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ABSTRACT 
 

Seascape ecology is an emerging sub-discipline of marine ecology, which 

examines the effect of spatial heterogeneity in marine ecosystems on ecological 

processes and species distributions. The opportunity to study seascape ecology in 

many coastal regions has been greatly assisted by advances in remote sensing 

technologies, which can acquire detailed habitat data over a range of spatial scales. 

This now allows quantification of spatial patterns in seascapes and the scientific 

examination of the ecological consequences of such patterns. Current research 

applying this approach has begun to demonstrate the importance of seascape 

connectivity and structural complexity in driving spatial variability of marine fish 

assemblages. Much of this research however, has focussed on tropical regions and as 

a result the effect of seascape patterning on temperate fishes remains poorly 

resolved. The aim of this thesis was to examine the seascape ecology of temperate 

fishes in two Marine Protected Areas (MPAs) in south-east Australian waters and 

also examine how this approach can aid in the design and assessment of MPAs. I 

achieved this by investigating spatial variability in temperate fish assemblages over 

three scales to examine the effect of i) three-dimensional reef structural complexity, 

ii) differences among habitat types (seagrass, rocky reef and unvegetated sediment) 

and iii) the seascape connectivity of habitats. I used baited remote underwater video 

systems (BRUVs) to survey demersal and mid-water fish assemblages in conjunction 

with existing habitat mapping to examine the relationship between fish and their 

habitats. In the Lord Howe Island Marine Park (LHIMP), reef structural complexity 

strongly influenced the abundance of yellowtail kingfish; Seriola lalandi. Despite 

being heavily targeted by fishers, a ‘conventional’ (GLM) assessment on the LHIMP 

revealed no difference in the abundance of S. lalandi between fished and unfished 

zones. However, on accounting for reef structural complexity in the assessment, I 

revealed substantially higher abundances of S. lalandi in unfished zones. This 

positive effect was only observed in their optimal habitat, reefs of high structural 

complexity. In the Jervis Bay Marine Park (JBMP), habitat type (seagrass, rocky reef 

and unvegetated sediment) was a strong and consistent predictor of the demersal fish 

assemblage but did not influence fishes in the mid-water environment. Although 

habitat influenced the abundance of many demersal fishes, some taxa from the 
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demersal assemblage displayed no affinity to underlying habitat type. Seascape 

composition and connectivity also appeared to strongly influence temperate fish 

assemblages. The abundance and diversity of temperate fishes was correlated with 

the area of rocky reef and seagrass within the surrounding seascape. The apparent 

importance of seascape connectivity was also noted in the LHIMP, where adult black 

rockcod (Epinephelus daemelii) were only recorded in areas adjacent to their nursery 

grounds. Finally, I sought to compare the effectiveness of attractants other than bait 

(sight and sound stimuli) to entice pelagic fishes to video systems positioned in the 

mid-water environment. I found the combination of sight, sound and scent attractants 

on mid-water remote underwater videos (RUVs) recorded a substantially higher 

abundance and shorter time of first arrival of pelagic fishes compared to RUVs with 

one or no attractant. I suggest future studies using this sampling method to survey 

pelagic fishes employ multiple attractants. My findings demonstrate that temperate 

fishes are influenced by patterns in seascapes and habitats at a number of spatial 

scales. They also have important implications for spatial conservation strategies such 

as MPAs, particularly in terms of their design, assessment and adaptive management. 

Representation of seascape variability over a number of spatial scales in MPA 

planning is likely to better represent temperate fish assemblages. Furthermore, I 

demonstrate that habitat classes and measures of structural complexity are 

appropriate surrogates for certain fishes, which is useful in MPA planning. Finally, I 

demonstrate that accounting for seascape variability in MPA evaluation is likely to 

provide a better assessment and clearer understanding of ecological change 

associated with this management action. In conclusion, integrating seascape ecology 

into MPA science will increase the usefulness of this conservation strategy to combat 

growing declines in global marine biodiversity. 
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Chapter 1: GENERAL INTRODUCTION 
 

Seascape ecology is an emerging sub-discipline of marine ecology, which 

applies the concepts of terrestrial landscape ecology to the marine environment. 

Progress in the application of seascape ecology has been hindered by the difficulties 

in acquiring habitat and species level data over a range of spatial scales (10's of 

square metres to 1000’s of square metres). Recent improvements in remote sensing 

and sampling technologies now provide marine scientists the opportunity to explore 

seascape questions at multiple spatio-temporal scales. The current seascape ecology 

literature, although somewhat limited, highlights the importance of seascape patterns 

on ecological processes and species in marine systems. In this chapter, I review the 

current status of seascape ecology and highlight the conservation benefits of 

incorporating seascape ecology into the design and assessment of Marine Protected 

Areas (MPAs). 

 

1.1 From landscapes to seascapes 

A central aim in fundamental ecology and applied conservation research is to 

understand the relationship between species and their environment (Andrewartha and 

Birch 1954; Bell et al., 1991). Landscape ecology, first coined mid-20th century and 

conceptually developed during the 1980’s, has revolutionised the way in which 

ecologists study species-environment relationships and conserve biodiversity (Urban 

1987; Wiens 1993; Wiens 1995; Turner 2005a, b). Combining concepts from 

functional ecology with the spatial approach of geography, landscape ecology is the 

study of spatial heterogeneity and the effect of this heterogeneity on ecological 
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processes and species distributions (Fortin and Agrawal 2005). Although the 

definition of a landscape can vary, from an ecological perspective, landscapes are 

spatially heterogeneous areas which can be defined at a range of spatial scales 

depending on the process or question of interest (Forman and Godron 1981). Driving 

heterogeneity in the landscape are spatial components, or habitat patches, which are 

embedded within a relatively homogeneous matrix. The number and configuration of 

habitat patches influence landscape composition and spatial patterning (Forman and 

Godron 1981) (see Box 1.1). Landscape ecologists have developed a suite of indices 

to describe the spatial heterogeneity created by habitat patches over landscape scales 

(Forman and Godron 1981; O’Neill 1988; Riiters et al., 1995) (Table 1.1). 

Importantly, such indices have been shown to display strong and informative links 

between landscape structure and ecological phenomena (see Turner 2005b for a 

detailed review). Consequently, landscape ecology has been incorporated into 

mainstream ecology, establishing itself as a popular interdisciplinary field, which has 

also significantly contributed to the design of terrestrial spatial conservation 

strategies worldwide (Pickett and Thompson 1978; Turner 2005b; Liu and Taylor 

2002; Margules and Sarkar 2007).   

Like terrestrial environments, marine systems display high degrees of spatial 

heterogeneity over similar spatial scales. Nearshore environments are complex 

mosaics governed by a range of natural processes including human activities, which 

operate through space and time (Pittman et al., 2011). Patterning of nearshore 

environments observed in the past include the zonation of mangrove forests along 

estuarine borders, dynamic patches influenced by disturbance within intertidal rocky 

shores (Levin and Paine 1974), the intricate mosaics of seagrass beds (Robbins and 

Bell 1994), the connectivity across mosaics comprised of nearshore patches (Ogden 
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and Zieman 1977; Parrish 1989) and the structural complexity of coral reefs (Sale 

and Douglas 1984). Similarly, the pelagic marine environment can be described as a 

dynamic, three-dimensional mosaic, which is composed of different water masses 

influenced by seafloor topography and oceanographic processes (Game et al., 2009; 

Hidalgo et al., 2016; Sayre et al., 2017). 

The analogous spatial heterogeneity in marine systems can be conceptualized 

and quantified using a terrestrial landscape ecology approach (Wedding et al., 2011) 

(Box 1.1; Table 1.1). Despite the applicability of landscape ecology in marine 

systems, and the success of landscape ecology in terrestrial settings, the effect of 

broad-scale spatial heterogeneity on marine species and ecological processes remains 

poorly resolved (Pittman et al., 2011). Undoubtedly this lack of knowledge of the 

effect of landscape scale patterns in marine systems is an artefact of the inherent 

difficulties in acquiring habitat information over relevant spatial scales. 

Glossary 
Landscape: terrestrial spatially heterogeneous area composed of a cluster of 

interacting ecosystems usually defined at scales of 1-10’s of km. 

Seascape: analogous to landscape but applied to the marine environment. 

Patch: a relatively homogeneous area with a definite shape, configuration and discrete 

boundary that differs from its surroundings. Sometimes referred to as a habitat patch. 

Matrix: the most extensive and connected landscape or seascape element present. 

Also, a landscape or seascape element that surrounds a patch. 

Mosaic: describes the pattern of patches and matrix that form a landscape or seascape. 

Seascape patterns: the pattern of the seascape produced by patches and the matrix 

Structural complexity: three-dimensional structural variability of the patch or habitat. 

Grain: the resolution at which the landscape or seascape is viewed. A pixel in a digital 

image is analogous to a grain in a landscape. 

Extent: the physical area or time scale that the landscape/seascape is viewed. 

Spatial scaling: changing either grain or extent or both. 

Pelagic fish: fish that live in the water column of the coastal and open ocean waters. 

Demersal fish: fish that live near the benthos of coastal and open ocean waters. 
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Box 1.1 What is a seascape or landscape? 
 

A seascape or landscape is an area that displays spatial heterogeneity which 

can be defined over a range of spatio-temporal scales based on the question or 

process of interest. Spatial heterogeneity is created by spatial components or ‘habitat 

patches’, which are usually embedded within a relatively homogeneous matrix. 

Patch size, configuration and connectivity drive the spatial patterning of seascapes 

and landscapes, while the variety of different types of patches influences 

seascape/landscape composition. Furthermore, patches may display within patch 

variability such as structural complexity. These attributes are scale dependent. 

 Figure 1.1a portrays a hypothetical seascape with patches of seagrass, rocky 

reef and saltmarsh embedded within an unvegetated sediment matrix. Patches vary 

in their size and shape. Seascape composition and configuration varies with patch 

diversity, spatial arrangement and connectivity. In addition, patches of seagrass, 

saltmarsh and rocky reef vary in three-dimensional structural complexity (Figure 

1.1b). The practice of seascape/landscape ecology involves quantifying the 

configuration and composition of the seascape/landscape and understanding how 

these spatial patterns influence species and ecological processes. Landscape 

ecologists have developed a number of indices to quantify landscape structure 

(Table 1.1).



 

5 
 

Recently, however, advances in remote sensing technologies are providing marine 

scientists with increasingly detailed information of marine habitats (Brown et al., 

2011; Ierodiaconou et al., 2011). Consequently, the sub-discipline of “seascape 

ecology” has emerged, employing the concepts and tools from terrestrial landscape 

ecology to understand the effect of spatial patterns in marine systems (Hinchey et al., 

2008; Pittman et al, 2011). However, the application of seascape ecology in marine 

spatial conservation strategies such as marine protected areas remains in its infancy, 

although the theory, tools and technology are now readily available (but see McNeill 

1994, Engelhard et al., 2016 and Olds et al., 2016). 

 

1.2 Practicing seascape ecology 

Detailed habitat imagery of marine regions now provides marine scientists 

with the capability of producing detailed marine benthic maps, similar to terrestrial 

vegetation maps, which graphically display spatial heterogeneity in marine systems 

(Box 1.2). Understanding the effect of spatial heterogeneity on marine species and 

the processes that underpin pattern first requires quantification of the spatial 

structures within seascapes (Gustafson 1998). As spatial structure is relatively 

analogous between terrestrial and marine environments, the spatial tools and metrics 

developed by landscape ecologists can be used to determine the geometric properties 

of marine seascapes (Wedding et al., 2011). Landscape ecologists have developed a 

range of metrics that are used to examine the relationship between spatial 

heterogeneity, and species distributions and ecological processes (O’Neill 1988). 

These metrics can be broadly classified into three categories to determine; i) 

landscape composition, the abundance and diversity of habitat patches within the 

region of interest, ii) configuration, the spatial arrangement of the patches and 
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mosaics, and iii) structural complexity, e.g. the three-dimensional variability within 

habitat patches (Turner et al., 2001; Wedding et al., 2011) (Table 1.1). The 

quantification of these metrics can be derived from habitat maps using computer 

software programs including Geographic Information Systems (GIS) and the popular 

FRAGSTATS program0F

1. 

Often landscape ecologists investigate relationships between spatial 

heterogeneity and species/ecological processes with an exploratory approach, 

examining a number of spatial metrics at a range of spatial scales (grains and 

extents). This approach is undertaken because landscape questions need to be scaled 

appropriately to the organism or process of interest (Wiens 1989; Wiens and Milne 

1989; Turner et al., 1989), which is usually unknown a priori. For example, a 

territorial species that requires certain habitat qualities will respond to the same 

habitat at a different spatial scale compared to a transient habitat generalist. In the 

marine environment, knowledge of the appropriate spatial scaling is further confused 

by life histories of marine organisms, which operate over different spatial scales 

(Pittman and McAlpine 2003). The majority of marine invertebrates and fishes 

display a pelagic larval phase and undergo ontogenetic shifts in habitat use 

throughout their life history 1F

2. Therefore, similar to terrestrial landscape ecology, an 

exploratory multi-scale and multi-metric approach is required to understand the 

effect of seascape patterning on marine species and processes (Pittman and 

McAlpine 2003).

                                                 
1 FRAGSTATS website (http://www.umass.edu/landeco/research/fragstats/fragstats.html). 
2 For example Snapper, Pagrus auratus, displays a pelagic larval duration of 3-5 weeks, followed by 
recruitment into nursery habitat followed by offshore migration as adults. 
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Table 1.1 A summary of commonly used metrics by landscape ecologists to quantify 1) landscape composition, 2) spatial configuration using 
two-dimensional vegetation or benthic maps, and 3) structural complexity from three-dimensional digital elevation models (DEM). Modified 
after Wedding et al., (2011).

Metric Level Type Dimension Description 
(1) Landscape composition (abundance and diversity of habitat patches) 
Proportion Mosaic Structural Two Proportion of landscape occupied by cover type 
Richness Mosaic Structural Two Number of patch types composing the mosaic 
Evenness Mosaic Structural Two Relative abundance of different patch types 
Diversity Mosaic Structural Two Composite measure of richness and evenness 
(2) Spatial configuration (spatial arrangement and orientation of patches/mosaic) 

Contagion Patch-based Structural Two Distinguishes between overall clumped or dissected mosaic patterns 
Patch area  Patch-based Structural Two Total area of patch 
Patch perimeter Patch-based Structural Two Perimeter of a patch 
Perimeter:area ratio Patch-based Structural Two Index of patch shape complexity 
Connectivity Patch-based Functional Two Average distance between patches 
Proximity index Patch-based Structural Two Degree to which patches in landscape are isolated from other patches 
Area-weighted 
average patch size 

Patch-based Structural Two Frequency distribution of patch sizes 

Core area Patch-based Structural Two Area unaffected by the edge of the patch 
(3) Structural complexity (three-dimensional across a gradient or continuum) 
Rugosity Gradient/continuum Structural Three Surface area over the planar area ratio 
Slope Gradient/continuum Structural Three Maximum rate of change in bathymetry over a given scale 
Mean depth Gradient/continuum Structural Three Bathymetric position relative to sea level 
Variance in depth Gradient/continuum Structural Three Range in bathymetry within a given scale 
Standard deviation of 
depth 

Gradient/continuum Structural Three Standard deviation in bathymetry at a given scale 

Slope of slope Gradient/continuum Structural Three Maximum rate of maximum slope change at a given scale 
Plan curvature Gradient/continuum Structural Three Rate of change in curvature across the surface highlighting ridges, 

crests and valleys 
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1.3 Statistical issues 

Employing an explanatory approach to examine relationships between 

species and landscape patterning with no prior knowledge of the appropriate spatial 

scaling for the species or process of interest often results in statistical issues. Often, 

spatial scaling is underestimated, resulting in non-independence or positive spatial 

autocorrelation between survey points. Not accounting for spatial autocorrelation in 

landscape scale studies can seriously violate model assumptions and therefore 

compromise overall conclusions (Legendre and Fortin 1989; Legendre and Legendre 

1998). Landscape ecologists and statisticians have developed a number of techniques 

and analyses to overcome the issues of spatially autocorrelated datasets. These 

include incorporating lag response variables or random effects into spatial models 

(Legendre and Legendre 1998), or using analyses, like machine learning techniques 

(e.g. boosted regression trees) that do not assume independence (Elith et al., 2006; 

Elith et al., 2008). Sophisticated modelling techniques such as these are necessary to 

deal with the issues of spatial data in studies of seascape ecology (Mellin et al., 

2010; Young et al., 2015). 

 

1.4 Seascape patterns in marine fishes 

The effect of seascape patterning on marine fishes has been investigated at a 

number of spatial scales. Much of the previous research examining the relationship 

between marine fishes and seascape patterning can be broadly categorised into one 

of three hierarchical spatial scales. These include; i) a relatively fine-scale approach 

examining within patch variability such as structural complexity (i.e. rugosity); ii) a 

focal patch approach, examining metrics such as patch shape, size, edge effects and 

fragmentation; and iii) a broad-scale approach examining more than one patch type 
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and seascape attributes such as connectivity and composition (Box 1.1). The 

majority of previous research employing a seascape approach to understand spatial 

variability in fish assemblages has been conducted at relatively fine-scales, 

examining the effect of patch structural complexity, shape, size, edge effects and 

fragmentation (Boström et al., 2011). In contrast, fewer studies have examined the 

effect of seascape patterning of two or more patches on fish assemblages. The bias 

towards fine-scale studies is most likely a result of the inherent logistical difficulties 

in quantifying seascape metrics and surveying fishes over larger geographic areas. 

Despite this bias, previous research has demonstrated pronounced effects of seascape 

attributes on fish assemblages. 

The influence of patch structural complexity on fish abundance and diversity 

over a range of different habitat types has been well documented (Box 1.1. and 1.2). 

Within seagrass patches, structural metrics such as shoot density, complexity, 

canopy height and cover has been demonstrated to drive spatial patterns in seagrass 

fish assemblages (Horinouchi 2007; Jelbart et al., 2007a, b). Similarly, in mangrove 

forests the structural complexity created by pneumatophore density influences 

species composition of fishes at fine spatial scales, which then may influence broad-

scale patterns in certain species of fishes during adult life stages (de la Moriniere et 

al., 2002; Nagelkerken et al., 2008). The importance of structural complexity on reef 

fishes has been well documented in coral reef systems. Coral reefs that display high 

structural complexity have been shown to harbour a greater diversity and biomass of 

fish (Friedlander and Parrish 1998; Almany 2004; Gratwicke and Speight 2005). The 

positive response of fish assemblages to structural complexity has been attributed to 

structurally complex habitats providing a greater number of niches, resources and 

productivity compared to habitats of low structural complexity (Bell et al., 1991; 
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Friedlander and Parrish 1998). Furthermore, many studies have shown strong 

relationships between fish assemblages and reef structural complexity measures 

derived from remote sensing technologies. In Florida (USA), SW Puerto Rico, US 

Virgin Islands, Caribbean, Hawaii and the Chagos Archipelago, remotely-sensed 

structural complexity measures of coral reef habitat (e.g. rugosity) significantly 

correlated with fish species richness and abundance (Kuffner et al., 2007; Pittman et 

al., 2007; Purkis et al., 2008; Wedding and Friedlander 2008; Pittman et al., 2009). 

Meanwhile, similar patterns have been observed between remotely-sensed rocky reef 

structural complexity and fish assemblages in temperate regions (Monk et al., 2010; 

Monk et al., 2011). 

The majority of research applying a seascape ecology approach to date has 

focussed on individual patches of a single patch type (i.e. seagrass), and examined 

how patch configuration (size, shape, edge effects and fragmentation) influences fish 

assemblages (Boström et al., 2011). For example, McNeill and Fairweather (1993) 

compared fish species richness on beds of seagrass of varying size. They found 

diversity was greater on several small patches compared to one large patch of the 

same area. In contrast, a number of studies have revealed positive effects of coral 

patch reef size on the abundance and diversity of fishes (Acosta and Robertson 2002; 

Chittaro 2004; Grober-Dunsmore et al., 2007). In temperate systems, the relationship 

between the size and shape of rocky reef habitat on fish assemblages remains 

relatively unclear. This is probably due to temperate reefs displaying a broader scale 

of continuity rather than a patch morphology. In South Eastern Australia, however, 

Rees et al., (2014) found a greater abundance and diversity of reef fishes on rocky 

reef habitat further from the unvegetated sediment boundary, indicating a positive 

relationship with distance from edge and reef size. More information on the 
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importance of patch size, edge effects and fragmentation on nearshore habitats on 

fish assemblages can be found in the extensive review by Boström et al., (2011). 

