0.3 3.0 
812 0.3 5.5 

Lower 135 0.3 3.0 

Circe sp. 
Left 139 0.4 13.7 

308 0.1 14.9 
Right 157 0.3 16.6 

Gastropoda 
MNI NISP 

Counts % of total 
MNI 

% MNI 
Burnt Counts % of total % Burnt 

Terebralia palustris 16 >0.1 6.3 1942 0.6 10.8 

Telescopium telescopium 9 >0.1 22.2 375 0.1 15.2 

Clypeomorus bifasciata 143 0.4 6.3 185 >0.1 6.0 

Amplirhagada sp. 42 0.1 42.9 1278 0.4 35.1 

Polyplacophora 
MNI NISP 

Counts % of total 
MNI 

% MNI 
Burnt Counts % of total % Burnt 

Acanthopleura spinosa 
Anterior 505 1.3 5.9 

6,138 1.9 5.4 
Posterior 605 1.5 4.3 

 

Table 3.3 - Summary of results of quantification of midden material excavated from K26 with specific species isolated. 
Note that Amplirhagada sp. is a terrestrial gastropod, unlike the other species represented which are all marine 

molluscs. 
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Species name MNI NISP 
Marcia hiantina 27906 259556 
Pinctada c.f. albina 878 27831 
Acanthopleura spinosa 605 6138 
Isognomon ephippium 570 4082 
Tegillarca granosa 316 2192 
Septifer bilocularis 258 952 
Circe sp. 157 308 
Clypeomorus bifasciata 143 185 
Saccostrea cucullata (juvenile) 135 812 
Nerita spp. 110 597 
Nerita balteata 100 560 
Nerita undata 74 769 
Amplirhagada sp. 43 1280 
Thais echinata 42 239 
Cantharus erythrostomus 39 141 
Cardita variegata 35 117 
Arca avellana 34 88 
Anomalocardia squamosa 29 91 
Calliostoma spp. 26 36 
Saccostrea cucullata 24 220 
Anadara setigericosta 22 76 
Nerita polita 20 93 
Chama iostoma 20 54 
Terebralia palustris 16 1942 
Pugilina cochlidium 13 129 
Cerithium sp. 13 47 
Planaxus sulcatus 13 27 
Turbo cinereus 12 140 
Dosinia scalaris 11 28 
Pitar citrinus 11 18 
Patelloida saccharina 11 15 
Telescopium telescopium 9 375 
Malleus sp. 9 24 
Beguina semiorbiculata 6 20 
Gafrarium tumidum 6 16 
Cyclotellina remies 6 10 
Hemitoma tricarinata 6 6 
Tellina sp. 5 5 
Cerithidea anticipata 4 78 
Anadara antiquata 4 13 
Siphonaridae 4 4 
Fissurelidae 3 4 
Melo sp. 2 53 
Muricidae 2 43 
Fasciolaridae 2 8 
Ostrea sp. 2 5 
Lunulicardia hemicardia 2 3 
Nerita signata 2 3 
Corbulidae 2 2 
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Species name (continued) MNI NISP 
Littorina pintado 2 2 
Non-calcareous opercula 2 2 
Fish otolith 2 2 
Barnacle fragment ≥1 2410 
Calcareous worm cast fragment ≥1 147 
Crustacean fragment ≥1 87 
Austrocochlea sp. ≥1 27 
Morula sp. ≥1 8 
Cassidula angulifera ≥1 4 
Siliquaria ponderosa ≥1 2 
Nassarius sp. ≥1 2 
Pectinidae ≥1 2 
Cypraea sp. ≥1 2 
Dentalium sp. ≥1 2 
Chicoreus sp. 1 77 
Polymesoda erosa 1 31 
Trochus niloticus 1 7 
Urchin fragment 1 5 
Tellina scobanata 1 5 
Placamen sp. 1 4 
Ancilla c.f. monolifera 1 3 
Lioconcha castrensis 1 3 
Mactra achinata 1 2 
Polinices sordidus 1 2 
Mytilidae 1 1 
Atactodea striata 1 1 
Gafrarium divaricatum 1 1 
Epitonium imperialis 1 1 
Littoraria filose 1 1 
Pleuroploca trapezium 1 1 
Nucula sp. 1 1 
Scalptia scalata 1 1 
Gari sp. 1 1 
Cerithidea sp. 1 1 
Strombus sp. 1 1 
Marinula patula 1 1 
Puperita sp. 1 1 
Cymatiidae 1 1 
Cancellariidae 1 1 
Undiagnostic nacre fragment - 6917 
Unidentified/Undiagnostic shell - 683 
Coral fragment - 56 

 

Table 3.4 - Complete list of species that comprise the faunal assemblage of K26. Species presented in order of 
descending MNI abundance. 
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As can be clearly seen in Figure 3.22a, M. hiantina is the most abundant species throughout the K26 

assemblage. Despite this consistent dominance, a general trend can be determined across all of the 

taxa so far presented here. The results presented in Figures 3.22a-h of the marine molluscan taxa 

quantified as part of the K26 midden analysis reveal peaks of abundances at consistent stratigraphic 

depths. The first of these peaks occur between spits 1 to 9. Following this, a trough is noted as 

abundances fall, only to rise again between spits 14 to 18A. This pattern is also noted in the weights 

of shell excavated form K26, seen in Figure 3.20. It is likely that these two patterns are linked; that 

the greater the mass of shell being removed from excavation units will directly translate to increased 

taxon-specific abundances post-quantification. However this in itself says a story about the 

depositional patterning at Brremangurey. Based on the quantification data presented here, as well 

as the spit weights of shell, an argument can be made that the shell midden of K26 was deposited in 

two distinct phases of intensive deposition, with a relatively less intense deposition in between.  

Comparing this interpretation to the results of the radiocarbon dating program presented in Table 

3.1, a similar interpretation can be made. Radiocarbon specimens sampled from above Spit 10 (Wk-

32405, OZQ-185, OZQ-181, OZQ-188, OZQ-191 and Wk-32406), ages range between approximately 

500 to 1,000 cal. BP. The remaining radiocarbon ages sampled at lower stratigraphic levels are 

notably older, ranging from approximately 1,730 to 3,700 cal. BP; potentially adding weight to the 

interpretation of two distinct phases of midden deposition at Brremangurey. 

Focussing on the abundances of P. c.f. albina seen in Figure 3.22b and Figure 3.23, a significant spike 

in both MNI and NISP counts is noticed between spits 12 and 14. This contained increase in 

abundance of a particular species is not shared amongst the other taxa identified at Brremangurey, 

and unlike the previously mentioned correlation between species abundance and spit weights, no 

significant increase in spit weights is noticed at this stratigraphic layer. This spike in P. c.f. albina 

numbers is more than likely a distinct depositional episode outside of the typical species being 

targeted by the inhabitants of Brremangurey at 1,730 - 1,954 cal. BP (OZQ-192 and Table 3.1). 
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During the excavation of the spits characterised by the increase in P. c.f. albina numbers, the pearl 

oysters did seem to form a distinctive carpet-like layer across the three squares within the 

Brremangurey rockshelter. There are two implications of this. Firstly, having P. c.f. albina 

concentrated within a relatively small vertical window suggest a degree of stratigraphic integrity 

within the deposit – at these levels at least. Secondly, this carpet-like layer of P. c.f. albina was 

noticed across all three squares within the Brremangurey rockshelter. This implies a relatively large 

spatial distribution, extending across 5 metres at least, likely much more. Finally, it is possible that 

this P. c.f. albina layer, assuming it is in situ, spatially separates the younger depositional phase 

towards the upper extent of the midden, from the older underneath.  

Interestingly, towards the bottom-most extent of the midden deposit of K26, mangrove associated 

gastropods appear to increase in relative abundance. Both T. palustris and T. telescopium counts are 

at their highest between spits 16 (81.8 - 85.2 cm BS) and 21 (113.4 - 119.5 cm BS) where NISP counts 

of 73.1% for the former and 72.8% of the latter were identified (Figures 3.22f and 3.22g). Midden 

deposits dominated by mangrove gastropods, particularly T. palustris, have been discovered in 

archaeological sites along Western Australia’s coast (e.g. Bowdler 1990a and 1990b, Lorblanchet 

1992, Clune and Harrison 2009: 71) and are associated with mid-Holocene ages, when mangrove 

forests proliferated across the northern Australian coastline (Woodroffe et al. 1985 and 1988). 

Whether or not this is the case here and these specimens are representative of an early tradition of 

shellfish gathering focussing on mangrove ecologies is impossible to determine without dating these 

samples, which to date has not been done. It should be noted that the other mangrove associated 

species, the mangrove pearl oyster I. ephippium, does not mimic the patterns of T. palustris or T. 

telescopium. Rather, this particular species at Brremangurey is confined to the uppermost and 

youngest extent of the midden at K26, seen in Figure 3.22e. 

From Spit 16 and for the next few spits, the presence of shell diminishes rapidly. From Spit 18B it can 

be argued that the midden deposit has completely transitioned to the sandsheet of Horizon 2. 
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Despite this, molluscan shell is still found, even towards the deeper extent of the sandsheet. The 

terrestrial snail Amplirhagada sp. is absent within the midden deposit, and is exclusively found in the 

underlying sandsheet, as seen in Figure 3.22h. These specimens are highly fragmented and exhibit a 

particularly higher proportion of burnt samples with approximately 42% of fragments indicating 

some degree of burning. Terrestrial snails of the Camaenidae Family are known to aestivate, or 

hibernate during periods of aridity by burying themselves in sheltered soft sediments (e.g. Köhler 

2010, Criscione and Köhler 2016). With this in mind, it is difficult to determine whether the presence 

of Amplirhagada sp. within the Brremangurey assemblage is incidental and not related to deliberate 

human subsistence gathering, or whether these fragments are the result of targeted gathering by 

the Brremangurey inhabitants. Were these Amplirhagada sp. specimens aestivating by burying 

themselves within sediments, applying ages from adjacent samples is problematic, as the snails have 

effectively intruded their way into much older sediments and are therefore temporally disconnected 

form the sands in which they now lie.  

Furthering on from this, a total of 1,010 fragments of M. hiantina were also found embedded within 

the sandsheet between Spit 18B (105.1 – 109.8 cm BS) and Spit 31 (155.2 - 156.7 cm BS). These 

fragments were in excellent condition, possibly facilitated by the relatively high pH of the 

Brremangurey deposits. As seen in Figure 3.19, these fragments were found in association with 

sediments dated to the late Pleistocene/early Holocene. As none of the specimens were directly 

dated, it is difficult to confidently ascertain their age.  

 

Results of quantification – S44 

A total of 56 kg of midden material was excavated from the S44 midden to the east of the 

Brremangurey rockshelter’s principal entrance (Figure 3.10) and the excavation reached a total 

depth of 31.8 cm BS when bedrock was reached at the termination of Spit 6.  
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Figure 3.25- Weights of shell from >5mm sieve fraction excavated from S44. 

 

 

Figure 3.26 - Weights of charcoal excavated from S44. 

 

A total of 44 distinct taxa were identified from the excavated material from S44. Compositionally, 

94.3% of total NISP fragments excavated from S44 comprised of 7 taxa; M. hiantina, T. granosa, A. 

spinosa, P. albina, juvenile Saccostrea cucullata, and barnacle fragments. Like K26, M. hiantina 

dominates throughout the sequence. 
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Figure 3.27a-h - Results of quantification of targeted species excavated from S44 
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Due to the shallow nature of the S44 deposit, with a total depth not exceeding 32 cm and only 6 

spits in total, there is less room for patterns, trends, species shifts and transitions to manifest 

themselves when compared with K26. In saying this, however, some interesting trends can be 

isolated. 

The patterns of abundance (Figure 3.27a-h) across nearly all of the species found at S44 follow a bell-

shape, with MNI and NISP counts increasing in the upper levels of the deposit, reaching a maximum 

towards the middle, and falling at the deepest and oldest levels of the excavation. As with K26, this 

pattern of faunal abundance correlates with the weight of shell excavated from each spit (Figure 

3.25) so it is likely that this is driving the increased numbers of specimens.  

This is not true of all of the species at S44, though, as the uppermost Spit 1 recorded the highest 

number of MNI counts of T. granosa within S44, as counts for this species gradually decrease with 

depth. Interestingly, the same pattern is observed for NISP counts of both juvenile S. cucllata and 

fragments of barnacles, and the same pattern is observed in the weights of charcoal. If we assume 

that the increased presence of charcoal within these uppermost levels is indicative of a relative 

increase in fire-building activity, a possible scenario that accounts for the patterns seen in juvenile S. 

cucullata and barnacle fragments is that they were brought to the site accidentally, attached to 

firewood that was collected. However, following this scenario further, we would expect relatively 

increased incidences of burning with these taxa, which is not apparent (Table 3.9). It is possible that 

the degree of burning was enough to result in visual and tactile indicators for these specimens, 

however this is unlikely.  

Another pattern that should be pointed out is the spike of P. c.f. albina numbers seen in Figure 3.27c 

in Spit 4. Comparing the this pattern between the two squares, much fewer P. c.f. albina valves were 

uncovered than at K26, and this apparent boom in abundance is only based on the relative 

proportion of the P. c.f. albina specimens of Spit 4 compared with the other spits. Of course the 

large-scale P. c.f. albina heavy layer identified within K26 cannot be compared with the potential 
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feature of S44 due to the limited spatial extent of this auxiliary midden, and further undermined by 

the lack of a chronological framework for S44 outside of hypothesised stratigraphic projections, 

however the pattern should be noted.  

 

Synthesis of the results of excavations at Brremangurey 

In broad terms, the middens in which both K26 and S44 were situated are largely comparable. Both 

deposits are dominated by the same species (M. hiantina), and overall both exhibit very comparable 

faunal composition. Despite lacking a conclusive dating program incorporating material from S44, it 

can be assumed based on species representation and sedimentological characteristics compared 

with layers of K26 that both middens temporally overlap to some degree.   

In describing the gathering behaviours of the inhabitants of an ancient Brremangurey, both middens 

can largely be discussed simultaneously. Live populations of all of the species identified in the 

archaeological context of the Brremangurey middens can be found in the varying coastal ecologies 

surrounding Brremangurey, described in Part 1 of this chapter. The overt dominance of M. hiantina 

suggests that it was the soft, sandy shorelines that were most intensively targeted for subsistence 

gathering, though it is clear that both rocky shorelines and mangrove contexts were also visited, as 

suggested by the consistent presence of species associated with these environments throughout 

each assemblage.  

The exception to this, however, is T. granosa. The occurrence of modern populations of this species 

could not be confirmed in the area most likely to harbour live populations of T. granosa was deemed 

too dangerous to explore due to the prevalence of saltwater crocodiles in the area. In saying this, 

however, T. granosa is thought to be extinct in the area (Robert Vaughn personal communication). 

The extinction of T. granosa is a phenomenon that has been observed across almost the entire 
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extent of tropical northern Australia (Bourke et al. 2007), though a definitive cause for this extinction 

has not been proposed. 

The principal period of midden formation is confined to the late Holocene, interpreted from the 

radiocarbon chronology of K26 (Table 3.4), and assumed for S44. And while this largely accords with 

the typical model of midden construction across tropical northern Australia (e.g. Bailey 1977, Veitch 

1999, Bourke 2012, Faulkner 2013), this does not entirely convey the complexity of the formation 

history of the Brremangurey midden.  

One of the radiocarbon ages generated from material towards the bottom of the K26 midden 

deposit, a valve of T. granosa (Wk-37137), returned an age range of 8,152 - 8,334 cal. BP. As this was 

a direct date using the shell itself, and not based on associated material (an OSL age on adjacent 

sediments for example), this age reliably represents the earliest dated evidence of midden shell at 

this site; placing the initiation of midden formation occurring during the early Holocene at 

Brremangurey, and not the late Holocene as is so typically reported in tropical coastal middens in 

Australia. A number of other specimens of marine shell and one specimen of charcoal (OZQ-184, 

OZQ-187 and OZQ-190, seen in Table 3.4) sampled from the same spit as this valve of T. granosa 

generated significantly younger ages, within the late Holocene. The presence of samples presenting 

such contrasting ages within the same excavation unit raises significant questions regarding the 

temporality of the cultural material around it, as it is clear that some process of transformation has 

time-averaged previously distinct layers. The subsistence collection of mangrove and estuarine 

species during the terminal Pleistocene/early Holocene has been demonstrated at sites in the 

northern Kimberley prior to Brremangurey (O’Connor 1999), however specific instances of T. 

granosa have not been recorded. 

With this in mind, and returning to the results of the faunal analysis, an intriguing connection can be 

drawn linking the presence of a significantly time-averaged unit and the increase in abundance of 

the mangrove gastropods T. palustris and T. telescopium (Figure 3.22f and 3.22g) at the lower 
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portions of the K26 midden. Anthropogenic accumulations of these species have been reported to 

predate the typical soft sandy shore middens dating to the late Holocene (e.g. Bowdler 1990a and 

1990b, Lorblanchet 1992, Clune and Harrison 2009: 71). Is this the case at Brremangurey? Without 

direct dating of the species themselves, we cannot know, however an envelope of time within these 

layers has been identified that renders this scenario as potentially plausible. 

Furthermore, with an effective initiation age of midden formation of approximately 8,300 years BP, 

what interpretations can be made regarding the fragments of M. hiantina situated within the 

sandsheet underlying the midden at K26? Radiocarbon, as well as OSL ages dates the deposition of 

this sandsheet into the terminal Pleistocene at approximately 12,000 years BP. One course of action 

could be to assume contemporaneity between the shell fragments and the sediments in which they 

lie, however this age goes against the standard understanding of the antiquity of subsistence 

gathering of this species in northern Australia. The alternative is to assume post-depositional 

transformation and that these fragments are vertically displaced from the overlying midden. Unlike 

the Amplirhagada sp. found at this site (Figure 23.2h), aestivation is a far from likely scenario for M. 

hiantina. If we therefore assume that these fragments of M. hiantina are displaced, from what levels 

within the overlying midden did these specimens originate?  

Finally, and most importantly, how do these patterns effect describing the behavioural patterning of 

deposition that resulted in the Brremangurey midden? As mentioned before, the spit weights of 

shell, combined with the faunal analysis point towards two phases of intensive midden deposition; 

three if the dense layer of P. c.f. albina is interpreted as a discrete event. However, the complexities 

of midden formation highlighted by the dating program utilising midden shell complicates this 

scenario, as the presence of a time-averaged deposit at the lowest extent of the midden deposit in 

K26 has likely obfuscated distinct phases of midden deposition. What we know is that the 

Brremangurey midden formed at a much earlier date than what is expected for soft-shore 

dominated middens in northern Australia. What we do not know, is the relative intensity of 
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gathering practices of this time. This is not even considering the fragments of M. hiantina situated in 

older sediments underneath the midden deposit.  

With the dating program enacted during the analysis of the Brremangurey midden material, 

questions regarding the stratigraphic integrity, as well as the behavioural patterning that resulted in 

the formation of the midden have been raised. For a more complete and reliable story to be told 

about the formation of this site, the behaviours of the people that created it, and a potentially 

changing environment, these questions need to be dealt with. Using the results of the excavation, 

the dating program and the faunal analysis only, these questions cannot be addressed without 

further analysis.  

The following two chapters of this thesis focus on addressing these questions using the novel 

application of amino acid racemisation and midden shell to inform interpretations on site formation 

and transformation. Specifically, the following analyses will: 

1) Isolate the temporality of the M. hiantina fragments found within the Pleistocene sandsheet 

layer underneath the midden deposit relative to the faunal assemblage above. 

2) Disentangle the influence of time-averaging in the lower portions of the Brremangurey 

midden and potentially re-establish temporally distinct populations of midden shell. 

Refine the patterns of deposition of midden shell at Brremangurey to tell a more detailed story 

regarding the behaviours of the people who inhabited the rockshelter. 
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Introduction 

Archaeological deposits are constantly being influenced by environmental and cultural processes 

that can add, remove or redistribute material (Schiffer 1996). These processes can result in the 

distortion or complete disassociation of the original spatio-temporal connections that artefacts and 

sediments (Bailey 2007). This is a major complication, especially considering that researchers 

constantly rely on assumptions of spatial and temporal relationships between materials in 

archaeological deposits to build interpretations regarding the ancient behaviours and 

palaeoenvironments represented within the deposit (e.g. Burleigh 1974: 79, Taylor and Bar-Yosef 

2014). Recognising that the potential exists for material within an archaeological deposit to be 

displaced is therefore critical for any interpretations or subsequent analyses to carry any form of 

accuracy or relevance. Resolving these ambiguities, however, can present methodological problems. 

Radiocarbon dating is by far the most widely used absolute chronological tool in archaeological in 

archaeological investigation, however issues regarding site integrity and patterns of disturbance still 

have the potential to greatly skew results and interpretations (Burleigh 1974). The development of 

AMS techniques facilitated the direct dating of archaeological material (e.g. Rick et al. 2005, Wild et 

al. 2005, O Connor et al. 2010). The key advantage of this practice is that the assumption that spatial 

association represents temporal association is circumvented by attributing an age to the artefact or 

ecofact itself rather than relying on the chronology of the surrounding material. Despite its prolific 

use in archaeological research, the radiocarbon method as we know it today is most effective on a 

small scale of chronological inquiry; dating one specific event or artefact (see Lucas 2005: 45, 49, 

Sullivan 2008). In answering larger site-scale questions, such as assessing the spatial and temporal 

relationships between populations of artefacts and material, one single age determination is 

insufficient. While two radiocarbon ages can at times be enough to identify a disturbed deposit (see 

O Connor et al. 2010: 37-38), such minimal data can rarely pinpoint the degree or nature of 

disturbance. Many individual samples are required to reliably identify disturbed deposits and go 
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beyond the mere label of disturbed . Only then can researchers actually assess the relative 

contributions of units of temporally distinct sediments, ecofacts and artefacts in a time-averaged 

deposit and build reliable interpretations of site transformation. 

Shell middens are ubiquitous archaeological features across the globe, and are particularly 

susceptible to post-depositional transformation (Stein 1992). This is largely due to their generally 

coarse and porous composition that allows material held within to be freely displaced, removed or 

altered by environmental and cultural processes (e.g. Specht 1985, Dwyer et al 1985, Wandsnider 

1988, Rick 2002, Robins and Robins 2011, Szabó 2012). Considering the significant potential that 

shell middens have in contributing to important issues in archaeological research (e.g. Bailey 1977, 

Cannon 2000, Lombardo et al. 2013), it is critical that the identification of displaced material within a 

shell midden is identified. Unfortunately, few methodologies are currently utilised that can 

unambiguously identify and isolate displaced shell in middens, especially on a larger scale (but see 

Villagran et al. 2009, Villagran et al. 2011a and 2011b for a microscale perspective). While an 

intensive dating program using the radiocarbon method and multiple samples would identify 

temporally disconnected, but spatially associated shells, the financial costs associated with so many 

radiocarbon age determinations generally make this approach unrealistic. 

Amino acid racemisation (AAR) is a relative dating method that has had a long history of use in 

archaeological investigation (e.g. Wehmiller 1977, Masters and Bada 1977, Parfitt et al. 2005, 

Bateman et al. 2008, Ortiz et al. 2009, Demarchi et al. 2011). Rather than providing numerical 

values, AAR results tell us which samples are more or less racemised and thus, broadly, older or 

younger. While AAR experienced some negative perception in the discipline of archaeology in the 

late 20
th

 century as a result of anomalous ages being generated (Bada et al. 1974, see also Johnson 

and Miller 1997: 276), refinements in the method have yielded consistently reliable results (e.g. 

Kaufman and Manley 1998, Penkman et al. 2008, Demarchi et al. 2013a, Demarchi et al. 2013b). The 

technique carries with it major advantages compared with more conventional dating methodologies 
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such as radiocarbon and OSL. Firstly, AAR allows for a substantial number of samples to be analysed 

for the same cost as a single radiocarbon age determination. This cost effectiveness creates the 

opportunity for a much more intensive dating program incorporating many more samples than 

relying on radiocarbon dating alone. A second key advantage is that the archaeological material is 

being directly targeted and not sediments argued to be in association, as with OSL dating. This 

removes a layer of inference which would otherwise have the potential to skew results due to post-

depositional movement of sediments and archaeological material. The relatively low cost coupled 

with the ubiquity of dateable material in shell midden archaeology, results in AAR being perfectly 

suited for intensive dating programs to ascertain a much broader understanding of the ages of 

materials present within a deposit.  

 

Chronology 

The chronology of ancient M. hiantina collection and deposition at Brremangurey largely parallels 

late Holocene high intensity shell collection across tropical northern Australia as observed in other 

sites such as Blue Mud Bay (Faulkner 2013), the western Admiralty Gulf (Veitch 1999), Darwin 

(Bourke 2012) and Weipa (Bailey 1977, but see Morrison 2014). Initial AMS radiocarbon ages derived 

from whole valves at the lowest excavation unit from which shell was recovered suggests that the 

large-scale gathering of M. hiantina commenced at 2,375 – 2,682 cal. years BP (OZQ190) (Table 1). A 

fragment of charcoal (Wk-32405) sampled from the wall of square K26 post-excavation from a depth 

of 8.6 cm below surface returned an age of 498 – 552 (99.4%) cal. years BP which provides an 

indication of the time of cessation of midden building at Brremangurey. An AMS radiocarbon date 

from a pit feature identified at approximately 91 cm below surface (Wk-32409) was also obtained, 

and returned an age of 3,579 – 3,694 cal. years BP. 
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In summary, the chronological patterning of Brremangurey can largely be separated into two distinct 

depositional phases; firstly a sand dominated deposit dating to the terminal Pleistocene, and 

secondly, intensive episodes of shellfish gathering and deposition through the late Holocene that 

resulted in the formation of the shell midden series seen in the upper extent of the deposit. 

 

Midden analysis 

Molluscan shell dominated the deposit at Brremangurey to a far greater extent than the initial 

observations of the midden s surface suggested. Of the total 1.79 m
3
 that was excavated from 

square K26, 1.53 m
3 

contained culturally deposited shell. The 50% sample of this total volume 

retained for analysis yielded 207 kg of culturally deposited shell material, with 205 kg coming from 

the upper most 0.455 m
3 

of the square.  

A brief summary of the results of the molluscan faunal analysis from Chapter 3 is presented here. 

The soft-shore venerid Marcia (=Tapes =Katelysia) hiantina was the most abundant species present 

in the assemblage, comprising 70% of MNI (n = 27,906) and 81% of NISP (n = 259,556) counts in 

square K26. Much smaller quantities of the pearl oysters Pinctada cf. albina and Isognomon 

ephippium were identified, representing 2.2% (n = 878) and 1.4% (n = 570) of total MNI counts 

respectively.  Belying surface observations, T. granosa comprised only a small proportion of the 

overall assemblage, at less than 1% (n = 316) of total MNI and NISP counts across all analysed 

material (see Chapter 3). This small proportion of the mudflat inhabiting T. granosa is in contrast to 

the typical archaeological shell mound deposits reported across Australia s tropical north (e.g. Bailey 

1977, Veitch 1999, Faulkner 2013, Bourke 2012; but see Cochrane 2014) where it is by far the most 

dominant species. MNI and NISP counts of all species drop dramatically at approximately 96 cm 

below surface which marks the lower limits of the midden unit. Below this level relatively small 

quantities of shell, particularly fragmented M. hiantina (n = 1,010), were found between a depth of 

96 and 156 cm below surface. 
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These fragments were in remarkably good condition considering the difference in age between the 

late-Holocene midden above and the terminal Pleistocene sandsheet below, raising questions about 

the stratigraphic integrity of the lowermost shell fragments. Do these 1,010 fragments of M. hiantina 

found within terminal Pleistocene sands represent of late Pleistocene shell gathering, or are they 

Holocene fragments that are ex situ? Early Holocene shellfish gathering has been demonstrated in 

this site (see Table 4.3.1) but at present this is confined to the species T. granosa. Do these 

stratigraphically-deeper fragments of M. hiantina represent an even older shell-gathering tradition 

at the site? The alternative explanation is that these shell fragments infiltrated into the older 

sandsheet from the younger midden deposit in Unit 1. Visually, texturally and taphonomically, there 

was nothing distinguishing M. hiantina fragments found within the Holocene midden deposit from 

the fragments found in the terminal Pleistocene sandsheet underneath. A zone of subsidence is 

noted towards the centre of the rockshelter and is potentially the result of water flowing into the 

rear of the shelter during periods of abundant rainfall, such as during the annual summer monsoons 

(Robert Vaughan personal communication 2011). Therefore the scenario of water flowing into the 

site, interacting with the midden shell and redistributing fragments into the lower and older portions 

of the site is a possibility. Nevertheless, if this occurred it must have been low energy to not leave 

visually distinctive taphonomic traces on shell surfaces. 

Radiocarbon dating of fragments found within the terminal Pleistocene sands would conclusively 

define their temporality, especially when these dates are then compared with those already 

determined from material sourced from the Holocene midden deposit above. Due to the costs of 

individual age determinations, dating these potentially displaced fragments using the radiocarbon 

method is unfeasible. Constraining the dating program to only a few age determinations in order to 

reduce the costs narrows the scope and scale of questions that can be asked of the deposit (see 

Sullivan 2008: 33), and may not adequately determine the whole range of dates. A greater number 

of age determinations will allow a greater understanding of the range of ages represented within the 
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sandsheet-sourced shell fragments which will subsequently increase the chance of identifying 

temporally separate groups of shell. 

To determine whether the shell fragments of M. hiantina found in the Pleistocene sands have been 

displaced downwards from the Holocene midden deposit above, an intensive dating program 

centred on the AAR technique was undertaken that assessed the D/L values of shell sourced from 

the two stratigraphic locations to establish relative ages. If the fragments from the sandsheet were 

in situ, their D/L values would be distinctively separated from the D/L values of shell from the 

midden deposit above. Conversely, should a displaced population of shell be identified, their D/L 

values would be equivalent to shells sourced from the midden deposit. Below, the results of the AAR 

analysis on M. hiantina are discussed, with the implications of these, as well as a comparison with a 

complementary radiocarbon dating program. The approach presented in this study is then critiqued, 

with the current challenges facing this method and its potential contributions to the discipline of 

archaeology considered. 

 

Approach to investigation 

As a dating method, AAR measures the proportional abundances of amino acids in their two forms. 

During life, amino acids are maintained in the laevorotary (L) form. Post mortem, the L-form amino 

acid molecules are rearranged into their dextrorotary (D) form with increasing proportional 

abundance through time: a process termed racemisation (Johnson and Miller 1997, Wehmiller and 

Miller 2000). Racemisation occurs until the ratio of D and L form amino acids reaches equilibrium 

and both forms occur in equal abundance, after which equilibrium is maintained through time. In 

short, the higher the D/L value the greater time since the organism s death. In an ideal, closed 

system, racemisation is primarily influenced by temperature. A number of other factors, however, 

can influence the rate of racemisation of amino acids such as pH, the presence of metal ions and 

microbial alteration to name a few (e.g. Bada 1972, Bada and Schroeder 1975, Child 1995, 
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summarised in Penkman 2005: 33-38). Recent research has identified a small proportion of proteins 

that are encapsulated within individual calcium carbonate crystals that form molluscan shell (Sykes 

et al. 1995, Penkman et al. 2008). Once isolated, these intracrystalline proteins have proven to act as 

a closed system, and unlike the intercrystalline protein component of the shell matrix, are not 

influenced by contamination and exchange of non-indigenous proteins as well as the other 

aforementioned environmental factors. Targeting the products of intracrystalline protein diagenesis 

(IcPD) for use in AAR has subsequently provided more precise and reliable results (Penkman et al. 

2008), and these techniques are applied in this study. 

AAR has had a long history of application in shell midden archaeology (e.g. Masters and Bada 1977, 

Bateman et al. 2008, Ortiz et al. 2009), however the method has largely been applied in a 

supplementary fashion to other techniques such as radiocarbon dating (but see Wehmiller 1977, 

Demarchi et al. 2011). In contrast, geological and geomorphological research routinely uses AAR, 

and specifically aminostratigraphy, as a method for understanding patterns of deposition and post-

depositional transformation (e.g. Miller et al. 1979, Kennedy et al.  1982, Hearty et al. 1986). 

Aminostratigraphy centres on the comparison of aminozones , which are groupings of similarly aged 

specimens. It is important to note that aminozones are established by temporality alone irrespective 

of spatial positioning of each sample. Following the identification of aminozones, a comparison 

between temporal patterning and spatial positioning allows interpretations regarding site formation 

and transformation processes to be made (Miller and Hare 1980). A high resolution and broad AAR 

aminostratigraphic analysis will result in similarly aged fragments of shell clustering together in a 

scatterplot, whereas temporally distinctive populations of samples will separate from each other. 