In contrast to research focussed on one habitat type, fewer studies have 

examined the effect of seascape patterning involving two or more patch types on the 

spatial variability in fish assemblages. Those that have, often compared fish 

assemblages among discrete habitat patches such as seagrass, rocky reef and 

unvegetated sediment (Jenkins and Wheatley 1998; Guidetti 2000; La Mesa et al., 

2011). Recently, however, there has been an increase in the number of studies 

examining the effect of seascape composition and patch connectivity on marine 

fishes. For example, in the US Virgin Islands, researchers revealed that coral reef 

fish density and diversity was positively correlated with amount of seagrass 

surrounding the coral reef sites. As much as 48-58% of the variation in mean and 

cumulative species richness was explained by areal coverage of seagrass, while 32% 

was explained for total abundance. When fish densities were explored at finer 

taxonomic resolutions relationships improved. Areal coverage of seagrass 

surrounding coral reef sites explained 57% and 50% of the variation in the 

commercially exploited Haemulid and Lutjanid families, respectively (Grober-

Dunsmore et al., 2007). Other researchers in SW Puerto Rico (Pittman et al., 2007), 

Queensland, Australia (Pittman et al., 2004) and the US Virgin Islands (Kendall et 

al., 2003) have revealed supportive patterns at similar spatial scales, highlighting the 

importance of seagrass cover and proximity to coral reef fishes. In Moreton Bay, 

Australia, the area and position of both seagrass and mangroves were found to have a 

strong effect on the overall coral reef fish assemblage. Coral reef fish assemblages 

were primarily distinguished by isolation from mangrove habitat and secondarily by 

proximity to seagrass. Interestingly, these two indices displayed different effects on 
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the fish assemblage, with 25% of all species being influenced by mangroves and a 

different 25% being affected by seagrass (Olds et al., 2012b). In Belize, the effect of 

mangrove proximity on coral reef fish assemblages were examined by comparing 

atolls with scarce mangrove coastlines (mean perimeter = 3.9km) to atolls whose 

coastlines were dominated by mangroves (mean perimeter = 185km). Fish 

assemblages showed marked differences between mangrove-scarce and mangrove-

rich reefs. Furthermore, the biomass of several commercially important fish species 

was more than double on coral reefs in close proximity to mangrove habitat (Mumby 

et al., 2004). Despite the growing evidence highlighting the importance of patch 

connectivity and context in structuring fish assemblages, no studies to my 

knowledge have employed this approach in temperate or polar ecosystems. This is 

concerning for temperate regions considering their high levels of biodiversity, 

including many endemic species, vulnerability to anthropogenic climate change and 

valuable ecosystem services (Bennett et al., 2016). 

 

1.5 Seascape ecology and pelagic fishes 

To date, the majority of studies employing a seascape ecology approach have 

focussed on demersal fishes, with little research examining the effect of spatial 

heterogeneity on pelagic fishes at seascape scales (1 – 10’s km). Instead, most 

research on the spatial ecology of pelagic fishes has been undertaken at broad spatial 

scales (100 – 1000’s km). The lack of research on pelagic fishes at seascape scales is 

likely a result of the assumption that pelagic fishes are highly migratory, have large 

home ranges with low residency, display little affinity to underlying habitat and 

comprise of one homogeneous stock across their geographic range (Sund et al., 

1981). However, research examining the removal of fishing following MPA 
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declaration in Hawaii and the Philippines contradicts these assumptions, by finding 

increased abundance and biomass of carangids and other large pelagic fish inside the 

MPAs (Russ and Alcala 1998; Williams et al., 2006). Furthermore, acoustic 

telemetry research has demonstrated that Yellowtail Kingfish (Seriola lalandi), a 

species assumed to be highly migratory display relatively low levels of movement 

(<17 km) from their tagging site (Brodie 2016). Additionally, using a fine-scale 

scientific trolling method (km’s), the relative abundance of three pelagic fish species 

was significantly related to the topographic complexity of the seafloor. From a total 

of 890 hours of trolling, eight distinct topographic features received 13.7% of the 

total fishing effort yet produced 43% of captures. Catch rates for Yellowtail Kingfish 

(Seriola lalandi), Australian Bonito (Sarda australis) and Skipjack Tuna 

(Katsuwonus pelamis) were 26, 6.59 and 2.47 times higher within 1km of 

topographic features compared to away from topographic features (Hobday and 

Campbell 2009). Employing mid-water baited remote underwater videos, a novel 

fishery independent sampling technique, ocean current speed at seascape scales (10’s 

km’s) was shown to strongly influence the pelagic fish assemblage within the Lord 

Howe Island Marine Park, Australia (Heagney et al., 2007). Similarly, using mid-

water BRUVs, the distribution of two small pelagic fishes (Trachurus 

novaezelandiae and Scomber australasicus) in Jervis Bay Marine Park, Australia, 

were observed to be highly structured over fine spatial scales (100’s of metres to 

kilometres). Yellowtail Scad, T. novaezelandiae showed a habitat preference of 

shallow areas close to reef with low current speeds, while S. australasicus a 

preference of deeper habitat further from reef with high current speeds (Heagney 

2009). In both studies employing mid-water BRUVS, statistical issues were apparent 

due to the patchy distribution of pelagic fishes. More consistent estimates using mid-
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water BRUVs could potentially be achieved using alternate attractants other than, or 

in combination with, bait. Future research is required to determine the optimal 

attractant for mid-water remote underwater camera surveys on pelagic fishes. 

Despite the difficulties in surveying pelagic fishes over seascape scales, the recent 

research highlights the potential to apply a seascape ecology approach to examine 

the spatial ecology of these fish and their linkages to benthic habitats. 

 

1.6 Temporal scaling in seascape studies 

The temporal scaling of studies employing a seascape ecology approach 

usually provides a ‘snapshot’ of the relationship between spatial patterns and 

response measures in time. For generalities to emerge in the seascape literature this 

may prove problematic, as benthic habitats and their spatial patterns are dynamic, 

being strongly influenced by disturbance events (Levin and Paine 1974). 

Furthermore, fishes display high inter-annual fluctuations in recruitment, seasonal 

changes and daily variability in species abundance. Therefore, repeated sampling 

over a range of temporal scales is needed to provide a better understanding of 

seascape-fish relationships. The necessity for temporal replication is highlighted by 

strong interactions between response measures, time and landscape metrics for 

studies in seagrass habitat (Jelbart et al., 2006; Johnson and Heck Jr 2006). 

 

1.7 Incorporating seascape ecology into Marine Protected Area design 

Currently, MPA design in Australia and other parts of the world is based 

upon CAR principles (Roberts 2003; Jordan et al., 2005). The CAR principles ensure 

that newly established MPAs display i) comprehensiveness; including the full range 

of ecosystems across the bioregion, ii) adequacy; the size of reservation to ensure the
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Box 1.2 Example of a coastal seascape: Jervis Bay Marine Park, NSW, Australia  
 
Jervis Bay Marine Park is located on the south coast on New South Wales, Australia (35.09 °S, 150.80 °E) and provides an example of a coastal seascape. Subtidal 

patches of rocky reef (brown) and seagrass (green) within the bay create mosaics of patches embedded within a relatively homogenous matrix (unvegetated sediment). It is 

clear that seagrass patches display variability in patch attributes over a range of spatial scales. For example patch 1 is smaller and a corridor shape compared to patch 2, 

which is large and circular. Landscape metrics such as patch size and patch perimeter:area ratio will be different between the two patches which may influence associated 

fauna. Reef patches also vary in connectivity to seagrass. For example, reef near point 2 is connected to seagrass while reef at point 3 is isolated from seagrass habitat. 

Therefore landscape metrics such as connectivity and proximity indices will differ between the two reef patches. In addition, at a spatial scale of 500 metres point 2 

contains three patch types; seagrass, reef and unvegetated sediment. In contrast, point 3 contains two patches; reef and unconsolidated sediment. Therefore landscape 

composite indices such as diversity, evenness, proportion and richness 

will vary between the two points. Increasing the spatial grain will increase 

the complexity of the benthic habitat map. For example the reef habitat 

may be further characterized by the benthic biota present. Finer scale reef 

habitat classes may include kelp forests, urchin grazed barrens and sponge 

gardens, etc. Finally, the three-dimensional structural complexity of the 

habitat patch may be quantified for certain habitat types. For example, 

point 3 highlights a reef patch characterized by high structural complexity 

derived from side-scan sonar imagery. In addition, the structural 

complexity of seagrass may be quantified examining shoot density or 

canopy height.
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ecological viability and integrity of populations, species and communities, and iii) 

representativeness; areas included reflect the biological diversity of the marine 

ecosystem (ANZECC TFMPA 1998a, b). Due to the significant cost and time 

involved in sampling marine communities over the required spatial scales for MPAs, 

mapped habitat classes (e.g. rocky reef, seagrass, mangroves, unconsolidated 

sediments, etc.) have been increasingly used as surrogates to indirectly determine 

marine biodiversity and guide MPA boundaries (Ward et al., 1999; Jordan et al., 

2005). Currently, in many parts of the world, MPAs are established by adequately 

representing each habitat class within the bioregion of interest. This design criterion 

has no consideration of the effect of broad-scale seascape patterning of these habitats 

on marine biodiversity. For example, when seagrass habitat is allocated to MPA 

protection, there is no consideration of patch shape, size, or whether the seagrass 

patches are connected or isolated from other habitats. Similarly, there is no 

consideration of within patch or habitat variability such as structural complexity 

(Rees et al., 2014), which is usually in response to a lack of a priori data. 

As previous literature has demonstrated strong links between fishes and 

seascape composition and connectivity, incorporating this spatial heterogeneity into 

MPAs is likely to better represent and therefore protect local fish populations. Two 

recent studies have highlighted the synergistic effect of reserve protection and 

seascape patterning on marine biodiversity and ecological processes. In Moreton Bay 

MPA, Queensland, the effect of connectivity between coral reefs and mangrove 

habitat on fish assemblages was assessed inside and outside a marine reserve. 

Connectivity was shown to greatly improve reserve performance, with greater 

abundances of harvested fishes, piscivores and herbivores in reserves displaying 
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connectivity compared to similar non-reserve locations. In contrast, reserves that 

displayed no habitat connectivity showed no difference in fish densities when 

compared to similar non-reserve locations (Olds et al., 2012a). In a separate study 

completed in the same location, connectivity between coral reefs and mangroves has 

also enhanced herbivorous fish biomass and diversity in reserves compared to fished 

areas. Using grazing experiments, Olds et al. (2012c) found elevated herbivore 

biomass in reserves, resulting in greater grazing intensity which drove a trophic 

cascade reducing algal cover and enhancing coral recruitment and reef resilience 

inside reserved compared to unprotected areas. These two studies firstly emphasize 

the importance of seascape structure for marine ecological processes and 

biodiversity, and secondly, indicate that seascape patterning should be acknowledged 

in the MPA design process. Further research is required to examine the benefits of 

incorporating seascape patterning in MPA design, especially in temperate regions. 

 

1.8 Incorporating seascape ecology into Marine Protected Area assessment 

Accurate assessments of MPA effectiveness require robust designs capable of 

separating reserve effects from underlying spatial and temporal variability. A 

popular approach to assess MPAs while accounting for natural variability has been 

Before After Control Impact (BACI) designs. This method, however, requires 

biological data prior to the establishment of the MPA, which is rarely available. 

Instead, most assessments on MPA effectiveness use a Control Impact (CI) approach 

comparing reserves to adjacent unprotected areas at one point in time (Sciberras et 

al., 2013; Miller and Russ 2014). Differences between zones are then often attributed 

to a reserve effect. The CI method however, may provide misleading results, as 

differences may be due to underlying seascape variability, rather than MPA 
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protection. Few studies have taken into account the potential confounding effect of 

seascape composition and habitat structurally complexity in MPA assessments, 

although these seascape features have been shown to influence marine biota. For 

example, Huntington et al., (2010), assessed the Glover’s Reef Atoll Marine Reserve 

offshore of Belize both excluding and including natural seascape variability derived 

from high resolution IKONOS imagery. They found no reserve effects on the 

abundance and diversity of coral and fish assemblages when seascape variation was 

omitted from the assessment. However, when analyses were performed on reefs 

displaying similar seascape attributes, significant reserve effects became apparent. 

The lack of MPA assessments accounting for seascape variability is probably due to 

the inherent costs and difficulties in acquiring habitat data over the relevant spatial 

scales. Another potential reason is the insufficient awareness of the ecological 

importance of seascape patterning for MPA performance. Improvements in remote 

sensing technologies and increased affordability are likely to increase the 

opportunity of accounting for this variability in MPA assessments. Incorporating 

seascape variability, such as patch connectivity and structural complexity, will lead 

to more accurate assessments and better conservation outcomes.  

 

1.9 Important knowledge gaps 

The concepts of landscape ecology have not been extensively applied to 

marine systems, with most examples coming from relatively fine-scale studies 

focusing solely on seagrass habitat. However, recent advances in remote sensing 

technologies are now providing marine scientists the habitat information to explore 

seascape questions at multiple spatio-temporal scales. Recent studies applying a 

seascape approach have provided compelling evidence indicating the importance of 
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seascape patterning on species distributions and ecological processes in marine 

systems. However, further seascape ecology research is needed to i) establish the 

role and importance of seascape patterning for marine fishes and ecological 

processes (such as predator- prey dynamics) over a range of marine systems, 

including temperate regions and the pelagic environment; ii) determine the 

appropriate spatial scaling for seascape studies so specific hypotheses regarding 

seascape patterning can be explicitly tested; iii) examine the benefits of seascape 

patterning in MPA performance; and iv) examine the benefits of accounting for 

seascape variability in the assessment of MPA effectiveness. Demonstrating the 

value of these key research areas, seascape ecology will develop into an informative 

sub-discipline of marine ecology with strong implications for marine conservation 

science. 

 

1.10 Thesis structure 

The specific aims addressed by each chapter are: 

Chapter 2 – Does nearshore habitat type explain a significant amount of the 

spatial variability in coastal fish assemblages and can these habitats act as 

surrogates for Marine Park planning? Based on previous literature, I predicted that 

there would be consistent differences in the demersal fish assemblages among 

habitats and therefore would be a suitable surrogate for conservation planning 

(Guidetti 2000). In contrast, I predicted that mid-water fish assemblages would show 

a weaker linkage to habitat type and therefore habitat would be an inappropriate 

surrogate for this assemblage. I also assessed the effect of habitat on the abundance 

of key species and families, to determine whether responses varied among taxa. 

Understanding habitat-assemblage relationships at lower taxonomic resolutions is 
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important to determine the usefulness of habitat surrogates for certain taxa. I 

assessed the influence of habitat on fish assemblages within four discrete seascapes. 

I predicted that differences in fish assemblages among seascapes would be due to 

seascape composition, specifically the area of rocky reef and seagrass. 

 

 Chapter 3 – Is the current zoning arrangement of the Lord Howe Island 

Marine Park (LHIMP) adequately safeguarding the regions unique biodiversity? In 

this chapter I evaluated changes in Lord Howe Island’s fish assemblage following 

approximately five and nine years since marine park zoning enforcement. As the 

LHIMP is relatively pristine, with low levels of anthropogenic impacts (for example 

no commercial fishing), I predicted that the abundance and diversity of fishes, as 

well as the abundance of common, endemic, near endemic and protected species 

would not differ between no-take SZs and HPZs, which allow some forms of fishing. 

Consequently, I predicted that the current LHIMP zoning arrangement would be 

adequately safeguarding the regions biodiversity within SZs and HPZs. In contrast, I 

predicted that species targeted by recreational and charter boat fishers would show 

an effect to MPA zoning with higher abundances inside SZs compared to HPZs 

where fishing is permitted. 

 Chapter 4 – Does the inclusion of seascape variability into the evaluation of 

LHIMP efficacy improve the accuracy of the assessment? In this chapter I test the 

effectiveness of no-take zones on a heavily exploited species; Seriola lalandi in the 

LHIMP with and without accounting for habitat structural complexity. To survey S. 

lalandi, I used baited remote underwater videos (BRUVs) at two sampling periods; 

2009 and 2013. Without biological data prior to MPA implementation or quantifying 

seascape differences among MPA management zones, assessments on MPA efficacy 
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may be confounded. I predicted that incorporating a measure of habitat structural 

complexity, derived from high resolution multibeam bathymetry, would improve the 

assessment of the LHIMP. Furthermore, I predicted that the inclusion of seascape 

variability would improve the understanding of how spatial fishing closures affect 

the abundance of targeted species.  

 Chapter 5 - Mid-water baited remote underwater video systems (BRUVS) 

are becoming an increasingly popular tool for examining pelagic fish assemblages in 

a non-destructive, fisheries independent manner. As the technique is relatively novel, 

important methodological questions such as the most appropriate attractant for 

pelagic fish to mid-water RUVS remain unresolved. In this chapter I compared the 

relative effectiveness of four attractant treatments (sight: metallic reflectors, sound: 

bait fish recordings, scent: pilchards and their combination) on the time of first 

arrival, total abundance of pelagic fish and the relative abundance of three pelagic 

fish species: Trachurus novaezelandiae, Sarda australis and Seriola lalandi. 

Recordings were made using mid-water RUVS in the Jervis Bay Marine Park, 

Australia. I predicted that RUVS using a combination of all attractants would record 

the highest abundance and shortest time of first arrival of pelagic fish. This 

prediction was based on the notion that an array of sensory cues would enable 

pelagic fish to better detect the remote underwater camera. 
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Chapter 2: SEASCAPE PATTERNS AND HABITAT DIFFERENCES 
EXPLAIN SPATIAL VARIABILITY IN COASTAL FISH ASSEMBLAGES 
WITHIN A TEMPERATE MARINE PROTECTED AREA 

 

This chapter has been prepared for submission to Biological Conservation. 

 

 

 

Plate 2.1 A juvenile dusky whaler (Carcharhinus obscurus) recorded on a mid-water 

baited remote underwater video system in the Hare Bay Sanctuary zone, Jervis Bay 

Marine Park during a pilot study.  
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2.1 Introduction 

Coastal marine ecosystems and the habitats within them are among the most 

productive and ecologically important worldwide (Costanza 1997; Waycott et al., 

2009). Increasingly, coastal ecosystems and their associated biodiversity are under 

threat from a variety of anthropogenic activities such as overfishing, habitat 

degradation, pollution and urbanisation (Lotze et al., 2006; Diaz and Rosenberg 

2008; Barnes et al., 2013). In the last two decades, Marine Protected Areas (MPAs) 

have been highlighted as one management approach to mitigate against some of 

these threats to coastal biodiversity (Halpern et al., 2010). Although many studies 

have demonstrated positive effects of MPAs on marine biodiversity and ecological 

processes (Lester et al., 2009), their establishment in coastal ecosystems is often met 

with objection related to socio-economic concerns. A solution to this problem has 

been to establish MPAs on an ecological foundation through CAR principles 

(ANZECC TFMPA 1998a, b); that is to have comprehensive, adequate and 

representative protected areas. 

Designing Marine Protected Areas using CAR principles requires biotic 

information over relatively broad spatial scales (Jordan et al., 2005). Detailed spatial 

data on biological assemblages and individual species is, however, expensive to 

acquire and as a result, such information is rarely available. A cost-effective 

approach is to use habitat as a ‘surrogate’ to indirectly determine species 

distributions and abundances to guide the boundaries of protected areas (Sarkar et 

al., 2006; Rees et al., 2014). In response to the continued improvement of remote-

sensing technologies, marine habitats can be mapped in high resolution at a range of 

spatial scales in an affordable manner (Brown et al., 2011; Ierodiaconou et al., 2011). 

Therefore, using habitat as a surrogate for MPA design may provide a rapid method 
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of estimating the biodiversity in an area (Zacharias and Roff 2000; Roff et al., 2003). 

In recent times, habitat classes (e.g. rocky reef, coral reef, seagrass, sand, etc.) are 

being increasingly used to provide an ecological foundation in MPA planning (Ward 

et al., 1999; Dalleau et al., 2010). Generally, this is because it is considered that 

different habitat classes support different biological communities, species, age 

classes and functional guilds. Hence, using a diverse range of habitat classes as a 

base for MPAs is believed to ensure adequate representation of the total biodiversity 

of the area (Ward et al., 1999; Roberts et al., 2003; Mumby et al., 2008; Dixon-

Bridges et al., 2014). With an increasing movement towards habitat based surrogates 

in marine conservation planning it is important that we evaluate the basis of this 

planning approach. Specifically, whether habitat classes can reliably predict species 

distributions and abundances over scales relevant to spatial conservation planning. 

Without a quantitative and detailed understanding of these patterns, habitat 

surrogacy may be poorly representing local biodiversity and leading to undesirable 

planning outcomes. 

In temperate coastal ecosystems, the design of MPAs is often guided by the 

distribution of the three habitat types; rocky reef, seagrass and unvegetated sediment. 

Studies on fish assemblages over these broad habitat types have often explored 

spatial variability within a particular habitat type (Curley et al., 2002; Garcia-

Charton et al., 2004) or compared structurally complex habitats (e.g. rocky reef and 

seagrass) to adjacent unvegetated habitats with low structurally complexity (Heck et 

al., 1989; Ferrell and Bell 1991; Connolly 1994; Gray et al., 1998; Williams and Bax 

2001). There are a limited number of studies however, that have explicitly quantified 

differences in fish assemblages among seagrass, rocky reef and unvegetated 

sediment (see Jenkins and Wheatley 1998; Guidetti 2000 and La Mesa et al., 2011). 
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Therefore, the importance of habitat classes in structuring nearshore fish 

assemblages, and whether complexities exist with the use of habitat classes as 

surrogates for MPA planning remains poorly understood. In addition, all previous 

studies exploring fish-habitat relationships in coastal settings have investigated 

demersal fishes, with no research to our knowledge, testing the importance of 

nearshore habitats in structuring mid-water fish assemblages in coastal ecosystems 

(but see Costa et al., 2014 for a tropical example). 

There is also growing evidence that broad-scale patterns of habitats (i.e. 

seascape patterning) may also play an important role in structuring nearshore fish 

assemblages (Boström et al., 2011; Pittman et al., 2011). This approach does not 

view habitats in isolation, but rather as non-independent patches influenced by the 

habitats surrounding them. In tropical environments larger coral reef patches harbour 

a higher diversity and abundance of coral reef fishes (Sale and Douglas 1984; 

Chittaro 2002). Meanwhile, previous research has shown positive correlations 

between coral reef fish assemblages and the amount of adjacent seagrass and 

mangrove habitat within the seascape (Grober-Dunsmore et al., 2007; Olds et al., 

2012b; Olds et al., 2013). These findings have important implications for MPA 

planning, as they indicate habitat alone may not be an adequate surrogate for 

biodiversity and consideration may need to be given to spatial heterogeneity of the 

surrounding seascape (Olds et al., 2016). Despite growing evidence of the 

importance of seascape patterning in driving the abundance and distribution of fishes 

in tropical environments, very little research has employed a seascape approach to 

understand spatial patterns in temperate fishes (Jones and Andrew 1992). 

In this study, we tested and quantified the influence of habitat classes; rocky 

reef, seagrass (Posidonia australis) and unvegetated sediment, in explaining the 
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spatial variability in temperate fish assemblages and examined whether these habitats 

could act as appropriate surrogates for MPA planning. To do this, I employed an 

hierarchical sampling design to explore the spatial variation in nearshore fish 

assemblages over three scales; i) among locations (> 5 km), ii) among habitats; 

rocky reef, seagrass and unvegetated sediment (~400 m), and iii) between sites 

within habitats (~200 m). Based on previous literature, I predicted that there would 

be consistent differences in the demersal fish assemblages among habitats across 

replicated experiment units (i.e. locations) and therefore, habitat would be a suitable 

surrogate for conservation planning. In contrast, I predicted that mid-water fish 

assemblages would show no affinity to habitat type and therefore habitat would be 

an inappropriate surrogate for this assemblage. We also assessed the effect of habitat 

on the abundance of key species and families, to determine whether responses varied 

among taxa. An assessment at lower taxonomic resolutions would provide 

conservation planners a more detailed understanding on the usefulness of habitat 

surrogates for certain taxa. To determine whether habitat classes were adequate 

surrogates, final models had to fulfil one of two criteria; i) the factor ‘habitat’ had to 

be a significant main effect with consistent differences among habitats across 

locations, or ii) if there was a significant habitat by location interaction, similar 

patterns among habitats between locations had to be observed. Furthermore, if the 

interaction between habitat and location was significant, indicating broad-scale 

spatial variability in the fish assemblage, we assessed whether these differences 

would be explained by the seascape attributes of the site. 
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2.2 Materials and Methods 

This study was carried out in Jervis Bay, a temperate embayment in South-

Eastern Australia and the central section of the Jervis Bay Marine Park (JBMP) 

between December 2013 to March 2014 (Fig. 2.1). The park covers an area of 220 

km2 comprising of a network of ‘no-take’ sanctuary zones, habitat protection zones 

and general use zones. The embayment contains three main benthic habitat types; 

rocky-reef, unvegetated sediments and the seagrass, Posidonia australis (Marine 

Parks Authority 2008). These habitat types are replicated throughout the Bay (Fig. 

2.1), therefore the JBMP provides an ideal system to test habitat and seascape 

ecology related questions in relation to conservation management. 

Fish assemblages were surveyed using mid-water baited remote underwater 

video systems (mBRUVS), as well as standard BRUVS positioned on the seafloor. 

Mid-water BRUVS were constructed following the design of Heagney et al. (2007) 

and Rees et al. (2015) but adapted so that the camera was positioned 0.5 m below the 

surface of the water. Both mBRUVS and BRUVS contained Canon HF20 video 

cameras within underwater camera housings constructed by SeaGIS Pty. The 

mBRUVS and BRUVS were deployed at 2 sites separated by 400 m on rocky-reef 

(RR), unvegetated sediment (US) and seagrass (SG) habitat across 4 locations 

(Murrays Beach, Callala Bay, Plantation Point and Hare Bay) within the JBMP. 

Locations were separated by between 5 and 8 km (Fig. 2.1). At each site, 2 

mBRUVS and 2 BRUVS were deployed at least 200 m apart along the 5 m depth 

contour. Prior to deploying the systems, bait bags were replenished with 500 g of 

freshly crushed pilchards (Wraith et al., 2013). Both mBRUVS and BRUVS were 

deployed for 35 mins to achieve a 30 min sample. Previous studies have indicated 

that a 30 min deployment provides a representative sample of temperate demersal 
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fish assemblages (Harasti et al., 2015). Although unknown, I assume a 30 min 

deployment provides a representative sample of temperate mid-water fish 

assemblages. 

 

Figure 2.1 A habitat map of the Jervis Bay Marine Park. Dark areas indicate rocky 

reef, cross-hatched areas seagrass (Posidonia australis) and white areas unvegetated 

sediment. The four survey locations are indicated, Murrays Beach (MB), Plantation 

Point (PP), Callala Bay (CB) and Hare Bay (HB). 

 

Footage from mBRUVs and BRUVs was analysed in the laboratory using 

Event Measure software (SeaGIS Pty). For each deployment, species richness and 
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relative abundance (Max N) was recorded. Species richness was the number of 

species of fish observed during the sample. The relative abundance of fishes, Max N, 

was the maximum number individuals of one species viewed at any one time during 

the sample (Cappo et al., 2004). Max N values for individual species were then 

summed to generate the overall relative abundance for each sample. Two species; 

Trachurus noevazelandiae and Nelusetta ayraudi dominated both the mid-water and 

demersal fish assemblage. A separate response measure of total fish abundance was 

analysed with these species removed. 

Hypotheses about multivariate fish assemblages were tested using a 3 factor 

PERMANOVA (PRIMER Software, Plymouth Marine Laboratories) on Bray-Curtis 

dissimilarity values calculated from untransformed data (Anderson 2001). The 

factors were location (4 levels and random), habitat (3 levels and fixed; RR, US and 

SG) and site (2 levels nested within the location by habitat interaction and random). 

Non-metric multidimensional scaling (nMDS) was used to generate two-dimensional 

ordinations to illustrate patterns in mid-water and demersal fish assemblages. 

Species richness, total abundance and abundance data of numerically dominant 

individual species and families were analysed separately using a 3 factor ANOVA in 

GMAV 5 software (Underwood and Chapman 1984). Numerically dominant species 

and families were those that were observed in high abundances across all samples or 

within certain habitats (i.e. Platycephalus spp. on unvegetated sediment and 

Hyporhampus australis in the mid-water environment). These analyses were 

completed with the factors as previously described for the multivariate analyses. 

Prior to analysis, data were visually assessed for normal distributions and Cochran’s 

C test was used to test for departures from homogeneity of variances. If significant 

heterogeneity was present, data were transformed. The abundances of 
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Ophthalmolepis lineolatus, Achoerodus viridis and Platycephalus spp. were 

heterogeneous, but as analysis of variance is robust to heterogeneity in balanced 

experimental designs with large numbers of samples (Underwood 1997), these 

analyses were still performed. Student-Newman Keuls (SNK) tests were used for 

post-hoc comparisons. Following ANOVA, post-hoc pooling of the “location × 

habitat” interaction was performed if P >0.25, in order to increase the power of the 

main tests (Underwood 1997). 

To examine the relationship between seascape connectivity of seagrass and 

rocky reef habitats on nearshore fish assemblages, the amount of seagrass at each 

rocky reef site was calculated. Using Focal Statistics in ArcGIS version 10, the area 

of seagrass was quantified surrounding each BRUV deployment on rocky reef at a 

50, 100, 150, 250, 500, 1000 and 1500 m radius. A multi-scale approach was used as 

the scale in which the fish assemblage was responding to seascape composition was 

not known a priori. Habitat mapping of Jervis Bay Marine Park’s subtidal features 

were derived from swath bathymetry, LADS and ADS40 aerial imagery (Williams et 

al., 2007; Creese et al., 2009). Simple linear regressions were performed in R (R 

Core Development Team, 2013) between several response measures of the rocky 

reef fish assemblage and the area of surrounding seagrass calculated at various 

spatial scales. Akaike information criterion (AIC) was used to determine which 

spatial scale best explained the variation for each response measure. Model residuals 

were checked for spatial autocorrelation using Moran’s I statistic. For all regressions 

no significant spatial autocorrelation was detected.  

 

 

 



31 
 

2.3 Results 

A total of 8900 fish were observed, comprising 71 species from 41 families. 

Of the total number of individuals recorded, 50% were observed over rocky reef, 

29% over seagrass and 21% over unvegetated sediment. Of the total number of 

species recorded, 57 species observed over rocky reef habitat, 37 species over 

seagrass and 21 species on unvegetated sediment. Only 2 species, Hyporhampus 

australis and Seriola rivolana were recorded exclusively in the mid-water 

environment. 

 

2.3.1 Effects of habitat on demersal fishes 

Habitat had a significant effect on the demersal fish assemblage with a 

distinct composition of fishes observed among each habitat (Fig. 2.2a; Table 2.1). 

Rocky reef and seagrass habitat had a greater abundance of demersal fishes 

compared to unvegetated sediment (Fig. 2.3c; Table 2.2b). This result, however, was 

driven by two numerically dominant species; Trachurus noevazelandiae and 

Nelusetta ayraudi. When these species were excluded from the analysis, the 

abundance of demersal fishes was greatest on rocky reef, with no difference between 

seagrass and unvegetated sediment (Fig. 2.3e; Table 2.2c). Similarly, there was a 

general trend of rocky reef harbouring a higher diversity of demersal fish compared 

to seagrass and unvegetated sediment (Fig. 2.3a; Table 2.2a).  

Many species contributed to the differences in the fish assemblage and total 

abundance among habitats.  The abundance of Scorpidids and Labrids were clearly 

reef associated, effectively being observed on rocky reef habitat at each location 

(Fig. 2.4e, 2.5b; Table 2.3c, 2.4b). Two common Labrids; Achoerodus viridis and 

Ophthalmolepis lineolatus had greater abundances on rocky reef compared to other 
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habitats at all locations (Fig. 2.5c, d; Table 2.4c, d). Similarly, the abundance of 

Trachurus noevazelandiae in the demersal environment was greater on rocky reef 

and seagrass compared to unvegetated sediment (Fig. 2.4c; Table 2.3b). 

Alternatively, individuals from the genus Platycephalus were only observed on 

unvegetated sediment (Fig. 2.5e; Table 2.4e). The Eastern Fiddler Ray; 

Trygonorrhina fasciata was similarly abundant on seagrass and unvegetated 

sediment, but displayed much lower abundances on rocky reef (Fig. 2.5f; Table 

2.4f).  

Only two taxa explored from the demersal fish assemblages were not 

influenced by habitat. The numerically dominant, Nelusetta ayruadi displayed 

considerable variability among habitats indicating no preference for any habitat type 

(Fig. 2.4a; Table 2.3a). Similarly, the abundance of individuals from the 

commercially important Sparidae displayed no clear pattern with habitat, however 

there were differences observed at certain locations (Fig. 2.5a; Table 2.4a). 
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Figure 2.2 Non-metric multidimensional scaling (nMDS) ordination of a) the 

demersal and b) mid-water fish assemblage. Points closer together in ordination 

space represent sites with more similar species compositions. 

 

 

 

 

 

 

 

 

 

a) 

b) 
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Table 2.1 Results of a permutational multivariate analysis of variance 

(PERMANOVA) for a) demersal and b) mid-water fish assemblages. Factors were 

Habitat (H, sixed with 3 levels: rocky reef, seagrass and unvegetated sediment), 

Location (L, random with 4 levels: Callala Bay, Hare Bay, Murrays Beach and 

Plantation Point) and Site nested within the Habitat by Location interaction. Values 

in bold indicate statistical significance at α = 0.05. 

 

Source df MS Pseudo F P (perm) 
a) Demersal     

Habitat 2 20342 10.12 0.001 
Location 3 4028.8 2.425 0.002 
H x L 6 2009.2 1.209 0.205 
Site(H x L) 12 1661.3 1.366 0.032 
Residual 24 1216.4   
Pairwise comparison: 
RR≠SG≠US 

    

b) Mid-water     
H 2 7529.6 1.89 0.085 
L 3 6968.2 2.10 0.029 
H x L 6 4002.9 1.22 0.243 
Si(H x L) 9 3207.1 1.39 0.065 
Residual 16 2311.2   

 

 

2.3.2 Effects of habitat on mid-water fishes 

Unlike demersal fishes, habitat had no effect on the total abundance of mid-

water fishes with and without the numerically dominant Trachurus noevazelandiae 

and Nelusetta ayraudi (Fig. 2.3 d, f; Table 2.2b, c). Similarly, habitat did not 

influence the diversity, or the assemblage structure of mid-water fishes (Fig. 2.2b, 

2.3b; Table 2.1b, 2.2a). Although not significant, there was a trend for a higher 

abundance of Nelusetta ayraudi on unvegetated sediment and seagrass compared to 

rocky reef (Fig. 2.4b; Table 2.3b). The abundance of Trachurus noevazelandiae was 

extremely patchy in their patterns of distribution. Low abundances of this schooling 

species were recorded at all locations except Callala, where there was a substantially 
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higher abundance recorded on rocky reef compared to the other habitats (Fig. 2.4d; 

Table 2.3b). Habitat had no effect on the abundance of Hyporhampus australis, a 

species which was only recorded in the mid-water environment (Fig. 2. 4f; Table 

2.3d). 

 

 

 
 

Figure 2.3 Mean (± SE) fish a) species richness, b) total abundance and c) total 

abundance without dominant taxa in demersal and mid-water environments (n = 2). 
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Table 2.2 Results for ANOVAs on a) species richness, b) total abundance and c) 

total abundance without two dominant taxa for demersal and mid water fish 

assemblages. Factors are the same as those listed in Table 2.1. Values in bold 

indicate statistical significance at α = 0.05. Data stemming from pooling procedures 

outlined in Underwood (1997) referred to as 1-Pooled data; NS: not significant. 

 
 Demersal Mid-water 
 df MS F P df MS F P 
 

a) Species Richness 
Habitat 2 441.75 16.45 0.004 2 0.49 1.97 0.22 
Location 3 21.47 3.13 0.037 3 0.05 0.18 0.90 
H x L 6 26.86 3.92 0.004 6 0.25 0.79 0.60 
Site(H x L) 12 7.44 1.09 0.401 12 0.31 1.61 0.16 
Residual 24 6.56   24 0.20   
Total 47    47    
1-Pooled data 36 6.85       

Pairwise comparison: CB: SS<SG=RR, HB: SS=SG<RR, MB: 
SS=SG<RR, PP: SS<SG<RR     

 Cochrans C (NS): 0.26 Cochrans C (NS): 0.34, Ln(x+1) 
 

b) Total Abundance 
H 2 13.06 10.43 0.011 2 49582.31 2.06 0.21 
L 3 0.54 0.69 0.561 3 9178.41 0.38 0.77 
H x L 6 1.25 1.62 0.170 6 24046.70 1.72 0.15 
Site(H x L) 12 0.44 0.57 0.853 12 4120.31 0.29 0.99 
Residual 24 0.94   24 18960.19   
Total 47    47    
Pairwise comparison: SS<SG=RR     
 Cochrans C (NS) 0.27, Ln(x) Cochrans C (NS): 0.27 
 

c) Total abundance minus dominant taxa 
H 2 10.54 29.70 0.000 2 4.38 1.84 0.238 
L 3 1.26 3.17 0.034 3 6.04 2.54 0.153 
H x L 6 0.40 1.13 0.36 6 2.38 2.17 0.069 
Site(H x L) 12 0.31 0.88 0.58 12 1.03 0.94 0.520 
Residual 24    24 1.13   
Total 47    47    
1-Pooled data 36 0.35   36 1.10   
2-Pooled data 42 0.35       
Pairwise comparison: SS=SG<RR     
 Cochrans C (NS): 0.25, Ln(x+1) Cochrans C (P<0.01): 0.44, Ln(x+1) 
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Figure 2.4 Mean (± SE) a) Nelusetta ayraudi, b) Trachurus novaezelandiae 

abundance in demersal and mid-water environments, c) Scorpididae abundance in 

the demersal environment and d) Hyporhamphus australis abundance in the mid-

water environment (n = 2). 
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Table 2.3 Results for ANOVAs on the abundance of a) Nelusetta ayraudi, b) 

Trachurus novaezelandiae in the demersal and mid-water environments, c) 

Scorpididae in the demersal environment and d) Hyporhamphus australis in the mid-

water environment. Factors are the same as those listed in Table 2.1. Values in bold 

indicate statistical significance at α = 0.05. Data stemming from pooling procedures 

outlined in Underwood (1997) referred to as 1-Pooled data; NS: not significant. 

 
 Demersal Mid-water 
 df MS F P df MS F P 
 

a) Nelusetta ayraudi N 
    

Habitat 2 18.91 4.79 0.057 2 16.08 4.14 0.074 
Location 3 7.78 5.22 0.004 3 3.83 0.99 0.460 
H x L 6 3.95 2.65 0.031 6 3.89 0.90 0.525 
Site(H x L) 12 1.46 0.98 0.487 12 4.32 1.87 0.094 
Residual 24 1.51   24 2.31   
Total 47    47    
1-Pooled data 36 1.49       
Pairwise 
comparison: 

CB: SS=RR<SG, HB: SS=SG=RR, 
MB: SS=SG>RR, PP: SS=SG=RR 

 

 Cochrans C (NS): 0.22, Ln(x+1) Cochrans C (NS): 0.25, Ln(x+1) 
 

b) Trachurus novaezelandiae N 
H 2 27.46 14.74 0.005 2 19.42 1.28 0.344 
L 3 19.91 6.72 0.007 3 24.34 1.60 0.285 
H x L 6 1.86 0.63 0.705 6 15.17 3.04 0.017 
Site(H x L) 12 2.96 1.61 0.155 12 4.10 0.82 0.628 
Residual 24 1.84   24 5.44   
Total 47    47    
1-Pooled data     36 4.99   
Pairwise 
comparison: 

SS<SG=RR CB: SS=SG<RR, HB: SS=SG=RR, 
MB: SS=SG=RR, PP: SS=SG=RR 

 Cochrans C (NS): 0.26, Ln(x+1) Cochrans C (NS): 0.32, Sqrt(x+1) 
  

c) Scorpididae N 
  

d) Hyporhamphus australis N 
H 2 64.41 28.24 0.000 2 1.68 1.52 0.230 
L 3 1.56 0.69 0.57 3 1.56 1.41 0.252 
H x L 6 0.94 0.41 0.87 6 0.71 0.64 0.695 
Site(H x L) 12 1.10 0.48 0.92 12 1.14 1.03 0.438 
Residual 24 3.21   24 1.18   
Total 47    47    
1-Pooled data 36 2.50   36 1.17   
2-Pooled data 42 2.28   42 1.10   
Pairwise 
comparison: 

SS=SG<RR  

 Cochrans C (NS): 0.33, Sqrt(x+1) Cochrans C (NS): 0.42, Ln(x+1) 
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Figure 2.5 Mean (± SE) abundance of a) Sparidae, b) Labridae, c) Ophthalmolepis 

lineolatus, d) Achoerodus viridis, e)  Platycephalus spp., f) Trygonorrhina fasciata 

recorded in the demersal environment (n = 2). 
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Table 2.4 Results for ANOVAs on the abundance of a) Sparidae, b) Labridae, c) 

Ophthalmolepis lineolatus, d) Achoerodus viridis, e) Platycephalus spp., f) 

Trygonorrhina fasciata on demersal BRUVs. Factors are the same as those listed in 

Table 2.1. Values in bold indicate statistical significance at α = 0.05. Data stemming 

from pooling procedures outlined in Underwood (1997) referred to as 1-Pooled data; 

NS: not significant. 
 df MS F P df MS F P 
   
 a) Sparid N b) Labrid N 
Habitat 2 1.99 1.18 0.369 2 11.11 28.10 0.001 
Location 3 0.21 0.32 0.809 3 0.37 1.38 0.296 
H x L 6 1.68 2.62 0.033 6 0.40 1.48 0.265 
Site(H x L) 12 0.68 1.06 0.422 12 0.27 2.54 0.025 
Residual 24 0.62   24 0.11   
Total 47    47    
1-Pooled data 36 0.64       
Pairwise 
comparison: 

CB: SS=SG=RR, HB: SS=SG, SS=RR, 
SG<RR, MB: SS<SG=RR, PP: 
SS=SG=RR 

SS=SG<RR 

 Cochrans C (NS): 0.32, Ln(x+1) Cochrans C (NS): 0.31, Sqrt(x+1) 
   
 c) Ophthalmolepis lineolatus N d) Achoerodus viridis N 
H 2 3.01 18.05 0.000 2 1.88 26.05 0.000 
L 3 0.14 0.82 0.449 3 0.02 0.25 0.862 
H x L 6 0.14 0.82 0.559 6 0.05 0.78 0.551 
Site(H x L) 12 0.05 0.30 0.985 12 0.09 1.25 0.282 
Residual 24 0.23   24 0.07   
Total 47    47    
1-Pooled data 36 0.17   36 0.07   
2-Pooled data 42 0.17   42 0.07   
Pairwise 
comparison: 

SS=SG<RR SS=SG<RR 

 Cochrans C (p<0.05): 0.39, Ln(x+1) Cochrans C (p<0.05): 0.38, Ln(x+1) 
   
 e) Platycephalus spp. N f) Trygonorrhina fasciata N 
H 2 3.01 18.05 0.000 2 3.01 9.19 0.015 
L 3 0.14 0.82 0.489 3 0.45 1.36 0.340 
H x L 6 0.14 0.82 0.559 6 0.33 0.89 0.533 
Site(H x L) 12 0.05 0.30 0.985 12 0.37 1.73 0.124 
Residual 24 0.23   24 0.21   
Total 47    47    
1-Pooled data 36 0.17       
2-Pooled data 42 0.17       
Pairwise 
comparison: 

SS>SG=RR SS=SG>RR 

 Cochrans C (p<0.05): 0.39, Ln(x+1) Cochrans C (NS): 0.19, Ln(x+1) 
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2.3.3 Seascape effects 

In addition to habitat, nearshore fish assemblages also displayed substantial 

variability among locations, which highlighted potential seascape effects. 