Comparing these clusters with the relative spatial positioning of each sample stratigraphically will 

provide insights into how populations of similarly aged materials have moved through a site 

subsequent to initial deposition. 
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By comparing the aminozones identified using samples of M. hiantina sourced from the younger 

shell midden deposits and the older terminal Pleistocene sands of Brremangurey, the relative 

temporality of shells from both sampling locations should become clear. The IcPD method of AAR 

also accounts for the various taphonomic factors so prevalent in archaeological deposits. Based on 

the results, additional radiocarbon samples from shell fragments already dated using AAR provide a 

numerical age through which to anchor and further interpret results.  

 

Methods 

Sampling methodologies 

To properly establish the aminostratigraphy of the midden deposit, shell specimens for AAR analysis 

were evenly sampled from all spits. In total, 72 specimens of M. hiantina were assayed. Fifty-seven 

specimens were sampled from the surface down to a depth of approximately 104 cm. This 

represents the first 19 spits of the excavation, as well as the entire extent of the dense Holocene 

midden in the Brremangurey rockshelter. Three shell specimens from each spit were selected for 

analysis. Only specimens that had no visible signs of burning or other taphonomic alterations were 

selected. A further 3 shell fragments were sampled from spit 21 (112-118 cm below surface), spit 23 

(121 to 124 cm below surface), spit 25 (125 to 128 cm below surface) and spit 30 (150 to 154 cm 

below surface). Where possible, a complete right valve was selected to avoid the potential for 

sampling opposing valves of the same animal. While whole vales of M. hiantina were abundant 

within midden layer, the shell within the sandsheet was fragmented and sampling both left and right 

valves as well as fragments was unavoidable. Furthermore, the specimens of M. hiantina that were 

selected for the initial radiocarbon determinations were also incorporated into this study. This 

provided a paired radiocarbon age to the D/L value generated.  
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Sample preparation 

Sample preparation was conducted as per Lachlan (2011). In summary, shell fragments were 

thoroughly cleaned of adhering dirt and sediments through a series of rinses and sonication episodes 

in ultrapure Millipore water and mild abrasion using a rotary drill. Following this, whole shells were 

subsampled and the exterior and interior face abraded. A soak in 2M hydrochloric acid (HCl) was 

undertaken to remove the outermost surface of the shell which is the area of shell most likely to 

contain contaminants. Following Sykes et al. (1995), the shell fragments were then powdered and 

exposed to a 12.5% sodium hypochlorite bleach solution (NaOCl) to oxidise and destroy the 

intercrystalline protein component of the mollusc shell structure. The intracrystalline proteins are 

then isolated by dissolving the mineral calcium carbonate in 8M HCl. The vials are then filled with 

nitrogen gas and sealed, and then placed into an oven at 110˚ Celsius for 22 hours to induce 

hydrolysis of the peptide bonds. The solution was then completely desiccated and rehydrated using 

a solution of 0.01mM L-Homoarginine + 0.01M HCl + 0.77mM sodium azide – with L-Homoarginine 

acting as an internal laboratory standard. Sample analysis was conducted using a reverse phase high 

pressure liquid chromatograph (RP-HPLC). Instrument procedures follow the method of Kaufman 

and Manley (1998) and refined by Kaufman (2000), summarised in Lachlan (2011: 345-347). Samples 

were run in duplicate and averages given.  

 

Results 

Out of the 72 samples analysed during this study, all but one provided useable results. Sample 

number UWGA10340 underwent an incomplete injection in the RP-HPLC and did not provide 

assessable results. Only the results of aspartic and glutamic acids are presented here.  While 8 amino 

acids are isolated and quantified in the RP-HPLC, only the results of aspartic (Asx) and glutamic acid 
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(Glx) are presented here
1
 (Table 4.1). Aspartic acid was selected because of its abundance in 

molluscan shell, but also because of the balance it offers between temporal resolution and time-

depth. Glutamic acid was also selected due to the high degree of covariance with Asx, which allows 

taphonomically affected samples to be identified through the deviation from this covariance 

(Kaufman 2006).  

The initial bivariate scatter plot showing the D/L values of Asx and Glx (Figure 4.1) of all specimens 

analysed in this study reveal three main groupings of specimens, further defined by k-means cluster 

analysis. The two densest clusters, labelled clusters A and B in Figure 4.1, contain the majority of the 

shell specimens used in this study. Cluster C contains the remaining 5 samples, and these exhibit the 

greatest extent of racemisation. Cluster C is also considerably more scattered when compared to 

clusters A and B with results covering a much greater range of D/L values. 

Highlighting the shell fragments sampled from the Pleistocene sands underneath the Holocene shell 

midden, seen in Figure 4.2, the temporality of these specimens become clear. All but one of these 

shell fragments exhibit D/L values consistent with specimens contained within Cluster B which dates 

to the early Holocene. The implication of this grouping as a result of the AAR analysis utilising 

spatially separated specimens becomes clear – the shell fragments are of identical age to those 

found in Cluster B and have therefore been spatially displaced through some process over time. The 

identification of the driving process or processes behind the displacement of these specimens is 

ongoing. 

 

  

                                                           
1
 Throughout this thesis, the use of the abbreviation Asx refers to the combination of native aspartic acid 

within a sample, as well as the aspartic acid that is generated as a result of the deamidation of asparagine in 

the preparation process. This is also the case for Glx, glutamic acid and glutamine (Hill 1965). 
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Lab code 

(UWGA) 
Spit 

Layer/ 

Horizon 
D/L Asx 

Sample 

variance 

D/L 

Glx 

Sample 

variance 

Radiocarbon 

lab code 

Radiocarbon 

age (cal. BP) 

10325 1 1 0.2405 ± 0.001 0.12 ± 0.002   

10326 1 1 0.307 ±0.002 0.132 0 Wk-40860 295 - 462 

10327 1 1 0.208 - 0.101 -   

10328 2 1 0.301 0 0.137 0   

10329 2 1 0.2775 ± 0.001 0.1405 ± 0.001   

10330 2 1 0.261 ± 0.004 0.1155 ± 0.001   

10331 3 1 0.2415 ± 0.003 0.108 0   

10332 3 1 0.2035 ± 0.001 0.1265 ± 0.001   

10333 3 1 0.3305 ± 0.003 0.259 0   

10334 4 1 0.2305 0 0.1155 ± 0.001   

10335 4 1 0.196 ± 0.004 0.1125 ± 0.001 Wk-40861 639 - 774 

10336 4 1 0.234 0 0.106 0   

10337 5 1 0.257 - 0.084 -   

10338 5 1 0.2325 ± 0.007 0.0185 ± 0.003   

10339 5 1 0.221 - 0.026 -   

10340 6 1 - - - -   

10341 6 1 0.270 0 0.0595 ± 0.115   

10342 6 1 0.240 0 0.103 0   

10496 6 1 0.362 ± 0.002 0.1485 ± 0.001 OZQ-188 695 - 892 

10343 7 1 0.2235 ± 0.003 0.1065 ± 0.001   

10344 7 1 0.2385 ± 0.001 0.1185 ± 0.001   

10345 7 1 0.212 0 0.1105 ± 0.001   

10346 8 1 0.3265 ± 0.001 0.1735 ± 0.005   

10347 8 1 0.3265 ± 0.001 0.176 0   

10348 8 1 0.3545 ± 0.001 0.164 0   

10349 9 1 0.4435 ± 0.003 0.2195 ± 0.001   

10350 9 1 0.342 0 0.1375 ± 0.001   

10351 9 1 0.419 0 0.2055 0   

10352 10 1 0.425 ± 0.002 0.2155 ± 0.001   

10353 10 1 0.480 0 0.2375 ± 0.003   

10354 10 1 0.387 0 0.1785 ± 0.003   

10355 11 1 0.4235 ± 0.001 0.1795 ± 0.001   

10356 11 1 0.389 - 0.179 -   

10357 11 1 0.4075 ± 0.001 0.206 ± 0.002   

10358 12 1 0.6195 ± 0.003 0.2935 ± 0.001   

10359 12 1 0.4325 ± 0.002 0.232 0   

10360 12 1 0.573 0 0.269 ± 0.008   

10361 13 1 0.466 ± 0.002 0.2035 ± 0.001   

10362 13 1 0.4285 ± 0.003 0.195 0   

10363 13 1 0.399 - 0.191 -   

10364 14 1 0.3735 ± 0.005 0.198 0   

10365 14 1 0.4445 ± 0.001 0.1965 ± 0.001   

10366 14 1 0.4215 ± 0.007 0.1945 ± 0.003   

10367 15 1 0.4265 ± 0.001 0.2235 ± 0.001   

10368 15 1 0.364 ± 0.002 0.202 ± 0.004   

10369 15 1 0.4025 ± 0.001 0.1985 ± 0.003   

10497 15 1 0.4335 ± 0.021 0.214 ± 0.004 OZQ-189 1,942 – 2,215 

10370 16 1 0.4225 ± 0.001 0.2235 ± 0.001   

10371 16 1 0.4095 ± 0.001 0.1925 ± 0.003   

10372 16 1 0.3965 ± 0.003 0.190 0   

10373 17 1 0.3875 ± 0.001 0.191 0   

10374 17 1 0.3825 ± 0.001 0.211 0   

10375 17 1 0.3625 ± 0.003 0.145 ± 0.002   

10376 18A 1 0.774 ± 0.006 0.6845 ± 0.003 Wk-40863 1,983 – 2,247 

10377 18A 1 0.407 ± 0.002 0.153 ± 0.002   

10378 18A 1 0.423 0 0.2135 ± 0.001   

10498 18A 1 0.4265 ± 0.019 0.1905 ± 0.003 OZQ-190 2,375 – 2,682 

10379 18B 2 0.543 0 0.3655 ± 0.001 Wk-40862 2,756 – 2,962 

10380 18B 2 0.411 ± 0.002 0.189 ± 0.002   

10381 18B 2 0.412 0 0.2315 0   
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10410 21 2 0.4195 ± 0.001 0.2445 ± 0.001   

10411 21 2 0.485 0 0.2385 ± 0.005   

10412 21 2 0.422 ± 0.002 0.2185 ± 0.003   

10413 23 2 0.3405 ± 0.001 0.1595 ± 0.011   

10414 23 2 0.415 ± 0.010 0.2305 ± 0.003   

10415 23 2 0.3855 ± 0.003 0.2085 ± 0.013   

10416 25 2 0.386 0 0.189 0   

10417 25 2 0.4485 ± 0.001 0.214 ± 0.002   

10418 25 2 0.4375 ± 0.001 0.236 ± 0.006   

10419 30 2 0.3635 ± 0.001 0.1545 ± 0.003   

10420 30 2 0.6845 ± 0.001 0.5375 ± 0.009   

10421 30 2 0.4065 ± 0.003 0.203 ± 0.002   

 

Table 4.2 - Results of the AAR analysis. Each sample was run in duplicate and averaged. UWGA lab code issued by the 

Amino Acid Racemisation Laboratory at the University of Wollongong. AMS radiocarbon dates have been calibrated 

using Calib 7.02 software with a delta-R value of 60 ± 31 years used for marine shell (Alan Hogg, pers. comm. 2014), and 

prese ted at δ co fide ce. 

 

 

 

 

 

 

 Amino acid Centroid mean Cluster range Standard deviation 

Cluster A Asx 0.2421 0.196 – 0.307 0.03 

Glx 0.1022 0.0185 – 0.1405 0.033 

Cluster B Asx 0.4031 0.326 – 0.485 0.038 

Glx 0.2 0.1375 – 0.259 0.028 

Cluster C Asx 0.6388 0.543 – 0.774 0.093 

Glx 0.43 0.269 – 0.6845 0.177 

 

Table 4.3 - Results gathered from k-means cluster analysis utilising the Brremangurey AAR samples.  

Centroids refer to the average D/L values of Asx and Glx for each cluster. 
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The similarity in D/L values exhibited between specimens from the lower extent of the midden layer 

and the displaced specimens sampled from the Pleistocene sand layer is further demonstrated in 

Figure 4.3 which compares D/L of Asx with location of sampling. Specimens from spits 8 to the 

lowest level of sampling at spit 30 exhibit a restricted and consistent range of D/L values through the 

sequence. Contrasting to this are the specimens sampled from the upper portion of the midden unit 

between spits 1 and 7, which show an equally lesser extent of racemisation, yet a similar restricted 

and consistent range of values. Applying the results of the k-means cluster analysis, presented in 

Figure 4.1, the specimens in Cluster A were all sourced from the upper most extent of the midden 

layer between spits 1 and 7. Similarly, clusters B and C are spread through the lower excavation 

units, from spits 8 to 30.  

In drawing together the results of the relative dating program using AAR, along with the spatial 

positioning of each of the specimens utilised in this study, interpretations regarding episodes of 

deposition of shell at Brremangurey can be formed. The close concordance of relative age exhibited 

within Cluster A of Figure 4.1 with the samples  restriction to the 7 uppermost spits of the midden, 

seen in Figure 4.3, suggests a distinct episode of shellfish deposition at the site. The same 

interpretation can be made of the samples of Cluster B. This is in stark contrast to Cluster C, which 

contains only 5 specimens, yet covers a much greater range of D/L values than clusters A and B. 

Relying solely on the results of the AAR analysis in interpreting the very different pattern observed in 

Cluster C compared to the other clusters, an argument of a far less intensive period of shellfish 

deposition over a much longer period of time can be made. Whereas clusters A and B imply rapid 

deposition of a large amount of shell at the site, Cluster C suggests a more ephemeral and 

punctuated depositional behaviour of the occupants of Brremangurey.  
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Figure 4.3 - D/L values (x-axis) of Asx compared with excavation units that shells were sampled from. Note 

increasing D/L value to the right of the figure implies older age. 
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To test whether the specimens observed in Cluster C of Figure 4.1 are representative of an older 

tradition of shell gathering, as well as establishing a more complete chronological framework to 

anchor the results of the AAR analysis, a further program of AMS radiocarbon dating was 

undertaken. Using the range of relative ages established using AAR, 4 additional specimens of M. 

hiantina were selected for dating, and the results are presented in Table 4.4. Plotting all of the 

radiocarbon ages used in this study with the paired D/L values generated in this study, seen in Figure 

4.4, major, fine-grained complications arise. In some instances, multiple age reversals are identified 

where AMS radiocarbon ages do not conform to the samples  relative D/L values – meaning 

younger  specimens according to the AAR analysis were determined to be older according to the 

radiocarbon dating program, and vice versa. For example, specimen Wk-40862 presented an extent 

of racemisation roughly half of Wk-40863, and yet recorded a radiocarbon age approximately 800 

calibrated years older. A similar reversal is observed for samples Wk-40861 and Wk-40860, while 

samples OZQ-190 and OZQ-189 present nearly identical D/L values yet are separated by 

approximately 500 calibrated radiocarbon years.  

The results of the additional radiocarbon dating program undertaken after the AAR analysis have 

effectively nullified the hypothesis that Cluster C is a depositional episode temporally distinct from 

clusters A and B. Despite exhibiting a substantially greater extent of racemisation, the radiocarbon 

ages do not reveal a similar distinction in numerical age. While AAR was able to reintegrate the shell 

midden temporally in terms of broad depositional episodes, the finer grained details are 

problematic. Exactly why this may be the case is considered below. 

 

Discussion 

Taken on its own, the program of intensive relative dating of midden shell using AAR reported in this 

study conclusively identified shell material that was spatially separated as being chronologically 

contemporaneous, and therefore identified vertical displacement in a shell midden. However, on a 
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more fine-grained level, a lack of correlation between paired AAR and radiocarbon dating 

methodologies was noted. Chapter 5 presents a similar study, albeit focussing on T. granosa rather 

than M. hiantina, and yielded successful results including a positive correlation between AAR and 

paired radiocarbon ages. Why one study found no issues in the correlation of AAR and radiocarbon 

ages while the other encountered problems raises immediate questions regarding this new 

application of the long-standing AAR method.  

AAR has traditionally been utilised alongside or as a substitute for radiometric methods such as 

radiocarbon and OSL dating. While sometimes this is out of necessity due to a lack of dateable 

material or samples being beyond the limit of radiocarbon dating (e.g. Parfitt et al. 2005), in other 

examples it is not (e.g. Bada 1985, Cann et al. 1991). Despite AAR being a relative dating technique, 

its use as an alternative for numerical dating methods has driven developments to calibrate  the 

racemisation reaction to allocate projected numerical ages (Johnson and Miller 1997: 269). Through 

a combination of independent radiometric ages, coupled with modelling the species-specific rate of 

racemisation, an absolute age can be determined from the D/L value of a sample (e.g. Wehmiller et 

al. 1995, Clarke and Murray-Wallace 2006, Kosnik et al. 2008). This contrasts with the calibration of 

radiocarbon ages, where independent proxies such as tree rings and speleothems, match 

radiocarbon to calendrical years (Stuiver 1982). This is an important distinction between the 

calibration of radiocarbon age determinations and the calibration  of D/L values as the former is 

absolute, and the latter is much less strongly anchored and remains susceptible to many other 

external influences.  

It is precisely these external influences which may result in a lack of congruence between 

radiocarbon and AAR results. The temporal and spatial scale of geological contexts, where AAR is 

most commonly used, is generally much larger and coarser in resolution than those of archaeological 

contexts. Because of this, distortions in the results of AAR analyses are muted purely due to the 

relatively larger scale of the investigations being undertaken and questions asked. Archaeological 
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contexts are of much smaller and fine-grained spatial and temporal scale (Lock and Molyneaux 

2006), and as such the influence of analytical error has a much greater impact on overall 

interpretations. As well as this, the additional influence of anthropic factors, such as the potential 

thermal influence of small scale camp-fires, adds an additional layer of complexity to AAR in 

archaeological contexts. With this in mind, can the traditional assumptions which underpin the 

calibration  and use of AAR be directly applied to archaeological contexts without reformulation?  

The complications identified in this study suggest that a rethink is required. 

The racemisation reaction, and more specifically the rate of racemisation, which underpins this 

particular dating methodology is influenced by many factors (Schroeder and Bada 1976, Johnson and 

Miller 1997). In attempting to identify the reason behind the lack of correlation between what 

should be complementary dating methods, four different possibilities are hypothesised here: human 

and machine error, intraspecies variations in racemisation rates due to biological and metabolic 

processes, and taphonomic influences including variations in thermal histories.  

Both human and machine error during the process of analysis was quickly ruled out. The samples 

that presented a lack of agreement between extent of racemisation and radiocarbon age 

determinations were reanalysed twice, and in all instances resulted in statistically identical D/L 

values. The exact samples of shell that were submitted for radiocarbon dating were also returned 

and subjected to AAR analysis, also resulting in statistically identical D/L values. Intraspecies 

variations in the rate of racemisation have also been observed. Different areas within the same shell 

specimen have resulted in varying D/L values (e.g. Hare 1963, Goodfriend and Weidmen 2001). 

Similarly, protein composition and amino acid abundance has been identified to vary between 

different microstructures in molluscan shell (e.g. Kobayashi and Samata 2006). Due to the 

consistency of sampling locations in the shell valves utilised in this study, along with the focus on 

one particular species, the effects of intraspecies variations in AAR determinations should not be 

apparent. The infiltration of non-endogenous proteins is also not a possibility as the IcPD approach 
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to AAR utilised in this study completely destroys the non-intracrystalline protein fraction. With these 

possibilities ruled out, one factor remains as arguably the most parsimonious explanation for the 

lack of congruence between the results of the AAR and AMS radiocarbon dating programs utilised in 

this study. 

The greatest variable of the rate of the racemisation reaction is temperature. Increasing 

temperatures increases the rate at which racemisation occurs (Miller and Brigham-Grette 1989). The 

Brremangurey rockshelter is located in the tropics (Latitude - 14˚ 32  S), thus little seasonal 

fluctuation in mean average temperature is observed. Similarly, the squares from which the midden 

material was excavated are permanently protected from the radiant heat of sunlight because of the 

shade generated by the rockshelter itself. These two features of Brremangurey result in a largely 

consistent ambient air temperature year round. Should the cause for the age inversions between 

AAR and radiocarbon be thermal in origin, it would not be on an environmental scale, but rather 

smaller and more isolated events such as campfires and hearths; features that are abundant 

throughout the Brremangurey rockshelter and midden deposit sequence (Moore 2011). It is a 

distinct possibility that the heat generated by these small scale fires would hasten protein diagenisis, 

with little impact upon radiocarbon ages generated from the same specimen. 

Identifying the influence of heating using AAR has been an area of limited research (Brooks et al. 

1991). Heating experiments, in this case exposure to temperatures of 200-230˚ Celsius for one hour, 

revealed that the rate of racemisation of Glx was preferentially hastened. This resulted in D/L values 

of Glx exhibiting an increased extent of racemisation in comparison to the usually faster racemising 

Asx. While the experiments presented by Brooks et al. (1991) were focussed on ostrich eggshell, 

similar patterns of relatively advanced racemisation of Glx interpreted to have been the result of 

anthropic heating have been identified in molluscan shell (Demarchi et al. 2011: 120). Preferentially 

advanced racemisation of Glx was not observed in the results of this study, and as such the 

identification of anthropic heating as the driver of the anomalous ages presented above remains 
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unresolved. Experimental work to date has only tested the effects of heat; however it is possible that 

combustion and oxidation, as well as the high and sometimes unstable temperatures associated with 

fires, may play an equally influential role in the overall effects of fire in the AAR reaction. This 

requires further experimental work if AAR methods are to be refined and prove useful in fine-

grained archaeological interpretations. 

 

Conclusion 

The results of the AAR analysis presented in this study, when treated independently, neatly and 

efficiently identified that the majority of M. hiantina fragments found within the terminal 

Pleistocene sands at Brremangurey to have undergone significant vertical displacement and be of a 

late Holocene age. Without the need for numerical calibration, AAR was able to firmly establish two 

major phases of M. hiantina deposition that formed Brremangurey s Holocene midden, and it is 

from the older of these two phases that the displaced fragments originated. The results of the 

subsequent confirmatory radiocarbon dating program, however, produced ages not strictly in 

accordance with the relative ages generated here using AAR.  

The exact cause of these inversions between radiocarbon and D/L values remains unknown. 

Methods of sample preparation and analyses specifically designed to negate taphonomic influences 

that distort AAR results were undertaken, and no indication of the influence of anthropic heating 

was detected. The forces that have resulted in the non-alignment of what should be two 

complementary dating methodologies remain elusive. 

Despite this obstacle, the potential of this new application of the well-established AAR dating 

technique is clear. AAR is undergoing a renaissance in archaeological research, and like the 

developments through time in both radiocarbon and OSL dating, the method is becoming more 

refined and reliable. In saying this, however, issues do need to be resolved; particularly centred on 
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archaeocentric hazards to AAR such as burning. This is but one of a number of anthropic processes 

not typically encountered by geochronologists, and thus remains underdeveloped methodologically. 

Further experimentation is therefore required to bring this method up to speed with other dating 

techniques and into the chronological toolkit of archaeological researchers across the world. 
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Introduction 

Archaeological sites are not frozen in time.  Rather, environmental and cultural processes act on 

deposits to add, remove and redistribute archaeological material (Ascher 1961, 1968; Schiffer 1972, 

1996). One particular product of these transformations is the creation of a palimpsest: an 

agglomeration of previously separated material into one homogenised unit (Bailey 2007). This 

mixing of originally spatially separated material creates the illusion of contemporaneity during 

excavation with obvious implications regarding initial interpretations and subsequent analyses 

utilising the time-averaged material. It is therefore critical that a time-averaged deposit be identified 

as such. Establishing that a unit is time-averaged allows restructuring of the scale of questions being 

asked of the deposit to account for the expanded bracket of time represented. By establishing the 

time range represented within an assemblage, relevant information can still be gathered from 

material representing a much greater timespan, however the possibility to tackle themes on a 

smaller temporal scale is lost (Bailey 1981, 1983, Lucas 2005: 45, 49, Stern 2008: 134, Sullivan 2008).  

Compositionally, shell midden deposits are usually dominated by large amounts of molluscan shell 

with smaller proportions of sediments such as sand, silt and ash.  Middens tend to be extremely 

permeable due to the relatively large size of the abundant shells that facilitates the free movement 

of water, which can subsequently influence materials within the midden itself (Stein 1992). Lighter 

elements such as sand, ash, small fish bones and charcoal, can be blown away by wind, leading to 

deflation of the deposit, or washed away either through the matrix or away from the deposit (Rick 

2002, see also Wandsnider 1988). Animals also act as agents of transformation within midden 

deposits. Among others, bowerbirds (Dwyer et al 1985), ants and termites (Robins and Robins 2011), 

crabs (Specht 1985, Szabó 2012) and earthworms (Stein 1983) have all been identified as adding, 

removing, and redistributing midden material in archaeological sites. Finally, human activity can 

greatly contribute to the movement of midden shell through processes such as trampling, pit digging 

and other activities associated with various cultural behaviours (Schiffer 1996). 
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Recognising a significantly time-averaged unit in a shell midden during excavation is troublesome 

due to the coarse nature of the shell dominated matrix and frequent compositional homogeneity. 

Increasing the number of chronometric age determinations obtained can increase temporal 

resolution and suitably bracket the age of a deposit (Kowalewski et al. 1998: 291), although this can 

be a costly exercise. Cost means that the dating of shell middens often only involves a handful of age 

determinations for the entire sequence, and rarely more than one per stratigraphic unit (Stein et al. 

2003). The implication of this is that the acknowledged temporal range of a time-averaged unit will 

be severely underrepresented, or indeed not be identified at all.  

The problem of time-averaging in shell dominated deposits is not confined to archaeology and has 

been addressed in the geomorphological and palaeontological literature (e.g. Fürsich and Aberhan 

1990, Kowalewski et al. 1998, Flessa and Kowalewski 1994, Fujiwara et al. 2004 and Kidwell et al. 

2005). Indeed, within some of these disciplines, time-averaged deposits are considered the norm 

(Krause et al. 2010: 428). While the same limitations regarding the costs involved for radiometric 

dating techniques carry over into geological and palaeontological research, these latter disciplines 

have utilised alternative dating methodologies to tackle the issue of time-averaged, carbonate-

dominated deposits in a cost effective way; most notably in the application of amino acid 

racemisation (AAR) (e.g. Wehmiller et al. 1995, Goodfriend and Stanley 1996, Carroll et al. 2003 and 

Krause et al. 2010). The cost-effectiveness of AAR allows a large number of samples to be analysed, 

with multiple samples from the same stratigraphic unit being tested to establish a range of ages for 

time-averaged deposits (Kowalewski et al. 1998). While the processes that result in time-averaging 

in the earth sciences often differ from those that are occur in the archaeological record (e.g. Hughes 

and Lampert 1977, Schiffer 1996: 47), the principles and implications of time-averaging remain the 

same.  

Amino acid racemisation (AAR) is a dating method that has had a long history of use in 

archaeological investigation (e.g. Wehmiller 1977, Masters and Bada 1977, Parfitt et al. 2005, 
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Johnson and Miller 1997, Bateman et al. 2008, Ortiz et al. 2009, Demarchi et al. 2011). While the 

method his principally been used to replace or supplement 
14

C dating as a chronological device to 

understand broad site chronology (e.g. Bada and Protsch 1973, Parfitt et al. 2005, Kosnik et al. 

2008), AAR has been utilised for other ends: for example acting as a range finder for shell midden 

units (Demarchi et al. 2011: 123), potentially identifying anthropic heating (Demarchi et al. 2011: 

120) and using amino acids to taxonomically identify shell fragments (e.g. Andrews et al. 1985) and 

artefacts (Demarchi et al. 2014). The potential exists for AAR to address issues of post-depositional 

transformation in archaeological deposits utilising the concept of aminostratigraphy  developed 

within the earth sciences (e.g. Miller et al.1979, Kennedy et al.  1982, Hearty et al. 1986) which at 

present remains unexplored (but see Demarchi et al. 2011: 123). We do not intend that increasing 

the resolution of our understanding of how middens are deposited and over what range of time 

using AAR is a way to deconstruct middens to mealtimes. Rather, our approach intends to identify 

conflated deposits, provide a guide as to the temporal ranges encapsulated within and unravel the 

palimpsest into its constituent parts  (Bailey 2007: 216). The principal aim is to refine a time-

averaged deposit into smaller scale of episodes appropriate and relevant for the scale of 

investigations, such as changes in environment and gathering behaviours, we ask of archaeological 

sites (Sullivan 2008: 33).  

To test the applicability of an aminostratigraphic approach to isolating time averaging in middens, 

we have undertaken an intensive dating program on midden material excavated from Brremangurey 

rockshelter in the northwest Kimberley, Western Australia (Figure 3.1). Our aim was to identify 

zones of time-averaged midden and identify and quantify the extent of time-averaging that had 

occurred through the deposit s history. We further elaborate on the implications of the results, 

which substantially change our understanding of the accretion of midden at Brremangurey. 
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Chronology 

 

The initial charcoal radiocarbon ages obtained post-excavation at Brremangurey presented in Table 

5.1 (see Table 3.1 for the results of all ages analysed using material from Brremnagurey) reveal 

intensive midden deposition throughout the later stages of the Holocene from approximately 2,500 

years cal. BP, with the cessation of deposition occurring at approximately 500 cal. years BP. Other 

key north Australian shell midden deposits such as Weipa (Bailey 1977, but see Morrison 2014), Blue 

Mud Bay (Faulkner 2013), Darwin (Bourke 2012) and the Admiralty Gulf (Veitch 1999), show a 

parallel chronological spread that would seem to accord with the dates for Brremangurey. 

A second series of dates yielded an early Holocene age of 8,152-8,334 cal. BP on a valve of Tegillarca 

granosa (Wk-37137) from the lower extent of the midden, and this prompted a chronological 

rethink. Sourced from spit 18A (91-95.9 cm below surface), this shell was taken from the same spit 

as an adjacent fragment of charcoal that returned an age of 1,733-1876 cal. years BP (OZQ-187); a 

difference in age of over 6,000 calibrated years BP . Obviously, questions have to be asked regarding 

stratigraphic integrity. This result has significant repercussions for interpretations of both the 

material culture found in association with the shells, as well as having clear implications regarding 

the formation history of the shell midden. If these results mean that a conflated deposit has been 

identified in the Brremangurey assemblage, what proportion of shell specimens are similarly 

temporally obscured? Conventional dating methods such as radiocarbon could resolve this issue, 

however the number of individual age determinations required to adequately bracket the extent of 

time-averaging within the conflated deposit renders this approach unfeasible. This conundrum 

provided a good opportunity to test an application of an alternative chronological method - amino 

acid racemisation. 
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Approach to investigation 

Amino acid racemisation (AAR) is a dating technique that centres on the two chiral forms of amino 

acids. During life, amino acids are almost solely maintained in the laevorotary (L) form. After death, 

these L-amino acids convert to their dextrorotary (D) forms; a process called racemisation. Over 

time, the proportion of D-amino acids relative to L-amino acids increases until equilibrium is 

reached. By establishing the ratio of D- to L-amino acids allows the time since the organism s death 

can be identified. In summary, the larger the D/L ratio, the more time passed since the death of the 

organism. The primary variable that affects the rate of racemisation is temperature, however  a 

number of different environmental factors can influence the rate of racemisation, such as pH, 

presence of metal ions and microbial alteration to name a few (Penkman 2005: 33-38). Recent 

research has identified a small proportion of proteins that are encapsulated within individual 

calcium carbonate crystals that form molluscan shell (Sykes et al. 1995, Penkman et al. 2008). These 

intracrystalline proteins have been proven to act as a closed system, insulated from external 

taphonomic processes that have the potential to obscure or skew results. Isolating the products of 

intracrystalline protein diagenesis (IcPD) for use in AAR has subsequently provided more precise and 

reliable results. The IcPD approach to AAR dating has been utilised here. 

Geomorphological studies have routinely used AAR as a means of assessing the depositional history 

of a deposit by establishing the relative ages of carbonate sediments, including molluscs and 

foraminifera, with comparable D/L values; a concept called aminostratigraphy (e.g. Miller et al. 1979, 

Murray-Wallace et al. 1991, Bates 1993, Hearty and Kaufman 2000, Wehmiller and Miller 2000, 

Penkman et al. 2007, 2013, Meijer and Cleveringa 2009). By establishing clusters of specimens 

exhibiting similar D/L ratios, called aminozones, then comparing extent of racemisation with spatial 

positioning allows interpretations to be made regarding both site formation as well as post-

depositional transformation. Substantially time-averaged deposits are immediately identified as 

spatially associated specimens return D/L values belonging to different aminozones (e.g. Kowalewski 
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et al. 2000, Kidwell et al. 2005, Kosnik et al. 2007). While the agents and processes that drive 

deposition and transformation in geomorphological settings frequently differ to those of 

archaeological contexts, the principles of recognising the temporality of deposition and 

transformation processes remain the same, and this approach is especially applicable to shell 

middens. As applied to the Brremangurey shell midden we aimed 1) to isolate any major instances of 

time-averaging within the midden, and 2) establish a more accurate chronostratigraphic 

interpretation for such layers.  

 

Methods 

Sampling methodology 

Shells were sampled from all excavation units (spits) from which shell midden was recovered. This 

approach allowed the results to portray clustering without the bias associated with preferential 

sampling of one excavation unit over another. A total of 42 valves of T. granosa were sampled from 

both the dense midden overlying the sandsheet from spits 1 to 21 (surface to 118 cm below 

surface). Two valves were selected from the excavated and sorted midden material of each spit, 

except for spits 10 and 12 where only one whole left valve was found. No whole valves of T. granosa 

were found in spit 11 (a full list of samples, their codes, and relevant excavation data is presented in 

Table 5.2). To remove the possibility of dating the same animal twice, only the left valves were 

selected for analysis. Specimens that had no visible signs of burning or other taphonomic influence 

such as acid dissolution were selected. Where possible, the same shells that were sampled for AMS 

radiocarbon dating were incorporated into the AAR programme to provide a direct link between D/L 

values and radiocarbon age (samples OZQ-181 and OZQ-182). 

Sample preparation 

Preliminary sample preparation followed the process described by Lachlan (2011). Shell specimens 

were cleaned of adhering sediment using a soft-bristled brush. Following this, using a dental drill, the 
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surfaces of the interior and exterior regions near the umbo were abraded. A small subsample of the 

shell was removed from near the umbo. Already fragmented shells were not subsampled further, 

but were simply cleaned and abraded. All specimens were then sonicated in purified (Millipore) 

water for 5 minutes. This sonication step was repeated at least three times until the water post-

sonication was clear, replacing the water after each cycle. Specimens were then air dried in sterile 

covered plastic dishes. 

The shell fragments were accurately weighed and subjected to a 2M HCl etch at 0.0033mL of acid 

per milligram of shell. Fragments were then rinsed thoroughly in purified water. The fragments were 

once again air dried and then crushed to a fine powder using an agate mortar and pestle. Following 

methods outlined by Sykes et al. (1995) and Lachlan (2011), the powdered shell was then exposed to 

a bath of 12.5% sodium hypochlorite (NaOCl) for 24 hours and agitated regularly. The NaOCl solution 

was then poured off and the powdered shell was rinsed using purified water at least four times. A 

rinse of methanol was also used to ensure the neutralisation of the NaOCl, and was then followed by 

a final Millipore rinse. 

Following the method outlind by Kaufman and Manley (1998), preparation for hydrolysis began with 

dissolving the powdered shell in a sterile vial using 8M HCl at 0.02mL of acid per milligram of shell. 

This destroys the crystalline component of the shell releasing the proteinaceous material contained 

within.  The vials were then filled with nitrogen (N2) gas and sealed. The vials were placed into an 

o e  at ˚C for  hours to i du e hydrolysis of the peptide o ds. Follo i g this pro ess, 

samples were dried in a vacuum desiccator and then rehydrated using a solution 0.01mM L-

HomoArginine + 0.01M HCl + 0.77mM sodium azide and L-HomoArginine acting as a an internal lab 

standard. Sample analysis was conducted using an Agilent 1100 reverse phase high pressure liquid 

chromatograph (RP-HPLC). Two analyses per shell sample were run to account for systematic 

machine error, and the results of each shell sample averaged. 
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Results 

Of the 42 shells that were utilised for this study, one sample (UWGA10495) was lost when the vial 

as ot suffi ie tly sealed prior to the ˚C o e  stage of sa ple preparatio . All other spe i e s 

provided useable results. Only the results of aspartic (Asx) and glutamic (Glx) acids are presented 

here.  Of all of the amino acids that can be analysed, aspartic acid was selected because of its 

abundance in molluscan shell, but also because of the balance it offered between temporal 

resolution and time-depth it provided. Glutamic acid was also selected due to the high degree of 

covariance with aspartic acid, which allows taphonomically affected samples to be identified through 

the deviation from this covariance (Kaufman 2006). 

An initial observation of the results of this study is a clustering of specimens circled in Figure 5.1. The 

D/L values of these specimens (UWGA10472, UWGA10403, UWGA10407, UWGA10408 and 

UWGA10409) match patterns that are thought to result from burning, or exposure to fire. As 

mentioned previously, aspartic acid undergoes racemisation at a faster rate than glutamic acid, and 

subsequently equivalent D/L values between each amino acid should not be identified until 

equilibrium. Similar patterns are observed and described by Crisp (2013: 181-182), Demarchi et al. 

(2011: 120), and Brooks et al. (1991) who were able to demonstrate that exposure to high 

temperatures for a short period of time preferentially affected aspartic acid D/L values over other, 

slower racemising amino acids, such as glutamic acid. While none of the shells selected exhibited 

any visual signs of burning, the thermal influence of campfires has to be expected in a site like 

Brremangurey, especially considering the abundance of charcoal, hearth features and other 

evidence of anthropogenic fire within the archaeological material. As these specimens have been 

taphonomically altered, these samples have not been incorporated in further analyses and 

interpretations of this study. 
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Lab code 

(UWGA) 
Spit 

Layer/ 

Horizon 

D/L 

Asx 

Sample 

variance 
D/L Glx 

Sample 

variance 

Radiocarbon 

lab code 

Radiocarbon 

age (cal. BP) 

10470 1 1 0.201 ± 0.001 0.1115 ± 0.0005 Wk - 40856 326-496 

10471 1 1 0.3395 ± 0.0015 0.12 ± 0   

10472 2 1 0.543 ± 0.006 0.6195 ± 0.005   

10473 2 1 0.3485 ± 0.0005 0.141 0 Wk - 40857 387-525 

10474 3 1 0.35 ± 0.001 0.148 0   

10475 3 1 0.346 ± 0.008 0.1345 ± 0.0015   

10476 4 1 0.356 ±0.003 0.1335 ± 0.0005   

10477 4 1 0.4025 ± 0.0065 0.159 0   

10478 5 1 0.35 ± 0.010 0.1275 ± 0.0015   

10479 5 1 0.394 ± 0.001 0.1485 ± 0.0005   

10480 6 1 0.3755 ± 0.0005 0.150 0   

10481 6 1 0.4185 ± 0.0065 0.1535 ± 0.0005   

10494 6 1 0.413 ± 0.017 0.155 ± 0.001 OZQ - 181 785-988 

10482 7 1 0.428 ± 0.0105 0.1665 ± 0.0035   

10483 7 1 0.4365 ± 0.0105 0.185 ± 0.001   

10484 8 1 0.496 ± 0.002 0.214 0   

10485 8 1 0.405 ± 0.011 0.156 ± 0.004   

10486 9 1 0.463 0 0.1975 ± 0.0005   

10487 9 1 0.393 ± 0.010 0.1505 ± 0.0025   

10488 10 1 0.5165 ± 0.0115 0.2255 ± 0.0005   

10489 12 1 0.5765 ± 0.0075 0.2655 ± 0.0005   

10490 13 1 0.5605 ± 0.0185 0.2505 ± 0.0015   

10491 13 1 0.309 ± 0.001 0.127 0   

10492 14 1 0.514 ± 0.016 0.2115 ± 0.0015   

10493 14 1 0.5095 ± 0.0095 0.2265 ± 0.0005   

10495 15 1 - - - - OZQ - 182 2,115-2,326 

10394 15 1 0.514 - 0.263 - Wk - 40858 2,139-2,330 

10395 15 1 0.5095 ± 0.0065 0.2705 ± 0.0015   

10396 16 1 0.541 ± 0.010 0.303 ± 0.001   

10397 16 1 0.5245 ± 0.0045 0.273 ± 0.003   

10398 17 1 0.806 ± 0.005 0.5425 ± 0.0005 Wk - 40859 2,844-3,080 

10399 17 1 0.5695 ± 0.0045 0.2875 ± 0.0005   

10400 18A 1 0.410 ± 0.005 0.1815 ± 0.0005   

10401 18A 1 0.9715 ± 0.0205 0.856 ± 0.013 Wk - 37137 8,208-8,365 

10402 18B 2 0.5585 ± 0.0005 0.3145 ± 0.0005   

10403 18B 2 0.5395 ± 0.0105 0.618 ± 0.004   

10404 19 2 0.6525 ± 0.0045 0.4625 ± 0.0015   

10405 19 2 0.597 ± 0.001 0.4145 ± 0.0045   

10406 20 2 0.441 ± 0.002 0.2245 ± 0.0015   

10407 20 2 0.5105 ± 0.0075 0.5355 ± 0.0035   

10408 21 2 0.566 ± 0.001 0.565 ± 0.002   

10409 21 2 0.4785 ± 0.0005 0.776 ± 0.003   

 

Table 5.2 Results of the AAR analysis. Each sample was run in duplicate and averaged. UWGA lab code issued by the 

Amino Acid Racemisation Laboratory at the University of Wollongong. AMS radiocarbon dates have been calibrated 

using Calib 7.02 software with a delta-R value of 60 ± 31 years used for marine shell (Alan Hogg, pers. comm. 2014), and 

prese ted at δ co fide ce. 
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Looking to the rest of the dataset, the pattern observed in the bivariate analysis of aspartic acid 

versus glutamic acid (Figure 5.1) reveals a steady increase in the extent of racemisation in the shells 

analysed which, when the previously run radiocarbon ages are included, correspond well with 

increasing age. Generally, there is little clustering between samples seen in Figure 3 with a very 

regular increase in D/L ratios being observed. K-means cluster analysis statistically isolated 4 distinct 

clusters, shown in Figure 5.1. Cluster A is a single specimen (UWGA10470) exhibiting a much lower 

D/L value when compared to the rest of the sequence. Cluster B is a dense grouping of shells, 

comparable to cluster C, although cluster C exhibits a more advanced extent of racemisation. In 

contrast, cluster D exhibits the greatest extent of racemisation by a substantial margin (for example 

centroid of cluster D of Glx D/L value is 0.699 compared to 0.284 for the centroid of cluster C, seen in 

Table 5.3). 

 Amino Acid 
Centroid Mean 

(D/L) 

Cluster Range 

(D/L) 

Standard 

Deviation 

Cluster A 
Asx 0.201 - - 

Glx 0.1115 - - 

Cluster B 
Asx 0.387 0.309 – 0.463 0.042 

Glx 0.1558 0.120 – 0.2245 0.027 

Cluster C 
Asx 0.5529 0.496 – 0.6525 0.042 

Glx 0.2844 0.2115 – 0.4625 0.073 

Cluster D 
Asx 0.8888 0.806 – 0.9715 0.117 

Glx 0.6993 0.5425 – 0.856 0.222 

 

Table 5.3 - Results gathered from k-means cluster analysis utilising the Brremangurey AAR samples. Centroids refer to 

the average D/L values of Asx and Glx for each cluster. 

 

When comparing D/L values of each specimen with their spatial positioning during excavation 

(Figure 5.2), Clusters A and B are almost entirely comprised of shells sourced from spits 1 through to 

7 (surface to 40.5 centimetres below surface). Such a pattern is not seen in the lower portion of the 

midden as little correlation between stratigraphic level and relative D/L values are observed. This is 

further depicted in Figure 5.2, which plots stratigraphic depth of each sample and Asx D/L values. 

While a positive correlation between depth and D/L value is seen in the upper and younger portion 
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of the midden, the lower and older extent of the midden, particularly from spit 13 onwards, does 

not continue this trend. Instead, a much more variable pattern is apparent with very different ages 

being associated with the same spit, and regularly younger shell specimens being stratigraphically 

below older ones (for example shell specimens from spit 19 compared with spits 17 and 18A in 

Figure 5.2 and Figure 5.3). These patterns present a strong indication that time-averaging has 

occurred in the lower extent of the Brremangurey midden. 

A further four shells were selected for radiocarbon dating based on their relative positioning derived 

from the results of the AAR analysis to properly bracket the age range of the deposit, as well as 

identify when punctuations in deposition occurred (Table 5.4). When these ages are marked on the 

bivariate plot, the numerical ages derived from the radiocarbon analysis coincide very neatly with 

the D/L values and relative ages of this study, seen in Figure 5.1.  

Discussion 

While the initial radiocarbon dating program suggested the presence of a time-averaged deposit, the 

AAR analysis presented here was able to expand on the story of deposition and disturbance within 

the Brremangurey midden. A population of shells exhibiting a substantially more advanced extent of 

racemisation (Cluster D in Figure 5.1) than the majority of shell specimens that form the main bulk of 

the shell midden has become apparent. The close agreement of the extent of racemisation 

established using AAR on the shell specimen also AMS radiocarbon dated to over 8,000 cal. years BP 

(Wk-37137), as well as its position relative to the other amino-ages generated, further reinforces the 

position that this shell is genuinely older than those surrounding it, and not a product of some 

process that skews age determinations such as the marine reservoir effect in radiocarbon dating.  
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Figure 5.2 - D/L values (x-axis) compared with excavation units that shells were sampled from. Note increasing D/L value to 

the right of the figure indicates older age. 
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The implication of this result, is that an older deposit of shell has become conflated into the younger 

shell deposit, as highlighted in Figure 5.2 and Figure 5.3. Comparing the younger shell deposit to the 

older and far less abundant deposit, the extent of time bracketed by each grouping of shell is an 

obvious distinction. The primary grouping of shell (clusters B and C seen in Figure 5.1) represent the 

bulk of the shell material present in the Brremangurey midden deposit, and covers a time range of 

approximately 2,300 to 350 cal. years BP.  The much more scattered grouping of shell specimens 

(cluster D in Figure 5.1) covers a considerably larger time range from approximately 8,300 years cal. 

BP. With the oldest and youngest material dated, the effective range of shell midden accumulation 

observed in the Brremangurey midden assemblage extends throughout the Holocene, from 

approximately 8,300 to 350 cal. years BP.  

While this conclusion in itself reveals a critical part of the history of the Brremangurey deposit, the 

refining of the chronology of the Brremangurey assemblage presents new opportunities for 

investigation. The results of the AAR analysis reveal a considerable difference in the proportional 

abundance of shell specimens between the various groupings of shell identified. The vast majority of 

midden shell specimens are restricted to the younger grouping (Clusters B and C in Figure 5.1), and 

by comparison the oldest grouping of shell (Cluster D in Figure 5.1), represents a much smaller 

population of shell specimens. Two interpretations can be offered; 1) the proportional abundances 

between the groupings are reflective of the relative depositional patterns that created them and 

thus the original level of deposition of T. granosa was low; or 2) the quantified abundances of T. 

granosa do not reflect the original scale of deposition and the earlier deposits have undergone a 

significant degree of loss of midden material over time. The first assumption closely aligns the 

Brremangurey midden with Bailey s description of a cumulative palimpsest  (2007: 207), where no 

(or little) material evidence is lost between two units when both are conflated – they are simply 

mixed. The second is closer to a true palimpsest  (Bailey 2007: 205) that involves some or total loss 

of material evidence through time.  
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Depending on which form of palimpsest is present in the Brremangurey midden assemblage, the 

overall interpretations of behavioural practices at Brremangurey change. Assuming that the 

abundance of shell present in the excavated assemblage is a reasonable reflection of the nature of T. 

granosa deposition in the past, we observe a substantial shift in gathering practices through time. 

The deposition of shell midden was initially rather sporadic and ephemeral with relatively small 

quantities of shell brought back to the rockshelter through most of the Holocene from 

approximately 8,300 to 2,500 years cal. BP. Patterns in midden deposition then changed, as 

gathering strategies focussing on shellfish increased in intensity with much larger quantities of shell 

being deposited in the rockshelter.  This interpretation has further implications for the intensity and 

frequency of site use through time. 

The alternative scenario is that a substantial amount of midden material has been lost through some 

process, mechanical or chemical, resulting in an underrepresentation of the true abundance of shell 

brought into the shelter in earlier phases of midden accumulation. Chemical dissolution has the 

potential to destroy carbonates in a deposit through slightly acidic water percolating through the 

site, however this process leaves traces in the form of reprecipitated minerals (e.g. Beck 2007, 

Villagran et al. 2011); something that was not observed during excavation or analysis of the midden 

material. Similarly, none of the shells selected for AAR analysis exhibited signs of low-level acid 

dissolution signalled by of rounded margins and muted sculpture and a chalky texture (Claassen 

1998: 59-60). Mechanical removal of midden is a definite possibility, however once again evidence 

associated with this process was not found during excavation or analysis (e.g. Glover 1979: 306-7 on 

remnant midden-bearing breccias on cave walls). It is possible that evidence exists of the mass 

movement of shell within the talus slopes at the entrance of the rockshelter (see Figure 3.9) that 

could provide further insights into mechanical processes of shell removal at Brremangurey. 

Without any lines of evidence from the analysed material that suggest a chemical or mechanical 

explanation of the removal of midden shell at Brremangurey, the most parsimonious explanation is 
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that the shell excavated from the rockshelter is an adequate reflection of the depositional 

behaviours practiced over time and that the proportion of shell present in the midden is indicative of 

the amount of shell midden deposited in the early-mid Holocene. Thus, the change in proportional 

abundances of shell between the primary clusters of shell specimens and the oldest grouping of shell 

(cluster D in Figure 5.1) has been interpreted to be the result of a behavioural shift in shellfish 

gathering practices. Initially, shellfish collection and shell deposition followed a low intensity, 

ephemeral and very episodic pattern from approximately 8,300 cal. years BP. Rather suddenly, 

shellfish gathering behaviours became more focussed and intensive and this ultimately underpinned 

the formation of the very dense shell midden that accumulated from approximately 2,300 cal. years 

BP to 350 cal. years BP. 

 

Conclusion 

The key aims of this study were to refine the chronology of the Brremangurey midden assemblage 

and to isolate any potential time-averaged deposits, which have been achieved. Initial radiocarbon 

dates gathered using material excavated from Brremangurey were fortunate in likely identifying a 

time-averaged deposit, however the number of AMS radiocarbon ages presented in this study is 

unusual when compared to the typical approaches to midden chronology. Despite this, the true 

extent of time-averaging remained hidden. Similarly, shifts in shellfish gathering intensity through 

time would have remained masked. It was only with the intensive use of AAR presented here that 

the extent of time-averaging and changing gathering intensities could be further expanded. By 

isolating appropriate temporal units, the scale of questions we can now appropriately ask of the 

Brremangurey assemblage can be refined, allowing investigation of changes in the depositional 

behaviours practiced by Brremangurey s ancient occupants on a resolution that would have been 

previously impossible.  
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Shell middens are always going to be beset with issues associated with time-averaging across a 

range of temporal, spatial and quantitative scales, largely due to their large constituent parts and 

complex and often fine-grained formation processes. While methodological advancements in 

standard chronometric techniques continue to allow for ever-finer resolution of dates, reducing a 

shell midden down to the individual mealtimes will remain impossible and arguably unnecessary 

considering the questions we as archaeologists ask of an assemblage. Refining the chronology 

enough to isolate temporal disjuncture and conflation in time-averaged deposits is necessary to 

establish the actual temporal envelope that brackets the archaeological material, and rationally 

reframe our scale of enquiry to engage with the processes behind the material which will provide a 

much more accurate and complete story of the deposit as a whole through time.  

This study has shown that not only can temporal ranges be elucidated, but that changing patterns of 

deposition can be brought into sharper focus. It is also not unreasonable to assume that the hidden 

issues in the Brremangurey deposit are not also present in other midden deposits around the world. 

This study has, using the novel adaptation of a well-established dating method, presented a new 

approach to how we analyse midden material.  
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Chapter 6 – What really happened in the Holocene?: An 
intra-regional comparison of shellfish deposition in 

Kimberley shell middens, northern Western Australia 

 

Introduction 

The results of the aminostratigraphic analysis applied to the shell midden material excavated from 

within the Brremangurey rockshelter, presented in Chapters 4 and 5, went a long way to successfully 

disentangling the complex post-depositional processes that had redistributed archaeological shell 

throughout the deposit to reveal detailed insights into the site’s formation history. The majority of 

the midden material, dominated by the softshore bivalve Marcia hiantina, was identified to have 

been deposited during the late Holocene from approximately 3,000 years BP to the relatively recent 

date of 300 years BP. An earlier tradition of the gathering of the mudflat species Tegillarca 

(=Anadara) granosa was also isolated, with specimens sampled form the site dating from 

approximately 8,200 years BP through to the cessation of midden building. Punctuation in shellfish 

deposition was also noticed, with results revealing clusters of similarly aged shell across the datasets 

of both M. hiantina and T. granosa separated by gaps in the aminostratigraphic profile. 

The question that now arises is how representative the patterns of deposition identified at 

Brremangurey are of middens across a regional context? Around the Admiralty Gulf, three other 

large middens have been identified; Goala, Wundadjingangnari, and Idayu (Veitch 1999a: 75), seen 

in Figure 6.1. Brremangurey and these other Admiralty Gulf middens share distinct outward 

characteristics. Excavations and dating at these three sites place their formation in the late Holocene 

(seen in Table 6.1) concurrent with the younger, intensive periods of deposition at the 

Brremangurey midden nearby (Koppel et al. 2016, 2017). All but one of the ages determined from 

the midden material excavated by Veitch are younger than 2000 cal. years, with the remaining  
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Figure 6.1 - Map of part of the Admiralty Gulf coast showing locations of midden sites mentioned in text.  
Green shaded areas are the approximate extent of extant mangrove stands. Adapted from Veitch 1999a: 38. 
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sample dating to a maximum age of 2991 cal. years. All of these ages lie within the periods of 

intensive deposition of midden material identified at Brremangurey. Compositionally, and like the 

Brremangurey midden, each site is dominated by soft shore bivalves.  At Goala, M. hiantina is the 

most abundant species throughout the deposit, and at Wundadjingangnari, T. granosa is dominant 

throughout the site. Both of these sites, as well as Brremangurey, accord with the typical form and 

composition of shell middens in tropical northern Australia: they principally exhibit a late Holocene 

initiation and are compositionally dominated by a single species of bivalve. Idayu, however, exhibits 

a transition in dominant species abundance: from M. hiantina in the lower portions of the midden, 

to T. granosa in the younger, upper extent of the deposit. 

 

Site Sample 
code Material 

Depth 
(cm. below 

surface) 

Age 
(uncalibrated) Calibrated Age 

Idayu Wk-1619 T. granosa 45 – 50 (Spit 10) 2010 ± 50 1354 - 1657 
Wk-1618 T. granosa 60 – 65 (Spit 13) 2090 ± 50 1439 - 1760 

Goala Wk-3675 M. hiantina Surface 1170 ± 50 551 - 776 
Wk-1621 M. hiantina 90 – 95 (Spit 19) 2090 ± 50 1439 - 1760 

Wundadjingangnari Wk-3676 T. granosa Surface 640 ± 50 1 - 30 (3%)  
40 - 330 (97%) 

Wk-1620 T. granosa 90 – 95 (Spit 19) 3130 ± 50 2726 - 2991 
 

Table 6.1 - Radiocarbon ages generated of three Mitchell Plateau middens excavated prior to this study by Veitch 
(1999a). Radiocarbon dates have been calibrated using Calib 7.02 software with a delta-R value of 60 ± 31 years applied 

on marine shell (Alan Hogg, pers. comm. 2014), and presented at 2σ confidence. 

 

In discussing this shift in species dominance, Veitch eschews large scale causes for a more local 

interpretation. He argues that the fact that Goala and Wundadjingangnari did not exhibit a switch in 

species dominance suggests that large scale drivers of ecological transformation, such as climate 

change, could not be attributed as a cause to the species shifts seen at Idayu. Rather, he suggests a 

more localised cause, specifically “changes in local sedimentary mechanics of the Crystal Creek area” 

(Veitch 1999a: 150). Veitch does not elaborate on this hypothesis.  
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Species transitions in northern Australian middens have been previously identified. Through the 

early to mid-Holocene, mangrove and rocky shore species dominated midden deposits prior to the 

proliferation of M. hiantina and T. granosa sites (e.g. Schrire 1982, Kendrick and Morse, 1982, 

Woodroffe et al. 1985, O’Connor 1999, Przywolnik 2005). Transitions in individual sites have also 

been observed, with middens of the mangrove gastropod Terebralia palustris underlying culturally-

deposited T. granosa units across the northern Western Australian coast (e.g. Bowdler 1990a and 

1990b, Lorblanchet 1992, Clune and Harrison 2009: 71).  The rise and proliferation of mangrove 

gastropod dominated midden sites (e.g. Cribb 1986, Woodroffe et al. 1988, Przywolnik 2005, Clune 

and Harrison 2009)  is attributed to the stabilisation of sea levels and a more humid climate, 

facilitating mangrove propagation which supported populations of these molluscs (Jennings 1975, 

Semeniuk 1982, Woodroffe et al. 1985).  This was followed by a substantial reduction or loss of 

mangrove environments, as climatic variability tending towards increasing aridity could not support 

extensive mangrove stands and the faunal communities associated with this ecology (Chappell and 

Grindrod 1984, Woodroffe et al 1985, Shulmeister 1999: 86). Midden deposits across northern 

Australia reflect this shift, as M. hiantina and T. granosa-dominated sites began to characterise the 

coastal archaeological record (e.g. Bailey 1977, Bourke 2012, Faulkner 2013, Cochrane 2014).  

Despite the isolation and impact of these large-scale environmental changes, late Holocene shifts in 

shell midden composition are relatively rare. Typically midden deposits dating to this period in 

northern Australia are dominated by a single species with relatively minor contributions from other 

taxa, so why does Idayu deviate from this norm? Idayu follows the same chronological pattern of 

midden formation that typifies midden deposits in northern Australia. This interpretation, however, 

is based on only a broad chronological framework of five radiocarbon ages. Whether or not these 

few ages are enough to properly bracket the more subtle patterns of midden formation remains 

inconclusive. 
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To adequately answer this question, a strong understanding of the formation processes of the Idayu 

midden deposit is required. Having a firm grasp on the timing and relative rates of deposition over 

the course of the site’s history is critical prior to tackling broader issues relating to shell middens in 

northern Australia. The Brremangurey rockshelter midden, despite initially fitting the mould of the 

typical tropical Australian Holocene midden, revealed complex patterns of formation and 

transformation that obscured a much older date of initiation than first identified. Similarly, 

significant post-depositional movement of midden material both time-averaged temporally distinct 

units and vertically displaced midden shell. Considering that rockshelters are thought to be more 

protected and less susceptible to post-depositional alteration compared to open sites (Ulm 2013: 10-

12), has the open Idayu deposit been affected and to what extent?  

In this study, using the same methods as applied to the Brremangurey midden previously, patterns 

of deposition and the effects of post-depositional transformation at Idayu will be investigated using 

an aminostratigraphic approach. This method allows a robust relative chronology of midden material 

throughout the deposit to be established through the incorporation of a far greater number of 

samples than would be possible using conventional methodologies such as radiocarbon dating. With 

the aminostratigraphy of the Idayu midden identified, similarities and differences in the depositional 

patterning observed at the nearby Brremangurey rockshelter will be discussed. This comparison 

between two Mitchell Plateau middens will allow the beginnings of a regional discussion of shellfish 

gathering and deposition to commence. Possible implications and further questions regarding shell 

middens and late Holocene shellfish gathering across the broader context of top end Australia will 

also be discussed. 

 

Background to Site and Sample 

Idayu, a series of open shell middens, is located 1.5 km north of Crystal Creek, and approximately 

250 m from the present day coastline of the Admiralty Gulf (Figure 6.1). A number of oval shaped 
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shell mounds overlie a storm-deposited beach ridge of washed sands, corals, pumice and 

fragmented shell (Veitch 1999a). This beach ridge is found on the landward side of a mangrove 

forest, with extensive intertidal mudflats on the seaward extent of the forest. A detailed report of 

the surrounding area and the, including the results of species quantification is presented by Veitch 

(1999a: 133-137). 

Of the shell mounds found at Idayu, two were excavated 1988, and only the excavated material from 

‘Mound 1’ was retained for analysis and eventual publication (Veitch 1996, 1999a, 1999b). 

Excavation of ‘Mound 1’ revealed approximately  80 cm of culturally deposited shell overlying 

natural beach sand and coral grit. The uppermost extent of the mound, from the surface down to 

approximately 50 cm, is dominated by T. granosa while the lower 30 cm is dominated by M. hiantina 

(Veitch 1999a: 139). Other molluscs including Terebralia palustris, Telescopium telescopium and 

Nerita spp. were also found in much smaller abundances, as well as associated marine fauna such as 

the mud crab Scylla serrata.  

An adapted stratigraphic drawing of the Idayu excavations is presented in Figure 6.2. Summarising 

Veitch (1999a: 139-140), apart from the transition between mollusc species dominance, 

compositionally there is little evidence of stratification of distinction between individual units in the 

Idayu deposit. A colour change was identified across four broad horizons through the deposit.  

1. A dark grey unit extends from the surface of the deposit to approximately 23 cm below, 

characterised by abundant T. granosa and charcoal.  

2. Underneath this, a lighter white/grey unit. Calcium carbonate fragments were found in 

association with, as well as attached to shells. 

3. The unit immediately underlying the unit described above is very similar in colour, and also 

contains numerous fragments of calcium carbonate. The distinction that separates this unit 

form the one above is increasing abundances of M. hiantina. This unit extends to 

approximately 55 cm below surface. 



157 

4. A darker unit than the previous two, but slightly lighter than the upper-most unit extends 

down to approximately 85cm below the surface where the contact between midden and 

sterile beach ridge layer is reached.  

 

 

 

 

 

 

 

 

Upon inspecting the midden material from Idayu, Veitch noticed that no difference in cultural 

content, aside from the shift in species dominance, could be detected. The change in colour was 

attributed to the presence and relative abundance of charcoal and ash interacting with percolating 

water, as well as sediments becoming stained by precipitated carbonates (Veitch 1999a: 142).  

During the excavations conducted by Veitch, a 10 x 10 cm section of each excavation unit was 

retained as a bulk sample. This sub-sample was reanalysed by the author to provide the 

quantification data absent from Veitch’s subsequent publications centred on the Idayu material. The 

Figure 6.2 - North face of Mound 1 of the Idayu shell middens. Ages on the left are aligned with the approximate 
depth form which T. granosa valves were sampled for radiocarbon dating, seen in Table 6.1. Figure adapted from 

Veitch 1999a: 141). 
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results of this reanalysis corroborate Veitch’s findings in that a species dominance change from M. 

hiantina to T. granosa at the interface of spits 9 and 10 (Figure 6.3 below). 

 

 

Figure 6.3 - MNI counts of T. granosa and M. hiantina throughout Mound 1 of the Idayu shell middens. Data generated 
from the reanalysis of Veitch’s excavated material from Idayu by Koppel. 

 

Chronology 

As part of the initial analysis of the Idayu midden material, Veitch sampled two valves of T. granosa 

for conventional radiocarbon dating – one from the basal level of the cultural deposits at 60-65 cm 

below surface (Wk-1619), and another from the spit where the transition from M. hiantina to T. 

granosa occurs at 50-55 cm below surface (Wk-1618). Both samples produced very similar results 

(Table 6.1), and when calibrated to 2σ confidence, exhibit nearly identical ages of approximately 

1500 years BP with Wk-1618 being the marginally younger of the two.  

A further three valves were sampled for AMS radiocarbon dating. Samples OZQ-193 and OZQ-194 

are both T. granosa valves sampled from 10-15 cm below surface and 50-55cm below surface 

1 2 3 4 5 6 7 8 9 10 11 12 13
T. granosa (MNI) 129 75 117 72 118 149 100 160 97 61 82 36 20
M. hiantina (MNI) 103 33 29 32 60 19 5 33 64 215 119 195 230
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respectively. One valve of M. hiantina, Wk-42635, was also sampled from 15-20 cm below surface. 

All three specimens were subsampled from a whole valve of each of the species. The remainder of 

the valves were incorporated into the AAR dating program, presented below, to provide a numerical 

age by which to anchor the relative ages AAR analyses generates.  

Specimens OZQ-193 and Wk-42635 resulted in close to identical ages of 1291 – 1498 and 1295 – 

1490 years BP. Considering both specimens were sampled from adjacent excavation units, this result 

bodes well for interpretations of stratigraphic integrity and minimal post-depositional movement. 

However, these are two samples of many, and may not necessarily provide an accurate 

representative sample of the overall population. OZQ-194 provided an age of 1482 – 1710 years BP, 

which neatly accords with one of Veitch’s original ages (Wk-1619) of 1439 – 1760 years BP. To 

summarise, less than 300 years separates the maximum ages of the youngest and oldest samples 

analysed from the Idayu midden material. 