Quantifying seascape composition at each sampling site, simple linear regressions 

confirmed significant positive relationships between four fish response measures and 

the amount of seagrass area surrounding each rocky reef habitat. First, mid-water 

fish abundance, mid-water fish cumulative richness, demersal fish abundance and 

finally Sparidae abundance recorded on rocky reef increased with increasing 

seagrass area in the seascape (Fig. 2.7; Table 2.5). Although not significant, there 

was a strong positive trend between demersal fish richness recorded on rocky reef 

and the area of surrounding seagrass (Fig. 2.7; Table 2.5).  

 

Table 2.5 Simple linear regressions for various fish response measures recorded on 

rocky reef habitat with the areal coverage of seagrass within 1 or 1.5 km radius of 

each survey site. 

Dependent variable Independent variable F-ratio Model R2 p-value 

a) Demersal fish cumulative diversity Seagrass 1000 m 5.36 0.38 0.06 

b) Mid-water fish cumulative diversity Seagrass 1500 m 14.5 0.66 0.009 

c) Demersal fish abundance Seagrass 1000 m 12.97 0.63 0.011 

d) Mid-water fish abundance Seagrass 1000 m 12.96 0.63 0.011 

e) Sparid abundance Seagrass 1500 m 6.67 0.45 0.042 
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Figure 2.6 Relationship between a) demersal fish cumulative species richness, b) 

mid-water fish cumulative species richness, c) demersal fish abundance, d) mid-

water fish abundance and e) Sparid abundance recorded on rocky reef and the area of 

seagrass habitat within the seascape. 
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2.4 Discussion 

Our results demonstrate that habitat class is often a consistent and discrete 

predictor of spatial variability in the demersal fish assemblage. There were, however, 

substantial variations in patterns of fish abundance and distribution in regards to 

habitats. Some fishes showed no pattern among habitat classes, while others 

displayed similar abundances among two very discrete and different habitats (for 

example, unvegetated sediment and seagrass for Trygonorrhina fasciata). 

Furthermore, I have shown quantitative values for differences in the diversity and 

abundance of coastal fish assemblages among common nearshore habitats that can 

be used for conservation planning and fisheries management. Overall, the specific 

habitat elements we have investigated are appropriate surrogates for spatial 

conservation strategies such as MPAs, however, general species patterns also need to 

be considered.  

  Across all locations, habitat consistently influenced the structure of demersal 

fishes, with each habitat class comprising a distinct assemblage of fishes. This result 

was driven by differences in demersal fish diversity and total abundance (including 

and excluding dominant taxa), where rocky reef harboured a greater richness and 

abundance of fishes.  Differences in demersal fish assemblages among habitats were 

also driven by a number of taxa displaying strong habitat preferences. Labrids and 

two species within this family; Achoerodus viridis and Ophthalmolepis lineolatus, as 

well as individuals from the Scorpididae, were almost exclusively recorded over 

rocky reef habitat. Meanwhile, individuals from the genus Platycephalus were only 

observed on unvegetated sediments. In contrast, certain species clearly preferred 

more than one habitat. For example, Trachurus novaezelandiae were more abundant 

over seagrass and rocky reef compared to unvegetated sediment, while 
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Trygonorrhina fasciata were more abundant over unvegetated sediment and seagrass 

compared to rocky reef. These strong, spatially consistent patterns indicate that the 

habitat classes investigated in this study may be appropriate surrogates for certain 

demersal fishes. As results varied among taxa however, our findings also highlight 

the importance of exploring fish-habitat relationships at finer taxonomic scales. 

Habitat was not an important driver of the mid-water fish assemblage, with 

inconsistent and highly variable patterns in assemblage structure, abundance and 

diversity among habitats. Furthermore, the Eastern Sea Garfish; Hyporhamphus 

australis, a species observed exclusively in the mid-water environment displayed no 

preference for habitat type. Our findings demonstrate a clear decoupling of the mid-

water fish assemblage from the underlying habitat class. This is despite mid-water 

BRUVS being positioned only approximately 4.5 metres above the seafloor. 

Therefore, we conclude that habitat classes would not be an effective surrogate for 

nearshore mid-water fish assemblages.  

In response to the cost effectiveness and time efficiency of collecting 

remotely-sensed habitat information, mapped habitat classes (e.g. rocky reef, 

seagrass, mangroves, unvegetated sediments, etc.) are becoming increasingly used as 

surrogates to indirectly determine marine biodiversity and guide the design of MPAs 

(Jordan et al., 2005; Dalleau et al., 2010). This approach is based on the notion that 

different habitat types support different biological communities, species, age classes 

and functional guilds. Therefore, by representing habitat diversity within a protected 

area, it is assumed that biodiversity and ecological processes will also be captured. 

Little research, however, has critically evaluated or quantified how habitat influences 

nearshore fish assemblages and whether mapped habitat classes can act as adequate 

surrogates for the abundance and diversity of fishes. In this study, I observed mixed 
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effects of the influence of habitat classes on coastal fish assemblages. The 

distribution and abundance of some taxa were strongly influenced by habitat, while 

others showed no differentiation. This does not indicate that the broad habitat classes 

examined are not useful surrogates, but instead suggests that patterns may be species 

specific. In order to use habitat classes successfully as surrogates for spatial 

conservation planning, managers will have to consider this variation. 

Previous studies comparing demersal fish assemblages among rocky reef, 

seagrass and unvegetated sediment have also observed effects of habitat. Notably, 

rocky reef, seagrass and unvegetated sediment each displayed a distinct assemblage 

of demersal fishes, which corroborates the findings of our study (Jenkins and 

Wheatley 1998; Guidetti 2000; La Mesa et al., 2011). Despite differences in the 

geographic location, species of seagrass investigated, and method to survey fishes, 

similarities between our findings and those of previous research suggest generalities 

for the importance of nearshore habitats structuring demersal fish assemblages. It 

also further underscores the potential of these habitats to act as surrogates for 

conservation on a broader scale than the one employed in this study. Strong species 

specific relationships were also observed among habitats by Jenkins and Wheatley 

(1998), Guidetti (2000) and La Mesa et al., (2011), further highlighting the need to 

explore such relationships at finer taxonomic levels. 

Not all demersal fish taxa showed consistent differences in their patterns of 

abundance among habitat types. Most notable was the high variability in the 

abundance of the commercially and recreationally important Sparidae among 

habitats and locations. This outcome is consistent with them being habitat generalists 

or using specific habitats at different life stages. The latter is likely for Sparids, such 

as Snapper (Pagrus auratus), as they are known to undertake ontogenetic migrations 
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between nearshore habitats by first recruiting to seagrass and unvegetated sediments 

before taking up residence on rocky reef as adults (Hamer et al., 2006; Parsons et al., 

2014). Measuring fish length, perhaps through use of stereo BRUVS, would provide 

an opportunity to determine whether rocky reef, seagrass and unvegetated sediments 

support different age classes on fishes. We suggest this as a future area of work in 

coastal seascapes.  

Another key finding from our study was substantial spatial variability among 

locations, which highlighted the potential importance of broad-scale seascape 

connectivity on nearshore fish assemblages. Generally, sites within Murrays Beach 

and Hare Bay displayed a higher abundance and diversity of fishes compared to 

Callala Bay and Plantation Point. Sites within these locations also varied in their 

areal coverage of seagrass, with Murrays Beach and Hare Bay sites containing a 

greater area of seagrass compared to sites at Callala Bay and Plantation Point. Linear 

regressions confirmed the amount of seagrass in the surrounding seascape to 

significantly influence mid-water fish abundance, diversity, demersal fish abundance 

and Sparid abundance on adjacent rocky reef habitat. In all cases fish response 

measures were positively correlated with increasing seagrass area. Although not 

significant, similarly there was also a strong trend between demersal fish diversity 

and seagrass area. These findings are not surprising considering many species from 

families observed in this study (for e.g. Labrids, Girrelids and Sparids), recruit into 

seagrass habitats before undertaking ontogenetic migrations to other habitat types 

(Curley et al., 2013). Furthermore, many species may undertake diel migrations 

between different habitat patches to seek refuge or utilise various habitat patches for 

foraging. Snapper (Pagrus auratus) from the Sparid family are known to prefer areas 

of greater patch diversity and complexity (coralline turf, mussel beds, sponges, pits 
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and burrows) (Kingett and Choat 1981; Parsons et al. 2014).Therefore, seascapes 

that display a high diversity of habitat patches are likely to facilitate a number of 

ecological processes and promote local biodiversity (Dunning et al., 1992). These 

findings also support previous research from tropical environments, which have 

highlighted the positive effect of connectivity between vegetated habitats such as 

seagrass and mangroves with coral reef habitat (Mumby et al., 2006; Grober-

Dunsmore et al., 2007; Nagelkerken et al., 2012).  

Although our findings are preliminary, we encourage future research to 

investigate the seascape ecology of temperate fishes, especially the role of 

connectivity between vegetated and rocky reef habitats. This is important, as many 

MPAs do not acknowledge or consider the seascape patterning in their design and as 

a result may not be protecting key seascape linkages important for ecological 

processes and species populations. A better understanding of the effect of seascape 

patterning on biodiversity and ecological processes such as ontogenetic species 

migration will better inform the design of spatial conservation management 

strategies in temperate regions (Olds et al., 2016). 

 

2.5 Conclusions 

Remotely-sensed benthic habitat maps have become a popular tool to guide 

the design of spatial conservation strategies like MPAs. Despite their use, there has 

been scant attention to whether nearshore habitat classes are appropriate surrogates 

for biological assemblages and ultimately their utility in MPA design. In this study, 

we found that nearshore habitats consistently explained the spatial patterns in 

demersal fishes in coastal environments. There were, however, some exceptions to 

this rule when relationships were explored at lower taxonomic resolution, which 
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planners should be aware of. In contrast, nearshore habitats did not influence mid-

water fishes. I conclude that habitat classes can be a useful surrogate for demersal 

fishes, providing a cost effective and time efficient approach to designing MPAs on a 

firm ecological foundation. I also show that the surrounding seascape composition of 

rocky reef habitat, specifically the amount of seagrass, is important in explaining the 

abundance and diversity of nearshore temperate fishes. I propose that greater 

seagrass coverage facilitates ecological processes such as ontogenetic migrations, 

foraging behaviour and diel movements which results in disproportionate levels of 

biodiversity on reefs adjacent to large areas of seagrass. Future research, with larger 

sample sizes or employing technologies such as acoustic telemetry will strengthen 

the evidence of the importance of seascape connectivity for temperate fishes.  As 

MPA design is often guided by socio-economic or political concerns, it is essential 

that future MPAs are developed on ecological grounds due to the rising threats to 

marine biodiversity, especially in coastal environments. 
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Chapter 3: ASSESSING THE EFFECTIVENESS OF THE LORD HOWE 
ISLAND MARINE PARK IN SAFEGUARDING THE REGIONS UNIQUE 
MARINE BIODIVERSITY 
 

This chapter has been prepared for submission to Aquatic Conservation: Marine and 

Freshwater Ecosystems. 

 

 

 

Plate 3.1 A large adult black rockcod (Epinephelus daemelii) recorded on the Lord 

Howe Island shelf using a baited remote underwater video system. Black rockcod are 

listed as vulnerable in New South Wales state waters.  
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3.1 Introduction 

Remote oceanic islands represent areas of global biological significance as 

they often support disproportionate levels of biodiversity, including many endemic 

species (Allen 2008). Biodiversity associated with small remote oceanic islands are 

also more vulnerable to stochastic natural disturbances and anthropogenic threats as 

species often have restricted ranges and low abundances making them prone to 

extinction (Kier et al., 2009). Consequently, it is important that remote oceanic 

islands receive appropriate conservation management to protect their unique 

biodiversity and maintain ecosystem functioning (Edgar et al., 2010). Furthermore, 

established conservation strategies on remote oceanic islands, such as Marine 

Protected Areas (MPAs), require consistent and accurate assessments to determine 

whether management practices are adequately safeguarding biodiversity. 

Lord Howe Island and its satellite island; Balls Pyramid fit the description of 

remote oceanic islands with unique biodiversity and natural history. Located 610 km 

off the east coast of northern NSW, Australia, at a latitude of 31q50’S in the South 

Pacific Ocean, the region lies on the Tasman Front; the oceanographic boundary 

between tropical and temperate water masses (Nilsson and Cresswell 1980). As a 

result, the region has a unique composition of tropical, subtropical and temperate 

marine biota, including the southernmost coral reef co-existing with abundant and 

diverse temperate macro-algal communities (Edgar et al., 2010). Owing to the 

islands isolation, the region also supports high levels of endemism among algae, 

fishes and marine invertebrates. For these biological attributes, Lord Howe Island 

received UNESCO World Heritage listing in 1982 (Environment Australia 2000). 

In response to concerns over anthropogenic threats to Lord Howe Island’s 

marine biodiversity, Marine Protected Areas (MPAs) have been established around 
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the island with an aim to protect biodiversity and maintain ecological processes 

(Marine Parks Act, 1997). In 1999 the NSW government proclaimed the Lord Howe 

Island Marine Park in state waters (<3 nm from land) and in 2000 the 

Commonwealth Marine Park was proclaimed by the federal government in the 

adjacent waters (3 nm – 12 nm) (Marine Parks Act, 1997; Commonwealth 

Environment Protection and Biodiversity Conservation Act, 1999). In an attempt to 

manage anthropogenic threats, two MPA management zones were established in the 

federal and state waters. The first, sanctuary zones (SZs), are strictly no-take marine 

reserves that prohibit extractive activities. The second, habitat protection zones 

(HPZs), are partially protected area allowing some forms of fishing (Kelaher et al., 

2014), such as charter boat operations and recreational line fishing. Across the entire 

state and federal waters of the Lord Howe Island Marine Park (LHIMP), spearfishing 

and any form of commercial fishing, such as longlining and demersal trawling is 

banned. Enforcement of the zoning regulations came into effect in the state and 

federal waters in 2004 and 2002 respectively.  

The LHIMP comprises a rich assemblage of fishes, with more than 490 

species documented in its waters, most of which inhabit coastal inshore areas (Allen 

and Paxton 1974; Allen, et al., 1976; Francis 1991; Francis 1993; Francis and 

Randall 1993; Parker 1993). Most species are tropical with broad biogeographic 

ranges, however total biomass of fishes is heavily shewed towards temperate species 

(Edgar et al., 2010). Approximately 4% of the inshore fishes are endemic to the Lord 

Howe Island and Norfolk Island region, making it one of the world’s most important 

regions for endemic fishes (Allen et al., 1976). The LHIMP fish assemblage also 

comprises of other species of special importance such galapagos whalers 

(Carcharhinus galapagensis) and doubleheader wrasse (Coris bulbifrons) which are 
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listed as ‘near threatened’ and ‘vulnerable’ under the IUCN red list, respectively 

(Choat and Pollard 2010). Under the NSW Fisheries Management Act, 1994, 2 

species of fish; black rockcod (Epinephelus daemelii) and ballina angelfish 

(Chaetodontoplus ballinae) are protected in state waters. Several species from Lord 

Howe Island’s fish assemblage are targeted by recreational fishers and commercial 

charter boat fishing operations. The predominant target species are yellowtail 

kingfish (Seriola lalandi) and silver trevally (Pseudocaranx dentex) which are sold 

by charter boat operators under a special fisheries arrangement to local restaurants on 

the island (effectively the sole providers of fresh fish to the island’s local and tourist 

population) (Figueira and Hunt 2012). To a lesser extent fishers target emperor 

(Lethrinus spp.), bluefish (Girella cyanea) and C. bulbifrons as well as seasonal 

pelagic fishes such as wahoo, tuna and billfish. Fishing activity is likely to result in 

by-catch of certain species; most notably galapagos whalers (C. galapagensis) that 

often depredate hooked catch (pers. Obs.). Although fishing pressure before and after 

the implementation of the LHIMP is likely to be low (Edgar et al., 2010), the 

potential impact of fishing on species abundances and ecosystem functioning has not 

been assessed (Neilson et al., 2010). Only one study has examined the effectiveness 

of the LHIMP management zones in safeguarding the regions fish assemblage which 

focussed on shallow-water inshore habitats (Edgar et al., 2010). No research has 

evaluated the LHIMP zoning on fish assemblages occupying the extensive shelf 

habitat (20 – 50 m) of Lord Howe Island and Balls Pyramid. Therefore, whether the 

LHIMP zoning is safeguarding biodiversity in this habitat type remains unknown. 

This is despite the shelf habitat being the most extensive habitat type protected in 

state waters of the LHIMP. 
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In this study we tested for differences in the fish assemblage between 

management zones within the LHIMP after approximately 5 and 9 years of the 

MPAs establishment. As the LHIMP is relatively pristine, with low levels of 

anthropogenic impacts (for example no commercial fishing) we predicted that the 

abundance of common (defined as >50% of survey replicates), endemic, near 

endemic and protected species would not be influenced by MPA zoning. 

Additionally, the LHIMP displays four of the five attributes found to increase the 

conservation benefits on MPAs (Edgar et al., 2014), that is the presence of no-take 

zones, strong enforcement, old age (>10 years) and isolated by deep water or sand. 

Consequently, we predicted that the current LHIMP zoning arrangement will be 

adequately safeguarding the regions biodiversity within SZs and HPZs. In contrast, 

we predicted that species targeted by recreational and charter boat fishers would 

show an effect of MPA zoning with higher abundances inside SZs compared to 

HPZs where fishing is permitted.  

 

3.2 Materials and methods 

Fish assemblages were surveyed using baited remote underwater video 

systems (BRUVS). BRUVS contained Canon HG21 video cameras within 

underwater camera housings constructed by SeaGIS Pty. Sixteen sites were sampled 

on the Lord Howe Island and Balls Pyramid shelf comprising coral reef, relict reef, 

rubble and rock habitat between the depth of 25 and 50 metres. Eight sites were in 

the Commonwealth Marine Park and eight sites in the state LHIMP, with an even 

sampling effort between SZs and HPZs (n = 8 per zone) (Fig. 3.1). At each site, 4 

BRUVS were deployed at least 200m apart for a minimum of 35 minutes to ensure a 

30 min sample. Previous studies have indicated that a 30 min deployment provides a 
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representative sample fish assemblages at this latitude (Harasti et al., 2015). Each 

site was sampled in 2009 and 2013 during daylight hours. In 2009, sampling 

occurred between 10th to 19th of November and in 2013 between 22nd to 30th April. 

For the 2009 sampling, bait consisted of 1 kg of crushed pilchards (Sardinops 

sagax); a highly effective bait (Wraith et al., 2013). Due to a limited supply of bait, 

the same kilogram of bait was re-used for up to 4 BRUVS deployments. In 2013, 

prior to deploying the units, the bait bags were replenished with 500g of freshly 

crushed pilchards. 

Footage from BRUVS was analysed in the laboratory using Event measure 

software (SeaGIS Pty). For each deployment species richness and relative abundance 

(Max N) was recorded. Species richness was the number of species of fish observed 

during the each BRUVS deployment. The relative abundance of fishes, Max N, was 

the maximum number individuals of one species viewed at any one time during the 

sample (Cappo et al., 2004). Max N values for individual species were then summed 

to generate total relative abundance, Total Max N, for each sample. 

Multivariate and univariate PERMANOVA analyses (Clarke 1993; Anderson 

et al., 2001) were carried out with the PRIMER-E v7 package using type III sums of 

squares with 9999 permutations. Multivariate differences in fish assemblages 

between management zones were tested using a 4 factor PERMANOVA on Bray-

Curtis dissimilarity values calculated from forth root transformed data. The factors 

were year (2 levels and random), zone (2 levels and fixed; SZ and HPZ), location (4 

levels nested within zone and random) and site (2 levels nested within location and 

random). Non-metric multidimensional scaling (nMDS) was used to generate two-

dimensional ordinations to illustrate patterns in the fish assemblage. Univariate 

analyses to examine differences in Total MaxN, species richness and the abundance 
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of key species were tested using 4 factor PERMANOVA’s with the factors as 

previously described for the multivariate analyses. All univariate analyses were 

completed using Euclidian distance to create similarity matrices.  

 

Figure 3.1 A map of survey sites in the Lord Howe Island Marine Park. The Lord 

Howe Island shelf is in the north and the Balls Pyramid shelf to the south. Regions in 

pink represent Sanctuary Zones (SZ) while regions in blue, Habitat Protection Zones 

(HPZ).  Note the 2 sites within each location. 
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Key species included those that were common, targeted or caught as by-catch 

by fishers. We also included endemic, near endemic or protected fishes under the 

Fisheries Act of 1994. Common species were those recorded on >50% of 

deployments across both years (Chaetodontoplus conspicillatus, Coris picta, 

Pseudolabrus luculentus, Sufflamen fraenatum and Thamnaconus analis). Fished 

species were Lethrinus nebulosus, Pseudocaranx dentex and Seriola lalandi 

(Figueira and Hunt 2012). Galapagos whaler sharks; Carcharhinus galapagensis 

were also included in this category as they are often caught as by-catch and usually 

released alive by charter fishing operators (Figueira and Hunt 2012). Endemic and 

near endemic species included Amphichaetodon howensis, Genicanthus semicinctus, 

Scorpaena cookii and Coris bulbifrons.  A number of endemic, near endemic and 

protected species displayed patchy distributions with low abundances making robust 

statistical analyses difficult. For these species; Chaetodon tricinctus, 

Chaetodontoplus ballinae, Epinephelus daemelii and Girella cyanea, patterns 

between management zones were described. Post hoc pairwise comparisons were 

made on terms of interest in the model that were statistically significant in the main 

PERMANOVA analysis.  Monte Carlo random draws were used to obtain correct P-

values where sufficient permutations (< 50) were not available in pair wise analyses 

(Anderson et al., 2008). Following PERMANOVA, post-hoc pooling of lower order 

terms was performed if P >0.25, to increase the power of the main tests (Underwood 

1997). 

 

3.3 Results 

In total, 6657 individuals from 106 species were recorded from BRUVS 

deployments in 2009 and 2013. The structure of the fish assemblages did not differ 
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between SZs and HPZs nor was there an interaction between zone and year (Table 

3.1, Fig. 3.2). There were however, differences in the structure of the fish 

assemblage between years and among locations (Table 3.1; Fig. 3.2). Similarly to the 

multivariate analysis, there was no difference in total MaxN and species richness of 

fishes between SZs and HPZs (Table 3.2; Fig. 3.3). The abundance of fishes differed 

among sites between years (Table 3.2a; Fig. 3.3) and there were locational 

differences in fish diversity (Table 3.2b; Fig. 3.3). 

 

Figure 3.2 Non-metric multidimensional scaling (nMDS) ordination of Lord Howe 

Island fish assemblage. Points closer together in ordination space represent sites with 

more similar species compositions. 

 

The abundance of common species; Chaetodontoplus conspicillatus, Coris 

picta, Pseudolabrus luculentus, Sufflamen fraenatum and Thamnaconus analis were 

not influenced by zone (Table 3.3; Fig. 3.4). In general, abundances were highly 

variable between years at the site level (Fig. 3.4). The abundance of S. fraenatum 

differed between years with a greater abundance observed in 2013 compared to 2009 

(Table 3.3d, Fig. 3.4). 
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Table 3.1 Results of a permutational multivariate analysis of variance 

(PERMANOVA) comparing demersal fish assemblages between zones using Bray-

Curtis similarity measures following fourth root transformations. Factors were: Year 

(Ye, random with 2 levels: 2009 and 2013), Zone (Zo, fixed with 2 levels: SZ and 

HPZ), Location (Lo, random with 4 levels nested in zone) and Site (Si, random with 

2 levels nested in location). Values in bold indicate statistical significance at α = 

0.05. 

 

Source df SS MS Pseudo-F P(perm) 

Ye 1 8694 8694 3.91 0.013 
Zo 1 4541 4541 0.62 0.877 
Lo(Zo) 6 50828 8471 2.15 0.004 
YexZo 1 2590 2591 1.17 0.345 
Si(Lo(Zo)) 8 21695 2712 1.26 0.159 
YexLo(Zo) 6 13373 2229 1.04 0.439 
YexSi(Lo(Zo)) 8 17170 2146 1.24 0.097 
Res 92 159810 1737                  
Total 123 279860                         
      

 

 

The abundance of fished species; Lethrinus nebulosus, Pseudocaranx dentex, 

Seriola lalandi and Carcharhinus galapagensis did not differ between SZs and HPZs 

(Table 3.4; Fig. 3.5). Strong locational effects were observed for C. galapagensis 

and S. lalandi (Table 3.4a, d) while L. nebulosus and P. dentex differed among sites 

and times of sampling (Table 3.4b, c).  

Although not significant, there was 2.3 times greater abundance of S. lalandi 

in SZs compared to HPZs but this was due to one location which consistently 

recorded high abundances of these individuals (Fig. 3.5). There was also a weak 

trend for higher abundances of L. nebulosus in SZs compared to HPZs in 2013 (Fig. 

3.5). 
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Table 3.2 Results of a PERMANOVA comparing a) total MaxN and b) Species Richness between zones using Euclidian distance. Factors 

were as listed in Table 3.1. Values in bold indicate statistical significance at α = 0.05. 

 

Source df SS MS Pseudo-F P(perm) Source df SS MS Pseudo-F P(perm) 

   a) MaxN        b) Species Richness 

Ye 1 3290 3290 0.86 0.377 Ye 1 25.2 25.2 0.52 0.493 
Zo 1 7828 7828 0.83 0.563 Zo 1 0.4 0.4 0.19 0.945 
Lo(Zo) 6 45289 7548 2.01 0.103 Lo(Zo) 6 610.4 101.7 1.58 0.043 
YexZo 1 6502 6502 1.70 0.237 YexZo 1 149.2 149.2 3.09 0.133 
Si(Lo(Zo)) 8 31036 3880 0.49 0.834 Si(Lo(Zo)) 8 287.6 35.9 1.14 0.341 
YexLo(Zo) 6 22926 3821 0.48 0.810 YexLo(Zo) 6 291.1 48.5 1.54 0.171 
YexSi(Lo(Zo)) 8 63315 7914 2.06 0.044 Pooled 100 3146.7 31.5                  
Res 92 352730 3834                  Total 123 4561.0      

  Total 123 533730                         
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Figure 3.3 Mean (± SE) Total N and species richness between zones in 2009 and 

2013 (n = 4). Shaded bars represent fished sites (HPZ) and clear bars represent no-

take sites (SZ). 
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Table 3.3 Results of a PERMANOVA comparing the abundance of common 

species; conspicuous angelfish (Chaetodontoplus conspicillatus), comb wrasse 

(Coris picta), luculentus wrasse (Pseudolabrus luculentus), masked triggerfish 

(Sufflamen fraenatum) and darkvent leatherjacket (Thamnaconus analis) between 

zones using Euclidian distance. Factors are the same as those listed in Table 3.1. 

Values in bold indicate statistical significance at α = 0.05. 

 

Source df SS MS 
Pseudo-

F P(perm) Source df SS MS 
Pseudo-

F P(perm) 
  a) C. conspicillatus 

    
  b) C. picta 

    Ye 1 6.4 6.4 1.81 0.231 Ye 1 7.4 7.4 0.83 0.455 
Zo 1 0.8 0.8 1.86 0.263 Zo 1 47.1 47.1 1.44 0.354 
Lo(Zo) 6 12.8 2.1 0.64 0.362 Lo(Zo) 6 132.1 22.0 2.13 0.093 
YexZo 1 0.2 0.2 0.06 0.806 YexZo 1 17.0 17.0 1.91 0.222 
Si(Lo(Zo)) 8 14.3 1.8 1.37 0.217 Si(Lo(Zo)) 8 58.1 7.3 0.58 0.774 
YexLo(Zo) 6 21.4 3.6 2.74 0.017 YexLo(Zo) 6 53.6 8.9 0.71 0.651 
Pooled 100 130.0 1.3                  YexSi(Lo(Zo)) 8 100.5 12.6 1.93 0.064 
Total 123 187.0                          Res 92 599.1 6.5                  

      
Total 123 1040.7    

                c) P. luculentus 
    

  d) S. fraenatum 
    Ye 1 15.9 15.9 3.71 0.105 Ye 1 8.1 8.1 14.69 0.011 

Zo 1 1.3 1.3 0.58 0.710 Zo 1 0.4 0.4 1.38 0.364 
Lo(Zo) 6 47.4 7.9 1.49 0.232 Lo(Zo) 6 1.8 0.3 0.74 0.286 
YexZo 1 1.8 1.8 0.41 0.538 YexZo 1 0.4 0.4 0.68 0.452 
Si(Lo(Zo)) 8 33.3 4.2 0.88 0.576 Si(Lo(Zo)) 8 1.8 0.2 0.79 0.616 
YexLo(Zo) 6 25.8 4.3 0.91 0.525 YexLo(Zo) 6 3.3 0.6 1.96 0.075 
YexSi(Lo(Zo)) 8 38.0 4.7 1.95 0.060 Pooled 100 28.1 0.3                  
Res 92 224.0 2.4                  Total 123 44.2     

  Total 123 395.7      
                      e) T. analis 

          Ye 1 3.3 3.3 3.28 0.118 
      Zo 1 0.8 0.8 1.28 0.406 
      Lo(Zo) 6 7.8 1.3 0.73 0.299 
      YexZo 1 0.2 0.2 0.16 0.714 
      Si(Lo(Zo)) 8 13.7 1.7 2.46 0.017 
      YexLo(Zo) 6 6.1 1.0 1.47 0.205 
      Pooled 100 69.9 0.7                  

      Total 123 102.0                          
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Figure 3.4 Mean (± SE) abundance of common species; Conspicuous Angelfish 

(Chaetodontoplus conspicillatus), Comb Wrasse (Coris picta), Luculentus Wrasse 

(Pseudolabrus luculentus), Masked Triggerfish (Sufflamen fraenatum) and Darkvent 

Leatherjacket (Thamnaconus analis) between zones in 2009 and 2013 (n = 4). 

Shaded bars represent fished sites (HPZ) and clear bars represent no-take sites (SZ). 
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Table 3.4 Results of a PERMANOVA comparing the abundance of fished and by-

catch species; galapagos whalers (Carcharhinus galapagensis), spangled emperor 

(Lethrinus nebulosus), silver trevally (Pseudocaranx dentex) and yellowtail kingfish 

(Seriola lalandi) between zones using Euclidian distance. Factors are the same as 

those listed in Table 3.1. Values in bold indicate statistical significance at α = 0.05. 

 

Source df SS MS 
Pseudo-

F P(perm) Source df SS MS 
Pseudo-

F P(perm) 
  a) C. galapagensis 

    
  b) L. nebulosus 

    Ye 1 5.1 5.1 0.71 0.406 Ye 1 0.6 0.6 1.31 0.294 
Zo 1 17.2 17.2 0.65 0.462 Zo 1 0.2 0.2 0.31 0.883 
Lo(Zo) 6 159.7 26.6 3.73 0.001 Lo(Zo) 6 10.2 1.7 1.62 0.184 
Pooled 115 819.7 7.1                  YexZo 1 0.4 0.4 0.79 0.401 
Total 123 1000.8   

  
Si(Lo(Zo)) 8 10.6 1.3 1.13 0.425 

      
YexLo(Zo) 6 2.7 0.5 0.39 0.876 

      
YexSi(Lo(Zo)) 8 9.3 1.2 2.09 0.041 

      
Res 92 51.3 0.6                  

      
Total 123 85.4                          

              c) P. dentex 
    

  d) S. lalandi 
    Ye 1 0.2 0.2 0.04 0.847 Ye 1 0.3 0.3 0.04 0.897 

Zo 1 0.6 0.6 0.25 0.916 Zo 1 14.8 14.8 0.60 0.343 
Lo(Zo) 6 64.0 10.7 1.27 0.260 Lo(Zo) 6 213.1 35.5 3.17 0.001 
YexZo 1 9.9 9.9 2.20 0.178 YexZo 1 1.3 1.3 0.17 0.784 
Si(Lo(Zo)) 8 65.8 8.2 1.48 0.268 Si(Lo(Zo)) 8 89.7 11.2 1.52 0.091 
YexLo(Zo) 6 27.2 4.5 0.82 0.598 Pooled 106 782.3 7.4                  
YexSi(Lo(Zo)) 8 44.5 5.6 3.14 0.004 Total 123 1106.4 

   Res 92 162.8 1.8                  
      Total 123 360.9 
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Figure 3.5 Mean (± SE) abundance of fished and by-catch species; galapagos 

whalers (Carcharhinus galapagensis), spangled emperor (Lethrinus nebulosus), 

silver trevally (Pseudocaranx dentex) and yellowtail kingfish (Seriola lalandi) 

between zones in 2009 and 2013 (n = 4). Shaded bars represent fished sites (HPZ) 

and clear bars represent no-take sites (SZ). 
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The abundance of endemic or near endemic species; Amphichaetodon 

howensis, Genicanthus semicinctus and Scorpaena cookii did not differ between 

management zones (Table 3.5, Fig. 3.6). The lord howe island butterflyfish; A. 

howensis exhibited strong spatio-temporal variation among sites and year while the 

abundance of G. semicinctus was strongly influenced by location (Table 3.5a, b; Fig. 

3.6). There was a significant difference in the abundance of S. cookii among 

locations and between years, with a greater abundance observed in 2013 compared to 

2009 (Table 3.5c, Fig. 3.6). The endemic, Coris bulbifrons differed between years 

but only in HPZ zones, where in 2013 there was a greater abundance compared to 

2009 (Table 3.5d). There was a trend for more C. bulbifrons in SZs than HPZs in 

2009, this however, was not statistically significant (Fig. 3.6). 

Other endemic, near endemic and protected species displayed low 

abundances and patchy distributions among replicates, sites, locations and zones. 

Therefore, it is only possible to describe clear spatial patterns for these species. The 

abundance of Chaetodon tricinctus appears to be stable between years as individuals 

were observed at 5 sites in 2009 and 6 sites in 2013. In each year individuals were 

observed at 2 sites within SZs (Fig. 3.7). The ballina angelfish; Chaetodontoplus 

ballinae, exhibited a distinct pattern in their spatial distribution, observed only at one 

location (site 1 and 2) across both years (Fig. 3.7). There was an apparent decline in 

the number of individuals of the protected Epinephelus daemelii between years with 

10 individuals observed in 2009 while only 6 in 2013. E. daemelii were only 

observed at one site within SZs in 2013 compared to 3 sites in 2009 (Fig. 3.7). A 

decline in the number of protected Girella cyanea was also apparent between 2009 

and 2013, with 30 individuals observed in 2009 and just 7 in 2013 (Fig. 3.7). 

Additionally, G. cyanea were only observed at 2 sites in 2013 compared to 5 sites in 
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2009. The highest abundances of G. cyanea observed in both years were at the HPZ 

location containing site 5 and 6 (Fig. 3.7). 

 

Table 3.5 Results of a PERMANOVA comparing the abundance of endemic, near 

endemic and protected species; lord howe island butterflyfish (Amphichaetodon 

howensis), halfbanded angelfish (Genicanthus semicinctus), cook’s scorpionfish 

(Scorpaena cookii) and doubleheader wrasse (Coris bulbifrons) between zones using 

Euclidian distance. Factors are the same as those listed in Table 3.1. Values in bold 

indicate statistical significance at α = 0.05. 

 

 

 

 

 

 

 

Source  df 
      
SS 

      
MS 

Pseudo-
F P(perm) Source  df      SS 

     
MS 

Pseudo-
F P(perm) 

  a) A. howensis 
    

  b) G. semicinctus 
Ye 1 0.1 0.1 0.29 0.604 Ye 1 0.2 0.2 0.05 0.835 
Zo 1 0.0 0.0 0.08 0.995 Zo 1 0.3 0.3 0.04 0.892 
Lo(Zo) 6 18.5 3.1 4.35 0.007 Lo(Zo) 6 52.4 8.7 2.14 0.040 
YexZo 1 2.4 2.4 5.91 0.052 Pooled 115 469.0 4.1                  
Si(Lo(Zo)) 8 5.1 0.6 0.45 0.864 Total 123 522.1    

  YexLo(Zo) 6 2.4 0.4 0.28 0.930 
      YexSi(Lo(Zo)) 8 11.4 1.4 2.45 0.017 
      Res 92 53.5 0.6                  

      Total 123 94.2      
                      c) S. cooki 

    
  d) C. bulbifrons 

Ye 1 4.3 4.3 6.31 0.048 Ye 1 0.7 0.7 2.59 0.113 
Zo 1 0.5 0.5 0.30 0.898 Zo 1 0.1 0.1 0.11 0.724 
Lo(Zo) 6 9.3 1.6 2.30 0.012 Lo(Zo) 6 2.9 0.5 1.86 0.085 
YexZo 1 2.4 2.4 3.57 0.112 YexZo 1 3.1 3.1 11.91 0.001 
Si(Lo(Zo)) 8 1.6 0.2 0.41 0.910 Pooled 114 29.9 0.3                  
YexLo(Zo) 6 4.1 0.7 1.42 0.210 Total 123 36.7     

  Pooled 100 48.2 0.5                  
      

Total 123 70.5                          
pairwise 
comparison: 

No-take: 2009=2013, Fished: 
2009<2013 
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Figure 3.6 Mean (± SE) abundance of endemic, near endemic and protected species; 

lord howe island butterflyfish (Amphichaetodon howensis), threeband butterflyfish 

(Chaetodon tricinctus), ballina angelfish (Chaetodontoplus ballinae) and halfbanded 

angelfish (Genicanthus semicinctus) between zones in 2009 and 2013 (n = 4). 

Shaded bars represent fished sites (HPZ) and clear bars represent no-take sites (SZ). 
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Figure 3.7 Mean (± SE) abundance of endemic, near endemic and protected species; 

cook’s scorpionfish (Scorpaena cookii), doubleheader wrasse (Coris bulbifrons), 

black rockcod (Epinephelus daemelii) and bluefish (Girella cyanea) between zones 

in 2009 and 2013 (n = 4). Shaded bars represent fished sites (HPZ) and clear bars 

represent no-take sites (SZ). 
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3.4 Discussion 

Our results reveal no effect of MPA zoning on the structure of Lord Howe 

Island’s fish assemblage, total abundance, species richness and abundance of 

common species; Chaetodontoplus conspicillatus, Coris picta, Pseudolabrus 

luculentus, Sufflamen fraenatum and Thamnaconus analis. Similarly, endemic or 

near endemic species; Amphichaetodon howensis, Genicanthus semicinctus, 

Scorpaena cookii and Chaetodon tricinctus displayed no difference in abundance 

between management zones. The Doubleheader wrasse; Coris bulbifrons was the 

only species to show an effect of zoning, but surprisingly this was an increase in 

abundance within partially protected HPZs, rather than SZs in 2013. Of concern, two 

species protected in NSW waters; Epinephelus daemelii and Girella cyanea appear 

to be declining in their abundance and occurrence across the LHIMP over time. 

Contrary to our prediction, the cessation of fishing in no-take SZs had no effect on 

the abundance of targeted species Lethrinus nebulosus, Pseudocaranx dentex, 

Seriola lalandi and Carcharhinus galapagensis; a species caught as by-catch.  

The lack of effect of MPA zoning might seem unexpected considering the 

LHIMP almost reaches the five criteria for a successful MPA as outlined by Edgar et 

al., (2014). Undertaking a global analysis on MPA effectiveness, Edgar et al. (2014) 

found conservation benefits of MPAs to increase exponentially with the 

accumulation of five attributes: the presence of no-take zones, large in size (>100 

km2), strong enforcement, old age (>10 years) and isolated by deep water or sand. 