 

 

Table 6.2 - Compiled radiocarbon ages of shell sampled from Idayu. Radiocarbon dates have been calibrated using Calib 
7.02 software with a delta-R value of 60 ± 31 years applied on marine shell (Alan Hogg, pers. comm. 2014), and 

presented at 2σ confidence. Samples marked with an asterisk were sampled by the authors of this study during the 
reanalysis of the Idayu material. The remaining samples (Wk-1618 and Wk-1619) were sampled and published by Veitch 

(1999a). 

 

An immediate question that arises is how representative these five radiocarbon age determinations 

are of the Idayu midden deposit as a whole. The Brremangurey analysis demonstrated that 

Sample code Species 
Spit 

(approximate cm. 
depth below surface) 

Age BP 
(uncalibrated) 

Age BP 
(calibrated) 

OZQ-193* T. granosa 3 (10 – 15) 1900 ± 30 1291 - 1498 
Wk-42635* M. hiantina 4 (15 – 20) 1900 ± 20 1295 - 1490 

Wk-1619 T. granosa 10 (45 – 50) 2010 ± 50 1354 - 1657 
OZQ-194* T. granosa 11 (50 – 55) 2085 ± 30 1482 - 1710 
Wk-1618 T. granosa 13 (60 – 65) 2090 ± 50 1439-1760 
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substantial vertical displacement of midden shell in a sheltered midden deposit. It is feasible that 

equal, if not a greater degree of disturbance has occurred at the open Idayu site – however this is 

impossible to conclusively determine using only the radiocarbon dating program presented here. 

 

Approach to Investigation 

In identifying the formation processes of shell middens and in particular the intensity of deposition 

of shellfish, a firm understanding of chronology is required. Modern approaches to dating shell 

middens, however, fall short as the small number of age determinations that are typically utilised in 

shell midden archaeology are unable to detect anything but the most general of temporal trends 

(Stein et al. 2003). Recent studies have highlighted the effectiveness of using AAR, specifically the 

aminostratigraphy of shell middens, in collaboration with the more conventionally utilised technique 

of radiocarbon dating (Koppel et al. 2016 and 2017). This method allows a large number of samples 

to be analysed utilising AAR, the relative ages of which are then anchored with the precision of 

numerical radiocarbon dating. The result is a much stronger understanding of the finer, more 

detailed patterns of shellfish deposition. The same aminostratigraphic approach to shell midden 

analysis, as used by Koppel et al. (2016 and 2017) and the methods employed therein is used in this 

study. 

This study aims to: 

1) Establish the aminostratigraphy of the Idayu midden deposit to isolate a robust relative 

chronological framework of the midden as a whole 

2) Compare the patterns of deposition with those identified at Brremangurey to determine if 

similarities or differences can be teased identified 

3) Discuss whether these patterns can potentially contribute to interpretations regarding late-

Holocene species transitions in Mitchell Plateau middens 
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Methods 

Sampling methodologies 

To appropriately establish the aminostratigraphy of the Idayu midden deposit, specimens of both A. 

granosa and M. hiantina were sampled evenly from all excavation units. In total, 52 valves were 

selected. From each of the 13 Spits, two valves each of T. granosa and M. hiantina were selected. 

Only shells presenting no visual evidence of burning or other taphonomic alteration were chosen for 

this study. Where possible, only left valves were chosen to avoid the possibility of analysing both 

valves of the same animal. As mentioned before, the valves of T. granosa and M. hiantina that were 

previously utilised for radiocarbon dating (OZQ-193, OZQ-194 and Wk-42635) were also 

incorporated to provide a paired radiocarbon age to the D/L values generated. 

Sample preparation 

Sample preparation was conducted as per Lachlan (2011: 345-347). To summarise, shell samples 

were initially cleaned of adhering sediments using a soft-bristled brush and clean water, followed by 

repeated sonications in ultrapure Millipore water. To minimise the potential for contaminants 

adversely affecting results, the outer- and inner-most surfaces of each valve were also lightly 

abraded using a rotary drill, which was followed by an acid etch using 2M hydrochloric acid (HCl). 

Each valve was then subsampled through the removal of a small fragment of shell located near the 

umbo. A detailed description of the methods used in the AAR analysis is presented in Chapter 4. 

Results 

Of the 52 specimens selected for analysis, all provided usable results as presented in Tables 3 and 4. 

Eight samples of M. hiantina underwent incomplete injections in the RP-HPLC and could not be 

properly analysed, however because individual specimens were run in duplicates, one successful 

amino acid ratio determination per specimen was still possible. Samples of inter-laboratory controls  
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Tegillarca granosa 
Lab code 
(UWGA) Spit D/L 

Asx 
Sample 

variance 
D/L 
Glx 

Sample 
variance 

Radiocarbon lab 
code 

Radiocarbon 
age (cal. BP) 

10578 1 0.55 ± 0.016 0.318 0   
10579 1 0.4645 ± 0.0045 0.2735 ± 0.0005   
10580 2 0.519 - 0.312 -   
10581 2 0.539 - 0.284 -   
10582 3 0.518 - 0.263 -   
10583 3 0.4945 ± 0.0015 0.2495 ± 0.0055 OZQ-193 1291 - 1498 
10584 4 0.5275 ± 0.0005 0.2925 ± 0.0005   
10585 4 0.5275 ± 0.0005 0.3095 ± 0.0005   
10586 5 0.5335 ± 0.0025 0.3075 ± 0.0025   
10587 5 0.5115 ± 0.0005 0.2995 ± 0.0055   
10588 6 0.5485 ± 0.0015 0.33 ± 0.004   
10589 6 0.6925 ± 0.0035 0.5355 ± 0.0035   
10590 7 0.5215 ± 0.0055 0.7755 ± 0.0035   
10591 7 0.5485 ± 0.0005 0.3135 ± 0.0005   
10592 8 0.554 - 0.282 -   
10593 8 0.5565 ± 0.0035 0.2845 ± 0.0035   
10594 9 0.5265 ± 0.0015 0.307 ± 0.001   
10595 9 0.5555 ± 0.0015 0.282 ± 0.001   
10596 10 0.5975 ± 0.0035 0.3295 ± 0.0005   
10597 10 0.518 ± 0.002 0.271 ± 0.001   
10598 11 0.5575 ± 0.0125 0.26 ± 0.001   
10599 11 0.5795 ± 0.0005 0.296 ± 0.002 OZQ-194 1482 - 1710 
10700 12 0.615 - 0.291 -   
10701 12 0.553 ± 0.02 0.3035 ± 0.0075   
10702 13 0.6055 ± 0.0015 0.3405 ± 0.0035   
10703 13 0.549 ± 0.001 0.5315 ± 0.2485   

 

Table 6.3 - Results of the AAR analysis of T. granosa sampled form the Idayu midden material. Each sample was run in 
duplicate and averaged. UWGA lab code issued by the Amino Acid Racemisation Laboratory at the University of 

Wollongong. Radiocarbon dates have been calibrated using Calib 7.02 software with a delta-R value of 60 ± 31 years 
applied on marine shell (Alan Hogg, pers. comm. 2014), and presented at 2δ confidence. 
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Marcia hiantina 
Lab code 
(UWGA) Spit D/L 

Asx 
Sample 

variance 
D/L 
Glx 

Sample 
variance 

Radiocarbon 
lab code 

Radiocarbon 
age (cal. BP) 

10552 1 0.492 ± 0.003 0.253 ± 0.007   
10553 1 0.306 ± 0.014 0.708 ± 0.004   
10554 2 0.495 - 0.287 -   
10555 2 0.5365 ± 0.0005 0.2865 ± 0.0075   
10556 3 0.51 - 0.253 -   
10557 3 0.4985 ± 0.0005 0.277 ± 0   
10558 4 0.527 0 0.229 ± 0.003   
10559 4 0.5245 ± 0.0005 0.2735 ± 0.0015 Wk-42635 1295 - 1490 
10560 5 0.497 - 0.271 -   
10561 5 0.525 0 0.3 ± 0.007   
10562 6 0.508 - 0.259 -   
10563 6 0.5025 ± 0.0015 0.273 ± 0   
10564 7 0.526 - 0.262 -   
10565 7 0.523 ± 0.001 0.29 ± 0.005   
10566 8 0.5245 ± 0.0005 0.303 ± 0.003   
10567 8 0.5575 ± 0.0005 0.3 ± 0   
10568 9 0.5215 ± 0.0015 0.2915 ± 0.0005   
10569 9 0.512 0 0.261 ± 0.001   
10570 10 0.539 - 0.292 -   
10571 10 0.516 - 0.287 -   
10572 11 0.4955 ± 0.0005 0.2825 ± 0.0025   
10573 11 0.685 ± 0.002 0.4775 ± 0.0015   
10574 12 0.502 - 0.257 -   
10575 12 0.5415 ±  0.0035 0.2925 ± 0.0025   
10576 13 0.528 0 0.2865 ± 0.0005   
10577 13 0.526 ± 0.005 0.3065 ± 0.015   

 

Table 6.4 - Results of the AAR analysis of M. hiantina sampled form the Idayu midden material. Each sample was run in 
duplicate and averaged. UWGA lab code issued by the Amino Acid Racemisation Laboratory at the University of 

Wollongong. Radiocarbon dates have been calibrated using Calib 7.02 software with a delta-R value of 60 ± 31 years 
applied on marine shell (Alan Hogg, pers. comm. 2014), and presented at 2δ confidence. 
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analysed as part of the archaeological specimens presented results within acceptable margins of 

error. Only the results of aspartic acid (Asx) and glutamic acid (Glx) are presented here1. Asx was 

selected because of its rapid rates of racemisation which facilitates a good balance between a high 

resolution of results and time-depth of relative ages to be assessed. In contrast, despite presenting a 

relatively slow rate of racemisation, Glx exhibits a strong covariance in D/L values in samples free 

from taphonomic influence when compared with Asx. Both Asx and Glx, when used in association, 

allow for taphonomically affected samples to be identified that do not necessarily present visual 

signs of modification or alteration (Kaufman 2006).  

Beginning with the results of T. granosa, a strong pattern of clustering is observed with three 

specimens lying outside of the primary cluster as shown in Figure 6.4. Samples UWGA10703 and 

UWGA10590 (circled and labelled ‘A’ in Figure 6.4), lie outside of the primary cluster, principally due 

to a Glx D/L value in excess of its expected covariance with Asx. It has been suggested that a 

preferential racemisation of Glx can be induced by exposure high temperatures for a period of time 

(Brooks et al. 1991). Indeed, similar patterns of D/L values in excess of the usually faster racemising 

Asx in archaeological molluscan shell has been interpreted to be the result of exposure to anthropic 

heating; potentially a fire or hearth (Demarchi et al. 2011: 120, Crisp 2013: 181-182). The third 

sample removed from the primary cluster, UWGA10589 (labelled ‘B’ in Figure 6.4) accords with the 

expected covariance between Asx and Glx, and considering the advanced extent of racemisation 

demonstrated by a higher D/L value, an older relative age is interpreted for this sample. The 

remaining 22 samples exhibit similar D/L values, cluster, which in this instance is interpreted as 

demonstrating largely similar relative ages across the majority of the T. granosa specimens sampled 

in this study. 

                                                            
1 The use of the abbreviation Asx throughout this thesis refers to the combination of native aspartic acid within 
a sample, as well as the aspartic acid that is generated as a result of the deamidation of asparagine in the 
preparation process. This is also the case for Glx, glutamic acid and glutamine (Hill 1965). 
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The M. hiantina dataset, seen in Figure 6.5, shows similar patterns of D/L values as those observed in 

the results of T. granosa. Sample UWGA10553 (labelled ‘A’ in Figure 6.5) shows a D/L value of Glx 

much higher compared to the same sample’s Asx value, as before, implying the influence of some 

degree of anthropic heating. Another sample, UWGA10573 (labelled ‘B’ in Figure 6.5), exhibits an 

advanced extent of racemisation for both Asx and Glx consistent with a relatively older sample 

andnot an artificially racemised specimen - one influenced by fire for example.  

The remaining 24 specimens of M. hiantina cluster across a much smaller range than is observed in 

the T. granosa results of Figure 6.4. The range Asx values from, least to most racemised, across the 

cluster of M. hiantina specimens is 0.0655, whereas the range of Asx D/L values spanned by the 

cluster of T. granosa being 0.1505. Assuming that D/L values correlate directly with the progress of 

time, this represents an almost uniform extent of racemisation and therefore almost identically aged 

shells.  

It should be noted that even though the clusters defined in Figures 6.2 and 6.3 broadly occupy the 

same position on the scatterplot with regards to D/L values of each amino acid, the results of each 

species cannot be directly compared. Variation in the racemisation kinetics of each amino acid varies 

between species (Kaufman 2006). In an independent analysis, the patterns of racemisation of both 

Asx and Glx across both species of shell utilised in this study were assayed by placing powdered 

specimens of each species of shell in an oven at 110˚ C for variable periods of time to artificially 

induce racemisation. The results of these analyses are presented in Figure 6.6 and 6.7. The results 

show that Asx and Glx in T. granosa do appear to racemise at a slightly faster rate when compared to 

Asx and Glx derived from M. hiantina. So, even though both the D/L values from each species exhibit 

similar ratios of D to L amino acids in Figures 6.2 and 6.5, the T. granosa samples took less time to 

reach an equivalent extent of racemisation as M. hiantina, further reinforcing the interpretation of a 

younger relative age of the T. granosa samples when compared to equivalently racemised M. 

hiantina specimens.  
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Figure 6.6 - Results of the heating experiments isolating the racemisation kinetics of Aspartic acid (Asx) derived from T. 
granosa and M. hiantina. Note that the D/L values of T. granosa are consistently higher than M. hiantina implying faster 

rates of racemisation. 

 

 

Figure 6.7 - Results of the heating experiments isolating the racemisation kinetics of Glutamic acid (Glx) derived from T. 
granosa and M. hiantina. Note that the D/L values of T. granosa are consistently higher than M. hiantina implying faster 

rates of racemisation. 
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Discussion 

In building interpretations centred on the formation processes of the Idayu midden, both the AAR 

and radiocarbon analyses suggest the rapid accumulation of midden shell with two distinct episodes 

of deposition. The results of the aminostratigraphy of the Idayu midden deposit show strong 

patterns of clustering for both T. granosa and M. hiantina, seen in Figures 3 and 4. The comparable 

extent of racemisation across specimens from each species implies a similar relative age, which is 

reinforced by the radiocarbon analysis presented in Table 6.1 – the ranges in calibrated ages overlap 

for all the dated specimens.  

An issue that now becomes apparent is whether the clusters of T. granosa and M. hiantina identified 

in Figures 2 and 3 represent individual depositional events in their own right. If the Idayu shell 

mound was formed by two distinct and discrete depositional episodes – firstly M. hiantina and 

followed by T. granosa – the transition from one species’ dominance with regards to abundance is 

deceptive.  Post-depositional movement and infiltration of the younger T. granosa shell into the 

relatively older M. hiantina creates a time-averaged lens between the two units resulting in the 

illusion of a transition between species as opposed to a distinct and immediate switch from one 

species’ dominance to the other.  

Conclusively resolving these two distinct depositional episodes at Idayu using the AAR data, 

however, is problematic. As described previously, despite the results of each species’ analysis 

exhibiting very comparable extents of racemisation, intraspecies variation in rates of racemisation 

are an acknowledged occurrence (Kaufman 2006), so both datasets are not directly comparable. 

Furthering this, the potential exists that AAR on its own lacks the resolution to differentiate between 

temporally distinct depositional episodes, especially in analysing samples from the relatively recent 

past of the late Holocene. Temperature is a critical variable in the racemisation reaction, with 

warmer environments resulting in increased rates of racemisation, with the opposite occurring in 

cooler temperatures (Schroeder and Bada 1976). Previous studies focussed on the study of shell 
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midden aminostratigraphy along the Admiralty Gulf were successful in isolating distinct depositional 

episodes in middens dating to the late Holocene (Koppel et al. 2016 and 2017). This implies that the 

temperature of the northern Kimberley is warm enough to facilitate a relatively high degree of 

resolution in D/L determinations, and therefore a higher degree of precision.  

In considering the results of the radiocarbon dating program (Table 6.2), the overlapping age ranges 

of shell sampled form throughout the entire extent of the midden deposit, a similar issue of 

resolution in dating results is encountered as with AAR: that even AMS radiocarbon dating lacks the 

resolution to differentiate distinct depositional episodes of the Idayu midden. Despite this, the 

results of both radiocarbon dating and AAR point to the interpretation that the deposition of both T. 

granosa and M. hiantina occurred over a short period of time. 

The transition from one species dominance to another is well noted for certain taxa in Holocene 

midden deposits; the transition from mangrove associated Terebralia sp. and Telescopium sp. to 

bivalves as a result of mangrove ecosystems decreasing in prominence through the mid Holocene for 

example (e.g. Schrire 1982, Kendrick and Morse, 1982, Woodroffe et al. 1985, O’Connor 1999, 

Przywolnik 2005, see also Cribb 1986). M. hiantina to T. granosa dominance shifts in the late 

Holocene however, is less well acknowledged. The typical late Holocene shell midden from tropical 

northern Australia is dominated by a single species of softshore bivalve – either T. granosa or M. 

hiantina (e.g. Bailey 1977, Veitch 1999, Bourke 2012, Faulkner 2013, Cochrane 2014, Koppel et al. 

2016, 2017 among others). With a present day focus on the surface surveying of midden deposits 

with only a relatively few deposits being systematically excavated (e.g. Cochrane 2014: 51), the 

possibility exists that transitions similar to that observed at Idayu may be present in other similar 

sites, but remain unrecognised. In northern eastern Queensland, a complex of middens dominated 

by M. hiantina in a region characterised by large middens principally composed of T. granosa 

(Cochrane 2014). Cochrane raises the point that “future hypotheses must be able to accommodate 
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the fact that, at least at some times and places, a different species was the focus of foraging activity” 

(Cochrane 2014: 51).  

The idea of changing foraging patterns is an interesting point. In his interpretations of the transition 

at Idayu, Veitch rules out the possibility of a change in foraging strategies by the people inhabiting 

Idayu (Veitch 1999a: 149), going on to state that both T. granosa and M. hiantina inhabit similar 

ecosystems – the marine intertidal. This is perhaps a generalisation by Veitch, as while both bivalve 

species do inhabit the marine intertidal, both thrive in completely different environments. T. 

granosa favours fine muds that commonly, but not exclusively, accumulate on the seaward margin 

of mangrove stands whereas M. hiantina favours coarser sandier sediments with little to no 

apparent overlap between the two ecologies (Broom 1982 and 1983, Meehan 1982: 83, Narasimhim 

1985, Davenport and Wong 1986, Tiensongrusmee and Pontjoprawiro 1988). Despite recognising 

the different ecological conditions both species present at Idayu inhabit, as well as mentioning 

changing sediment mechanics of a nearby river (Veitch 1999a: 150), Veitch does not progress the 

discussion of changing local shoreline environments any further. 

While an ecological change altering the littoral environment could result in a species turnover, how 

could this be detected using the midden shell? Large scale environmental changes such as climate 

change, shifts in precipitation regimes and varying degrees of freshwater input from fluvial contexts 

would result in a change in the geochemical signature of the marine environment. Geochemical 

analysis of shell, particularly stable oxygen isotope analysis, is increasing in popularity in Australian 

archaeological research (e.g. Brockwell et al. 2013, Twaddle et al. 2016), and has been used to 

detect changes in ecological characteristics through time. However, within the context of the 

Admiralty Gulf, this approach would not necessarily work. As both T. granosa and M. hiantina 

colonise different habitats, isotopic signatures will reflect those environments. Hence, T. granosa 

will present an estuarine, potentially brackish isotopic signature, purely because this is the type of 

environment in which T. granosa is able to populate. The same applies for M. hiantina. In short, 
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different isotopic signatures for the two species could either represent foraging in different habitats 

or a species turnover in the same locale. Long term changes in environmental conditions (e.g. 

Brockwell et al. 2013) cannot be identified as this extent of time depth of the multi-millennial scale 

required for such an analysis is not represented within the Idayu midden deposit due to the small 

range in ages detected in the midden material. 

If a changing environment at Idayu cannot be categorically determined as a cause for the switch in 

species dominance at Idayu, human agency should be rethought. While Veitch quickly discards this 

possibility (Veitch 1999a: 149), an argument can be made for shellfish gathering within multiple 

locations in different shoreline environments by the people occupying Idayu, who routinely returned 

to a single site to process their catch. Similar behaviours in indigenous groups favouring the use of 

home bases in their hunter-gatherer foraging strategies has been described in the Inuit of north-

central Alaska (Binford 1980), and Kiribati (Bird 1997, Thomas 2002) . The use of home bases or 

dinnertime camps has been described by Meehan researching the subsistence strategies and 

behaviours of the An-Barra people of the central coast of the Northern Territory (Meehan 1982). The 

An-Barra people who still routinely practiced shellfish gathering were noted to congregate at a 

specific location near the shell beds they harvested to process and cook the shellfish they collected. 

This supposition, however, suggests that middens of each M. hiantina and T. granosa would be 

spatially separated and adjacent to each species’ preferred shoreline type.  Once again, the presence 

of shellfish derived from two quite different environments in the one site requires explanation. 

Perhaps environments favoured by each shellfish species were rather close to each other. Extant 

mangrove associated mudflats and shorelines with coarser sediments are common across the 

Admiralty Gulf, and probably would have been present in the immediate area during midden 

formation at Idayu feasibly harbouring M. hiantina and T. granosa near to one another.  

A final approach to resolving the source of each species is trace element analysis. This method has 

been demonstrated to source molluscan shell to specific geographic locations as elemental 
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signatures become imprinted into shell chemistry (e.g. Peacock et al. 2007). Once again, this method 

is not applicable at Idayu, as the different features that contribute to individual elemental 

signatures, such as local geology, are of too large a scale to differentiate between different beach 

environments on a stretch of the Admiralty Gulf. 

 

Conclusion 

The formation processes of the Brremangurey and Idayu shell middens are largely comparable. Both 

sites underwent intensive, but episodic deposition of shell in the late Holocene, comprising of 

principally soft-shore bivalves. The species transition from M. hiantina to T. granosa sets Idayu apart 

from the other middens of the Admiralty Gulf. While species shifts in middens have been identified 

and attributed to large scale causes such as rising sea levels and climatic changes, the transition 

between these two species in a midden deposit currently lacks an explanation. Geochemical 

analyses are unsuitable in the specific context of Idayu due to the relatively small range of ages 

represented by the shell in the deposit and the homogenous geology of the surrounding area. A 

logistical explanation is a possibility. The targeting of different shoreline environments, but with a 

common congregation point in the form of a dinnertime or processing camp, warrants consideration 

- especially considering the precedence for similar behaviours in ethnographic accounts (Binford 

1980, Meehan 1982, Bird 1997, Thomas 2002).  
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Chapter 7 – Temporal Packaging and Australian shell 
middens: A synthesis of findings and their implications 

 

Introduction 

If the discussions of Chapters 1 and 2 have proven anything, it is that shell middens are hard. 

Compositionally, middens are often porous and poorly consolidated (Stein 1992), and a range of 

processes, both natural (e.g. Dwyer et al 1985, Robins and Robins 2011, Specht 1985, Szabó 2012) 

and cultural (e.g. Schiffer 1996), freely displace and redistribute midden material throughout a 

deposit.  Coupled with an often complex formation history (e.g. Stein et al. 2003), isolating temporal 

phases in middens at a relatively fine resolution is difficult. The obstacles mean that middens have 

often been viewed as an irreconcilable mass of depositional episodes (Claassen 1991: 254), and this 

frequently sees archaeologists turn to excavating shell middens in spits of arbitrary thickness, side-

lining the natural stratigraphy that may or may not be detectable during excavation (see also Estevez 

et al. 2013:109, Harris 2014:15). Spit digging is particularly entrenched in Australian excavation 

practices (Ward et al. 2016: 267). This approach to the excavation of a shell midden can homogenise 

previously temporally distinct depositional units, further exacerbating the palimpsest nature of the 

archaeological record (Bailey 2007, see also Chapter 1).  

Bailey (2007) acknowledges palimpsests as an unavoidable aspect of working with the archaeological 

record, and discusses two contrasting perspectives as a way of working with palimpsests in 

archaeological investigation; the microscopic and macroscopic tendencies (Bailey 2007: 216-217). 

The microscopic tendency uses techniques and methods at the disposal of the archaeologist to help 

reduce a palimpsest into its constituent parts; in a sense disentangling temporally distinct units that 

were previously mixed (Bailey 2007: 216).  The macroscopic tendency sees the investigator treating 

a palimpsest as a single unit, being representative of a larger span of time, and allowing processes 

operating at an overarching temporal span to be detected and engaged with.  
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Regarding the microscopic tendency, methods are being developed that are capable of isolating 

depositional events at exceptionally fine resolution, for example, micromorphology of midden 

deposits (e.g. Villagran et al. 2011a, 2011b, Godino et al. 2011). Whether or not this method can be 

applied to all midden deposits, due to the confluence of conditions necessary for the preservation of 

depositional features at both the deposit and site scale, is debatable. Midden archaeologists outside 

of these special locations are generally left with the macroscopic perspective alone in interpreting 

midden data, as are as ‘down-the-line’ specialists analysing midden material post-excavation. 

This thesis has attempted to test and demonstrate the applicability of low cost, high resolution 

dating using amino acid racemisation (AAR) and Temporal Packaging to resolve these issues refining 

chronological frameworks of midden deposits. Through a review of findings and a discussion of 

outcomes and implications, I will assess the viability of Temporal Packaging using AAR as an 

approach to addressing key issues in midden analysis post-excavation. 

 

Review of findings 

Chapter 1 concluded with a series of questions that the research contained in this thesis attempted 

to answer. These questions addressed the complex nature of shell midden formation and 

transformation through time, and applied them to the specific cases of the Brremangurey and Idayu 

middens (Chapter 3). The analyses and results presented in Chapters 4, 5 and 6 have demonstrated 

that Temporal Packaging, mobilised through an efficient and effective amino acid racemisation (AAR) 

dating program, is capable of tackling these issues.  

1) Can a shell midden be deconstructed using Temporal Packaging to isolate the formation 

processes and behavioural patterning of a site? 

Temporal Packaging aimed to present a new way in which the potentially complex formation 

processes of shell middens could be isolated and described to allow the appropriate temporal scale 



177 
 

of investigation and questioning to be defined. As discussed above, a range of processes complicate 

the analysis of midden deposits, as fine-grained patterns of deposition are lost through the 

influences of post-depositional processes, and the techniques and methods archaeologists employ in 

excavating and analysing shell midden deposits. Chapters 4, 5 and 6 all demonstrated that AAR and 

Temporal Packaging has the capability to isolate these patterns.  

Amino acid racemisation and Temporal Packaging, as presented in Chapters 4 and 5, revealed the 

complex depositional history of the Brremangurey midden deposit and how these depositional 

patterns changed through time. A phase of relatively low intensity and ephemeral deposition of T. 

granosa initiated midden formation within the rockshelter in the early Holocene. The late Holocene 

portion of the deposits revealed a very different pattern, as the gathering and deposition of T. 

granosa as well as M. hiantina transitioned into a phase of extremely intensive but punctuated 

depositional phases. This same analytical approach was then applied to shell material previously 

excavated from the nearby Idayu midden (Chapter 6). The AAR analysis and Temporal Packaging 

revealed two distinct depositional ‘pulses’ – each pulse seemingly dominated by a single species and 

both being deposited between approximately 1,300 and 1,750 years BP (see Table 6.2). The 

depositional patterning of the Idayu midden contrasted with that of the Brremangurey deposit, with 

the latter exhibiting a more variable and complex formation history. 

The results of this approach provided a more detailed understanding of the depositional patterning 

of the midden deposits at both Brremangurey and Idayu. These results also provided an opportunity 

to scale our level of questioning more appropriately to better accord with the evidence now 

generated. 

2) Can a time-averaged unit be untangled into its constituent parts to facilitate a finer 

temporal scale of investigation? 

Radiocarbon dates on shell sampled from the lower spits of the Brremangurey midden revealed the 

presence of a substantially time-averaged layer. A valve of T. granosa was dated to 8,152 – 8,334 cal. 
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BP (Wk-37137), while a valve of M. hiantina and a fragment of charcoal from the same spit dated to 

2,375 – 2,682 (OZQ-190) and 1,733 – 1,876 (OZQ-187) respectively (see Table 3.4), with all of these 

dates acting as a prelude to later large-scale depositional episodes. Chapter 5 demonstrated that 

Temporal Packaging is able to disentangle this time-averaged portion of the midden into at least 

some of its constituent parts, thus providing additional detail in describing the formation history of 

the midden deposit. In the case of Brremangurey, this time-averaged layer proved critical, as it 

represented the transition between starkly contrasting patterns of midden depositional intensities. 

3) Can vertically displaced shell from within a deposit be identified as such, and if so, can 

temporally comparable material be identified within the rest of the midden assemblage? 

Chapter 4 sought to identify whether the fragments of M. hiantina found in sediments underlying 

the principle midden deposit at Brremangurey were in situ, or were rather downwardly displaced 

through post-depositional movement. These fragments were found in association with sediments 

dating to the late Pleistocene, and had they been identified as in situ, would have carried with them 

significant cultural and palaeoenvironmental implications. The relative dating program using AAR 

conclusively determined that they were indeed vertically displaced, and using the Temporal 

Packages defined using this approach, it was possible to isolate synchronous ‘pulses’ of shell in the 

upper portions of the midden. 

The results of the AAR dating program, and the application of Temporal Packaging to midden 

deposits presented in this thesis achieved two overarching aims; 1) the results refined our 

understanding of the chronology and formation patterns of the Brremangurey and Idayu middens, 

and 2) generated Temporal Packages which allow the level of further questioning of each deposit to 

be scaled accordingly with the newly established resolution of depositional patterning. With the 

results of this new approach, a novel perspective can now be taken on long standing issues in 

Australian archaeological investigation. 
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Shellfish gathering in Holocene northern Australia and environmental change 

Shellfish gathering through the Holocene in northern Western Australia has largely been 

characterised into two phases; subsistence gathering focussed on mangrove taxa in the early to mid-

Holocene, transitioning to a focus on soft-shore bivalves through the late Holocene (e.g. Beaton 

1985, Veitch 1999b, Faulkner 2013 among others). The earliest examples of mangrove-associated 

taxa being gathered come from Noala Cave, Barrow Island, where a specimen of the mangrove 

whelk Terebralia palustris dating to 10,822 – 12,400 cal. BP was recovered (Manne and Veth 2015: 

4). Further excavations in other rockshelter sites on Barrow Island isolated specimens of T. palustris 

and Telescopium telescopium dating from the terminal Pleistocene to approximately 8,500 cal. BP 

(Manne and Veth 2015: 4). Midden deposits dominated by T. palustris and T. telescopium then 

proliferated through the early Holocene across the northwestern Australian coast until the mid-

Holocene (e.g. Lorblanchet 1977, Vinnicombe 1987, Bradshaw 1995, O’Connor 1999b, see Harrison 

2009).  

A transition away from mangrove taxa and to soft-shore bivalves then occurred at approximately 

4,000 years ago (Clune and Harrison 2009).  Prior to the research presented in this thesis, the 

earliest archaeological evidence for the gathering of T. granosa dated to 4,290 ± 70 uncal. BP from 

Skew Valley on the Burrup Peninsula (Lorblanchet 1977). Similar ages of approximately 3,500 to 

4,000 uncalibrated radiocarbon years are reported for other sites in regions south of the Kimberley 

including the Abydos Plain (Veth and O’Brien 1986, Veitch and Warren 1992), and other sites of the 

Burrup Peninsula (Bradhsaw 1995, O’Connor 1999b, see also Harrison 2009: 94-96). In the northern 

Kimberley, the broad geographic region in which Brremangurey is situated, an age of 2,726 – 2,991 

cal. BP on an archaeological T. granosa was returned at Wundadjingangnari (Veitch 1999a), which, at 

the time, represented the earliest example of the gathering of T. granosa in the northern Kimberley.  

Communities of mangrove forests were clearly more widespread in the early Holocene compared to 

more recent times, and an hypothesis explaining this decline of mangrove abundances, and 
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subsequent decline in mangrove-associated molluscan  species being gathered by people, has 

centred on large scale environmental process. O’Connor (1999b) proposes that a weakening and 

subsequent northward migration of the tropical monsoon climate cycle resulted in a decrease in size 

and abundance during the mid-Holocene (O’Connor 1999b: 48). Following the retraction of 

mangrove communities, gathering of molluscan fauna shifted in focus to T. granosa that colonised a 

vacant ecological niche, or existing populations became accessible (e.g. Allen 1996: 198). O’Connor 

(1999b) then proposes a northward cline of ages representing the initiation T. granosa gathering in 

north Western Australia in the mid-Holocene. 

O’Connor’s model does seem to accord with findings presented with an earth sciences perspective. 

The rise and fall of mangrove forests in the early to mid-Holocene has been documented in river 

systems in Arnhem Land, Northern Territory (e.g. Woodroffe et al. 1985 and 1988, Woodroffe 1995), 

and there is also evidence for increased forest abundance across the coastline of northern Western 

Australia (e.g. Jennings 1975). A recent review of Holocene climatic change (Aplin et al. 2016: 106-

107) summarised paleoclimate research describing a relatively stronger monsoonal regime in 

northern Australia in the early Holocene (Prentice and Hope 2006, Reeves et al. 2013a, 2013b, 

Shulmeister and Lees 1995) followed by cooler conditions in the mid-Holocene (Gagan et al. 2004). 

At approximately 6,000 cal. BP, with the flooding of the Sahul shelf, water-flow between the Pacific 

and Indian oceans was re-established coinciding with the mid-Holocene high sea stand. This resulted 

in a contracting of the Indo-Pacific Warm Pool as sea surface temperatures increased (Aplin et al. 

2016: 106). As a result of this “the [Inter-Tropical Convergence Zone] appears to have narrowed and 

moved equatorward, both probably resulting in a weakening of the monsoonal system” (Aplin et al. 

2016: 106). 

Recently, a specimen of Anadara (=Tegillarca?) sp. has been recovered from within a midden deposit 

in Hayne’s Cave on Barrow Island, with associated midden shell dating to between 9,173 and 8,248 

cal. BP (Manne and Veth 2015: 6). This specimen, coupled with the T. granosa dated to 8,152 – 8,334 
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cal. BP from Brremangurey, forces a re-evaluation of O’Connor’s (1999b) model. The presence of 

these specimens in archaeological contexts suggests two main points: 1) populations of T. granosa 

were present in the northernmost parts of the Kimberley at 8,000 years before present, and 2) 

people were collecting T. granosa at this time. 

 

Prelude to ‘Intensification’? 

Until relatively recently, all of the evidence pointed towards T. granosa gathering and shell mound 

formation being restricted to the late Holocene in northern Australia – largely within the last 3,000 

years (e.g. Bailey 1977, Veitch 1999a, Bourke 2004, Barker 2004, Faulkner and Clarke 2004). Beaton 

(1985: 18), in speaking of the gathering and deposition of T. granosa and formation of midden 

deposits in northern Australia, stated “the late Holocene sites on our coast are not just some tail end 

of our coastal history, they are it”. The evidence of early Holocene dated specimens of 

archaeological T. granosa found at Brremangurey (Chapter 3) and Hayne’s Cave on Barrow Island 

(Manne and Veth 2015), suggests that a more complex story.  

A distinct shift in subsistence economies in the late Holocene amongst Aboriginal Australian cultures 

resulted in a sharp increase in importance of soft-shore bivalve gathering, as evidenced by the mass 

proliferation of shell midden deposits being formed across northern Australia within the last 3,000 

years (Barker 2004: 12). It has been argued that growing pressures on Aboriginal groups, such as 

increasing climatic variability (e.g. Bailey 1993, Veitch 1999b) or population growth (Beaton 1985), 

forced a reorganisation of the subsistence base of Indigenous Australians towards fast replenishing, 

highly fecund ‘r-selected’ species, such as soft-shore bivalves; in particular T. granosa and M. 

hiantina. A similar transition in subsistence strategies is also observed in interior Aboriginal cultures 

with the increasing adoption of seed-grinding technology (e.g. Smith 1986, 1988, 1989, Veth 1989) 

and the appearance of bifacial point manufacture (Veitch 1996, 1999b: 57) at approximately the 

same time. This reorganisation of the subsistence resource base towards a focus on resources from 
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lower trophic levels forms part of the ‘Intensification’ argument; a broad-reaching economic 

reorganisation hypothesized to have occurred across the Australian continent in the late Holocene 

(Lourandos 1983, 1985, see also Bourke 2012: 6). 

The T. granosa and Anadara sp. midden shells found at Brremangurey and Barrow Island 

respectively, both dating to the early Holocene, expand on this story. These findings suggest that 

soft-shore estuarine bivalves, specifically T. granosa, were not unknown to Aboriginal peoples of the 

northern Kimberley of the early Holocene. T. granosa is instead a resource with an antiquity of use 

spanning over 8,000 years. However, the results from Brremangurey offer further insights. The use 

of AAR in Chapter 5 isolated the time-averaged layer at the base of the Brremangurey midden, and 

the application of Temporal Packaging allowed patterns of gathering intensities to be interpreted 

and contextualised within the discussion of ‘Intensification’. The results revealed two distinct 

Temporal Packages of T. granosa that preceded the main depositional episodes of dating to the late 

Holocene (see Figure 5.1). These earlier Temporal Packages depict a trend of increasing gathering 

and depositional intensity through time at Brremangurey. With this information, the late Holocene 

subsistence resource reorganisation, with specific reference to molluscan bivalves, appears less 

abrupt and can instead be interpreted as increasing intensity of gathering rather than a brand new 

resource appearing on the landscape.  

Of course this interpretation is formed using evidence from one specific site. Whether or not this 

pattern is reflected at other locations will require the investigation of other sites and the analysis of 

other midden deposits. The possibility exists that other specimens of archaeological of T. granosa 

gathered and deposited in the early Holocene have formed some component of midden deposits in 

northern Australia, but if similar stratigraphic patterns of time-averaging to those seen at 

Brremangurey are also present, identifying these specimens is the issue. Depositional intensities of 

T. granosa is observed to be low at Brremangurey, and if the patterns revealed there are reflected 

within deposits elsewhere, such palimpsests are unlikely to be isolated using traditional radiocarbon 
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approaches alone. The AAR dating program presented in Chapters 4, 5 and 6 of this thesis presents a 

new technique that increases to possibility of isolating such deposits, and Temporal Packaging allows 

a novel way of isolating and interpreting these data.  

 

Types and typologies of shell middens in north Australia 

During initial survey and excavations, being able to discern between the two varying modes of 

midden formation was impossible, as the earlier, low intensity deposition of T. granosa had become 

conflated with the younger, denser midden material above. It was only the result of a fortuitous 

radiocarbon age determination that this time-averaged deposit was detected, and then confirmed 

and constrained by the AAR dating program presented in this thesis. How do these distinct early and 

late Holocene types of midden deposits at Brremangurey fit within the scope of Holocene midden 

deposits in northern Western Australia? 

There are very few examples of early, low-intensity marine shell middens in the early Holocene 

record of northern Western Australia, and all are in rockshelters: Koolan Shelter 2, Haynes Cave and 

Noala. Koolan Shelter 2 is a rockshelter on an island on the southwest Kimberley coastline. 

Excavations revealed a sparse shell midden deposit dating to the terminal Pleistocene (O’Connor 

1999a: 29-30). Compositionally, the early Holocene component of this midden assemblage is 

characterised by mangrove and rock platform species including the chiton species Acanthopleura 

spinosa, and the rocky-shore gastropods Turbo cinereus and Nerita undata (O’Connor 1999a: 39). 

Midden shell is rather diffuse, with no spit containing more than 260 grams of subsistence shellfish 

throughout this early portion of the deposit (O’Connor 1999a: 41). Hayne’s Cave and Noala are 

rockshelters located on Barrow Island, an island that forms part of the Montebello island group off 

the Pilbara coast, south of the Kimberley biogeographic region. Both sites contain midden deposits 

incorporating molluscan faunal remains that date to approximately 8,500 cal. BP for Hayne’s Cave, 

and from approximately 14,500 cal. BP for the earliest material at Noala (Manne and Veth 2015: 4). 
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The midden deposit within Hayne’s Cave is dominated by mangrove-associated species, such as 

Terebralia sp., Telescopium sp., Anadara  sp., and T. palustris which alone represents 77% of the 

molluscan fauna by MNI (Manne and Veth 2015: 6-7). The midden deposit in Noala is less diverse 

than Hayne’s Cave, but shares a similar suite of mangrove-associated taxa (Manne and Veth 2015:7). 

Midden density, like Koolan Shelter 2, is low with inferred gathering and deposition rates to be 

likewise low. Low density ‘scatters’ of predominantly T. palustris and other mangrove-dwelling 

gastropods have also been dated to the early Holocene at sites along the northern Western 

Australian coastline (e.g. Lorblanchet 1977, Vinnicombe 1987, Bradshaw 1995, O’Connor 1999b, see 

also Harrison 2009: 94-95), thereby demonstrating that shell midden deposition was not solely 

confined to rockshelters.  

Clear parallels can be drawn between the well-reported late Pleistocene/early Holocene midden 

deposits at the above-mentioned rockshelter sites, and the oldest midden material at Brremangurey.  

Apart from chronological similarities, the densities of midden shell at each site are largely similar as 

well; a diffuse lens of shell as opposed to an extremely dense masses of shell such as the younger, 

overlying layers of the Brremangurey midden deposit for example. Species composition presents a 

slightly more complex comparison. The midden material at Brremangurey conclusively identified to 

be early Holocene in age is solely T. granosa. Anadara sp. of this antiquity was found at Hayne’s Cave 

(Manne and Veth 2015: 7), but Tegillarca/Anadara was lacking at both Noala and Koolan Shelter 2. 

Mangrove gastropods, predominantly T. palustris, were found at Hayne’s Cave, Noala (Manne and 

Veth 2015: 7) and Koolan Shelter 2 (O’Connor 1999a: 39), however similar taxa of this antiquity has 

not yet been identified at Brremangurey. Figures 24f and 24g presented in Chapter 3 presents the 

NISP counts of T. palustris and T. telescopium respectively, found within the Brremangurey 

assemblage. Abundances of these two taxa peak at the lower levels of the midden deposit, at the 

same stratigraphic depth as the 8,200 year old T. granosa valve. The AAR analysis has already 

concluded that midden material at this depth has undergone some degree of time-averaging 

(Chapter 5), so whether or not the T. palustris and T. telescopium found at these levels group with 
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the younger, late Holocene midden material or with the older, early Holocene tradition of shellfish 

gathering and deposition requires further investigation. However, the potential exists that these 

specimens of mangrove-associated gastropods are indeed contemporary with the ancient T. granosa 

valve and are also representative of a much older shell-gathering tradition at Brremangurey, 

coinciding with similar patterns of gathering and chronology demonstrated at Hayne’s Cave, Noala 

(Manne and Veth 2015) and Koolan Shelter 2 (O’Connor 1999a). 

Where Brremangurey stands alone from these other sites is what occurred in the late Holocene.  To 

date, Brremangurey is the only site so far recorded in northern Western Australia that contains a 

large, extremely dense shell midden within a rockshelter comparable in chronology and composition 

to the open midden-mound deposits that are so ubiquitous across the rest of the continent’s tropical 

north (e.g. Bailey 1977, Morrison 2003, Bourke 2012, Faulkner 2013). The early phases of the 

Brremangurey midden can be likened and compared to the previously discussed sites of Barrow and 

Koolan islands. However, occupation at both Hayne’s Cave and Noala is entirely restricted to the 

early Holocene (Manne and Veth 2015: 4), and while mid- to late Holocene molluscan midden 

material has been identified at Koolan Shelter 2, the later deposits maintain a similar species 

representation and density to the older, early Holocene portions (O’Connor 1999a: 39).  

In Chapter 2, a discussion of the lack of an effective and systematic typological approach to 

categorising shell middens in Australia was presented. Terms such as ‘scatter’, ‘midden’ and ‘mound’ 

are frequently used in describing shell midden deposits in Australia (e.g. Cochrane 2014:48, Bowdler 

1983:135, Sullivan 1989:49, Bourke 2000:60), and are at least implicitly wielded in exactly the same 

manner as a typology (sensu Gorodzov 1933: 102, Gifford 1960:341, Trigger 1989:21-22, Read 

2007:204).  Chapter 2 went on to argue that without thought being given to the formation processes 

of shell midden deposits, and with few explicit attempts to link observable and unobservable 

variation in midden deposits to the behavioural causes of these variations, typological terms offer 

little analytical or interpretive benefit. Put another way, the behavioural differences which 
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generated ‘scatters’, ‘middens’ and ‘mounds’ have never been clearly articulated and the 

relationship between the three types is likewise unclear in the literature. 

Focussing on Brremangurey, and using the standardised approach to classifying midden deposits in 

Australia (e.g. Cochrane 2014:48, Bowdler 1983:135, Sullivan 1989:49, Bourke 2000:60), two distinct 

midden types can be discerned; a ‘shell scatter’ dating to the early Holocene, and a ‘shell mound’ in 

the upper, late Holocene portion of the midden. How does the ‘shell mound’ at Brremangurey then 

compare with the nearby Idayu ‘shell mound’ with specific regards to the gathering and depositional 

behaviours that created each deposit? At the deposit scale, both are compositionally and 

morphologically comparable, and while the Brremangurey deposit does exhibit a more complex 

formation history, using the AAR analysis it can be concluded that both sites formed through a 

similar process; punctuated pulses of intensive shellfish deposition. However, the situational 

differences between each deposit needs to be incorporated into this discussion. The fact that the 

Brremangurey midden lies within a rockshelter, whereas Idayu is an open site is potentially critical in 

contextualising how and why each site was utilised by ancient people. Similarly, the extended 

occupation and use of Brremangurey through the Holocene compared with the relatively short 

history of Idayu is a further situational difference between two comparable ‘shell mounds’ that 

potentially has significant ramifications in describing ancient human behaviours.  

An interesting point that can be made about the Brremangurey midden assemblage is the potential 

evidence for ritualised middening practices to be identified (e.g. McNiven and Feldman 2003, Milner 

2005, McNiven and Wright 2008, McNiven 2004, 2010, Thompson and Pluckhahn 2012, Thompson 

and Moore 2015). The dense layer of the pearl oyster Pinctada c.f. albina (see Chapter 3) that was 

observed to extend across multiple excavation squares clearly outgroups from the rather archetypal 

subsistence midden material in the layers above and below. This particular species is not associated 

with subsistence practices of prehistoric north Australian cultures (but see Ulm 2011: 448), and its 

stratigraphic position in such a discrete layer over a broad area potentially complicates an origin that 



187 
 

is exclusively economic. With this in mind it is possible that such a feature of the Brremangurey 

midden may reflect extra-economic behaviours of the occupants of the rockshelter, however further 

examination into this is beyond the scope of this thesis, and will be the focus of future research. 

The application of AAR and Temporal Packaging at Brremangurey and Idayu has demonstrated that 

outwardly-similar shell middens can be quite different, and that one ‘shell mound’ is not necessarily 

comparable to another ‘shell mound’. Current typological structures do not allow us to make this 

distinction. A strong understanding of the formation processes of shell middens is critical to 

describing shell midden variation and classifying different forms of midden deposits. While 

proposing an alternative typology to the scatter/midden/mound approach currently used in 

Australian archaeological investigation is beyond the scope of this thesis, it has instead 

demonstrated the potential for AAR and Temporal Packaging to inform on discussions of midden 

variation and underlying behavioural patterning.  

 

Scalar interpretation and Temporal Packaging 

 A key aspect of time perspectivism, as discussed by Bailey (1981:103), is “the belief that differing 

time-scales bring into focus different features of behaviour, requiring different sorts of explanatory 

principles”. Put another way, processes are best investigated and discussed within the appropriate 

temporal perspective (see also Lucas 2005: 29, Bailey 2007). However, issues arise when we as 

archaeologists lack the tools and methods to properly isolate and engage with the appropriate 

temporal scale of the processes we wish to investigate. This is particularly true for shell midden 

archaeology, where a general reliance on a small number of radiocarbon age determinations to 

inform on site chronology is the norm (Stein et al. 2003). When combined with potentially complex 

formation processes (e.g. Claassen 1991: 254, Stein 1992, Stein et al. 2003) and the suite of complex 

and variable post-depositional transformation processes that can influence a deposit (e.g. Dwyer et 
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al 1985, Specht 1985, Schiffer 1996, Rick 2002, Robins and Robins 2011, Szabó 2012), isolating the 

appropriate temporal scale of investigation with shell middens is problematic. 

Recent micromorphological approaches to shell midden excavations and analyses match Bailey’s 

(2007: 216) ‘microscopic’ approach. Such methods can isolate exceptionally high resolution 

depositional episodes in midden deposits, to the scale of an individual discard event (e.g. Villagran et 

al. 2011a, 2011b, Godino et al. 2011). Micromorphological techniques, however, are reliant on 

specific environmental conditions to preserve depositional features at this resolution. As well as this, 

pristine, unexcavated deposits are necessary for the success of this method and it also needs to be 

factored into initial research designs. In an Australian context, micromorphology has not been widely 

used. While there is some potential for its application in the future, such a leap in general 

approaches to excavation in Australia are unlikely to happen in the immediate future. It is also yet to 

be demonstrated how amenable northern Australian shell middens may be to micromorphological 

techniques.   

As pointed out by Ward et al. (2016: 270-271), the Australian inclination to spit-digging means that 

the onus is on the post-excavation analyst to interpret, and indeed reconstruct, stratigraphic 

patterning. However, without a method to identify the potentially complex patterns of midden 

deposition, as per Bailey (2007: 216) questions must be framed at a larger scale to accommodate 

what are likely conflated deposits. We are therefore left to treat an aggregated deposit as a single 

mass, rather than its constituent parts which remain inaccessible using standard approaches (see, 

e.g., Szabó 2009: 187 for an example of how this affects the quantification of molluscan remains, 

and Ward et al. 2016 for the impact on artefact sequences).  

Bailey (2007: 216) suggests that, in the case of an unresolved palimpsest, questions and explanations 

are best targeted at a macroscopic level. This would seem to fit the situation as it is in Australia. 

However, fine-grained ethnographic, ethnohistorical, and anthropological observations have had a 

privileged position in archaeological interpretations of shell middens locally. There is a clear scalar 
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lack of fit between the nature of datasets and the explanatory frameworks being applied. Some key 

examples of explanatory frameworks within northern Australian shell midden archaeology are 

summarized here. 

Meehan’s (1982) influential ethnoarchaeological study on the An-Barra people of the Blyth River, 

central Northern Territory, Shell Bed to Shell Midden resulted in an unprecedented description of the 

subsistence behaviours of the Indigenous people of the area. Over the course of a year, Meehan 

recorded how and where shellfish were gathered, how shellfish were processed prior to 

consumption, as well as the relative contribution of shellfish to the overall diet of the An-Barra 

(Meehan 1982). She also recorded and described, with exceptional detail, how shell remains were 

discarded at ‘dinnertime camps’ (e.g. Meehan 1982: 26). Since this ethnoarchaeological study, 

Meehan’s accounts have been routinely incorporated into interpretations of shell midden deposits 

both in Australia (e.g. McDonald 1992, Nicholson and Cane 1994, Brockwell 2006) as well as in 

international archaeological midden contexts (e.g. Reitz 1988, Thomas 2002, Mannino and Thomas 

2002, Erlandson et al. 2009, Marquardt 2010).  

As discussed in Chapter 2, the use of ethnographic analogy in interpreting archaeological deposits is 

not without its complications. As material passes from the ethnographic record to the archaeological 

record (sensu Schiffer 1996), the temporal distinction between individual depositional events are 

conflated into palimpsests (Bailey 2007: 205). The problems associated with the application of 

ethnographic analogy as a method of interpreting archaeological data have been widely discussed in 

the global literature (e.g. Gould and Watson 1982, Wylie 1982, 1985a, 1985b, 1988, 1989, Jochim 

1991, Lane 2005). 

Another distinct strand of socially-focussed evidence can be found in ethnohistories, and Morrison 

(2003) incorporates the ethnohistorical observations of Roth (1901) as the catalyst for his 

interpretation of the formation processes of shell mounds at Weipa, northeast Queensland. 

Amongst other things, Roth (1901) describes the intermittent ceremonial gathering of Aboriginal 



190 
 

Australians. Morrison (2003) proposes that these sporadic gatherings can be connected to pulses of 

T. granosa abundance in the immediate local environment. He argues that these ceremonial 

gatherings were deliberately timed to coincide with these explosions in T. granosa populations 

providing the necessary boost to the subsistence resource base to support this periodic increase in 

occupational intensity (Morrison 2003: 5).   

As with the scalar problems in applying ethnographic data to archaeological interpretation through 

analogy, Morrison’s (2003) conclusions are largely untestable. His interpretations centre on the 

relatively short term cycles of ecologically driven explosions in T. granosa abundances, but it is 

unlikely that events of such a fine temporal resolution would be preserved within shell midden 

deposits.  

A study conducted by Brockwell et al. (2013) sought to investigate the intersection between 

environmental and cultural change across coastal Northern Territory.  A total of 28 archaeological 

valves of T. granosa (n=10) and Dosinia c.f. laminata (n=18) were sampled from excavated midden 

material at three sites: Hope Inlet, Blyth River and Blue Mud Bay. These valves were assayed using 

stable oxygen isotope analysis (Brockwell et al. 2013: 25). Only four of these valves were directly 

dated using AMS radiocarbon techniques, while the remaining, undated valves had inferred ages 

assigned to them using a depth/age model (Brockwell et al. 2013: 25-26). These 28 specimens 

represented an age range of 2,300 – 600 cal. BP. Using the results of the stable oxygen isotope 

analysis, the authors interpret “a declining summer monsoon rainfall and increasing aridity” from 

2,000 to 500 cal. BP at two of the sites (Brockwell et al. 2013: 29). The results from the third site 

were inconclusive as hypothesised fractionation differences between T. granosa and D. c.f. laminata 

obfuscates a clear environmental interpretation (Brockwell et al. 2013: 29).  

Although a novel application of isotopic techniques within an Australian context, this study highlights 

the complications that arise when the scale of interpretation does not accord with the scale of 

evidence being generated. The authors state that “we currently lack reliable data for distinguishing 
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seasonal fluctuations from millennial scale climate change” (Brockwell et al. 2013: 30); these scales 

are indeed starkly differentiated. The high resolution, yet temporally constrained isotopic data was 

contextualised within a coarse chronological framework constructed from a minimal number of 

radiocarbon age determinations and supplemented with a depth/age curve to provide an inferred 

age for the undated shell specimens in this study. As a result, the higher resolution isotopic records 

cannot be neatly placed within the overarching interpretation of long-term, large-scale 

environmental change for which the authors argue using the coarse and somewhat speculative 

chronology they have established. This case exemplifies Bailey’s (2007: 202) point that “different 

sorts of phenomena are best studied at different time scales”. The approach of Brockwell et al. 

(2013) contrasts with that of O’Connor (1999b), whose expansive interpretations of large-scale 

ecological changes are grounded within an equally broad and coarsely-resolved chronological 

framework. 

It should be stated that all of the methods and approaches described in the previous four case 

studies, including ethnoarchaeological, ethnohistorical and isotopic data, do have interpretive value, 

but only when grounded in the appropriate temporal scale of investigation. Herein lies the issue: 

without a confident handle on the temporal patterning contained within an archaeological deposit, 

we cannot know if the temporal resolution of analysis appropriately matches the temporal 

resolution the deposit can sustain. Presently, there is a missing fulcrum in analysing shell midden 

deposits, as confidently establishing the chronological framework of a deposit is hamstrung by the 

typical approaches to dating shell middens, heavily relying on a limited number of radiocarbon 

dates.  

Amino acid racemisation and Temporal Packaging can contribute to addressing this issue. This 

approach offers a step towards establishing the temporal resolution offered by a deposit that is 

efficient, and effective. With this, investigations can be appropriately scaled, enhancing the 
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meaningfulness of the results as interpretations are grounded in demonstrable chronologies of a 

known resolution through Temporal Packaging.  
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Chapter 8 – Rates of accumulation, Temporal Packaging and 
interpreting the archaeological record  

 

Introduction 

Globally, there are relatively few middens studies that have seriously addressed the issue of time-

averaging, and as a general rule, they have considered the issue with reference to ‘rates of 

accumulation’. While there are many commonalities with Temporal Packaging as conceptualised in 

this thesis, there can also be stark differences in assumptions and mobilisation. Before a broader 

consideration of the similarities and differences between ‘rates of accumulation’ and Temporal 

Packaging, I look at two contrasting examples from northern Australia: Koolan Shelter 2 in the 

Kimberley, northern Western Australia (O’Connor 1999a), and the Kwamter mound in far north 

Queensland (Bailey 1977). 

 

A discussion on ‘rates of accumulation’ 

Koolan Shelter 2, as introduced in Chapter 7, is a rockshelter on Koolan Island off the west coast of 

the Kimberley mainland, Western Australia. Within this rockshelter are both Pleistocene and 

Holocene archaeological deposits (O’Connor 1999a: 29). Two horizons were described (See Figure 

8.1), each containing distinctive molluscan faunal remains. The shell within the ‘Pleistocene Horizon’ 

“was not only sparse, but consisted of only two species, pearlshell (Pinctada sp.) and mangrove clam 

Geloina [=Polymesoda] coaxans” (O’Connor 1999a: 27). The presence of these shell taxa were 

interpreted to not be the result of subsistence practices but rather “for use as tools or as value 

items” (O’Connor 1999a: 27). Overlying this, the Holocene dated ‘Shell Horizon’ presented higher 

species diversity, predominantly Saccostrea sp., Acanthopleura spinosa, Nerita undata and Turbo  
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Figure 8.1 - Stratigraphic section of the Koolan Shelter 2 excavations. Figure redrawn after O'Connor (1999a: 27) 

Figure 8.2 – Depth/age curve for Koolan Shelter 2 as calculated by O’Connor (1999a). Figure 
redrawn from O’Connor (1999a: 32). 
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cinereus (O’Connor 2009: 39). Small amounts of mangrove-associated taxa, principally Terebralia 

palustris, were identified in the lower portions of this ‘Shell Horizon’ (O’Connor 1999a: 40).  

Focussing on the Holocene dated ‘Shell Horizon’, parallels can be drawn with the Brremangurey 

midden deposit. Two ages were generated from this horizon; the first from Spit 10, approximately 

48-53 cm below surface, and dating to 10,500 ± 150 years BP, and the second from Spit 5, 

approximately 22-27 cm below surface, returning an age of 3,710 ± 90 years BP. Both radiocarbon 

dates were from the same excavation square. Using a simple ‘rates of accumulation’ model (see 

Figure 8.2), whereby O’Connor simply connected the two points/dates on depth-time axes, she then 

argued for the presence of an early Holocene mangrove phase in the lower portions of the Shell 

Horizon (O’Connor 1999a: 122). Given that the extrapolated chronology for the Shell Horizon at 

Koolan 2 relied on two radiocarbon dates, there were questions as to whether these accurately 

represented the surrounding, spatially associated midden material. In other words, does the early 

Holocene date from the base of the Shell Horizon accurately date spatially-associated shell?  

Additionally, the presentation of the Koolan Shelter 2 data in the form of a depth/age curve (Figure 

8.2) gives the impression of a continuous and regular process of deposition between each known 

age. It is this appearance of continuity that allows O’Connor (1999a: 122) to speak at some length of 

early/mid-Holocene mangrove formations existing through until circa 7000 bp, with the assumption 

deposits dating to this time period are present in her midden with no radiocarbon evidence for such. 

Further dating, either absolute or relative, would be required to refine this chronology, allowing 

more reliable assessments of both the relative contributions of temporally distinct midden material 

and the time periods actually represented. 

Another north Australian example of the application of rates of accumulation in shell midden 

archaeology is Bailey’s (1977) analysis of a shell mound at Kwamter, south of Weipa, in Cape York, 

northern Queensland. First excavated by Wright (1963 and 1971), Bailey’s re-excavation and analysis 

pointed towards a more complex midden formation history than preliminary observations had 
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suggested. The mound showed no clear signs of stratigraphy, however taphonomic indicators in the 

form of a lightening of colour and increased brittleness in the lowest 5-10 cm of the deposit, 

interpreted “as a function of age” (Bailey 1977: 134), suggested two phases of mound formation. 

Three charcoal samples were submitted for radiocarbon dating, and were supplemented by Wright’s 

original radiocarbon determinations from the same deposit. Bailey notes that when interpreted 

separately, Wright’s and his own ages both returned a rate of accumulation of “about 55 cm per 100 

years when plotted against a depth scale. Taken together, however, the five dates suggest marked 

irregularities in the rate of accumulation of the shell deposit” (Bailey 1977: 134). 

Bailey then goes on to contemplate various possibilities to account for this variability in the rates of 

accumulation described for the Kwamter mound. He considers factors such as the error margins 

associated with radiocarbon dating, as well as how the small number of dates complicates 

interpretations (Bailey 1977: 134-135). He concludes that rates of accumulation that formed the 

Kwamter mound were variable through time, and goes on to “consider how such a pattern, if real, 

would affect interpretation” (Bailey 1977: 135). Following this, Bailey hypothesises a range of 

formation processes that could feasibly result in the inferred depositional patterning of this mound. 

What both studies require, and Bailey (1977: 134) explicitly calls for, is further refinement to the 

scientific chronology applied to shell midden sites to move interpretations forward. In recognition of 

said problems, and a need for further certainty in the chronology of deposits, Stein et al. (2003) 

developed a sophisticated approach to assessing rates of accumulation and tested this at a series of 

shell midden deposits on the San Juan Islands, Washington. 

In their study, Stein et al. (2003) aimed to isolate the formation patterns of shell middens to make 

apparent “otherwise invisible aspects of human behaviour” (Stein et al. 2003: 297) using a high 

resolution approach to the radiocarbon dating of shell middens. A total of 82 radiocarbon ages on 

charcoal fragments sourced from six different shell midden sites (Stein et al. 2003: 298) revealed 

complex and variable patterns of deposition, with discrete layers within deposits revealing vastly 
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different rates of accumulation when compared to the deposit as a whole (Stein et al. 2003: 313). 

Statistically applying a line-of-best-fit to the age/depth data, Stein et al. (2003) were able to isolate 

instances of hiatuses and time-averaged layers in their fine-grained comparison between rates of 

accumulation across layers and deposits (Stein et al. 2003: 313). 

The aims proposed by Stein et al. (2003) broadly accord with the aims of Temporal Packaging. The 

formation processes, specifically the depositional patterning, of an archaeological deposit is 

intrinsically linked to the behavioural processes of the people behind the deposition of material, and 

gaining a stronger understanding of the former allows a more reliable interrogation of the latter. 

However, considering the nature of the methods used by Stein et al. (2003), and more 

fundamentally how the data are being wielded to build behavioural interpretations requires further 

thought. 

Figure 8.3 – Stein et al.’s (2003) conceptual model of different forms of rates of accumulations typically 
encountered in the archaeological record. “Hypothetical accumulation rates: radiometric age as a 

function of sample depth. Line A models zero accumulation, Line B models a positive accumulation 
rate, Line C models an infinite accumulation rate, and Line D models a negative accumulation rate” 

(Stein et al. 2003: 300). 
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Rates of accumulation of shell midden deposits, as used by Stein et al. (2003), is an exercise in 

chronological refinement, and its focus is on understanding the (potentially) punctuated nature of 

deposits and isolating zones of disturbance. However, by reducing the chronological data points to a 

line of best fit, Stein et al. (2003) average out and homogenise the behavioural evidence they state 

they seek to understand (Stein et al. 2003: 297). This is in contrast to the manner in which the 

relative ages of AAR have been interpreted, where the data points themselves organically form 

groupings and clusters that are not then further averaged, which then becomes the focus for 

analysis and interpretation. 

If we were to apply rates of accumulation (specifically sensu Stein et al. 2003) to the radiocarbon 

dating program undertaken using material from Brremangurey, this point is demonstrated. Figure 

8.3 shows the idealised model of types of patterns of accumulation as conceptualised by Stein et al. 

(2003) that one might expect archaeologically. Applying rates of accumulation to Brremangurey, as 

defined by Stein et al. (2003), we would be able to identify a zone of disturbance at the base of the 

midden deposit as a back-and-forth of B and D line types suggesting that dated specimens are not in 

stratigraphic order. The rates of accumulation for the upper portions of the midden would return a 

pattern closer to line type C (Stein et al. 2003: 300), which suggests a large amount of shell being 

deposited in a rapid, almost single phase dump.  