The LHIMP fits these criteria except for age, where at the time of the study, it was 9 

and 10 years since establishment in state and federal waters respectively. Despite 

displaying these key attributes however, no effect of MPA zoning is unsurprising 

considering the relatively pristine condition of the LHIMP’s marine environment and 
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minimal human impacts in the region. With no differences in most taxa explored 

between no-take and habitat protection zones through time, our results suggest that 

the LHIMP is adequately safeguarding the majority of the regions biodiversity. 

Contrary to our hypothesis, fished species showed no response to the 

cessation of fishing with relatively similar abundances across management zones. 

This was unexpected, especially for Seriola lalandi and Pseudocaranx dentex, which 

are caught in high numbers by charter fishers for the local restaurant trade. No 

response of targeted species to MPA zoning contradicts some previous literature, 

such as Claudet et al., (2010) meta-analysis which indicates that commercially 

exploited species with relatively large home ranges can still show strong responses to 

protection. A likely explanation for the lack of differences between zones is 

sustainable levels of fishing operating within the LHIMP waters due to low fishing 

effort and strict fisheries regulations in catch size and bag limits. An alternate 

explanation, however, could be that our assessment of LHIMP efficacy for these 

species may have been confounded by underlying habitat variability (Huntington et 

al., 2010; Miller and Russ 2014). For example, one location in the Balls Pyramid 

sanctuary zone consistently recorded high abundances of S. lalandi and P. dentex 

across both years. These sites also displayed high reef structural complexity; a 

habitat attribute S. lalandi and P. dentex may preference. By inflating variance 

surrounding abundance estimates, underlying habitat differences among locations is 

likely to make detection of MPA zoning effects difficult. Future research accounting 

for habitat variability such as reef structural complexity, in the assessment of the 

LHIMP for S. lalandi and P. dentex will provide a more insightful evaluation of 

ecological changes associated with MPA zoning for these species. 



71 
 

The removal of fishing also did not influence the abundance of Carcharhinus 

galapagensis through time or space. As C. galapagensis is often incidentally caught 

as by-catch, this result suggests that the current level of fishing in the LHIMP is not 

a threatening process for this species. It is worth noting however, that this species is 

capable of moving large distances and consequently, results on spatial comparisons 

between management zones may need to be interpreted cautiously. Galapagos 

Whalers; C. galapagensis were the most prevalent species across the LHIMP being 

recorded on 96% of deployments. Compared to MPAs at similar latitudes on 

mainland Australia (Solitary Islands and Port Stephens-Great Lakes Marine Parks) 

the relative abundance of carcharinid sharks is substantially greater in the LHIMP 

(Malcolm et al., 2007). This is a promising finding given the global decline in shark 

numbers and their important trophic role in regulating marine ecosystems (Stevens et 

al., 2000; Dulvy et al., 2014). In fact, local opinion among fishers suggests that the 

number of C. galapagensis has increased dramatically in recent times (pers. comms). 

However, our findings do not support this observation as we recorded similar mean 

abundances between years (mean MaxN = 4.7 and 4.2 in 2013 and 2009, 

respectively) which are comparable to those observed by Speare et al., (2004) in the 

LHIMP’s federal waters in 2004 (mean MaxN = 5).  

Another key finding from the study was the discrete and consistent 

differences in the abundance of certain species among locations during both 

sampling periods. The protected Girella cyanea, were recorded in relatively high 

abundances at only one habitat protection zone location (site 5 and 6) through time. 

The result is likely to be driven by this location’s shallower water and proximity to 

Lord Howe Island, as G. cyanea appear to be common in nearshore waters of the 

LHIMP (Edgar et al., 2010). During both sampling periods, the protected ballina 
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angelfish; Chaetodontoplus ballinae, also exhibited strong patterns in their spatial 

distribution, with individuals only being recorded at one location in the Balls 

Pyramid sanctuary zone. The presence of C. ballinae at this location is again likely 

to be related to depth, with sites at this location approximately 10 metres deeper 

compared to other locations. This observation confirms those by Speare et al. (2004) 

who recorded 12 individuals of C. ballinae on the deeper margins of the Lord Howe 

Island and Balls pyramid shelf (27 – 100 m) using BRUVS and towed video surveys. 

Therefore, it is likely that this species may be more common than previously thought 

and highlights the advantages of using remote survey techniques to sample 

biological assemblages at depths greater than conventional survey methods, such as 

SCUBA. Discrete and consistent differences among locations over time are 

important knowledge for the conservation management of the LHIMP, as it 

highlights the locations and their habitats that are representing and protecting 

biodiversity.  

Most endemic, near endemic and protected species examined in this study 

displayed similar abundances between management zones and across time 

suggesting the LHIMP is providing adequate protection for these taxa. The endemic 

doubleheader wrasse; Coris bulbifrons, was the only species that appeared to 

respond to protection. Surprisingly, the abundance of C. bulbifrons increased in 

HPZs from 2009 to 2013. Across both zones, the number of individuals of C. 

bulbifrons observed doubled from 10 in 2009 to 20 in 2013, respectively. This is a 

promising finding given their restricted range, low abundances and their targeting by 

fishers in nearshore environments of Lord Howe Island (although catch and release 

is often practiced). Healthy numbers of C. bulbifrons is not surprising as recent 

genetic research has indicated that there are high levels of contemporary gene flow 
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between the populations in the LHIMP to surrounding islands (van der Meer et al., 

2015). The abundance of the near endemic, Scorpaena cookii, was the only species 

in this category to significantly differ in their abundance over time, declining from 

an average of 0.6 r 0.11 to 0.25 r 0.08 individuals per deployment in 2009 to 2013 

respectively.  

Although the LHIMP appears to be safeguarding most of the regions 

biodiversity, the observed abundance of two protected species; Epinephelus daemelii 

and Girella cyanea declined between 2009 and 2013. This is potentially of concern 

particularly for E. daemelii, as Lord Howe Island is an important location for E. 

daemelii,  which has a restricted distribution in the south-west Pacific, experienced 

overfishing (Pogonoski et al., 2002) and has low levels of recruitment (Harasti et al., 

2014).  Further research is needed to determine whether the decline in abundance of 

E. daemelii is a result of anthropogenic threats or natural temporal variability in 

population numbers. Patterns are unlikely to be due to temporal variability, however, 

as the species is very long lived (>50 years). We observed that the distribution of E. 

daemelii was exclusively restricted to the Lord Howe Island shelf and all individuals 

observed were adults. This observation is likely to be a result of the species life 

history, where larvae recruit into intertidal and shallow subtidal reef habitat then 

migrate onto deeper reefs with age (Francis et al., 2016). This may explain the 

prevalence of adults on the Lord Howe shelf and not the Balls Pyramid shelf and 

points to the important role of the Lord Howe Island lagoon and nearshore habitats in 

providing nursery areas for E. daemelii. This ontogenetic migration in E. daemelii 

also highlights the importance of cross shelf sanctuary zones in the LHIMP, 

especially as anecdotal evidence still suggests E. daemelii are subject to fishing 

pressure in the region due to accidental mortality during fishing (barotrauma and 
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shark attack) and misidentification (Neilson et al., 2010). Furthermore, zoning 

rearrangement in the LHIMP may benefit the E. daemelii population as abundances 

and detections are consistently higher at certain locations in HPZs compared to SZs. 

In contrast to E. daemelii, the decline in G. cyanea is unlikely to be of concern, as 

this species is more common in the nearshore habitats of Lord Howe Island, such as 

the lagoon (Hobbs et al., 2009). Differences between years are likely to be a result of 

their patchy distribution in deeper habitats and their schooling behaviour.  

The temporal differences observed in the Lord Howe Island fish assemblages 

may not be indicative of changes in response to anthropogenic threats however, but 

rather due to natural variability or discrepancies in our sampling method between 

years. For example, the 2009 sampling was completed in November where the 

average sea temperature was 21qC compared to 23qC degrees in April when the 2013 

sampling was undertaken (Allen et al., 1976). This is likely to impact the 

composition of tropical, subtropical and temperate species within the assemblage. 

There were also differences in the amount of bait and degree of bait replenishment 

between 2009 and 2013 which may have driven the observed changes in the fish 

assemblage between the two sampling periods. In 2009, 1 kg of pilchards was used 

as bait and on occasion this bait was re-used for up to 4 BRUVS deployments. In 

contrast, 500g of fresh pilchards was used during the 2013 sampling. Finally, 

changes in species abundances may be due to natural fluctuations in species 

abundances due to successful recruitment years for example. Such cyclic patterns in 

species abundances have been observed over a 12-year period in an Australian 

mainland MPA at similar latitude (Malcolm et al., 2015). Despite disparities in our 

sampling time and method, consistent patterns among locations for certain species 

suggests that such discrepancies had a minimal impact on the temporal patterns we 
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observed. We encourage future BRUVS monitoring in the LHIMP to standardise 

sampling season and the amount of bait used to help disentangle MPA effects from 

sampling artefacts and natural variability. 

 

3.5 Conclusions 

Overall, the fish assemblages and abundance of key species was not 

influenced by ~9 years of protection in the LHIMP. This is likely to be a result of the 

relatively pristine environment and minimal anthropogenic threats that exist 

currently and prior to the establishment of the MPA. One protected species; E. 

daemelii appears to be declining in abundance across the LHIMP. A targeted 

monitoring program to better estimate population numbers of E. daemelii is needed 

to determine whether this decline is of concern. Despite this finding, many species, 

including targeted, endemic, near endemic and protected species displayed consistent 

abundances between zones and time, suggesting the LHIMP is safeguarding the 

regions unique marine biodiversity. We encourage future BRUVS surveys in the 

LHIMP replicating our methods to better understand the effects of MPA zoning as 

well as the spatio-temporal variability in the fish assemblage.  
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Chapter 4: ACCOUNTING FOR STRUCTURAL COMPLEXITY IMPROVES 
THE ASSESSMENT ON MARINE PROTECTED AREA EFFECTIVENESS 
 

This chapter is currently under review in Journal of Applied Ecology. 

 

 

Plate 4.1 Top: A school of yellowtail kingfish (Seriola lalandi) recorded using a 

baited remote underwater video system in the Lord Howe Island Marine Park. 

Bottom: Bathymetric imagery of the Balls Pyramid shelf. 
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4.1 Introduction 
Highlighted as an effective strategy to combat continued marine biodiversity 

loss, Marine Protected Areas (MPAs) have proliferated on a global scale in the last 

two decades (Halpern et al. 2010). To determine whether this management action is 

providing beneficial conservation outcomes, it is essential that MPAs are accurately 

assessed (McCook et al., 2010). Robust assessments on ecological change related to MPA 

management relies upon sampling designs capable of teasing apart the effects of protection 

on specific ecological attributes from underlying temporal and spatial variability (García-

Charton and Pérez-Ruzafa 1999; García-Charton et al., 2000). If underlying natural 

variability is not accounted for, assessments on MPA effectiveness may be 

confounded, potentially providing misleading conclusions (Claudet and Guidetti 

2000). A popular approach to date has been Before After Control Impact (BACI) 

experimental designs, which allow MPA effects to be separated from underlying 

natural variability (Underwood 1992). This methodology however, requires 

sampling of biological data multiple times prior to MPA establishment which rarely 

occurs (Halpern 2003). Instead, most studies use a Control Impact (CI) approach 

where biological assemblages within protected areas (preferably replicated areas) are 

compared to those in adjacent, or nearby, partially protected or unprotected areas 

(Lester et al., 2009; Sciberras et al., 2013; Miller and Russ 2014). Differences 

observed in biological assemblages among management zones are then inferred as 

evidence of an effect of MPA protection. 

A potential issue for CI studies testing MPA effectiveness is that they may be 

confounded by seascape variability (Claudet and Guidetti 2010; Huntington et al., 

2010; Osenberg et al., 2011). For example, in coral reef environments numerous 

studies have demonstrated the importance of habitat structural complexity as an 
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important driver of the diversity and abundance of fishes (Friedlander and Parrish 

1998; Almany 2004; Gratwicke and Speight 2005). Previous research has 

demonstrated that coral reef habitat of greater structural complexity generally display 

a greater diversity and biomass of fishes compared to reefs of low structural 

complexity. This relationship is likely to be a result of structurally complex habitats 

providing increased abiotic variability, niches, resources and productivity (Bell et al., 

1991; Friedlander and Parrish, 1998). Therefore, if structural complexity varies 

among management zones and is not accounted for in CI assessments on MPA 

effectiveness, there is a risk that incorrect conclusions may be drawn from such 

assessments (Young et al., 2016). 

A possible solution to this issue is to include a measure of habitat structural 

complexity as a co-variate in statistical tests on MPA effectiveness. This approach 

would provide a more accurate and precise estimate on the effect of MPA protection, 

as variability associated with underlying seascape differences would be accounted 

for (Claudet and Guidetti 2010). In the past however, this has been problematic due 

to the difficulties and costs associated with collecting seascape data over the broad 

spatial scales that MPAs encompass. Recent advances in remote-sensing 

technologies now allow seafloor habitats to be mapped in high resolution over a 

range of spatial scales (Mellin et al., 2009; Brown et al., 2011). Consequently, 

marine ecologists have employed this technology to explore relationships between 

remotely-sensed seascape measures, such as structural complexity and biological 

assemblages in both coral and temperate rocky reef environments (Purkis et al., 

2008; Pittman et al., 2009; Rees et al., 2014). As strong relationships between 

remotely-sensed measures and biological assemblages have been observed; habitat 

mapping has become increasingly used in guiding the design of MPAs (Pittman and 
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Brown 2011; Rees et al., 2014). Despite the applicability of this technology, the use 

of remote-sensing to account for potential seascape confounding in CI assessments is 

still in its infancy. This is most likely a result of the relatively high costs and limited 

availability of this technology throughout many regions of the world.  However, as 

remote-sensing technologies become more cost effective and readily available 

(Mellin et al., 2009; Brown et al., 2011; Ierodiaconou et al., 2011), the application of 

this approach to aid MPA assessments is likely to become more feasible. 

In this study, we tested the effectiveness of no-take marine reserves in the 

Lord Howe Island Marine Park (LHIMP) while accounting for underlying 

differences in habitat structural complexity. The LHIMP is located 610 km’s off the 

east coast of Australia in the subtropical region of the South Pacific Ocean. For 

many reasons the LHIMP provides an ideal system to test reserve performance while 

accounting for seascape differences. First, Lord Howe Island and its surrounding 

waters have significant biological value, comprising the world’s southernmost coral 

reef, a diversity of both tropical and temperate taxa that includes a suite of endemic 

species (Edgar et al., 2010). Consequently, Lord Howe Island received World 

Heritage Listing in 1982 (Environment Australia 2000). Second, the LHIMP is 

positioned in the subtropics; a region prone to the effects of climate change (Edgar et 

al., 2010) and the Marine Park’s remoteness and relatively small size makes it 

vulnerable to ongoing and increasing anthropogenic pressures (Edgar et al., 2010). 

Therefore, it is important that conservation efforts are adequately and accurately 

assessed. Finally, the Lord Howe Island shelf  has been extensively mapped with 

high resolution sonar (~5 m resolution) to understand the geomorphology of relict 

coral reefs formed 7000 to 9000 years ago (Brooke et al., 2010). As a result, 
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quantification of reef structural complexity across the entire LHIMP shelf habitat is 

possible.  

To determine the importance of accounting for habitat structural complexity 

in CI assessments of MPAs, we performed two assessments on the effectiveness of 

the LHIMP. The first, a traditional CI assessment and the second, a CI assessment 

including a measure of reef structural complexity. Both tests compared the effect of 

protection on the abundance of yellowtail kingfish (Seriola lalandi); a heavily 

exploited species of bony fish in the LHIMP (Figueira and Hunt 2012). We predicted 

that remotely-sensed habitat structural complexity and MPA zoning would influence 

the abundance of S. lalandi. Consequently, we hypothesised that the model including 

habitat structural complexity would be more parsimonious compared to the model 

excluding habitat structural complexity, therefore leading to a better assessment of 

MPA effectiveness. 

 

4.2 Methods 
The Lord Howe Island Marine Park is a multi-use marine park located 610 

km off northern NSW Australia at latitude 31q50’S. The marine park covers the state 

and federal waters which surround Lord Howe Island and Balls Pyramid. State 

waters are <3 nautical miles (nm) surrounding the islands while federal waters 3 nm 

to 12 nm offshore. The study was undertaken on the Lord Howe Island and Balls 

Pyramid shelf between depths of (25 – 50 m). At this depth, 2 different management 

zones are interspersed throughout federal and state waters. The first, sanctuary zones 

(SZs) which are strictly no-take marine reserves that prohibit extractive activities. 

The second are habitat protection zones (HPZs) which are partially protected area 
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allowing some forms of fishing, such as charter boat operations and recreational line 

fishing (Fig. 4.1). These will be referred to as “fished” zones. 

The abundance of yellowtail kingfish; Seriola lalandi, was surveyed using 

baited remote underwater video systems (BRUVS) constructed by SeaGIS Pty with 

Canon HG21 video cameras BRUVS. This species was chosen as they are the most 

heavily targeted species by recreational fishers and charter boat operators within the 

Lord Howe Island fish assemblage. Catch by weight of S. lalandi has ranged from 

16,904 kg to 24,313 kg per year between 2006 and 2011 (Figueira and Hunt 2012). 

Depredation of hooked and released individuals by Galapagos Whalers is a common 

occurrence in the LHIMP (authors pers. comms.), therefore fishing mortality is likely 

to be higher than what is reported. The majority of S. lalandi catch by charter boat 

operators occurs on the Lord Howe Island and Balls Pyramid shelf; the habitat 

assessed in this study (Figueira and Hunt 2012). In response to their high catch rates 

on the LHIMP shelf, S. lalandi are likely to show a positive response to the cessation 

of fishing (Claudet et al., 2010). In addition, the abundance and distribution of S. 

lalandi is likely to be influenced by habitat structural complexity at the scales 

explored in this study. Reefs of high structural complexity are potentially optimal 

habitat for S. lalandi within the LHIMP, providing increased prey such as baitfish 

and macroinvertebrates as well as favourable abiotic conditions such as variability in 

ocean current. Previous research has demonstrated increased catches of S. lalandi in 

areas of high structural complexity compared to areas of relatively low structural 

complexity (Hobday and Campbell 2009). As a result, the response of S. lalandi to 

MPA protected is likely to be influenced by underlying habitat structural complexity. 

To estimate the abundance of Seriola lalandi, BRUVS were deployed at 16 

sites within the LHIMP in 2009 (Neilson et al., 2010). Eight of these sites were in 
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areas open to fishing, while the other 8 sites in no-take SZs where fishing is 

prohibited. In 2013 the same 16 sites were resampled, however an additional 5 sites 

were surveyed (Fig. 4.1). Three of these sites were in fished zones while the 

remaining 2 sites in unfished areas. At each site 4 BRUVS were deployed  

 

 
Figure 4.1 A map of survey sites in the Lord Howe Island Marine Park. The Lord 

Howe Island shelf is in the north and the Balls Pyramid shelf to the south. Regions in 

pink represent Sanctuary Zones (SZ) while regions in blue, Habitat Protection Zones 

(HPZ).   
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simultaneously (+/- 15 mins) at least 200 m apart. For the 2009 sampling period, bait 

consisted of 1 kg of crushed pilchards (Sardinops sagax). Due to a limited supply of 

bait, the same kilogram of bait was re-used for up to 4 BRUVS deployments. In 

2013, prior to deploying the units, the bait bags were replenished with 500 g of 

freshly crushed pilchards (Wraith et al., 2013). BRUVS were deployed for a 35 min 

to ensure a 30 min sample. Previous research has demonstrated that a 30 min sample 

provides a representative sample of the fish at this latitude on the east coast of 

Australia (Harasti et al., 2015). 

BRUVS footage was analysed using Event Measure software (SeaGIS Pty). 

For each deployment, the relative abundance (Max N) of Seriola lalandi was 

recorded. The Max N was the maximum number of individuals of S. lalandi viewed 

at any one time during the 30 minute sample. To determine the relative abundance of 

S. lalandi per site, the Max N of the four deployments was summed.  

Multibeam data acquired around the Lord Howe Island and Balls Pyramid 

shelves were collated from multiple surveys on the shelf platforms, plains and slopes 

(Brooke et al., 2010, Mleczko et al., 2010, Linklater et al., 2015). World View II (2 

m cell size) and Quickbird satellite images (2.4 m cell size) were used to infer depth 

in the shallow areas of the shelves, and these datasets were mosaicked together with 

the multibeam datasets to form a high resolution (5 m cell size) seamless grid of the 

region (Linklater 2016). Using the focal statistic function within ArcGIS version 10, 

the bathymetric data were used to calculate two measures of habitat structural 

complexity at a number of spatial scales surrounding each BRUV deployment (25 m, 

50 m, 100 m, 150 m, 200 m and 500 m radii). The first measure, vertical relief (VR), 

was the range in bathymetry at a given scale. The second measure, bathymetric 

variance (BV), was the standard deviation in bathymetry at a given scale (Wilson et 
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al., 2007; Rees et al., 2014). These measures were averaged across the four 

deployments to estimate the vertical relief and bathymetric variance of each site. 