Relying solely on radiocarbon dates, both methods were able to identify the time-averaged layer at 

the base of the Brremangurey midden deposit. However, the numbers of radiocarbon ages were 

insufficient to establish the extent of time-averaging of this layer. It was only with the addition of the 

AAR samples at Brremangurey that it became clear that the bulk of stratigraphically-associated shell 

in fact dated to the late Holocene. With AAR, it is possible to more effectively disentangle the unit 

into its constituent parts allowing behavioural interpretations of changing depositional intensities to 

be drawn. 
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Concluding remarks 

This thesis began with the recognition of the palimpsest nature of the archaeological record as 

discussed by Bailey (2007: 203-214). Palimpsests can be representative of a variable temporal span, 

and it is this potential breadth of time that opens up the archaeological record to the investigation of 

a range of spatial and temporal scales (Bailey 2007:201). Throughout his manifesto, Bailey stresses 

that palimpsests need to be appropriately temporally defined so the investigator understands the 

resolution afforded to them, and what scale of processes can/cannot be accessed. Bailey outlines 

two contrasting approaches in working with palimpsests: the ‘microscopic tendency’ (Bailey 2007: 

209), where a palimpsest is deconstructed towards its constituent parts, and the ‘macroscopic 

tendency’ which sees “a widening perspective of large scale comparison” (Bailey 2007: 210) and the 

analysis of the palimpsest as a whole. 

The micro- and macroscopic tendencies tend towards the investigation of processes on the opposing 

ends of the temporal spectrum, with short term, small scale processes being favoured by the former 

and long term, large scale processes for the latter. The deposits engaged by archaeologists generally 

sit somewhere in between, and this poses a methodological question of how best to engage with 

this intermediate scale of temporal investigation. Techniques that aim to refine the archaeological 

record in chronostratigraphic terms towards this intermediate scale of investigation have previously 

been developed; ‘rates of accumulation’ is one such technique. However, ‘rates of accumulation’ 

focus on exactly that: accumulation. Temporal Packaging, on the other hand, seeks to define 

analytical units, which can then be further interrogated at an appropriately-judged resolution; a 

purpose far better suited to defining and engaging with the palimpsest nature of the archaeological 

record (sensu Bailey 2007). 

Archaeology is the one discipline of the human sciences that cannot directly observe its subject 

matter (i.e. people) (Chippendale 1989: 70). To engage with socio-cultural processes, historically, 

archaeology has borrowed, sequestered or commandeered from other theory-driven disciplines 
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(Bailey 2007: 214-215). However, disciplines such as social anthropology, sociology and history 

(Bailey 2007: 215) investigate behavioural process on a far shorter temporal scale, and the 

palimpsest nature of the archaeological record is ill-suited to sustaining evidence of behaviours on 

the scale of individual, day-to-day events (sensu Bailey 2007: 214-215). Rather than seeing the lack 

of resolution of the archaeological record as a deficiency, archaeology is uniquely placed to engage 

with a range of processes intrinsically linked to human behaviour operating at temporal scales 

beyond the capabilities of these other disciplines (e.g. see Binford 1981: 197, Bailey 2007: 203).  

The common extra-disciplinary perception that it is the role of archaeology to rebuild ancient 

ethnographies (see Binford 1981: 197) “only tends to reinforce the opinion of social anthropologists, 

sociologists, historians and perhaps also philosophers, that archaeology is a derivative discipline that 

attempts to study with inherently imperfect data the past tense of phenomena that are better 

studied in the present. Archaeologists who go down this route of enquiry also inevitably end up 

chastising themselves and their colleagues for always being one step behind the chosen authority 

discipline” (Bailey 2007: 215). Archaeology should not be the neglected cousin of the theoretical 

hegemony of the day (sensu Bailey 2007: 215), but rather carve a niche better suited to the temporal 

and spatial scales represented by the material record with which we investigate; assuming we have 

the appropriate tools to do so. Temporal Packaging is one of those tools. 
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Time-averaging is a process that affects almost every form of archaeological deposit. The conflation of two or
more units from different time periods masks the true temporal span of units which is hidden by post-
depositional processes. The implications of this are obvious as archaeologicalmaterial found in close stratigraphic
association may differ in age by hundreds or thousands of years. Some sites have a greater tendency towards the
effects of time-averaging, with shell middens being one of the more susceptible. Conventional approaches to
midden excavation or analysis, however, do little to tackle the issue of time-averaging. Using amino acid
racemisation (AAR), an intensive relative dating programme was undertaken on shell midden excavated from
a potentially time-averagedmidden deposit. This approach revealed temporally distinct units that had been con-
flated into one deposit resulting in shell specimens temporally separated by up to 6000 years being found in close
stratigraphic association. The application of AAR allowed us to define the temporal parameters of the various
comingled deposits, and in doing so isolate temporal units which showed very different depositional patterns.
These contrasting units imply different depositional behaviours and in turn changes in site use through time.
This new application of AAR offers a way to approach shell midden archaeology to expose instances and reper-
cussions of time-averaging that were previously hidden.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Archaeological sites are not frozen in time. Rather, environmental
and cultural processes act on deposits to add, remove and redistribute
archaeological material (Ascher, 1961, 1968; Schiffer, 1972, 1996).
One particular product of these transformations is the creation of a pa-
limpsest: an agglomeration of previously separated material into one
homogenised unit (Bailey, 2007). Thismixing of originally spatially sep-
arated material creates the illusion of contemporaneity during excava-
tion with obvious implications regarding initial interpretations and
subsequent analyses utilising the time-averagedmaterial. It is therefore
critical that a time-averaged deposit be identified as such. Establishing
that a unit is time-averaged allows restructuring of the scale of ques-
tions being asked of the deposit to account for the expanded bracket
of time represented. By establishing the time range represented within
an assemblage, relevant information can still be gathered frommaterial
representing amuch greater timespan, however the possibility to tackle
themes on a smaller temporal scale is lost (Bailey, 1981, 1983; Lucas,
2005: 45, 49; Stern, 2008: 134; Sullivan, 2008).

Compositionally, shell midden deposits are usually dominated by
large amounts of molluscan shell with smaller proportions of sedi-
ments such as sand, silt and ash. Middens tend to be extremely per-
meable due to the relatively large size of the abundant shells that
facilitates the free movement of water, which can subsequently in-
fluence materials within the midden itself (Stein, 1992). Lighter ele-
ments such as sand, ash, small fish bones and charcoal, can be blown
away by wind, leading to deflation of the deposit, or washed away ei-
ther through the matrix or away from the deposit (Rick, 2002, see
alsoWandsnider, 1988). Animals also act as agents of transformation
within midden deposits. Among others, bowerbirds (Dwyer et al.,
1985), ants and termites (Robins and Robins, 2011), crabs (Specht,
1985; Szabó, 2012) and earthworms (Stein, 1983) have all been
identified as adding, removing, and redistributing midden material
in archaeological sites. Finally, human activity can greatly contribute
to the movement of midden shell through processes such as tram-
pling, pit digging and other activities associatedwith various cultural
behaviours (Schiffer, 1996).

Recognising a significantly time-averaged unit in a shell midden
during excavation is troublesome due to the coarse nature of the shell
dominatedmatrix and frequent compositional homogeneity. Increasing
the number of chronometric age determinations obtained can increase
temporal resolution and potentially bracket the age of a deposit
(Kowalewski et al., 1998: 291), although this can be a costly exercise.
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Cost means that the dating of shell middens often only involves a hand-
ful of age determinations for the entire sequence, and rarely more than
one per stratigraphic unit (Stein et al., 2003). The implication of this is
that the acknowledged temporal range of a time-averaged unit will be
severely underrepresented, or indeed not be identified at all.

The problem of time-averaging in shell dominated deposits is not
confined to archaeology and has been addressed in the geomorpholog-
ical and palaeontological literature (e.g. Fürsich and Aberhan, 1990;
Kowalewski et al., 1998; Flessa and Kowalewski, 1994; Fujiwara et al.,
2004 and Kidwell et al., 2005). Indeed, within some of these disciplines,
time-averaged deposits are considered the norm (Krause et al., 2010:
428). While the same limitations regarding the costs involved for radio-
metric dating techniques carry over into geological andpalaeontological
research, these latter disciplines have utilised alternative dating meth-
odologies to tackle the issue of time-averaged, carbonate-dominated
deposits in a cost effective way; most notably in the application of
amino acid racemisation (AAR) (e.g. Wehmiller et al., 1995;
Goodfriend and Stanley, 1996; Carroll et al., 2003 and Krause et al.,
2010). The cost-effectiveness of AAR allows a large number of samples
to be analysed, with multiple samples from the same stratigraphic
unit being tested to establish a range of ages for time-averaged deposits
(Kowalewski et al., 1998). While the processes that result in time-
averaging in the earth sciences often differ from those that are occur
in the archaeological record (e.g. Hughes and Lampert, 1977; Schiffer,
1996: 47), the principles and implications of time-averaging remain
the same.

Amino acid racemisation (AAR) is a dating method that has had a
long history of use in archaeological investigation (e.g. Masters and
Bada, 1977; Parfitt et al., 2005; Johnson and Miller, 1997; Bateman
et al., 2008; Ortiz et al., 2009; Demarchi et al., 2011). While the method
his principally been used to replace or supplement 14C dating as a chro-
nological device to understand broad site chronology (e.g. Bada and
Protsch, 1973; Parfitt et al., 2005; Kosnik et al., 2008), AAR has been
utilised for other ends: for example acting as a range finder for shell
midden units (Demarchi et al., 2011: 123), potentially identifying an-
thropogenic heating (Demarchi et al., 2011: 120) and using amino
acids to taxonomically identify shell fragments (e.g. Andrews et al.,

1985) and artefacts (Demarchi et al., 2014). The potential exists for
AAR to address issues of post-depositional transformation in archaeo-
logical deposits utilising the concept of ‘aminostratigraphy’ developed
within the earth sciences (e.g. Miller et al., 1979; Kennedy et al., 1982;
Hearty et al., 1986) which at present remains unexplored (but see
Demarchi et al., 2011: 123). We do not intend that increasing the reso-
lution of our understanding of how middens are deposited and over
what range of time using AAR is a way to deconstruct middens tomeal-
times. Rather, our approach intends to identify conflated deposits, pro-
vide a guide as to the temporal ranges encapsulatedwithin and ‘unravel
the palimpsest into its constituent parts’ (Bailey, 2007: 216). The princi-
pal aim is to refine a time-averaged deposit into smaller scale of epi-
sodes appropriate and relevant for the scale of investigations, such as
changes in environment and gathering behaviours, we ask of archaeo-
logical sites (Sullivan, 2008: 33).

To test the applicability of an aminostratigraphic approach to isolat-
ing time averaging inmiddens, we have undertaken an intensive dating
programme on midden material excavated from Brremangurey
rockshelter in the northwest Kimberley, Western Australia (Fig. 1).
Our aim was to identify zones of time-averaged midden and identify
and quantify the extent of time-averaging that had occurred through
the deposit's history.We further elaborate on the implications of the re-
sults, which substantially change our understanding of the accretion of
midden at Brremangurey.

2. Background to site and sample

The site called Brremangurey, named after who local clan group that
are custodians of the surrounding area, is a rockshelter found approxi-
mately 70 m inland from the present day coast of the Admiralty Gulf,
in the far north of the Kimberley region, Western Australia. The site
formed from the internal collapse of a flat-lying quartzite outcrop
which resulted in a ridge-like feature rising approximately 3 m from
the ground at the southern main entrance. The eastern and western ex-
tents of the shelter are composed of quartzite bedrock (Moore, 2011),
whilst the northern entrance and westernmost portion of themain en-
trance remain accessible despite abundant quartzite boulders (Ross

Fig. 1. Plan view of the Brremangurey rockshelter showing extent of midden deposit and location of squares excavated. Location of site shown on inset map.
Site plan redrawn from original figure by Kim Newman.
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et al., 2011). The southern entrance is ca. 23 m in length and the
rockshelter extends ca. 31 m through the collapsed bedrock. Overall
the entire surface area of the shelter is approximately 1200 m2

(Moore, 2011; Ross et al., 2011). Except for a few quartzite boulders,
the floor surface inside the rockshelter is loose shell midden (see Fig.
1). A talus slope of midden material is present outside the southern en-
trance to the shelter, extending past the dripline. A zone of subsidence is
apparent towards the centre of the shelter, and is potentially the result
of water flowing into the rear of the shelter during periods of abundant
rainfall, such as during the summermonsoons (Robert Vaughn, person-
al communication, 2011). Rock art extends across much of the roof and
wall surfaces and is discussed elsewhere (Huntley, 2014; Travers,
2015).

2.1. The excavation

Three 1 × 1m2 were selected fromwithin themain shelter for exca-
vation, and labelled using an alphanumeric grid: K26, K27 and K30.
They were strategically placed under particular rock art motifs painted
on the shelter roof. The excavation was conducted in arbitrary 5 cm
spits because of the visual homogeny of the midden as viewed from
the surface of the deposit. An underlying sand deposit was encountered
from spit 24 (121.4 cm below surface) to bedrock, and spit depths were
reduced to 2.5 cm.

Excavation of square K26 revealed two broad horizons defined pri-
marily by the sediments that formed the overall matrix of the deposit;
‘Horizon 1’ which is predominantly shell supported ash and silt, and
‘Horizon 2’ in the lower portions of the site from approximately 83 cm
below surface where sediments coarsen to a sand deposit (Moore,
2011) seen in Fig. 2. The total depth of the excavation was 183 cm at
its deepest point when bedrock was reached. The shell midden
characterises ‘Horizon 1’, and is only partially present in the upper ex-
tent of ‘Horizon 2’. Hearth features with burnt shell and charcoal are
common, interbedded among abundant layers of unburnt shell, and
are also present, albeit without shell, in the underlying sandsheet. The
pH of the deposit remained high throughout, with values of 8–9 in all

units. This resulted in excellent preservation of organic material includ-
ing shell, bone and both charred and uncharred plant material. Material
culture, stone and otherwise, is largely absent from ‘Horizon 1’ with
onlyminor occurrences of flaked quartz, quartzite, and ochre fragments
being found. However ochre crayons, bone points and stone tools in-
crease in abundance throughout ‘Horizon 2’ andwere identified to bed-
rock (Moore, 2011).

2.2. Chronology

The initial charcoal radiocarbon ages obtained post-excavation at
Brremangurey (seen in Table 1) reveal intensive midden deposition
throughout the later stages of the Holocene from approximately
2500 cal. years BP, with the cessation of deposition occurring at approx-
imately 500 cal. years BP. Other key north Australian shell midden de-
posits such as Weipa (Bailey, 1977, but see Morrison, 2014), Blue Mud
Bay (Faulkner, 2013), Darwin (Bourke, 2012) and the Admiralty Gulf
(Veitch, 1999), show a parallel chronological spread that would seem
to accord with the ages for Brremangurey.

A second series of ages yielded an early Holocene age of 8152–
8334 cal. BP on a valve of Anadara granosa (Wk-37137) from the
lower extent of the midden, and this prompted a chronological rethink.
Sourced from spit 18A (91–95.9 cm below surface), this shell was taken
from the same spit as an adjacent fragment of charcoal that returned an
age of 1,733–1876 cal. years BP (OZQ-187); a difference in age of over
6000 cal. years BP. Obviously, questions have to be asked regarding
stratigraphic integrity. This result has significant repercussions for inter-
pretations of both the material culture found in association with the
shells, as well as having clear implications regarding the formation his-
tory of the shell midden. If these results mean that a conflated deposit
has been identified in the Brremangurey assemblage, what proportion
of shell specimens are similarly temporally obscured? Conventional
dating methods such as radiocarbon could resolve this issue, however
the number of individual age determinations required to adequately
bracket the extent of time-averaging within the conflated deposit ren-
ders this approach unfeasible. This conundrum provided a good

Fig. 2. Stratigraphic section of 3 of the walls of the square K26, the material is utilised in this study.
Figure redrawn from original stratigraphic section diagram by Kim Newman.
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opportunity to test an application of an alternative chronological meth-
od — amino acid racemisation.

3. Approach to investigation

Amino acid racemisation (AAR) is a dating technique that centres on
the two chiral forms of amino acids. During life, amino acids are almost
solely maintained in the laevorotatory (L) form. After death, these L-
amino acids convert to their dextrorotary (D) forms; a process called
racemisation. Over time, the proportion of D-amino acids relative to L-
amino acids increases until equilibrium is reached. By establishing the
ratio of D- to L-amino acids allows the time since the organism's death
can be identified. In summary, the higher the D/L value, the more time
passed since the death of the organism. The primary variable that affects
the rate of racemisation is temperature, however a number of different
environmental factors can influence the rate of racemisation, such as
pH, presence of metal ions and microbial alteration to name a few
(Penkman, 2005: 33–38). Recent research has identified a small propor-
tion of proteins that are encapsulatedwithin individual calcium carbon-
ate crystals that formmolluscan shell (Sykes et al., 1995; Penkman et al.,
2008). These intracrystalline proteins have been proven to act as a
closed system, insulated from external taphonomic processes that
have the potential to obscure or skew results. Isolating the products of
intracrystalline protein diagenesis (IcPD) for use in AAR has subse-
quently provided more precise and reliable results. The IcPD approach
to AAR dating has been utilised here.

Geomorphological studies have routinely used AAR as a means of
assessing the depositional history of a deposit by establishing the rela-
tive ages of carbonate sediments, including molluscs and foraminifera,
with comparable D/L values; a concept termed aminostratigraphy (e.g.
Miller et al., 1979; Murray-Wallace et al., 1991; Bates, 1993; Hearty
and Kaufman, 2000; Wehmiller and Miller, 2000; Penkman et al.,
2007, 2013; Meijer and Cleveringa, 2009). By establishing clusters of
specimens exhibiting similar D/L ratios, called aminozones, then com-
paring extent of racemisationwith spatial positioning allows interpreta-
tions to be made regarding both site formation as well as post-
depositional transformation. Substantially time-averaged deposits are
immediately identified as spatially associated specimens return D/L
values belonging to different aminozones (e.g. Kowalewski et al.,
2000; Kidwell et al., 2005; Kosnik et al., 2007). While the agents and
processes that drive deposition and transformation in geomorphologi-
cal settings frequently differ to those of archaeological contexts, the
principles of recognising the temporality of deposition and transforma-
tion processes remain the same, and this approach is especially applica-
ble to shell middens. As applied to the Brremangurey shell midden we
aimed 1) to isolate any major instances of time-averaging within the
midden, and 2) establish a more accurate chronostratigraphic interpre-
tation for such layers.

4. Methods

4.1. Sampling methodology

Shells were sampled from all excavation units (spits) from which
shell midden was recovered. This approach allowed the results to por-
tray clustering without the bias associated with preferential sampling
of one excavation unit over another. A total of 42 valves of A. granosa
were sampled from both the dense midden overlying the sandsheet
from spits 1 to 21 (surface to 118 cm below surface). Two valves were
selected from the excavated and sorted midden material of each spit,
except for spits 10 and 12 where only one whole left valve was found.
No whole valves of A. granosa were found in spit 11 (a full list of sam-
ples, their codes, and relevant excavation data is presented in Table 2).
To remove the possibility of dating the same animal twice, only the
left valves were selected for analysis. Specimens that had no visible
signs of burning or other taphonomic influence such as acid dissolution
were selected. Where possible, the same shells that were sampled for
AMS radiocarbon dating were incorporated into the AAR programme
to provide a direct link between D/L values and radiocarbon age (sam-
ples OZQ-181 and OZQ-182).

4.2. Sample preparation

Preliminary sample preparation followed the process described by
Lachlan (2011). Shell specimens were cleaned of adhering sediment
using a soft-bristled brush. Following this, using a dental drill, the sur-
faces of the interior and exterior regions near the umbo were abraded.
A small subsample of the shell was removed from near the umbo. Al-
ready fragmented shells were not subsampled further, but were simply
cleaned and abraded. All specimens were then sonicated in purified
(Millipore) water for 5 min. This sonication step was repeated at least
three times until the water post-sonication was clear, replacing the
water after each cycle. Specimens were then air dried in sterile covered
plastic dishes.

The shell fragments were accurately weighed and subjected to a 2M
HCl etch at 0.0033 mL of acid per milligram of shell. Fragments were
then rinsed thoroughly in purified water. The fragments were once
again air dried and then crushed to a fine powder using an agatemortar
and pestle. Following methods outlined by Sykes et al. (1995) and
Lachlan (2011), the powdered shell was then exposed to a bath of
12.5% sodium hypochlorite (NaOCl) for 24 h and agitated regularly.
The NaOCl solution was then poured off and the powdered shell was
rinsed using purified water at least four times. A rinse of methanol
was also used to ensure the neutralisation of the NaOCl, and was then
followed by a final Millipore rinse.

Following the method outlined by Kaufman and Manley (1998),
preparation for hydrolysis began with dissolving the powdered shell

Table 1
Ages of the initial AMS radiocarbon dates of charcoal sourced from the wall of the excavation and shell from excavated material during preliminary midden analysis. Radiocarbon dates
have been calibrated using Calib 7.02 software with a delta-R value of 60 ± 31 years used for Kimberley marine shell (Alan Hogg, pers. comm., 2014), and presented at 2δ confidence.

Sample code Sampling location Material Depth
(cm. below surface)

Age
(uncalibrated)

Calibrated age

Wk-32405 Trench wall Charcoal 8.6 493 ± 33 498–552 (99.4%)
614–617 (0.6%)

OZQ-181 Excavated material Anadara granosa 24.1–28.1 (spit 6) 1415 ± 25 785–988
OZQ-185 Excavated material Charcoal 24.1–28.1 (spit 6) 930 ± 25 791–918
Wk-32407 Trench wall Charcoal 57.6 1896 ± 33 1733–1899 (98.9%)

1913–1920 (1.1%)
OZQ-182 Excavated material Anadara granosa 75.9–80.3 (spit 15) 2615 ± 30 2115–2326
Wk-37137 Excavated material Anadara granosa 91.0–95.9 (spit 18A) 7828 ± 25 8152–8334
OZQ-187 Excavated material Charcoal 91.0–95.9 (spit 18A) 1875 ± 25 1733–1876
Wk-32409 Trench wall Charcoal 91.0 3394 ± 25 3579–3694
Wk-32410 Trench wall Charcoal 108.3 10,867 ± 39 12,694–12,801
Wk-32411 Trench wall Charcoal 125.5 12,303 ± 44 14,059–14,564
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in a sterile vial using 8 M HCl at 0.02 mL of acid per milligram of shell.
This destroys the crystalline component of the shell releasing the pro-
teinaceousmaterial containedwithin. The vialswere then filledwith ni-
trogen (N2) gas and sealed. The vials were placed into an oven at 110 °C
for 22 h to induce hydrolysis of the peptide bonds. Following this pro-
cess, samples were dried in a vacuum desiccator and then rehydrated
using a solution 0.01mML-HomoArginine+0.01MHCl+ 0.77mM so-
dium azide and L-HomoArginine acting as a an internal lab standard.
Sample analysis was conducted using an Agilent 1100 reverse phase
high pressure liquid chromatograph (RP-HPLC). Two analyses per
shell samplewere run to quantify instrumental uncertainty inmeasure-
ments of amino acids and the results averaged.

5. Results

Of the 42 shells that were analysed for this study, one sample
(UWGA10495) was lost when the vial was not sufficiently sealed prior
to the 110 °C oven stage of sample preparation. All other specimens pro-
vided useable results. Only the results of aspartic (Asx) and glutamic
(Glx) acids are presented here. Of all of the amino acids that can be
analysed, aspartic acid was selected because of its abundance inmollus-
can shell, but also because of the balance it offered between temporal
resolution and time-depth it provided. Glutamic acid was also selected
due to the high degree of covariance with aspartic acid, which allows

taphonomically affected samples to be identified through the deviation
from this covariance (Kaufman, 2006).

An initial observation of the results of this study is a clustering of
specimens circled in Fig. 3. The D/L values of these specimens
(UWGA10472, UWGA10403, UWGA10407, UWGA10408 and
UWGA10409) match patterns that are thought to result from burning,
or exposure to fire. As mentioned previously, aspartic acid undergoes
racemisation at a faster rate than glutamic acid, and subsequently
equivalent D/L values between each amino acid should not be identified
until equilibrium. Similar patterns are observed and described by Crisp
(2013: 181–182), Demarchi et al. (2011: 120), and Brooks et al.
(1991) who were able to demonstrate that exposure to high tempera-
tures for a short period of time preferentially affected aspartic acid D/L
values over other, slower racemising amino acids, such as glutamic
acid. While none of the shells selected exhibited any visual signs of
burning, the thermal influence of campfires has to be expected in a
site like Brremangurey, especially considering the abundance of char-
coal, hearth features and other evidence of anthropogenic fire within
the archaeological material. As these specimens have been
taphonomically altered, these samples have not been incorporated in
further analyses and interpretations of this study.

Looking to the rest of the dataset, the pattern observed in the bivar-
iate analysis of aspartic acid versus glutamic acid (Fig. 3) reveals a steady
increase in the extent of racemisation in the shells analysed which,

Table 2
Results of the AAR analysis. Each sample was run in duplicate and averaged. UWGA lab code issued by the Amino Acid Racemisation Laboratory at the University of Wollongong. AMS
radiocarbon dates have been calibrated using Calib 7.02 software with a delta-R value of 60 ± 31 years used for marine shell (Alan Hogg, pers. comm., 2014), and presented at 2δ
confidence.

Lab code (UWGA) Spit D/L Asx Sample variance D/L Glx Sample variance Radiocarbon lab code Radiocarbon age (cal. BP)

10470 1 0.201 ±0.001 0.1115 ±0.0005 Wk-40856 326–496
10471 1 0.3395 ±0.0015 0.12 ±0
10472 2 0.543 ±0.006 0.6195 ±0.005
10473 2 0.3485 ±0.0005 0.141 0 Wk-40857 387–525
10474 3 0.35 ±0.001 0.148 0
10475 3 0.346 ±0.008 0.1345 ±0.0015
10476 4 0.356 ±0.003 0.1335 ±0.0005
10477 4 0.4025 ±0.0065 0.159 0
10478 5 0.35 ±0.010 0.1275 ±0.0015
10479 5 0.394 ±0.001 0.1485 ±0.0005
10480 6 0.3755 ±0.0005 0.150 0
10481 6 0.4185 ±0.0065 0.1535 ±0.0005
10494 6 0.413 ±0.017 0.155 ±0.001 OZQ-181 785–988
10482 7 0.428 ±0.0105 0.1665 ±0.0035
10483 7 0.4365 ±0.0105 0.185 ±0.001
10484 8 0.496 ±0.002 0.214 0
10485 8 0.405 ±0.011 0.156 ±0.004
10486 9 0.463 0 0.1975 ±0.0005
10487 9 0.393 ±0.010 0.1505 ±0.0025
10488 10 0.5165 ±0.0115 0.2255 ±0.0005
10489 12 0.5765 ±0.0075 0.2655 ±0.0005
10490 13 0.5605 ±0.0185 0.2505 ±0.0015
10491 13 0.309 ±0.001 0.127 0
10492 14 0.514 ±0.016 0.2115 ±0.0015
10493 14 0.5095 ±0.0095 0.2265 ±0.0005
10495 15 – – – – OZQ-182 2115–2326
10394 15 0.514 – 0.263 – Wk-40858 2139–2330
10395 15 0.5095 ±0.0065 0.2705 ±0.0015
10396 16 0.541 ±0.010 0.303 ±0.001
10397 16 0.5245 ±0.0045 0.273 ±0.003
10398 17 0.806 ±0.005 0.5425 ±0.0005 Wk-40859 2844–3080
10399 17 0.5695 ±0.0045 0.2875 ±0.0005
10400 18A 0.410 ±0.005 0.1815 ±0.0005
10401 18A 0.9715 ±0.0205 0.856 ±0.013 Wk-37137 8208–8365
10402 18B 0.5585 ±0.0005 0.3145 ±0.0005
10403 18B 0.5395 ±0.0105 0.618 ±0.004
10404 19 0.6525 ±0.0045 0.4625 ±0.0015
10405 19 0.597 ±0.001 0.4145 ±0.0045
10406 20 0.441 ±0.002 0.2245 ±0.0015
10407 20 0.5105 ±0.0075 0.5355 ±0.0035
10408 21 0.566 ±0.001 0.565 ±0.002
10409 21 0.4785 ±0.0005 0.776 ±0.003
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when the previously determined radiocarbon ages are included, corre-
spond well with increasing age. Generally, there is little clustering be-
tween samples seen in Fig. 3 with a very regular increase in D/L values
being observed. k-Means cluster analysis statistically isolated 4 distinct
clusters, shown in Fig. 3. Cluster A is a single specimen (UWGA10470)
exhibiting a much lower D/L value when compared with the rest of the
sequence. Cluster B is a dense grouping of shells, comparable to cluster
C, although cluster C exhibits a more advanced extent of racemisation.
In contrast, cluster D exhibits the greatest extent of racemisation by a
substantial margin (for example centroid of cluster D of Glx D/L value
is 0.699 compared to 0.284 for the centroid of cluster C, seen in Table 3).

When comparing D/L values of each specimen with their spatial po-
sitioning during excavation (Fig. 4), clusters A and B are almost entirely
comprised of shells sourced from spits 1 through to 7 (surface to
40.5 cm below surface). Such a pattern is not seen in the lower portion
of the midden as little correlation between stratigraphic level and rela-
tive D/L values are observed. This is further depicted in Fig. 4, which plots
stratigraphic depth of each sample and Asx D/L values. While a positive
correlation between depth and D/L value is seen in the upper and youn-
ger portion of the midden, the lower and older extent of the midden,
particularly from spit 13 onwards, does not continue this trend. Instead,
amuchmore variable pattern is apparentwith very different ages being
associated with the same spit, and regularly younger shell specimens
being stratigraphically below older ones (for example shell specimens
from spit 19 compared with spits 17 and 18A in Fig. 4 and Fig. 5).

Fig. 3. Bivariate plot combining D/L ratios of both Asx (x-axis) and Glx (y-axis) for each sample analysed in this study. The results of the k-means cluster analysis are also incorporated.
Specimens that have been circled have been interpreted to have been affected by burning or exposure to high heat. Radiocarbon dates have been calibrated using Calib 7.02 software
with a delta-R value of 60 ± 31 years used for Kimberley marine shell (Alan Hogg, pers. comm., 2014), and presented at 2δ confidence.

Table 3
Results gathered from k-means cluster analysis utilising the Brremangurey AAR samples.
Centroids refer to the average D/L values of Asx and Glx for each cluster.

Amino acid Centroid mean
(D/L)

Cluster range
(D/L)

Standard deviation

Cluster A Asx 0.201 – –
Glx 0.1115 – –

Cluster B Asx 0.387 0.309–0.463 0.042
Glx 0.1558 0.120–0.2245 0.027

Cluster C Asx 0.5529 0.496–0.6525 0.042
Glx 0.2844 0.2115–0.4625 0.073

Cluster D Asx 0.8888 0.806–0.9715 0.117
Glx 0.6993 0.5425–0.856 0.222 Fig. 4. D/L values (x-axis) compared with excavation units that shells were sampled from.

Note increasing D/L value to the right of the figure indicates older age.
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These patterns present a strong indication that time-averaging has oc-
curred in the lower extent of the Brremangurey midden.

A further four shells were selected for radiocarbon dating based on
their relative positioning derived from the results of the AAR analysis
to properly bracket the age range of the deposit, as well as identify
when punctuations in deposition occurred (Table 4). When these ages
are marked on the bivariate plot, the numerical ages derived from the
radiocarbon analysis coincide very neatly with the D/L values and rela-
tive ages of this study, seen in Fig. 3.

6. Discussion

While the initial radiocarbon dating program suggested the pres-
ence of a time-averaged deposit, the AAR analysis presented here was
able to expand on the story of deposition and disturbance within the
Brremangurey midden. A population of shells exhibiting a substantially
more advanced extent of racemisation (cluster D in Fig. 3) than thema-
jority of shell specimens that form themain bulk of the shellmidden has
become apparent. The close agreement of the extent of racemisation
established using AAR on the shell specimen also AMS radiocarbon
dated to over 8000 cal. years BP (Wk-37137), as well as its position rel-
ative to the other D/L values generated in this study, further reinforces
the position that this shell is genuinely older than those surrounding
it, and not a product of some process that skews age determinations
such as the marine reservoir effect in radiocarbon dating. The

implication of this result is that an older deposit of shell has become
conflated into the younger shell deposit, as highlighted in Fig. 4 and
Fig. 5.

Comparing the younger shell deposit to the older and far less abun-
dant deposit, the extent of timebracketed by each grouping of shell is an
obvious distinction. The primary grouping of shell (clusters B and C seen
in Fig. 3) represent the bulk of the shell material present in the
Brremangurey midden deposit, and covers a time range of approxi-
mately 2300 to 350 cal. years BP. The much more scattered grouping
of shell specimens (cluster D in Fig. 3) covers a considerably larger
time range from approximately 8300 cal. years BP. With the oldest
and youngest material dated, the effective range of shell midden accu-
mulation observed in the Brremangurey midden assemblage extends
throughout the Holocene, from approximately 8300 to 350 cal. years BP.

While this conclusion in itself reveals a critical part of the history of
the Brremangurey deposit, the refining of the chronology of the
Brremangurey assemblage presents new opportunities for investiga-
tion. The results of the AAR analysis reveal a considerable difference in
the proportional abundance of shell specimens between the various
groupings of shell identified. The vast majority of midden shell speci-
mens are restricted to the younger grouping (clusters B and C in Fig.
3), and by comparison the oldest grouping of shell (cluster D in Fig. 3),
represents amuch smaller population of shell specimens. Two interpre-
tations can be offered; 1) the proportional abundances between the
groupings are reflective of the relative depositional patterns that

Fig. 5. All radiocarbon ages presented in this study placed in in stratigraphic order fromwhere thematerial was sampled from. Specimens for radiocarbon dating markedwith a solid line
were sampled directly from the wall of the trench during excavation. Specimens that were selected post-excavation from analysedmidden material are indicated by a dashed-line at the
approximate depth from which they were excavated.

Table 4
Results of additional AMS radiocarbon analyses on shell specimens selected as a result of the AAR analysis (see Fig. 3). Radiocarbon dates have been calibrated using Calib 7.02 software
with a delta-R value of 60 ± 31 years used for Kimberley marine shell (Alan Hogg, pers. comm., 2014), and presented at 2δ confidence.

Sample code UWGA sample code Method Material Depth
(cm. below surface)

Age
(uncalibrated)

Calibrated age

Wk-40856 10470 AMS radiocarbon Anadara granosa 0–3.1 (spit 1) 851 ± 20 326–496
Wk-40857 10473 AMS radiocarbon Anadara granosa 3.1–5.4 (spit 2) 882 ± 20 387–525
Wk-40858 10394 AMS radiocarbon Anadara granosa 75.9–80.3 (spit 15) 2631 ± 20 2139–2330
Wk-40859 10398 AMS radiocarbon Anadara granosa 83.7–90.1 (spit 17) 3232 ± 20 2844–3080
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created them and thus the original level of deposition of A. granosawas
low; or 2) the quantified abundances of A. granosa do not reflect the
original scale of deposition and the earlier deposits have undergone a
significant degree of loss of midden material over time. The first as-
sumption closely aligns the Brremangurey midden with Bailey's
(2007): 207) description of a ‘cumulative palimpsest’, where no (or lit-
tle) material evidence is lost between two units when both are conflat-
ed — they are simply mixed. The second is closer to a ‘true palimpsest’
(Bailey, 2007: 205) that involves some or total loss of material evidence
through time.

Depending on which form of palimpsest is present in the
Brremangurey midden assemblage, the overall interpretations of be-
havioural practices at Brremangurey change. Assuming that the abun-
dance of shell present in the excavated assemblage is a reasonable
reflection of the nature of A. granosa deposition in the past, we observe
a substantial shift in gathering practices through time. The deposition of
shellmiddenwas initially rather sporadic and ephemeralwith relatively
small quantities of shell brought back to the rockshelter throughmost of
theHolocene from approximately 8300 to 2500 cal. years BP. Patterns in
midden deposition then changed, as gathering strategies focussing on
shellfish increased in intensity with much larger quantities of shell
being deposited in the rockshelter. This interpretation has further impli-
cations for the intensity and frequency of site use through time.

The alternative scenario is that a substantial amount of midden ma-
terial has been lost through some process, mechanical or chemical,
resulting in an underrepresentation of the true abundance of shell
brought into the shelter in earlier phases of midden accumulation.
Chemical dissolution has thepotential to destroy carbonates in a deposit
through slightly acidic water percolating through the site, however this
process leaves traces in the form of reprecipitated minerals (e.g. Beck,
2007; Villagran et al., 2011); something that was not observed during
excavation or analysis of the midden material. Similarly, none of the
shells selected for AAR analysis exhibited signs of low-level acid dissolu-
tion signalled by of rounded margins and muted sculpture and a chalky
texture (Claassen, 1998: 59–60). Mechanical removal of midden is a
definite possibility, however once again evidence associated with this
process was not found during excavation or analysis (e.g. Glover,
1979: 306–7 on remnant midden-bearing breccias on cave walls). It is
possible that evidence exists of the mass movement of shell within
the talus slopes at the entrance of the rockshelter (see Fig. 1) that
could provide further insights intomechanical processes of shell remov-
al at Brremangurey.

Without any lines of evidence from the analysed material that sug-
gest a chemical or mechanical explanation of the removal of midden
shell at Brremangurey, the most parsimonious explanation is that the
shell excavated from the rockshelter is an adequate reflection of the de-
positional behaviours practised over time and that the proportion of
shell present in the midden is indicative of the amount of shell midden
deposited in the early-mid Holocene. Thus, the change in proportional
abundances of shell between the primary clusters of shell specimens
and the oldest grouping of shell (clusterD in Fig. 3) has been interpreted
to be the result of a behavioural shift in shellfish gathering practices. Ini-
tially, shellfish collection and shell deposition followed a low intensity,
ephemeral and very episodic pattern from approximately 8,300 cal.
years BP. Rather suddenly, shellfish gathering behaviours became
more focussed and intensive and this ultimately underpinned the for-
mation of the very dense shell midden that accumulated from approxi-
mately 2,300 cal. years BP to 350 cal. years BP.

7. Conclusion

The key aims of this study were to refine the chronology of the
Brremangurey midden assemblage and to isolate any potential time-
averaged deposits, which have been achieved. Initial radiocarbon ages
gathered using material excavated from Brremangurey were fortunate
in likely identifying a time-averaged deposit, however the number of

AMS radiocarbon ages presented in this study is unusual when com-
pared to the typical approaches to midden chronology. Despite this,
the true extent of time-averaging remained hidden. Similarly, shifts in
shellfish gathering intensity through time would have remained
masked. It was only with the intensive use of AAR presented here that
the extent of time-averaging and changing gathering intensities could
be further expanded. By isolating appropriate temporal units, the scale
of questionswe can now appropriately ask of the Brremangurey assem-
blage can be refined, allowing investigation of changes in the deposi-
tional behaviours practised by Brremangurey's ancient occupants on a
resolution that would have been previously impossible.

Shell middens are always going to be beset with issues associated
with time-averaging across a range of temporal, spatial and quantitative
scales, largely due to their large constituent parts and complex and
often fine-grained formation processes.Whilemethodological advance-
ments in standard chronometric techniques continue to allow for ever-
finer resolution of ages, reducing a shell midden down to the individual
mealtimes will remain impossible and arguably unnecessary consider-
ing the questions we as archaeologists ask of an assemblage. Refining
the chronology enough to isolate temporal disjuncture and conflation
in time-averaged deposits is necessary to establish the actual temporal
envelope that brackets the archaeological material, and rationally re-
frame our scale of enquiry to engagewith the processes behind thema-
terial which will provide a much more accurate and complete story of
the deposit as a whole through time.

This study has shown that not only can temporal ranges be elucidat-
ed, but that changing patterns of deposition can be brought into sharper
focus. It is also not unreasonable to assume that the hidden issues in the
Brremangurey deposit are not also present in other midden deposits
around the world. This study has, using the novel adaptation of a well-
established dating method, presented a new approach to how we ana-
lyse midden material.
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a b s t r a c t

Shell middens are particularly susceptible to post-depositional processes that can rework and redis-
tribute material through a deposit. As archaeological material is moved from its original primary context,
the assumption that a temporal connection exists with spatially associated material becomes tenuous. It
therefore becomes critical to identify displaced archaeological material within a deposit to ensure correct
chronologies are being built. Radiometric dating techniques can identify individual displaced materials,
but are sometimes prohibitively costly to utilise on a large scale. This study presents a new application of
amino acid racemisation (AAR) dating that identifies stratigraphically displaced midden shell from
within a deposit from the northwest Kimberley, Western Australia. Low-cost AAR analysis of 72 samples
identified a sample of downwardly-displaced midden shell. Upon close inspection, comparison of AAR
and AMS radiocarbon determinations identified fine-grained inconsistencies. Possible processes gener-
ating these discrepancies are considered with future avenues for research presented. While an enormous
amount of potential is contained within AAR, more work is required to bring the method to the same
level of precision as other commonly utilised dating techniques in archaeological research.

© 2015 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

Archaeological deposits are constantly being influenced by
environmental and cultural processes that can add, remove or
redistribute material (Schiffer, 1996). These processes can result in
the distortion or complete disassociation of the original spatio-
temporal connections that artefacts and sediments (Bailey, 2007).
This is a major complication, especially considering that re-
searchers constantly rely on assumptions of spatial and temporal
relationships between materials in archaeological deposits to build
interpretations regarding the ancient behaviours and palae-
oenvironments represented within the deposit (e.g. Burleigh, 1974:
79, Taylor and Bar-Yosef 2014). Recognising that the potential exists
for material within an archaeological deposit to be displaced is
therefore critical for any interpretations or subsequent analyses to
carry any form of accuracy or relevance. Resolving these ambigu-
ities, however, can present methodological problems.

Radiocarbon dating is by far the most widely used absolute
chronological tool in archaeological in archaeological investigation,
however issues regarding site integrity and patterns of disturbance
still have the potential to greatly skew results and interpretations
(Burleigh,1974). The development of AMS techniques facilitated the
direct dating of archaeological material (e.g. Rick et al. 2005; Wild
et al. 2005; O'Connor et al. 2010). The key advantage of this practice
is that the assumption that spatial association represents temporal
association is circumvented by attributing an age to the artefact or
ecofact itself rather than relying on the chronology of the sur-
rounding material. Despite its prolific use in archaeological
research, the radiocarbon method as we know it today is most
effective on a small scale of chronological inquiry; dating one
specific event or artefact (see Lucas, 2005: 45, 49; Sullivan, 2008). In
answering larger site-scale questions, such as assessing the spatial
and temporal relationships between populations of artefacts and
material, one single age determination is insufficient. While two
radiocarbon ages can at times be enough to identify a disturbed
deposit (see O'Connor et al. 2010: 37e38), such minimal data can
rarely pinpoint the degree or nature of disturbance. Many indi-
vidual samples are required to reliably identify disturbed deposits
and go beyond the mere label of ‘disturbed’. Only then can
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researchers actually assess the relative contributions of units of
temporally distinct sediments, ecofacts and artefacts in a time-
averaged deposit and build reliable interpretations of site
transformation.

Shell middens are ubiquitous archaeological features across the
globe, and are particularly susceptible to post-depositional trans-
formation (Stein, 1992). This is largely due to their generally coarse
and porous composition that allows material held within to be
freely displaced, removed or altered by environmental and cultural
processes (e.g. Dwyer et al. 1985; Specht, 1985; Wandsnider, 1988;
Rick, 2002; Robins and Robins, 2011; Szab�o, 2012). Considering the
significant potential that shell middens have in contributing to
important issues in archaeological research (e.g. Bailey, 1977;
Cannon, 2000; Lombardo et al. 2013), it is critical that the identi-
fication of displaced material within a shell midden is identified.
Unfortunately, few methodologies are currently utilised that can
unambiguously identify and isolate displaced shell in middens,
especially on a larger scale (but see Villagran et al. 2009, Villagran
et al. 2011a, 2011b for a microscale perspective). While an intensive
dating program using the radiocarbon method and multiple sam-
ples would identify temporally disconnected, but spatially associ-
ated shells, the financial costs associated with so many radiocarbon
age determinations generally make this approach unrealistic.

Amino acid racemisation (AAR) is a relative dating method that
has had a long history of use in archaeological investigation (e.g.
Masters and Bada, 1977; Wehmiller, 1977; Parfitt et al. 2005;
Bateman et al. 2008; Ortiz et al. 2009; Demarchi et al. 2011).
Rather than providing numerical values, AAR results tell us which
samples are more or less racemised and thus, broadly, older or
younger. While AAR experienced some negative perception in the
discipline of archaeology in the late 20th century as a result of
anomalous ages being generated (Bada et al. 1974, see also Johnson

and Miller, 1997: 276), refinements in the method have yielded
consistently reliable results (e.g. Kaufman and Manley, 1998;
Penkman et al. 2008; Demarchi et al. 2013a, 2013b). The tech-
nique carries with it major advantages compared with more con-
ventional dating methodologies such as radiocarbon and OSL.
Firstly, AAR allows for a substantial number of samples to be ana-
lysed for the same cost as a single radiocarbon age determination.
This cost effectiveness creates the opportunity for a much more
intensive dating program incorporating many more samples than
relying on radiocarbon dating alone. A second key advantage is that
the archaeological material is being directly targeted and not

Fig. 1. Site plan and inset map of Admiralty Gulf.

Fig. 2. Stratigraphic section of Brremangurey.
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sediments argued to be in association, as with OSL dating. This
removes a layer of inference which would otherwise have the po-
tential to skew results due to post-depositional movement of sed-
iments and archaeological material. The relatively low cost coupled
with the ubiquity of dateable material in shell midden archaeology,
results in AAR being perfectly suited for intensive dating programs
to ascertain a much broader understanding of the ages of materials
present within a deposit.

2. Background to site and sample

2.1. The excavation

The site of Brremangurey on the coastline of the Admiralty Gulf,
northern Western Australia, is a quartzite rockshelter containing
the remnants of human occupation extending through the late
Pleistocene into the late Holocene (Ross et al. 2011; Koppel et al.
2015) (Fig. 1). Rock art covers a substantial portion of the walls
and roof of the shelter, and is discussed elsewhere (Huntley, 2014;
Travers, 2015). A shell midden covers the entire floor surface of the
interior of the shelter, and extends out past the dripline of the
southern entrance forming a talus slope that drops approximately
three metres. The floor surface of the rockshelter is predominantly
ash-supported silts with abundant shell and charcoal present. The
bivalves Marcia hiantina (Lamarck 1818) (Bivalvia: Veneridae) and
Tegillarca granosa (¼Anadara) (Linnaeus 1758) (Bivalvia: Arcidae)
are by a large margin the most abundant shell species observed on
the surface of the midden, with M. hiantina occurring in much
higher numbers than T. granosa.

Excavations were conducted within the rockshelter in 2011.
Three 1� 1metre squares were excavated into the midden deposit,
with the location of each square being determined by their position
relative to individual art motifs on the roof above (Moore, 2011).
The excavation was conducted in arbitrary 5 cm spits, with a spit
being concluded once a new stratum or distinguishable feature
became apparent (Moore, 2011). From Spit 24 (121.4 cm below

surface) to bedrock, spit depths were reduced to 2.5 cm as exca-
vation reached sediments dominated by sands, allowing finer and
more controlled excavation of units. Excavated material was sieved
through 5 mm and 3 mm screens, with 50% of shell material by
volume of both fractions retained for analysis.

Bedrock was reached at a depth of 183 cm. Two major distinct
stratigraphic units were identified (Fig. 2). The matrix of Unit 1 is
ash and silt, while in Unit 2 the sediments coarsen to a sand deposit
(Ross et al. 2011). The contact between the two Units occurred at a
maximum of 100 cm below surface. Extremely dense shell midden
deposit characterise all of Unit 1, and there is only limited shell
midden material in the uppermost extent of Unit 2 (Koppel et al.
2015). Material culture is largely absent from Unit 1 with only
minor occurrences of flaked quartz and quartzite, and ochre frag-
ments being found. However, ochre crayons, bone points and stone
tools increase in abundance throughout Unit 2 and were identified
to bedrock (Moore, 2011).

2.2. Radiocarbon chronology

The chronology of ancient M. hiantina collection and deposition
at Brremangurey largely parallels late Holocene high intensity shell
collection across tropical northern Australia as observed in other
sites such as Blue Mud Bay (Faulkner, 2013), the western Admiralty
Gulf (Veitch, 1999), Darwin (Bourke, 2012) and Weipa (Bailey, 1977,
but see; Morrison, 2014). Initial AMS radiocarbon ages derived from
whole valves at the lowest excavation unit from which shell was
recovered suggests that the large-scale gathering of M. hiantina
commenced at 2375e2682 cal. BP (OZQ190) (Table 1). A fragment
of charcoal (Wk-32405) sampled from the wall of square K26 post-
excavation from a depth of 8.6 cm below surface returned an age of
498e552 (99.4%) cal. BP which provides an indication of the time of
cessation of midden building at Brremangurey. An AMS radio-
carbon date from a pit feature identified at approximately 91 cm
below surface (Wk-32409) was also obtained, and returned an age
of 3579e3694 cal. BP.

Table 1
Initial radiocarbon ages.

Sample code Sampling location Material Depth (cm. below surface) Radiocarbon age (uncalibrated) Calibrated age

Wk-32405 Trench wall Charcoal 8.6 493 ± 33 498 e 552 (99.4%)
614 e 617 (0.6%)

OZQ-188 Excavated material Marcia hiantina 24.1e28.1 (Spit 6) 1305 ± 25 695 e 892
OZQ-185 Excavated material Charcoal 24.1e28.1 (Spit 6) 930 ± 25 791 e 918
Wk-32407 Trench wall Charcoal 57.6 1896 ± 33 1733e1899 (98.9%)

1913e1920 (1.1%)
OZQ-189 Excavated material Marcia hiantina 75.9e80.3 (Spit 15) 2495 ± 30 1942e2215
OZQ-186 Excavated material Charcoal 75.9e80.3 (Spit 15) 2210 ± 30 2148e2319
OZQ-190 Excavated material Marcia hiantina 91.0e95.9 (Spit 18A) 2850 ± 30 2375e2682
OZQ-187 Excavated material Charcoal 91.0e95.9 (Spit 18A) 1875 ± 25 1733e1876
Wk-32409 Trench wall Charcoal 91.0 3394 ± 25 3579e3694
Wk-32410 Trench wall Charcoal 108.3 10,867 ± 39 12,694e12,801
Wk-32411 Trench wall Charcoal 125.5 12,303 ± 44 14,059e14,564

Table 2
D/L values of all shell in this study.

Lab code (UWGA) Spit D/L Asx Sample variance D/L Glx Sample variance Radiocarbon lab code Radiocarbon age (cal. BP)

10325 1 0.2405 ±0.001 0.12 ±0.002
10326 1 0.307 ±0.002 0.132 0 Wk-40860 295 e 462
10327 1 0.208 e 0.101 e

10328 2 0.301 0 0.137 0
10329 2 0.2775 ±0.001 0.1405 ±0.001
10330 2 0.261 ±0.004 0.1155 ±0.001
10331 3 0.2415 ±0.003 0.108 0
10332 3 0.2035 ±0.001 0.1265 ±0.001

(continued on next page)
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Table 2 (continued )

Lab code (UWGA) Spit D/L Asx Sample variance D/L Glx Sample variance Radiocarbon lab code Radiocarbon age (cal. BP)

10333 3 0.3305 ±0.003 0.259 0
10334 4 0.2305 0 0.1155 ±0.001
10335 4 0.196 ±0.004 0.1125 ±0.001 Wk-40861 639 e 774
10336 4 0.234 0 0.106 0
10337 5 0.257 e 0.084 e

10338 5 0.2325 ±0.007 0.0185 ±0.003
10339 5 0.221 e 0.026 e

10340 6 e e e e

10341 6 0.270 0 0.0595 ±0.115
10342 6 0.240 0 0.103 0
10496 6 0.362 ±0.002 0.1485 ±0.001 OZQ-188 695 e 892
10343 7 0.2235 ±0.003 0.1065 ±0.001
10344 7 0.2385 ±0.001 0.1185 ±0.001
10345 7 0.212 0 0.1105 ±0.001
10346 8 0.3265 ±0.001 0.1735 ±0.005
10347 8 0.3265 ±0.001 0.176 0
10348 8 0.3545 ±0.001 0.164 0
10349 9 0.4435 ±0.003 0.2195 ±0.001
10350 9 0.342 0 0.1375 ±0.001
10351 9 0.419 0 0.2055 0
10352 10 0.425 ±0.002 0.2155 ±0.001
10353 10 0.480 0 0.2375 ±0.003
10354 10 0.387 0 0.1785 ±0.003
10355 11 0.4235 ±0.001 0.1795 ±0.001
10356 11 0.389 e 0.179 e

10357 11 0.4075 ±0.001 0.206 ±0.002
10358 12 0.6195 ±0.003 0.2935 ±0.001
10359 12 0.4325 ±0.002 0.232 0
10360 12 0.573 0 0.269 ±0.008
10361 13 0.466 ±0.002 0.2035 ±0.001
10362 13 0.4285 ±0.003 0.195 0
10363 13 0.399 e 0.191 e

10364 14 0.3735 ±0.005 0.198 0
10365 14 0.4445 ±0.001 0.1965 ±0.001
10366 14 0.4215 ±0.007 0.1945 ±0.003
10367 15 0.4265 ±0.001 0.2235 ±0.001
10368 15 0.364 ±0.002 0.202 ±0.004
10369 15 0.4025 ±0.001 0.1985 ±0.003
10497 15 0.4335 ±0.021 0.214 ±0.004 OZQ-189 1942e2215
10370 16 0.4225 ±0.001 0.2235 ±0.001
10371 16 0.4095 ±0.001 0.1925 ±0.003
10372 16 0.3965 ±0.003 0.190 0
10373 17 0.3875 ±0.001 0.191 0
10374 17 0.3825 ±0.001 0.211 0
10375 17 0.3625 ±0.003 0.145 ±0.002
10376 18A 0.774 ±0.006 0.6845 ±0.003 Wk-40863 1983e2247
10377 18A 0.407 ±0.002 0.153 ±0.002
10378 18A 0.423 0 0.2135 ±0.001
10498 18A 0.4265 ±0.019 0.1905 ±0.003 OZQ-190 2375e2682
10379 18B 0.543 0 0.3655 ±0.001 Wk-40862 2756e2962
10380 18B 0.411 ±0.002 0.189 ±0.002
10381 18B 0.412 0 0.2315 0
10410 21 0.4195 ±0.001 0.2445 ±0.001
10411 21 0.485 0 0.2385 ±0.005
10412 21 0.422 ±0.002 0.2185 ±0.003
10413 23 0.3405 ±0.001 0.1595 ±0.011
10414 23 0.415 ±0.010 0.2305 ±0.003
10415 23 0.3855 ±0.003 0.2085 ±0.013
10416 25 0.386 0 0.189 0
10417 25 0.4485 ±0.001 0.214 ±0.002
10418 25 0.4375 ±0.001 0.236 ±0.006
10419 30 0.3635 ±0.001 0.1545 ±0.003
10420 30 0.6845 ±0.001 0.5375 ±0.009
10421 30 0.4065 ±0.003 0.203 ±0.002
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In summary, the chronological patterning of Brremangurey can
largely be separated into two distinct depositional phases; firstly a
sand dominated deposit dating to the terminal Pleistocene, and
secondly, intensive episodes of shellfish gathering and deposition
through the late Holocene that resulted in the formation of the shell
midden series seen in the upper extent of the deposit.

2.3. Midden analysis

Molluscan shell dominated the deposit at Brremangurey to a far
greater extent than the initial observations of the midden's surface
suggested. Of the total 1.79 m3 that was excavated from square K26,
1.53m3 contained culturally deposited shell. The 50% sample of this
total volume retained for analysis yielded 207 kg of culturally
deposited shell material, with 205 kg coming from the uppermost
0.455 m3 of the square.

Preliminary results of the midden analysis square of K26 are
presented in Koppel et al. (2015). In summary, the midden deposit
is dominated by marine bivalves. The soft-shore venerid Marcia
(¼Tapes ¼ Katelysia) hiantina was the most abundant species pre-
sent in the assemblage, comprising 70% of MNI (n ¼ 27,906) and
81% of NISP (n ¼ 259,556) counts in square K26. Much smaller
quantities of the pearl oysters Pinctada cf. albina and Isognomon
ephippium were identified, representing 2.2% (n ¼ 878) and 1.4%
(n ¼ 570) of total MNI counts respectively. Belying surface obser-
vations, T. granosa comprised only a small proportion of the overall
assemblage, at less than 1% (n ¼ 316) of total MNI and NISP counts
across all analysed material (Koppel et al. 2015). This small pro-
portion of the mudflat inhabiting T. granosa is in contrast to the
typical archaeological shell mound deposits reported across Aus-
tralia's tropical north (e.g. Bailey, 1977; Veitch, 1999; Faulkner,
2013; Bourke, 2012; but see; Cochrane, 2014) where it is by far
the most dominant species. MNI and NISP counts of all species drop
dramatically at approximately 96 cm below surface which marks
the lower limits of themidden unit. Below this level relatively small
quantities of shell, particularly fragmented M. hiantina (n ¼ 1010),
were found between a depth of 96 and 156 cm below surface.

These fragmentswere in remarkably good condition considering
the difference in age between the late-Holocene midden above and
the terminal Pleistocene sandsheet below, raising questions about
the stratigraphic integrity of the lowermost shell fragments. Do
these 1010 fragments of M. hiantina found within terminal Pleisto-
cene sands represent of late Pleistocene shell gathering, or are they
Holocene fragments that are ex situ? Early Holocene shellfish
gathering has been demonstrated in this site (Koppel et al. 2015) but
at present this is confined to the species T. granosa. Do these
stratigraphically-deeper fragments ofM. hiantina represent an even
older shell-gathering tradition at the site? The alternative expla-
nation is that these shell fragments infiltrated into the older sand-
sheet from the youngermidden deposit in Unit 1. Visually, texturally
and taphonomically, there was nothing distinguishing M. hiantina
fragments found within the Holocene midden deposit from the
fragments found in the terminal Pleistocene sandsheet underneath.
A zone of subsidence is noted towards the centre of the rockshelter

and is potentially the result of water flowing into the rear of the
shelter during periods of abundant rainfall, such as during the
annual summer monsoons (Robert Vaughan personal communica-
tion 2011). Therefore the scenario of water flowing into the site,
interacting with themidden shell and redistributing fragments into
the lower and older portions of the site is a possibility. Nevertheless,
if this occurred it must have been low energy to not leave visually
distinctive taphonomic traces on shell surfaces.

Radiocarbon dating of fragments found within the terminal
Pleistocene sands would conclusively define their temporality,
especially when these dates are then compared with those already
determined from material sourced from the Holocene midden de-
posit above. Due to the costs of individual age determinations,
dating these potentially displaced fragments using the radiocarbon
method is unfeasible. Constraining the dating program to only a few
age determinations in order to reduce the costs narrows the scope
and scale of questions that can be asked of the deposit (see Sullivan,
2008: 33), and may not adequately determine the whole range of
dates. A greater number of age determinations will allow a greater
understanding of the range of ages represented within the
sandsheet-sourced shell fragments which will subsequently in-
crease the chance of identifying temporally separate groups of shell.

To determine whether the shell fragments of M. hiantina found
in the Pleistocene sands have been displaced downwards from the
Holocene midden deposit above, an intensive dating program
centred on the AAR technique was undertaken that assessed the D/
L values of shell sourced from the two stratigraphic locations to
establish relative ages. If the fragments from the sandsheet were in
situ, their D/L values would be distinctively separated from the D/L
values of shell from themidden deposit above. Conversely, should a
displaced population of shell be identified, their D/L values would
be equivalent to shells sourced from themidden deposit. Below, the
results of the AAR analysis on M. hiantina are discussed, with the
implications of these, as well as a comparison with a complemen-
tary radiocarbon dating program. The approach presented in this
study is then critiqued, with the current challenges facing this
method and its potential contributions to the discipline of
archaeology considered.

3. Approach to investigation

As a datingmethod, AARmeasures the proportional abundances
of amino acids in their two forms. During life, amino acids are
maintained in the laevorotary (L) form. Post mortem, the L-form
amino acid molecules are rearranged into their dextrorotary (D)
form with increasing proportional abundance through time: a
process termed racemisation (Johnson and Miller, 1997; Wehmiller
and Miller, 2000). Racemisation occurs until the ratio of D and L
form amino acids reaches equilibrium and both forms occur in
equal abundance, after which equilibrium is maintained through
time. In short, the higher the D/L value the greater time since the
organism's death. In an ideal, closed system, racemisation is pri-
marily influenced by temperature. A number of other factors,
however, can influence the rate of racemisation of amino acids such
as pH, the presence of metal ions andmicrobial alteration to name a
few (e.g. Bada, 1972; Bada and Schroeder, 1975; Child, 1995, sum-
marised in Penkman, 2005: 33e38). Recent research has identified
a small proportion of proteins that are encapsulated within indi-
vidual calcium carbonate crystals that form molluscan shell (Sykes
et al. 1995; Penkman et al. 2008). Once isolated, these intra-
crystalline proteins have proven to act as a closed system, and
unlike the intercrystalline protein component of the shell matrix,
are not influenced by contamination and exchange of non-
indigenous proteins as well as the other aforementioned environ-
mental factors. Targeting the products of intracrystalline protein

Table 3
Results of k-means cluster analysis, centroids etc.

Amino acid Centroid mean Cluster range Standard deviation

Cluster A Asx 0.2421 0.196e0.307 0.03
Glx 0.1022 0.0185e0.1405 0.033

Cluster B Asx 0.4031 0.326e0.485 0.038
Glx 0.2 0.1375e0.259 0.028

Cluster C Asx 0.6388 0.543e0.774 0.093
Glx 0.43 0.269e0.6845 0.177
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diagenesis (IcPD) for use in AAR has subsequently provided more
precise and reliable results (Penkman et al. 2008), and these
techniques are applied in this study.

AAR has had a long history of application in shell midden
archaeology (e.g. Masters and Bada, 1977; Bateman et al. 2008;
Ortiz et al. 2009), however the method has largely been applied
in a supplementary fashion to other techniques such as radiocarbon
dating (but see Wehmiller, 1977; Demarchi et al. 2011). In contrast,
geological and geomorphological research routinely uses AAR, and
specifically aminostratigraphy, as a method for understanding
patterns of deposition and post-depositional transformation (e.g.
Miller et al. 1979; Kennedy et al. 1982; Hearty et al. 1986). Amino-
stratigraphy centres on the comparison of ‘aminozones’, which are
groupings of similarly aged specimens. It is important to note that
aminozones are established by temporality alone irrespective of
spatial positioning of each sample. Following the identification of
aminozones, a comparison between temporal patterning and
spatial positioning allows interpretations regarding site formation
and transformation processes to be made (Miller and Hare, 1980). A
high resolution and broad AAR aminostratigraphic analysis will
result in similarly aged fragments of shell clustering together in a
scatterplot, whereas temporally distinctive populations of samples
will separate from each other. Comparing these clusters with the
relative spatial positioning of each sample stratigraphically will
provide insights into how populations of similarly aged materials
have moved through a site subsequent to initial deposition.

By comparing the aminozones identified using samples of
M. hiantina sourced from the younger shell midden deposits and
the older terminal Pleistocene sands of Brremangurey, the relative
temporality of shells from both sampling locations should become
clear. The IcPD method of AAR also accounts for the various taph-
onomic factors so prevalent in archaeological deposits. Based on
the results, additional radiocarbon samples from shell fragments
already dated using AAR provide a numerical age through which to
anchor and further interpret results.

4. Methods

4.1. Sampling

To properly establish the aminostratigraphy of the midden de-
posit, shell specimens for AAR analysis were evenly sampled from all
spits. In total, 72 specimens ofM. hiantinawere assayed. Fifty-seven
specimens were sampled from the surface down to a depth of
approximately 104 cm. This represents the first 19 spits of the
excavation, aswell as the entire extent of thedenseHolocenemidden
in the Brremangurey rockshelter. Three shell specimens from each
spit were selected for analysis. Only specimens that had no visible
signs of burning or other taphonomic alterations were selected. A
further 3 shell fragments were sampled from spit 21 (112e118 cm
below surface), spit 23 (121e124 cm below surface), spit 25
(125e128 cm below surface) and spit 30 (150e154 cm below sur-
face). Where possible, a complete right valve was selected to avoid
the potential for sampling opposing valves of the same animal.While
whole vales of M. hiantina were abundant within midden layer, the
shell within the sandsheet was fragmented and sampling both left
and right valves as well as fragments was unavoidable. Furthermore,
the specimens of M. hiantina that were selected for the initial
radiocarbon determinations were also incorporated into this study.
This provided a paired radiocarbon age to the D/L value generated.