Larger values of vertical relief and bathymetric variance indicated reefs of greater 

habitat structural complexity. 

A Generalised Linear Mixed Model (GLMMs) with a negative binomial 

distribution was used to test the effect of zone (fished versus areas unfished) on the 

abundance of Seriola lalandi. The sampling period, ‘year’ was included in the 

analysis as a random factor. To test the effect of zoning on the abundance S. lalandi 

while accounting for habitat structural complexity, a series of GLMMs including 

‘year’ as a random factor were constructed including one of the structural complexity 

measures. All GLMMs were completed in the statistical software ‘R’ (R Core 

Development Team, 2013) using the package ‘lme4’ (Bates et al., 2014). The dredge 

function from the ‘Mumin’ package (Bartoń 2015) was used to determine what 

measure of habitat structural complexity (vertical relief or bathymetric variance) at 

what spatial scale (25m, 50m, 100m, 150m, 200m, 500m radii) best explained the 

spatial variability in S. lalandi. An exploratory multi-scale approach was used as the 

spatial scale that S. lalandi responds to reef structural complexity within the LHIMP 

was unknown. The most parsimonious model including a measure of structural 

complexity and ‘zone’ was determined by the lowest AICc. Similarly, the AICc was 

used to compare the models including and excluding habitat structural complexity. 

 

4.3 Results 
A total of 164 yellowtail kingfish; Seriola lalandi were observed during the 

study. The distribution of S. lalandi was patchy, with individuals only being 

observed on 35% of the BRUVS deployments across the two sampling periods. 
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Bathymetry of the Lord Howe Island and Balls Pyramid shelf, revealed considerable 

variability in seafloor structural complexity (Fig. 4.2). For example, at the largest 

spatial scale examined (500 m radii), the vertical relief ranged from a minimum of 

2.64 m to a maximum of 19.8 m. 

 

 

Figure 4.2 An image of the high resolution multibeam bathymetry at site 20 on the 

Balls Pyramid shelf in Lord Howe Island Marine Park. Below a bathymetric profile 

of the one kilometre transect bisecting the site.  
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On average, there were 2.7 times as many Seriola lalandi in no-take zones 

compared to adjacent fished areas (Fig. 4.3). Despite this, the model excluding a 

measure of habitat structural complexity revealed no effect of zone on the abundance 

of S. lalandi (Table 4.1). The lack of statistical significance between zones was in 

response to the substantial variability surrounding the mean abundance of S. lalandi 

in no-take zones; 6.5 ± 2.9 (±1 SE) (Fig. 4.3). 

 

Table 4.1 Results from negative binomial generalised linear mixed effects models 

comparing the abundance of Seriola lalandi between management zones with and 

without accounting for habitat structural complexity (bathymetric variance at the 100 

m seascape scale, denoted as ‘BV100 m’). 

 

Model and terms Estimate SE z p AIC 

a) Zoning effects excluding structural 
complexity     

183.6 

            Intercept  0.88 0.38  2.33   0.020  
            Zone 1.00 0.53 1.88     0.060  

b) Zoning effects including structural 
complexity 

    152.7 

            Intercept 1.54 0.42 -3.69 <0.001  
            BV 100 m -0.66 0.37 -1.78 0.075  
            Zone -4.38 0.85 -5.17 <0.0001  
            BV 100 m x Zone 3.39 0.55 6.17 <0.0001  
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Figure 4.3 Mean (± SE) abundance of yellowtail kingfish (Seriola lalandi) between 

fished (HPZ) zones (n = 11) and unfished (SZ) zones (n = 10) across two sampling 

periods.  

 

When habitat structural complexity was added to the model there was a 

significant interaction between zone and habitat structural complexity on the 

abundance of Seriola lalandi (Table 4.1). No-take zones had a greater abundance of 

S. lalandi but only at sites displaying high structural complexity (Fig. 4.4). There 

was no difference in the abundance of S. lalandi between no-take and fished zones in 

areas of low structural complexity (Fig. 4.4). Notably, both no-take and fished zones 

displayed a relatively even spread of sites that displayed low and high structural 

complexity (Fig. 4.4). There was no significant difference in average vertical relief 

between the two management zones (t = 0.42, df = 19, p = 0.68), hence the initial CI 

assessment was not necessarily confounded. The model including habitat however, 

was more parsimonious than the model excluding habitat, with an AICc value of 

183.6 compared to 152.7 (Table 4.1).  
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Figure 4.4 Relationship between the abundance of yellowtail kingfish (Seriola 

lalandi) and habitat structural complexity in fished zones (HPZ) and unfished zones 

(SZ) across two sampling periods. Habitat structural complexity is the bathymetric 

variance (standard deviation in depth) at a 100 m seascape scale. Trend lines 

constructed from the model using the ‘predict’ function in the ‘lme4’ package. 

Shaded areas represent ± 1 standard error. 

 

The abundance of Seriola lalandi increased noticeably in no-take zones 

where the underlying reef exhibited a structural complexity (defined as bathymetric 

variance) greater than 2 at a 100 m radii scale. A habitat map demonstrates that areas 

displaying high bathymetric variance in reef structure are well represented in no-take 

zones on the LHIMP shelf habitat (Fig. 4.5). There is also a high density of this 

habitat type in areas open to fishing on the Lord Howe Island and Balls Pyramid 

shelf (Fig. 4.5). 
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Figure 4.5 Map of the Lord Howe Island Marine Park and areas of shelf habitat (25 

– 50 m) displaying structural complexity (bathymetric variance) greater than 2 m at a 

100 m seascape scale. Regions in pink represent Sanctuary Zones (SZ) while regions 

in blue, Habitat Protection Zones (HPZ).   
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Figure 4.6 Depth profiles along a 1 km transect bisecting each survey site. 
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Table 4.2 Average vertical relief and bathymetric variance measures (m) at various 

seascape radii scales surrounding each survey site. 

 

4.4 Discussion 
Using high-resolution bathymetric data, we demonstrate that coral reef 

habitat on the Lord Howe Island Marine Park (LHIMP) shelf exhibits substantial 

variability in three-dimensional structural complexity. We were concerned that such 

seascape variability may confound our Control Impact (CI) test on the effectiveness 

of the LHIMP, leading to an inaccurate assessment (Miller and Russ 2014). This was 

not the case however, as sites of high and low structural complexities were well 

represented among management zones. The inclusion of structural complexity into 

the test however, clearly resulted in a more complex and useful model, with higher 
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explanatory power compared to the test excluding structural complexity. Although 

the initial CI assessment revealed almost 3 times greater abundance of Seriola 

lalandi inside no-take zones compared to fished zones, this relationship was not 

statistically significant due to high variability surrounding mean estimates. 

Incorporating habitat structural complexity into the assessment revealed a positive 

effect of MPA protection on the abundance of S. lalandi, but this effect was only 

apparent over suitable habitat (i.e. reefs of high structural complexity). By 

controlling for differences in underlying seascape variability, we demonstrate with 

more certainty that there is a positive effect of the removal of fishing on the 

abundance of S. lalandi. Hence, we argue that accounting for seascape variability, 

such as structural complexity, may provide substantial improvements in the accuracy 

and strength of assessments on MPA effectiveness. 

It is not surprising that the effectiveness of MPA protection on the abundance 

of Seriola lalandi was dependent on underlying habitat structural complexity. For S. 

lalandi, structurally complex reefs are likely to be optimal habitat, providing 

increased prey such as baitfish as well as favourable variability in abiotic conditions 

like ocean currents. Strong links between biota, such as pelagic fishes and 

topographic complexity has been observed in past literature (Bouchet et al., 2015). 

For example, Hobday and Campbell (2009) used a fine-scale scientific trolling 

method (km), to explore the importance of seafloor topography on the catch rates of 

three pelagic species including S. lalandi. They demonstrated that abundance of S. 

lalandi was significantly related to the topographic complexity of the seafloor. Catch 

rates of S. lalandi were 26 times higher over topographic features compared to away 

from topographic features. Furthermore, S. lalandi is the most heavily targeted 

species by charter fishing operations in the waters of the LHIMP, with an average 
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annual catch of approximately 20,000 kilograms (Figueira and Hunt 2012). 

Therefore, it is not surprising that there was a reduction in the abundance of 

Carangids in areas of high quality habitat open to fishing. 

Given the breadth of literature indicating the importance of seascape 

variability in driving the spatial patterns in marine biological assemblages (Boström 

et al., 2011; Olds et al., 2016), we strongly recommend, if feasible, to quantify and 

account for such variability in MPA assessments. Previous studies have highlighted 

the need to standardise habitat type when assessing MPAs as differences in the 

diversity and composition of habitat types may confound comparisons between 

management zones (Friedlander et al., 2007; Harborne et al., 2008). To our 

knowledge only three studies have accounted for finer scale habitat variability (i.e. 

structural complexity, patch shape and size) when assessing MPA effectiveness over 

a single habitat type such as coral reef or temperate rocky reef. The first by 

Huntington et al., (2010), assessed the Glover’s Reef Atoll marine reserve offshore 

Belize excluding and including natural seascape variability derived from high 

resolution IKONOS imagery. They found no reserve effects on the abundance and 

diversity of coral and fish assemblages when seascape variation was omitted from 

the assessment. However, when analyses were performed accounting for each sites 

seascape characteristics, significant reserve effects became apparent. The second 

study, by Young et al., (2016) tested the efficacy of a small marine reserve on 

southern rock lobster populations while using multibeam bathymetry data to 

characterise and account for variability in seafloor structure. The third study, by Russ 

et al. (2005) found that reserve effects were still apparent with the inclusion of 

structural complexity the assessment as a co-variate. Our findings accord with those 

of Huntington et al., (2010) highlighting the benefit of accounting for seascape 
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variability to better understand the complex responses of taxa to MPA protection. 

We encourage future studies assessing MPA efficacy to, wherever possible, account 

for seascape differences, as it is likely to lead to more accurate assessments and 

ultimately better conservation management. 

Not only did the inclusion of habitat structural complexity improve the test 

on MPA effectiveness, it also unravelled alternate findings, many of which have 

important conservation implications. As the abundance of Seriola lalandi exhibited a 

strong response to habitat structural complexity, our results lend support to the use of 

remotely-sensed abiotic variables as surrogates for marine biological assemblages 

(Pittman and Brown 2011; Rees et al., 2014). Furthermore, the outcome that no-take 

zones are only effective for S. lalandi over reefs of high structural complexity 

provides valuable information for the ongoing management of the LHIMP. Mapping 

suitable habitat of high structural complexity on the Lord Howe Island and Balls 

Pyramid shelf, we show that the current zoning arrangement of the LHIMP is 

adequately representing this habitat attribute within no-take zones. If the LHIMP 

zoning arrangement were to be reviewed, we stress the need to represent reefs of 

high structural complexity within no-take zones in order to protect S. lalandi. 

Recently, the NSW state government has reduced the number of no-take zones in 

NSW waters and at this point in time marine reserves in commonwealth waters 

adjacent to the state LHIMP are under review. Therefore, a better understanding of 

the benefits and functioning of no-take zones in this region is important to ensure 

evidence based decisions are made in the future regarding the management of the 

LHIMP and its surrounding commonwealth waters.  

In conclusion, amid the growing concerns of diminishing marine 

biodiversity, globally there has been an unprecedented increase in the establishment 
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of MPAs (Halpern et al., 2010). As many MPAs are developed on political or socio-

economic concerns rather than a firm ecological basis, there is a possibility that 

current MPAs may not be reaching conservation targets (Roberts et al., 2003; Edgar 

et al., 2004). Therefore, it is important that MPAs are accurately assessed to 

objectives are being met. Without biological data collected prior to MPA 

establishment, however, it is difficult to tease apart effects of protection from 

underlying natural variability such as seafloor structural complexity (Garcia-Charton 

et al., 2000). In this study, we present an approach to account for structural 

complexity using remote-sensing technologies to better assess MPA effectiveness. 

Similarly, to Huntington et al., (2010) we propose that future CI assessments on 

MPA efficacy incorporate seascape variability to better identify and understand the 

effects of management. This approach, tying habitat information with ecological data 

will provide a better understanding of the effects of MPAs on marine biological 

assemblages, which will ultimately lead to improved conservation outcomes. 
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Chapter 5: RULES OF ATTRACTION: ENTICING PELAGIC FISH TO 
MID-WATER REMOTE UNDERWATER VIDEO SYSTEMS (RUVS) 
 

A modified version of this chapter is published in Marine Ecology Progress Series. 

Rees, M.J., Knott, N.A., Fenech G.V. and Davis, A.R. (2015) Rules of 

attraction: enticing pelagic fish to mid-water remote underwater video systems 

(RUVS). 529: 213-218. 

 

 

 

Plate 5.1 A black marlin (Makaira indica) recorded on a remote underwater video 

system using a sound attractant in the Jervis Bay Marine Park. 
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5.1 Introduction 
Patchily distributed taxa present a challenge to adequately census (McDonald 

2004; Barnes et al., 2006). Pelagic fish fit this description, as they are fast swimmers 

capable of avoiding conventional survey equipment, occupy challenging habitats and 

display high spatial and temporal variation in their patterns of distribution (Edgar 

and Barrett 1999; Freon and Misund 1999). As a result, ecological knowledge of 

pelagic fish has historically relied upon fisheries catch data, as well as tagging 

programs, which are often broad-scale, low in resolution and associated with 

sampling biases (Gillanders et al., 2001). In the absence of a cost-effective, fisheries 

independent sampling technique, information on the structure of pelagic fish 

assemblages over smaller spatial scales (e.g. seascape scales of 1−10 km) remains 

poorly resolved. Information on the basic ecology of pelagic fish is critical given 

their ecological importance in marine ecosystems (Freon et al., 2005) and their heavy 

exploitation by commercial and recreational fishers (Myers and Worm 2003). 

Therefore, cost-effective, fisheries independent sampling techniques are essential in 

understanding the ecology of pelagic fish. 

Baited remote underwater video systems (BRUVS) have become a popular 

sampling method in recent years, providing robust estimates of demersal fish 

assemblages comparable to other techniques, in a fisheries independent and non-

destructive manner (Murphy and Jenkins 2010; Kelaher et al., 2014; Mallet and 

Pelletier 2014). Evaluations of BRUVS methodology have focused on optimal length 

of deployment (Stobart et al., 2007; Gladstone et al., 2012), bait types (Wraith et al., 

2013), quantities of bait (Harvey et al., 2007; Hardinge et al., 2013) and the 

influence of time of day (Birt et al., 2012). The success of BRUVS as a technique to 

sample demersal fish assemblages has led to the development and application of 
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mid-water BRUVS to survey pelagic fish assemblages (Heagney et al., 2007). 

Although the mid-water BRUVS technique is in its infancy, studies have evaluated 

the importance of soak time, replication, current speed and camera depth for 

assessing pelagic fish, as well as comparing the method to longline surveys 

(Heagney et al., 2007; Santana-Garcon et al., 2014a; Santana-Garcon et al., 2014c). 

However, no studies have examined the importance of attractant type on estimates of 

the diversity and abundance of pelagic fish, with all previous research using an oily 

bait (tuna oil and/or 100−1000 g of pilchards, Sardinops sagax), which is the 

standard attractant used in BRUVS surveys. Considering the biology of pelagic fish, 

many of which display schooling behaviour and are piscivorous predators, there may 

be an alternative attractant or combination of attractants which may provide better 

estimates of pelagic fish populations. Attractants other than bait, or a suite of 

attractants may reduce issues currently faced in using mid-water BRUVS, such as 

zero-inflated datasets and extreme variability in abundance estimates, which create 

problems for statistical analyses (Santana-Garcon et al. 2014a; Santana-Garcon et al. 

2014c). Pelagic fish use vision, chemical senses (smell and taste) and sometimes 

hearing to locate fish schools, their prey, and fish aggregation devices (FADs) 

(Banner 1972; Freon and Misund 1999; Dempster and Kingsford 2003; Dempster 

and Taquet 2004). Therefore, attractants associated with sight and sound stimuli may 

offer potential alternatives, or complements to bait, thereby providing better 

estimates of pelagic fish populations. 

In this study, we sought to test the effectiveness of 3 attractant types (sight, 

sound, scent), their combination and an unbaited control on the time of first arrival 

and the abundance of pelagic fish recorded using mid-water RUVS. We tested the 

null hypotheses that the time of first arrival, the total abundance of pelagic fish, and 
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the relative abundance of 3 common species - Trachurus novaezelandiae 

(Richardson), Sarda australis (Macleay) and Seriola lalandi (Valenciennes) - would 

not differ with the type of attractant used. 

 

5.2 Materials and methods 

5.2.1 Study site 

The study was done in the Jervis Bay Marine Park (JBMP), located ~180 km 

south of Sydney, New South Wales (NSW), Australia. Jervis Bay is a 102 km2 

marine embayment characterised by 2 peninsulas (Fig. 5.1) that form coastal habitats 

with hydrographic conditions similar to those in the open ocean. As a result, pelagic 

fish are frequently observed close to shore in the open coast habitat of JBMP. The 

area between Point Perpendicular and the Tubes (see survey area, Fig. 5.1) in 

particular is regarded as one of the premier land-based game-fishing locations in 

NSW and was the focus area in this study (Lynch et al., 2004). 

 

5.2.2 Mid-water RUVS 

We constructed 5 identical, single camera midwater RUVS following Heagney et al., 

(2007) positioned 5 m below the water surface. We used video cameras (Canon 

HGF10) with wide angle lenses (Raynox HD Pro) and plastic camera housings 

constructed by SeaGIS Pty. All RUVS were fitted with a plastic bait container 

positioned 1.5 m horizontally from the camera housing. Each RUVS was assigned 1 

of 5 treatments (outlined below). 
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5.2.3 Sampling design and experimental treatments 

Each RUVS with its associated treatment was randomly deployed 18 times 

over 10 d between 21 February and 10 April 2013. Video systems were deployed 

over rocky reef ~20 m in depth, 50 m from the shore and were separated from one 

another by 400 m to achieve independence (Simpson et al., 2005). Video was 

recorded for 45 min at each deployment. Previous research has indicated that a 45 

min deployment provides representative estimates of pelagic fish at this location 

(Heagney 2009; but see Santana-Garcon et al., 2014c).  

 

 

Figure 5.1 Survey area (□) within the Jervis Bay Marine Park. Inset map: location of 

Jervis Bay in Australia. 
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The sight treatment was a spearfishing ‘PELAGIC swivel flasher’ attached to 

the RUVS above the camera housing. It consisted of reflective material used by 

fishers to imitate bait fish. 

The sound treatment was a play back of a bait fish recording through an 

underwater speaker located above the RUVS. The bait fish sound was previously 

recorded in close proximity to the study area. A combination of white bread and 

pilchards (Sardinops sagax) was used to attract blue mackerel (Scomber 

australasicus) and yellowtail scad (Trachurus novaezelandiae), 2 common live bait 

fish used by fishers targeting larger pelagic fish (Lynch et al., 2004). We recorded 

the swimming and feeding activities of the 2 species using a hydrophone (High Tech 

Inc-96-min) and a portable recorder (Zoom H4N). The raw sound files below 20 Hz 

and above 640 Hz were filtered to remove background interference (Banner 1972). 

The files were cut to create a 1 min continuous loop in mp3 format. All editing 

processes were completed in Pro Tools. The edited sound file was played back using 

an underwater speaker (Lubell UW30) connected to an amplifier (Kentiger) that was 

powered by a 60 amp 12 volt battery. The amplifier and battery were housed in a 60 

litre plastic container on the surface of the water. The container was stabilised by 

surrounding it with an inflated inner tyre tube to ensure that the equipment did not 

tip and become waterlogged. The speaker was connected to the RUVS, set at a depth 

of 1.5 m below the water surface and was always positioned <2 m from the RUVS at 

any time during the deployment.  

The scent treatment was 500 g of crushed pilchards (Sardinops sagax) placed 

in the bait container. This is the conventional attractant and quantity used in BRUVS 

surveys in NSW’s marine protected areas (Kelaher et al., 2014). Bait was 

replenished prior to each mid-water RUVS deployment.  
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The ‘all’ treatment consisted of a RUVS with all 3 attractants (sight, sound 

and scent) attached as previously described. The control treatment consisted of a 

RUVS with no attractants. To prevent the absence of sound equipment from 

confounding our experiment, the sight, scent and control RUVS were equipped with 

identical floating containers of the same weight. 

 

5.2.4 Analysis of video footage 

A single experienced observer (M. J. R.) examined the video recordings on a 

computer screen using VLC media player. All pelagic fish species within thefield of 

view were identified and quantified. The relative abundance of individual species 

was determined by recording the maximum number of fish (Max N) of each species 

viewed at any one time during the 45 min sample. Total relative abundance was 

determined by summing Max Ns for each individual species during the 45 min 

sample. We also recorded the time of first arrival (t1st) of pelagic fish. 