4.2. Sample preparation

Sample preparation was conducted as per Lachlan (2011) and
described in detail in Koppel et al. (2015). In summary, shell

fragments were thoroughly cleaned of adhering dirt and sediments
through a series of rinses and sonication episodes in ultrapure
Millipore water and mild abrasion using a rotary drill. Following
this, whole shells were subsampled and the exterior and interior
face abraded. A soak in 2M hydrochloric acid (HCl) was undertaken
to remove the outermost surface of the shell which is the area of
shell most likely to contain contaminants. Following Sykes et al.
(1995), the shell fragments were then powdered and exposed to a
12.5% sodium hypochlorite bleach solution (NaOCl) to oxidise and
destroy the intercrystalline protein component of the mollusc shell
structure. The intracrystalline proteins are then isolated by dis-
solving the mineral calcium carbonate in 8M HCl. The vials are then
filled with nitrogen gas and sealed, and then placed into an oven at
110� Celsius for 22 h to induce hydrolysis of the peptide bonds. The
solution was then completely desiccated and rehydrated using a
solution of 0.01 mM L-Homoarginine þ 0.01M HCl þ 0.77 mM so-
dium azide ewith L-Homoarginine acting as an internal laboratory
standard. Sample analysis was conducted using a reverse phase
high pressure liquid chromatograph (RP-HPLC). Instrument pro-
cedures follow the method of Kaufman and Manley (1998) and
refined by Kaufman (2000), summarised in Lachlan (2011:
345e347). Samples were run in duplicate and averages given.

5. Results

Out of the 72 samples analysed during this study, all but one
provided useable results. Sample number UWGA10340 underwent
an incomplete injection in the RP-HPLC and did not provide
assessable results. Only the results of aspartic and glutamic acids
are presented here. While 8 amino acids are isolated and quantified
in the RP-HPLC, only the results of aspartic (Asx) and glutamic acid
(Glx) are presented here. Throughout this manuscript, the use of
the abbreviation Asx refers to the combination of native aspartic
acid within a sample, as well as the aspartic acid that is generated
as a result of the deamidation of asparagine in the preparation
process. This is also the case for Glx, glutamic acid and glutamine
(Hill, 1965). Aspartic acid was selected because of its abundance in
molluscan shell, but also because of the balance it offers between
temporal resolution and time-depth. Glutamic acid was also
selected due to the high degree of covariance with Asx, which al-
lows taphonomically affected samples to be identified through the
deviation from this covariance (Kaufman, 2006).

The initial bivariate scatter plot showing the D/L values of Asx
and Glx (Fig. 3) of all specimens analysed in this study reveal three
main groupings of specimens, further defined by k-means cluster
analysis. The two densest clusters, labelled clusters A and B in Fig. 3,
contain the majority of the shell specimens used in this study.

Fig. 3. Bivariate scatter plot with cluster analysis and radiocarbon ages.
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Cluster C contains the remaining 5 samples, and these exhibit the
greatest extent of racemisation. Cluster C is also considerably more
scattered when compared to clusters A and B with results covering
a much greater range of D/L values.

Highlighting the shell fragments sampled from the Pleistocene
sands underneath the Holocene shell midden, seen in Fig. 4, the
temporality of these specimens become clear. All but one of these
shell fragments exhibit D/L values consistent with specimens
contained within Cluster B which dates to the early Holocene. The
implication of this grouping as a result of the AAR analysis utilising
spatially separated specimens becomes clear e the shell fragments
are of identical age to those found in Cluster B and have therefore
been spatially displaced through some process over time. The
identification of the driving process or processes behind the
displacement of these specimens is ongoing.

The similarity in D/L values exhibited between specimens from
the lower extent of the midden layer and the displaced specimens
sampled from the Pleistocene sand layer is further demonstrated in
Fig. 5 which compares D/L of Asx with location of sampling. Spec-
imens from spits 8 to the lowest level of sampling at spit 30 exhibit
a restricted and consistent range of D/L values through the

sequence. Contrasting to this are the specimens sampled from the
upper portion of the midden unit between spits 1 and 7, which
show an equally lesser extent of racemisation, yet a similar
restricted and consistent range of values. Applying the results of the
k-means cluster analysis, presented in Fig. 3, the specimens in
Cluster A were all sourced from the upper most extent of the
midden layer between spits 1 and 7. Similarly, clusters B and C are
spread through the lower excavation units, from spits 8 to 30.

In drawing together the results of the relative dating program
using AAR, along with the spatial positioning of each of the speci-
mens utilised in this study, interpretations regarding episodes of
deposition of shell at Brremangurey can be formed. The close
concordance of relative age exhibited within Cluster A of Fig. 3 with
the samples' restriction to the 7 uppermost spits of the midden,
seen in Fig. 5, suggests a distinct episode of shellfish deposition at
the site. The same interpretation can be made of the samples of
Cluster B. This is in stark contrast to Cluster C, which contains only 5
specimens, yet covers a much greater range of D/L values than
clusters A and B. Relying solely on the results of the AAR analysis in
interpreting the very different pattern observed in Cluster C
compared to the other clusters, an argument of a far less intensive
period of shellfish deposition over amuch longer period of time can
bemade.Whereas clusters A and B imply rapid deposition of a large
amount of shell at the site, Cluster C suggests amore ephemeral and
punctuated depositional behaviour of the occupants of
Brremangurey.

To test whether the specimens observed in Cluster C of Fig. 3
are representative of an older tradition of shell gathering, as
well as establishing a more complete chronological framework to
anchor the results of the AAR analysis, a further program of AMS
radiocarbon dating was undertaken. Using the range of relative
ages established using AAR, 4 additional specimens of M. hiantina
were selected for dating, and the results are presented in Table 4.
Plotting all of the radiocarbon ages used in this study with the
paired D/L values generated in this study, seen in Fig. 6, major,
fine-grained complications arise. In some instances, multiple age
reversals are identified where AMS radiocarbon ages do not
conform to the samples' relative D/L values e meaning “younger”
specimens according to the AAR analysis were determined to be
older according to the radiocarbon dating program, and vice versa.
For example, specimen Wk-40862 presented an extent of race-
misation roughly half of Wk-40863, and yet recorded a radio-
carbon age approximately 800 calibrated years older. A similar
reversal is observed for samples Wk-40861 and Wk-40860, while
samples OZQ-190 and OZQ-189 present nearly identical D/L values
yet are separated by approximately 500 calibrated radiocarbon
years.

Fig. 4. Scatter plot showing displaced specimens.

Fig. 5. Spit/depth versus D/L. Fig. 6. Bivariate scatter plot with clusters and additional/all radiocarbon ages.
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The results of the additional radiocarbon dating program un-
dertaken after the AAR analysis have effectively nullified the hy-
pothesis that Cluster C is a depositional episode temporally distinct
from clusters A and B. Despite exhibiting a substantially greater
extent of racemisation, the radiocarbon ages do not reveal a similar
distinction in numerical age. While AAR was able to reintegrate the
shell midden temporally in terms of broad depositional episodes,
the finer grained details are problematic. Exactly why this may be
the case is considered below.

6. Discussion

Taken on its own, the program of intensive relative dating of
midden shell using AAR reported in this study conclusively iden-
tified shell material that was spatially separated as being chrono-
logically contemporaneous, and therefore identified vertical
displacement in a shell midden. However, on a more fine-grained
level, a lack of correlation between paired AAR and radiocarbon
dating methodologies was noted. A similar approach to the one
presented here, albeit focussing on Anadara granosa rather than
M. hiantina, yielded successful results including a positive correla-
tion between AAR and paired radiocarbon ages (Koppel et al. 2015).
Why one study found no issues in the correlation of AAR and
radiocarbon ages while the other encountered problems raises
immediate questions regarding this new application of the long-
standing AAR method.

AAR has traditionally been utilised alongside or as a substitute
for radiometric methods such as radiocarbon and OSL dating.While
sometimes this is out of necessity due to a lack of dateable material
or samples being beyond the limit of radiocarbon dating (e.g. Parfitt
et al. 2005), in other examples it is not (e.g. Bada, 1985; Cann et al.
1991). Despite AAR being a relative dating technique, its use as an
alternative for numerical dating methods has driven developments
to “calibrate” the racemisation reaction to allocate projected nu-
merical ages (Johnson and Miller, 1997: 269). Through a combina-
tion of independent radiometric ages, coupled with modelling the
species-specific rate of racemisation, an absolute age can be
determined from the D/L value of a sample (e.g. Wehmiller et al.
1995; Clarke and Murray-Wallace, 2006; Kosnik et al. 2008). This
contrasts with the calibration of radiocarbon ages, where inde-
pendent proxies such as tree rings and speleothems, match radio-
carbon to calendrical years (Stuiver, 1982). This is an important
distinction between the calibration of radiocarbon age de-
terminations and the “calibration” of D/L values as the former is
absolute, and the latter is much less strongly anchored and remains
susceptible to many other external influences.

It is precisely these external influences which may result in a
lack of congruence between radiocarbon and AAR results. The
temporal and spatial scale of geological contexts, where AAR is
most commonly used, is generally much larger and coarser in
resolution than those of archaeological contexts. Because of this,
distortions in the results of AAR analyses are muted purely due to
the relatively larger scale of the investigations being undertaken
and questions asked. Archaeological contexts are of much smaller
and fine-grained spatial and temporal scale (Lock and Molyneaux,

2006), and as such the influence of analytical error has a much
greater impact on overall interpretations. As well as this, the
additional influence of anthropic factors, such as the potential
thermal influence of small scale camp-fires, adds an additional
layer of complexity to AAR in archaeological contexts. With this in
mind, can the traditional assumptions which underpin the “cali-
bration” and use of AAR be directly applied to archaeological con-
texts without reformulation? The complications identified in this
study suggest that a rethink is required.

The racemisation reaction, and more specifically the rate of
racemisation, which underpins this particular dating methodology
is influenced by many factors (Schroeder and Bada, 1976; Johnson
and Miller, 1997). In attempting to identify the reason behind the
lack of correlation between what should be complementary dating
methods, four different possibilities are hypothesised here: human
and machine error, intraspecies variations in racemisation rates
due to biological and metabolic processes, and taphonomic in-
fluences including variations in thermal histories.

Both human and machine error during the process of analysis
was quickly ruled out. The samples that presented a lack of
agreement between extent of racemisation and radiocarbon age
determinations were reanalysed twice, and in all instances resulted
in statistically identical D/L values. The exact samples of shell that
were submitted for radiocarbon dating were also returned and
subjected to AAR analysis, also resulting in statistically identical D/L
values. Intraspecies variations in the rate of racemisation have also
been observed. Different areas within the same shell specimen
have resulted in varying D/L values (e.g. Hare,1963; Goodfriend and
Weidmen, 2001). Similarly, protein composition and amino acid
abundance has been identified to vary between different micro-
structures in molluscan shell (e.g. Kobayashi and Samata, 2006).
Due to the consistency of sampling locations in the shell valves
utilised in this study, alongwith the focus on one particular species,
the effects of intraspecies variations in AAR determinations should
not be apparent. The infiltration of non-endogenous proteins is also
not a possibility as the IcPD approach to AAR utilised in this study
completely destroys the non-intracrystalline protein fraction. With
these possibilities ruled out, one factor remains as arguably the
most parsimonious explanation for the lack of congruence between
the results of the AAR and AMS radiocarbon dating programs uti-
lised in this study.

The greatest variable of the rate of the racemisation reaction is
temperature. Increasing temperatures increases the rate at which
racemisation occurs (Miller and Brigham-Grette, 1989). The Brre-
mangurey rockshelter is located in the tropics (Latitude e 14� 320

S), thus little seasonal fluctuation in mean average temperature is
observed. Similarly, the squares from which the midden material
was excavated are permanently protected from the radiant heat of
sunlight because of the shade generated by the rockshelter itself.
These two features of Brremangurey result in a largely consistent
ambient air temperature year round. Should the cause for the age
inversions between AAR and radiocarbon be thermal in origin, it
would not be on an environmental scale, but rather smaller and
more isolated events such as campfires and hearths; features that
are abundant throughout the Brremangurey rockshelter and

Table 4
Additional radiocarbon dates.

Sample code UWGA sample code Material Depth (cm. below surface) Radiocarbon age (uncalibrated) Calibrated age

Wk-40860 10326 Marcia hiantina 0e3.1 (Spit 1) 800 ± 20 295 e 462
Wk-40861 10335 Marcia hiantina 17.0e20.6 (Spit 4) 1211 ± 20 639 e 774
Wk-40862 10379 Marcia hiantina 95.9e103.6 (Spit 18B) 3151 ± 20 2756e2962
Wk-40863 10376 Marcia hiantina 91.0e95.9 (Spit 18A) 2512 ± 20 1983e2247
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midden deposit sequence (Moore, 2011). It is a distinct possibility
that the heat generated by these small scale fires would hasten
protein diagenesis, with little impact upon radiocarbon ages
generated from the same specimen.

Identifying the influence of heating using AAR has been an area
of limited research (Brooks et al. 1991). Heating experiments, in this
case exposure to temperatures of 200e230� Celsius for one hour,
revealed that the rate of racemisation of Glx was preferentially
hastened. This resulted in D/L values of Glx exhibiting an increased
extent of racemisation in comparison to the usually faster race-
mising Asx. While the experiments presented by Brooks et al.
(1991) were focussed on ostrich eggshell, similar patterns of rela-
tively advanced racemisation of Glx interpreted to have been the
result of anthropic heating have been identified in molluscan shell
(Demarchi et al. 2011: 120; Koppel et al. 2015). Preferentially
advanced racemisation of Glx was not observed in the results of this
study, and as such the identification of anthropic heating as the
driver of the anomalous ages presented above remains unresolved.
Experimental work to date has only tested the effects of heat;
however it is possible that combustion and oxidation, as well as the
high and sometimes unstable temperatures associated with fires,
may play an equally influential role in the overall effects of fire in
the AAR reaction. This requires further experimental work if AAR
methods are to be refined and prove useful in fine-grained
archaeological interpretations.

7. Conclusion

The results of the AAR analysis presented in this study, when
treated independently, neatly and efficiently identified that the
majority of M. hiantina fragments found within the terminal
Pleistocene sands at Brremangurey to have undergone significant
vertical displacement and be of a late Holocene age. Without the
need for numerical calibration, AARwas able to firmly establish two
major phases ofM. hiantina deposition that formed Brremangurey's
Holocene midden, and it is from the older of these two phases that
the displaced fragments originated. The results of the subsequent
confirmatory radiocarbon dating program, however, produced ages
not strictly in accordance with the relative ages generated here
using AAR.

The exact cause of these inversions between radiocarbon and D/
L values remains unknown. Methods of sample preparation and
analyses specifically designed to negate taphonomic influences that
distort AAR results were undertaken, and no indication of the in-
fluence of anthropic heating was detected. The forces that have
resulted in the non-alignment of what should be two comple-
mentary dating methodologies remain elusive.

Despite this obstacle, the potential of this new application of the
well-established AAR dating technique is clear. AAR is undergoing a
renaissance in archaeological research, and like the developments
through time in both radiocarbon and OSL dating, the method is
becoming more refined and reliable. In saying this, however, issues
do need to be resolved; particularly centred on archaeocentric
hazards to AAR such as burning. This is but one of a number of
anthropic processes not typically encountered by geochronologists,
and thus remains underdeveloped methodologically. Further
experimentation is therefore required to bring this method up to
speed with other dating techniques and into the chronological
toolkit of archaeological researchers across the world.
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Abstract

A small marine pearl was recovered at the Brremangurey rockshelter, on the Kimberley coast, from layers dating 
to approximately 2000 years ago. In an area famous for its pearls and history of cultured pearl production, public 
interest centred on whether the pearl was as old as the layer in which it was contained, or whether it was a recent 
cultured pearl that had infiltrated down from above. The near-spherical shape of the pearl hinted at a possible cultured 
origin. Owing to the uniqueness and historic cultural significance of this find, non-invasive analytical techniques 
were used to investigate whether the Brremangurey pearl was cultured or natural. Midden analysis was further used 
to assess the likely origin of the pearl within the stratified deposits. Analysis confirmed that the pearl is of natural 
origin and a dense midden lens of Pinctada albina shells is its likely origin.

Introduction 

During excavations in 2011 at Brremangurey, a north 
Kimberley coastal rockshelter, a small nacreous marine pearl 
was recovered from within the site’s shell midden. Although 
there is no record of pearls being of cultural importance to 
Australia’s Indigenous peoples, the pearl generated much 
excitement and many questions from Kimberley locals, 
both around the site and further afield. Given the pearling 
heritage of the Kimberley, many of these questions related 
to the age and origin of the pearl. Although recovered from 
a layer which was radiocarbon dated to 1800–1906 cal. BP, 
local pearl experts raised the possibility that it could be 
an intrusive cultured pearl, based on its size, colour and 
spherical shape. We acknowledge that the pearl is most 
likely an incidental find in archaeological terms, but the 
public interest in its history, age and origin compelled us to 
develop tools to address these questions. As a unique object 
of historical value to many, a programme of non-invasive 
analyses was developed; we hope some of the techniques 
presented here will provide a constructive pathway to others 
working in these fields.

Background

Brremangurey is a quartzite rockshelter located 70 m 
inland from the current shoreline on the north Kimberley 
coast (Figure 1). The site deposits span periods of the late 
Pleistocene and Holocene, with a dense mid- to late Holocene 
shell midden dominating the upper portion of the sequence; 
the pearl was recovered whilst screening these midden 
deposits. Despite having the appearance of a cultured pearl, 
it was recovered from a depth of 70–77 cm below datum 
(Square K26, Spit 14). Marine shell from this level was 
AMS radiocarbon dated to 1800–1906 cal. BP (Table 1). A 
detailed excavation report is currently being prepared for 
publication, as are papers on the shell midden analysis. 

Measuring 5.9 mm in maximum diameter and weighing 
0.25 g (Figure 2), the Brremangurey pearl is the only pearl 
to have been recovered from a prehistoric archaeological 
site in Australia and one of only a small number found in 
archaeological contexts globally (e.g. Charpentier et al. 
2012; Koerper and Desautels-Wiley 2007 from the Arabian 
Gulf and southern California, respectively). The Kimberley 
coast is a well-known centre for the production of South Sea 
pearls, farmed from the large pearl oyster species Pinctada 
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maxima. The collection of natural pearls from local beds of 
the smaller species P. albina further to the south in Shark 
Bay was a significant industry in the 1860s before the beds 
collapsed, after which the industry never entirely recovered 
(Kunz and Stephenson 1908:200–201; Moore 1994:123; 
Streeter 2006:144). Subsequently, a new industry utilising 
then novel Japanese technologies of pearl culturing was 
introduced to the areas surrounding Broome in the 1950s 
(Edwards 1994:70; Ward 2002:32). Today, pearl farms are 
scattered along the northern Australian coast from the 
Kimberley to Darwin (Dennis 2011; Hills 2013). 

Despite the fact that the pearl was recovered from sub-surface 
deposits in what appeared to be a robustly stratified midden, 
two Broome pearl experts (James Brown and Penny Arrow) 
likened the Brremangurey pearl to a cultured Akoya pearl. 
Akoya pearls are smaller than those generally produced by 
P. maxima and are cultured from the Japanese species P. 
imbricata fucata (= fucata) (Bouchet 2014; Landman et al. 
2001:30; Ward 2002:25). The slightly golden-rose hue of the 

Brremangurey pearl also aligned with the common colour 
palette of Akoya pearls. Shell midden deposits are notoriously 
porous (e.g. Stein 1992; Villagran et al. 2009) and detailed 
analytical work on the chronostratigraphic integrity of the 
Brremangurey shell midden using amino acid racemization 
clearly demonstrated that there has been significant time-
averaging of portions of the midden deposits, as well as 
instances of substantial downward movement of shell within 
the matrix. The possibility that the pearl could be intrusive 
was therefore investigated. 

Analytical Approaches

Standard analytical techniques, such as radiocarbon dating, 
stable isotope analysis and elemental analyses (e.g. ICP-MS), 
all require parts of the sample to be destroyed (Malainey 
2011:106–107, 264), and thus were inappropriate for this 
study1. In coordination with Cygnet Bay Pearl Farm, a 
comparative analysis of known-age beaded and unbeaded 
(‘keshi’) pearls, and the Brremangurey pearl was conceived, 
in which x-ray computed microtomography (μ-CT) analysis 
would be used to visualise the pearls’ interior structures, 
including banding and bead/nucleus morphology. 

μ-CT is a non-destructive imaging methodology with high 
spatial resolution. Samples are typically rotated through 
360°, creating a three-dimensional model comprised of a large 
series of two-dimensional slices which can be individually 
assessed. The use of x-ray technology allows differences 
in density to be clearly defined and mapped through the 
differential blocking and absorption of x-rays (Karampelas 
et al. 2010). The abilities and non-destructive nature of μ-CT 
make it ideal for studying pearls and the structures and 
layers of which they are composed (Karampelas et al. 2010; 
Krzemnicki et al. 2010). 

A GE Phoenix v|tome|x ultra high resolution CT system with 
an additional nanofocus x-ray tube was used for the analysis, 
with a 3D maximum resolution of 2 μm. Three pearls (two 
seeded in 2010 and harvested in 2012) made available by 
Cygnet Bay were scanned. The beads used were aragonitic 
spheres manufactured from the shell of a species of North 
American freshwater mussel (‘Mississippi mussel’). The 
third example from Cygnet Bay was a keshi pearl that grew 
without an inserted bead. The Brremangurey pearl was also 
scanned and, in addition to a scan of the complete pearl, a 
scan focused on the interior nucleus was also undertaken. 
Final images were scanned at the most appropriate 
resolution to capture the whole pearl structure; however, 

1 It should be noted that ‘non-destructive’ in archaeological terms 
(i.e. no physical modification of the object) is more equivalent to 
the term ‘non-invasive’ in the physical sciences, rather than their 
usage of the term non-destructive (Cassar and Degrigny 2005).
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Figure 1 The location of the Brremangurey site on the shore of the 
Admiralty Gulf, northern Western Australia.

Figure 2 The Brremangurey pearl. Scale bar is in millimetres. 

Table 1 AMS radiocarbon date stratigraphically associated with the 
Brremangurey pearl. Calibrated using Calib 7.0.2 with the Marine 
13 dataset (Reimer et al. 2013; Stuiver and Reimer 1993). ΔR as 
recommended by Alan Hogg (23 December 2014).
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initial scans at high resolution were checked to ensure that 
small changes in final resolution did not alter the type and 
number of banding observed in each pearl.

Results

The scans of the beaded Cygnet Bay pearls, which had a 
growing duration of two years before harvest, showed clear 
bands of aragonite laid down over the bead. For each year 
of growth, a single band of nacre was deposited (Figure 3). 
In contrast, the scan of the Brremangurey pearl revealed no 
less than 14 layers of nacre (Figure 4). The layers of nacre 
are also relatively thinner than those seen in the cultured 
Cygnet Bay pearls. 

The μ-CT scans demonstrated that the Brremangurey 
pearl had a near-spherical nucleus (Figure 5). It was also 
apparent that it was composed of calcium carbonate. As 
with the aragonite beads of the modern cultured pearls, 
materials of the same mineralogical composition appear 
with the same colour/density in the μ-CT scans. Despite 
both the Brremangurey and Cygnet Bay beaded pearls 
having spherical calcium carbonate centres, there were 
clear visual differences in their internal structures. The 
Cygnet Bay examples had a solid, homogeneous aragontic 
mass at their centre in line with the sculpted bead used in 
pearl aquaculture (Figure 3). The Brremangurey pearl had a 
nucleus seemingly comprised of a hollow centre surrounded 

by radial calcium carbonate struts projecting outwards to 
a pustulose exterior (Figure 5). This morphology clearly 
accords with what is expected in a natural pearl generated 
by damage during growth at the mantle of the mollusc 
(Hänni 2012). The younger mantle cells, which sit outermost 
on the mantle, generate the dull outer calcitic prismatic 
layer of shell, whereas the older cells produce the nacreous 
lustrous shell interior (Hänni 2012). Thus, when damage 
occurs at the edge of the mantle, a small cyst is often formed 
in which prismatic cells are laid down first, followed by 
sequential layers of nacre (Hänni 2012). This is a recognised 
growth mode and structure for natural pearls, and matches 
precisely the internal structure of the Brremangurey pearl. 

Discussion and Conclusion

The μ-CT analysis shows that the Brremangurey pearl has 
neither the type of banding nor internal artificial bead that 
we would expect to see in a cultured pearl. The extended 
period of growth evidenced by the high number of nacreous 
internal layers is also well in excess of conventional and 
historical culturing practices. Although the programme 
of non-invasive analysis did not allow us to date the pearl 
directly, no data generated during the course of these 
analyses implies intrusion from higher levels. The pearl 
has also been emphatically demonstrated to be of natural 
formation.

In terms of its archaeological context, the pearl was 
embedded within a dense lens of shells from the small 
pearl oyster species P. albina, with the midden both above 
and below this lens being dominated by the much more 
common soft-shore bivalve Marcia hiantina. Amino acid 
racemization analyses demonstrate that the P. albina lens 
is in situ and stratigraphically distinct from other midden 
formation episodes (Brent Koppel unpub. data). With the 
pearl likely being an incidental introduction through ancient 
Indigenous shell collection, the most important aspect of the 
pearl recovered from Brremangurey may not be the pearl 
itself, but the dense lens of pearl oyster shells in which it was 
embedded. It has been previously argued that Pinctada spp. 
pearl oysters were of cultural significance in the Kimberley 
(Akerman and Stanton 1994; Balme and Morse 2006; 
O’Connor 1999:121). The potential cultural significance of 
the P. albina layer at Brremangurey will be further explored 
within the larger context of the shell midden analysis in an 
upcoming publication.

Figure 3 μ-CT surface rendering of a Cygnet Bay Pearl seeded in 
2010 and recovered in 2012 (left) and showing two bands of nacre in 
cut-away view (right). An irregularity in banding has formed around an 
intrusive object during pearl growth. Scanning was undertaken at 31 μm 
resolution at 130 kV and 70 μA. Pearl is 10.6 mm in lateral diameter.

Figure 4 μ-CT surface rendering of the complete Brremangurey pearl 
(left) showing layers in cut-away view (right). Scanning was undertaken 
at 15 μm resolution at 130 kV and 70 μA. Pearl is 5.9 mm in diameter.

Figure 5 μ-CT rendering of the nucleus of the Brremangurey pearl, 
taken at 650 μm radius from the centre void (left), with cut-away 
view showing the centre void and radial strut-like structures (right). 
Scanning was undertaken at 6.7 μm resolution at 100 kV and 70 μA.

114



Katherine Szabo, Brent Koppel, Mark W. Moore, Iain Young, Matthew Tighe and Michael J. Morwood

S
H

O
R

T
 R

E
P

O
R

T
S

June 2015, Volume 80:112–115

Acknowledgements

The research presented here was undertaken as part of an 
Australian Research Council Linkage Grant (LP0991845) 
awarded to Michael Morwood, June Ross and Kira Westaway. 
In particular we would like to thank June Ross for her 
role in setting up and coordinating the broader project in 
which this is embedded. The research was undertaken 
under authorities from the WA Department of Indigenous 
Affairs (Permit No. 490) and the WA Department of 
Environment and Conservation (CE003254). This research 
was conducted cooperatively with the Wunambal-Gaambera 
Aboriginal Corporation, and we would particularly like to 
thank those of the Indigenous community who assisted in 
the 2011 field season: Albert Bundamurra Jr, Greg Goonack 
and Terrence Marnga. Other supporting organisations 
include the Kimberley Foundation Australia, Slingair and 
Heliworks. John Hayward provided invaluable support to 
the excavation program, as did Robert ‘Bluey’ Vaughan and 
Anthony Vaughan. The radiocarbon date presented here was 
obtained through an AINSE grant (ALNGRA13016). The 
analysis would not have been possible without the generous 
assistance of Cygnet Bay Pearl Farm, and in particular 
James Brown and Ali McCarthy. Penny and Steve Arrow both 
provided useful information and observations, and Bruce 
Wiggan also provided background to the use of pearls and 
pearl shells in the southern Kimberley. The Brremangurey 
pearl has been accessioned in the WA Museum collection.

References

Akerman, K. and R. Stanton 1994 Riji and Jakuli: Kimberley 
Pearl Shell in Aboriginal Australia. Darwin: Northern 
Territory Museum of Arts and Sciences.

Balme, J. and K. Morse 2006 Shell beads and social behaviour in 
Pleistocene Australia. Antiquity 80:799–811.

Bouchet, P. 2014 Pinctada imbricata fucata (Gould, 1850). 
Retrieved 18 January 2015 from <http://www.marinespecies.
org/aphia.php?p=taxdetails&id=564659>.

Cassar, J. and C. Degrigny 2005 The philosophy of the workshop. 
In A. Adriaens, C. Degrigny and J. Cassar (eds), Benefits of 
Non-Destructive Analytical Techniques for Conservation: 
Papers from a COST Action G8 Workshop held in Kalkara, 
Malta, on 8 January 2004, pp.9–12. Luxembourg: Office for 
Official Publications of the European Communities.

Charpentier, V., C.S. Phillips and S. Méry 2012 Pearl fishing in the 
ancient world: 7500 BP. Arabian Archaeology and Epigraphy 
23:1–6.

Dennis, A. 2011 Pearly king. The Australian, October 13. 
Retrieved 18 January 2015 from <http://www.theaustralian.
com.au/life/wish/pearly-king/story-e6frg8io-1226165687406>.

Edwards, H. 1994 Pearls of Broome and Northern Australia. 
Swanbourne: Hugh Edwards.

Hänni, H.A. 2012 Natural pearls and cultured pearls: A basic 
concept and its variations. The Australian Gemmologist 
24:258–266.

Hills, B. 2013 Pearl jam. Sydney Morning Herald, 7 September. 
Retrieved 18 January 2015 from <http://www.smh.com.au/
national/pearl-jam-20130906-2szib.html>.

Karampelas, S., J. Michel, M. Zheng-Cui, J-O. Schwartz, F. 
Enzmann, E. Fritsch, L. Leu and M.S. Krzemnicki 2010 X-ray 
computed microtomography applied to pearls: Methodology, 
advantages and limitations. Gems and Gemology 46:122–127.

Koerper, H.C. and N.A. Desautels-Wiley 2007 Prehistoric 
employments of pearls in coastal southern California with 
special attention to specimens recovered at Bolsa Chica 
Mesa, Orange County. Pacific Coast Archaeological Society 
Quarterly 43(3):65–82.

Krzemnicki, M.S., S.D. Friess, P. Chalus, H.A. Hänni and  
S. Karampelas 2010 X-ray computed microtomography: 
Distinguishing natural pearls from beaded and non-beaded 
cultured pearls. Gems and Gemology 46:128–134.

Kunz, G.F. and C.C. Stevenson 1908 The Book of the Pearl: The 
History, Art, Science and Industry of the Queen of Gems. 
New York: The Century Co.

Landman, N.H., P.M. Mikkelsen, R. Bieler and B. Bronson 2001 
Pearls: A Natural History. New York: American Museum of 
Natural History.

Malainey, M. 2011 A Consumer’s Guide to Archaeological 
Science: Analytical Techniques. New York: Springer.

Moore, R. 1994 The management of the Western Australian 
pearling industry, 1860–1930s. Great Circle: Journal of the 
Australian Association for Maritime History 16:121–138.

O’Connor, S. 1999 30,000 years of Aboriginal Occupation: 
Kimberley, North West Australia. Terra Australis 14. 
Canberra: Department of Archaeology and Natural History 
and the Centre for Archaeological Research, The Australian 
National University.

Reimer, P.J., E. Bard, A. Bayliss, J.W. Beck, P.G. Blackwell, C. Bronk 
Ramsey, C.E. Buck, H. Cheng, R.L. Edwards, M. Friedrich, P.M. 
Grootes, T.P. Guilderson, H. Haflidason, I. Hajdas, C. Hatté, T.J. 
Heaton, A.G. Hogg, K.A. Hughen, K.F. Kaiser, B. Kromer, S.W. 
Manning, M. Niu, R.W. Reimer, D.A. Richards, E.M. Scott, J.R. 
Southon, C.S.M. Turney and J. van der Plicht 2013 IntCal13 and 
MARINE13 radiocarbon age calibration curves 0–50,000 years 
cal. BP. Radiocarbon 55(4):1869–1887.

Stein, J.K. 1992 Deciphering a Shell Midden. San Diego: 
Academic Press.

Streeter, E.W. 2006 [1886] Pearls and Pearling Life. Carlisle: 
Hesperian Press.

Stuiver, M. and P.J. Reimer 1993 Extended 14C data base and 
revised CALIB 3.0 14C Age calibration program. Radiocarbon 
35(1):215–230.

Villagran, X.S., P.C.F. Giannini and P. De Blasis 2009 Archaeofacies 
analysis: Using depositional attributes to identify anthropic 
processes of deposition in a monumental shell mound of Santa 
Catarina state, southern Brazil. Geoarchaeology 24:311–335.

Ward, F. 2002 Pearls (3rd ed.). Bethesda: Gembook Publishers.

115


	Disentangling shell middens: Exploring the complexities of deposit formation and transformation using amino acid racemisation
	Recommended Citation

	tmp.1517356964.pdf.9lf64