 

5.2.5 Statistical analysis 

We used generalised linear models with a negative binomial distribution to 

test for differences in the abundance of pelagic fish among the attractant treatments. 

Analyses were performed in R using the MASS package (R Core Team 2013) 

following Zuur et al., (2009). No over-dispersion was apparent in models, except for 

Seriola lalandi. Therefore, we did not present statistical analyses for this species. To 

examine time of first arrival, we used only deployments that detected pelagic fish, 

and we compared the mean t1st observed on the treatment containing all attractants 

to the remaining treatments, using a t-test performed in R. Prior to analysis, data 
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were examined visually to ensure that the assumption of normality was met (Quinn 

and Keough 2002). 

 

5.3 Results 

A total of 2193 pelagic fish were observed, comprising 6 species from 4 

families: Carangidae, Scombridae, Istiophoridae and Carcharhinidae. In total, 1412 

Trachurus novaezelandiae, 669 Sarda australis, 108 Seriola lalandi, 2 Makaira 

indica, 1 Seriola rivoliana and 1 Carcharhinus sp. were recorded. Posthoc analysis 

revealed that the RUVS with all attractants recorded a significantly greater 

abundance of pelagic fish compared to the RUVS with one or no attractant (Table 

5.1). In all instances, the RUVS with all attractants had >9-fold mean abundance 

compared to the RUVS with one attractant alone or the control treatment (Fig. 5.2a). 

Similarly, the mean time of first arrival of pelagic fish was significantly shorter on 

the RUVS with all attractants (17 ± 5 min mean ± SE, n = 7) compared to the 

treatments with one or no attractant (31 ± 3 min, n = 20) (t = 2.215, df = 25, p = 

0.036). 

 Mirroring the pattern in the total abundance of pelagic fish, the RUVS with 

all attractants recorded a significantly greater abundance of Trachurus 

novaezelandiae compared to the other RUVS (Table 5.1). The RUVS containing all 

attractants recorded a mean abundance that was 1 to 2 orders of magnitude higher 

than those with one or no attractants (Fig. 5.2b). Similarly, attractants had a 

significant influence on the relative abundance of Sarda australis, with the RUVS 

containing all attractants recording a significantly greater abundance compared to 

those with scent and sound (Fig. 5.2c). There was no significant difference in the 

abundance of Sarda australis recorded on the RUVS with all attractants compared to 
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the sight or control treatments (Fig. 5.2c; Table 5.1). Attractants had no clear effect 

on the abundance of Seriola lalandi (Fig. 5.2d). 

 

Table 5.1 Parameter estimates, SEs and p-values from the post-hoc negative 

binomial model comparing the treatment with all attractants to the control, sight, 

scent and sound treatments. Significant values in bold. 

 

Coefficient Estimate SE p 

Total pelagic fish abundance    

Control –3.93 1.04 <0.001 

Sight –2.14 1.03 0.037 

Scent –4.69 1.06 <0.001 

Sound –2.16 1.03 0.035 

Trachurus novaezelandiae    

Control –4.86 1.16 <0.001 

Sight –7.16 1.50 <0.001 

Scent –6.06 1.26 <0.001 

Sound –2.47 1.12 0.028 

Sarda australis    

Control –3.02 1.60 0.059 

Sight –0.77 1.59 0.631 

Scent –4.12 1.63 0.012 

Sound –3.99 1.63 0.014 
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Figure 5.2 Relative abundance of (A) pelagic fish (Total Max N), (B) Trachurus 

novaezelandiae, (C) Sarda australis and (D) Seriola lalandi (mean ± SE; n=18) 

estimated by mid-water remote underwater video systems with different attractant 

treatments. 
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5.4 Discussion 
We reject our null hypothesis that the time of first arrival and the total 

abundance of pelagic fish do not differ with the type of attractant used. The total 

abundance of pelagic fish was markedly greater on the RUVS containing the 

combination of sight, sound and scent attractants compared to those containing one 

or no attractant. This result was primarily driven by the small zooplanktivore, 

Trachurus novaezelandiae, which displayed a striking preference for RUVS with all 

attractants. Similarly, the highest abundance of Sarda australis was recorded on the 

RUVS containing all attractants. In contrast, the attractants had no influence on the 

abundance of Seriola lalandi. This finding was unexpected, considering that 

‘flashers’ are often used by spearfishers targeting Seriola lalandi (pers. obs.). To 

complement the abundance data, we also demonstrated that the type of attractant or 

attractants used had an effect on the time of first arrival of pelagic fish. The mid-

water RUVS containing all attractants detected pelagic fish in almost half the time of 

RUVS with one or no attractant. It is noteworthy that in no instances were baited 

RUVS more effective than unbaited ones.  

An array of sensory processes, such as sight, sound or vibrations, scent, touch 

and magneto-reception have been proposed to explain how pelagic fish detect and 

remain with floating structures (Dempster and Taquet 2004). In isolation, the sight, 

sound and scent treatments employed in this study were relatively ineffective. 

However, when combined, all attractants had a synergistic effect. Synergy is an 

important phenomenon in ecology, with multiple stressors and stimuli having a 

pronounced effect on organism fitness (Przeslawski et al., 2005) and behaviour 

(Raguso and Willis 2005). We encourage further research into the importance of 

synergistic interactions of multiple stimuli as a method of attracting fish to mid-
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water and demersal RUVS. Whether the synergistic effect was due to the interaction 

of all 3 attractants or only a combination of 2 is unknown.  

We propose that the mechanism behind the synergistic effect of multiple 

attractants is the difference in the spatial scale of operation of the different stimuli. In 

water, sound travels 5× faster, with lower attenuation compared to air, and 

propagates equally from the source in all directions (Slabbekoorn et al., 2010). 

Therefore, it is likely that sound is an important stimulus for pelagic fish to interpret 

their surrounding environment over broad spatial scales. Experiments have shown 

predatory chondrichthyian behaviour to be significantly influenced by playback of 

bait fish recordings through underwater speakers (Banner 1972), while research 

aiming to understand the homing behaviour of pelagic fish to FADs has indicated 

that sound is likely to be an important sensory cue (Dempster and Kingsford 2003). 

Recent work has shown that acoustic signals from FADs, primarily from fauna 

associated with them, are within the sensory range of many fishes (Ghazali et al., 

2013). 

The scale over which the other attractants (scent and sight) are effective is 

likely to be less than that of acoustic signals. For example, crushed pilchards may be 

an effective attractant over scales of up to 200 m (Heagney et al., 2007), while visual 

stimuli imitating schooling bait fish are effective over scales of up to 50 m (Freon 

and Misund 1999). We propose that the sound recordings may be attracting pelagic 

fish over a broad spatial scale (Kingsford et al., 2002) until they detect the bait 

plume (~200 m) and then visual stimuli (~50 m).  

Contrary to expectations, bait alone was a poor attractant of pelagic fish. 

Since all previous research using mid-water RUVS to survey pelagic fish 

assemblages have solely used oily baits as an attractant (Heagney et al., 2007; 
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Santana-Garcon et al., 2014a, b, c, d), these studies may have underestimated the 

abundance of pelagic fish. The use of multiple attractants may also entice pelagic 

fish closer to mid-water RUVS, which may in turn aid in species identification, 

abundance estimates and length calculations. However, all previous work has been 

completed in tropical or warm-temperate waters, particularly coral reef environments 

harbouring a richer assemblage than the one observed in our study. It remains 

unclear whether our findings in the temperate zone apply to tropical and warm-

temperate systems.  

In conclusion, our findings highlight the importance of attractant type when 

surveying pelagic fish with mid-water RUVS. We demonstrate that multiple 

attractants associated with sight, sound and scent interact synergistically, recording 

greater total abundance of pelagic fish, earlier time of first arrival and elevated 

abundance for some species (Trachurus novaezelandiae and Sarda australis). We 

encourage the use of multiple attractants in future studies using mid-water RUVS to 

sample pelagic fish. 
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Chapter 6: GENERAL DISCUSSION 
One of the main aims in fundamental ecology and applied conservation 

research is to understand the relationship between species and their environment. 

Landscape ecology, has revolutionised the way in which terrestrial ecologists study 

species-environment relationships and conserve biodiversity (Urban 1987; Wiens 

1993; Wiens 1995; Turner 2005a, b). The concepts of landscape ecology have not 

been extensively applied to marine systems. As a result, the importance of seascape 

ecology on a fundamental and applied level is poorly resolved. This has been in part 

due to the inherent difficulties in acquiring habitat and species data over the 

necessary spatial scales to test seascape ecology related questions. However, rapid 

advances in both remote-sensing (e.g. multibeam sonar) and biological sampling 

techniques (e.g. BRUVs) are now providing the opportunity to explore such 

questions (Brown et al., 2011; Ierodiaconou et al., 2011). Much research on seascape 

ecology however, has been heavily skewed towards the tropics and subtropics. 

Although, the importance of spatial habitat patchiness is well established in 

temperate nearshore ecosystems, most research has examined the effect of patch 

geometry of a single patch-type, such as seagrass, with less consideration directed 

towards understanding the effect of seascape patterning across multiple habitat 

patches. Similarly, most research in temperate systems on how habitat structural 

complexity influences biological assemblages has been investigated in a focal patch-

type using relatively small scale field experiments. Compared to tropical settings, 

less research has examined the importance of structural complexity on temperate 

species distributions at larger spatial scales (1-100 km). As many temperate marine 

species use multiple habitat patches over a range of temporal scales, a seascape 

approach is likely to explain spatial variability in temperate species distributions and 
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ecological processes.  Consequently, metrics quantifying seascape and habitat patch 

geometry as well as habitat structural complexity may provide suitable surrogates to 

indirectly predict ecologically important areas. If such seascape features can be 

easily mapped, their inclusion in spatial conservation strategies such as Marine 

Protected Areas may enhance their ability to protect biodiversity. Equally, 

differences in seascape features between MPA management zones may in certain 

circumstances cause issues such as habitat confounding, when assessing MPA 

performance. Quantify differences in seascape features among zones and accounting 

for this variability in performance tests is likely to improve the accuracy and 

precision of the evaluation. Despite the potential of seascape ecology improving 

MPA planning and assessment, limited research has investigated the benefits of this 

approach, especially in temperate regions.  

 I aimed to address a number of these knowledge gaps by using two model 

systems; Jervis Bay Marine Park (JBMP) and Lord Howe Island Marine Park 

(LHIMP), to explore questions on seascape ecology. First, I used a spatially 

hierarchical sampling design to examine differences in mid-water and demersal fish 

assemblages among common nearshore habitats and to determine whether habitat 

classes are adequate surrogates for these taxa (Chapter 2). I then explored the spatial 

variability in coastal fish assemblages at a broader scale to explore the effect of 

seascape composition, specifically patch area and connectivity (Chapter 2). I then 

performed an assessment on the Lord Howe Island Marine Park to examine changes 

in fish assemblages following 5 and 9 years of zoning enforcement (Chapter 3). 

Then, to improve this assessment, I incorporated a measure of seascape variability to 

avoid potential habitat confounding (Chapter 4). Finally, I tested the relative 

importance of attractant type (sound, scent and sight) to entice pelagic fishes to 
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remote underwater video systems (Chapter 5). Improving sampling methodologies of 

these taxa will hopefully encourage future studies to examine seascape ecology of 

pelagic fishes in coastal ecosystems. 

 

6.1 Seascape patterns in temperate fish assemblages 
Throughout my thesis I explored the effect of seascape patterning on fish 

assemblages at three scales within marine ecosystems. The first, examined 

differences in coastal fish assemblages among various habitat classes, or patches of 

habitat (Chapter 2). The second, examined broader scale patterns of seascape 

composition on fish assemblages (Chapter 2 and 3). The third, explored fine-scale 

habitat variability, in the form of reef structural complexity on the abundance of a 

targeted fish (Chapter 4). 

6.2 Key findings 

x The habitat patches; seagrass, rocky reef and unvegetated sediment displayed 

a unique assemblage of demersal fishes but not mid-water fishes. 

x Many families and species of fish displayed spatially consistent differences in 

their patterns of abundance among habitat patches. 

x Seascape composition, specifically the amount of seagrass in the surrounding 

seascape had a strong effect on the abundance and diversity of fishes 

recorded on rocky reef habitat. 

x Habitat structural complexity had a strong effect on the abundance of 

yellowtail kingfish, where seafloor habitats of greater structural complexity 

displayed greater abundances compared to habitats of lower complexity. 
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Using Jervis Bay Marine Park as a model system, I demonstrated that habitat 

patches; rocky reef, seagrass and unvegetated sediment, had a strong and spatially 

consistent effect on the structure of demersal fish assemblages (Chapter 2). This 

result was driven by several species that displayed discrete patterns in their 

abundance among habitat types. Strong patterns in demersal fish assemblages and 

habitat patches are not surprising as many species are specialised to forage in 

particular patches over others (for example Platycephalus spp. on unvegetated 

sediments). As a result many demersal species are likely to be “residents” to 

particular habitat patches within seascapes. Not all taxa in the demersal fish 

assemblage however, displayed straightforward patterns among habitats. For 

example, some species, such as the Eastern Fiddler Ray (Trygonorrhina fasciata) 

consistently showed high abundances over two habitat types (seagrass and 

unvegetated sediment). This result may indicate that Eastern Fiddler Rays do not 

discriminate between unvegetated sediment and seagrass, and the two habitat patches 

can be substituted for one another. Alternatively, Eastern Fiddler Rays may prefer 

seascapes comprised of multiple habitat patches, where each patch type contains 

different resources, which in turn promotes abundances. For instance, unvegetated 

sediment may be their focal or residentiary patch type, but seagrass may be 

important for foraging and/or refuge. Such patterns have been well established in 

terrestrial landscape ecology and these processes are known as landscape 

complementation and supplementation (Dunning et al., 1992). In contrast, Sparids 

were highly variable in their abundance, displaying no affinity for a particular habitat 

type, indicating that each habitat may be important for these taxa. Again, this may be 

highlight the importance of landscape complementation and supplementation, 

indicating that certain species may require seascapes composed of multiple habitat 
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patches, rather than an independent or isolated habitat patch. As predicted, habitat 

had no influence on mid-water fishes, indicating a clear decoupling of this 

assemblage from the underlying benthos, even in relatively shallow water (i.e. 5 m). 

These findings support the few other studies which have quantitatively compared 

demersal fish assemblages among rocky reef, seagrass and unvegetated sediment in a 

standardised manner (Guidetti 2000; La Mesa et al., 2010). These previous studies 

have also noted substantial inconsistencies of the effect of nearshore habitats among 

taxa. 

Another key finding from my thesis was the importance of seascape 

composition, or the connectivity of differing habitats patches, on temperate fish 

assemblages. A preliminary assessment examining the effect of seascape 

composition in the Jervis Bay Marine Park demonstrated that several response 

measures of fishes strongly correlate with the amount of seagrass area within the 

seascape (Chapter 2). On rocky reef habitats surrounded by a greater areal coverage 

of seagrass there was a greater abundance and diversity of fishes recorded in the 

demersal and mid-water environment. Additionally, Sparid abundance was strongly 

positively associated with the amount of seagrass area surrounding rocky reef 

patches. Similar to coral reef fishes, studies on the movements of temperate fishes 

(ontogenetic migrations, home range movements and spawning migrations) has 

demonstrated that many species of fish utilise multiple habitat patches over various 

temporal scales (Curley, et al., 2013).  Therefore, it is not surprising that the spatial 

arrangement of habitat patches within temperate seascapes is an extremely important 

driver of the spatial variability observed in temperate fish assemblages. As many 

temperate fishes recruit into vegetated nearshore habitat patches such as seagrass 

(Curley et al., 2013), seascapes which contain nursery habitats adjacent to adult 
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habitats are likely to promote ontogenetic migrations and hence greater abundances. 

Also, it is likely that many temperate fishes make diel movements between multiple 

habitats to forage or seek refuge, and as a result, seascapes with high habitat patch 

diversity are likely to promote the species richness and abundance of temperate 

fishes. Consequently, seascapes composed of a diverse array of habitat patches are 

also likely to promote ecological processes such as herbivory, predation and 

movement of individuals. These findings support previous research in tropical 

regions showing strong effects of seagrass area and adjacency on species of coral 

reef fishes (Pittman et al., 2004; Grober-Dunsmore et al., 2007; Pittman et al., 2007; 

Olds et al., 2012b). Furthermore, these findings suggest that there may be 

generalities in the effect of seascape patterning among tropical, subtropical and 

temperate environments. Further evidence highlighting the importance of seascape 

patterning was detected within the Lord Howe Island fish assemblage. Over two 

sampling periods, the protected black rockcod was observed only on the Lord Howe 

shelf, with no individuals recorded on the Balls Pyramid shelf. This result is likely 

due to the seascape connectivity of important habitats for the ontogenetic migration 

of black rockcod on the Lord Howe Island shelf (Chapter 3). For example, black 

rockcod recruit into intertidal rockpools, and then occupy shallow subtidal reefs 

before migrating to deeper reefs as adults. The Balls Pyramid shelf lacks 

connectivity to these nursery grounds, which appears to be restricting their range 

from this habitat. Results from Chapter 2 and 3 support the growing evidence from 

coral reef literature about the importance of broad-scale seascape patterning on the 

spatial variability of fish assemblages. 

Using high resolution bathymetry derived from multibeam sonar, I was able 

to quantify substantial variability in the three-dimensional structural complexity on 
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reef habitat of the Lord Howe and Balls Pyramid shelf (Chapter 4). This intra-

habitat, or within patch variability, strongly influenced the abundance of Seriola 

lalandi; a heavily targeted species in the LHIMP. Strong relationships between fish 

assemblages and remotely-sensed structural complexity measures has also been 

observed in other studies, namely in coral reef environments (Kuffner et al., 2006; 

Pittman et al., 2007; Purkis et al., 2008; Wedding et al., 2008; Pittman et al., 2009). 

As structurally complex habitats display a greater number of resources (food, shelter, 

abiotic variability) compared to habitats of low complexity, it is not surprising that 

this fine-scale variability influences biological assemblages. This finding suggest 

that intra-habitat variability such as reef structural complexity should not be 

overlooked as another important seascape attribute that influences spatial variability 

in fish assemblages. 

 

6.3 Incorporating seascape ecology in the design of Marine Protected Areas 
Marine Protected Areas are spatial management strategies, which globally 

may differ in terms of their goals. Typically, however, they are implemented to 

either conserve biodiversity and/or aid fisheries management. Their design, 

including location, size, spacing and configuration can theoretically determine their 

effectiveness of reaching conservation or fisheries goals (Gaines et al., 2010). 

Previous research on MPA design has highlighted the need for networks containing 

fully protected zones that are large in size to gain conservation and fisheries benefits 

(Gaines et al., 2010). Often habitat representation within bioregions has been used to 

guide zoning arrangements (Dalleau et al., 2010; Malcolm et al., 2012; Malcolm et 

al., 2016). As different habitat classes are generally assumed to contain different 
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biological assemblages, a habitat representation approach uses habitat classes as 

building blocks to capture the regions’ biodiversity.  

There are a number of issues with using a habitat representation approach to 

guide the design of MPAs. First, whether habitat classes can act as appropriate 

surrogates for fish assemblages for MPA design has not been investigated in a 

standardised manner in many bioregions around the world. Rather, their use as 

effective surrogates has been inferred from observations or studies usually focused 

on one habitat type. In Chapter 2, I demonstrate the use of habitat classes as 

surrogates for temperate fishes does have some merit, as rocky reef, seagrass and 

unvegetated sediments each had a distinct assemblage of demersal fishes. 

Furthermore, most taxa from the demersal fish assemblage displayed strong patterns 

in their abundance among the habitat classes. These findings provide support for use 

of habitat-based surrogates to predict the distribution and abundance of certain taxa 

and therefore reliably inform spatial conservation planning. There were, however, 

exceptions evident for certain taxa, highlighting the need to use habitat-based 

surrogates with some degree of caution in MPA planning. For example, habitat 

classes were a poor predictor of the spatial distribution and abundance of the 

commercially and recreationally important Sparidae. 

The second issue with the habitat representation approach for guiding MPA 

design is that it often neglects the connectivity of marine ecosystems and the 

importance of connectivity for maintaining biodiversity and ecological processes 

(Carr et al., 2003). Temperate fish populations are dependent on connectivity via 

dispersal of larvae and also the post-settlement movements by individuals within 

seascapes. Although, there has been wide acknowledgment of the importance of 

larval connectivity in the placement of MPAs, comparatively little consideration has 
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been placed on seascape connectivity and MPA design (but see Magris et al., 2014; 

Engelhard et al., 2016 and Weeks et al., 2017). This is especially the case for MPAs 

in temperate or Polar Regions. Many temperate fishes use multiple habitats over a 

range of temporal scales including diurnal movements, annual spawning migrations 

and at different stages during their life history (Curley et al., 2013). Therefore, 

seascapes with differing compositions and configurations of habitat patches are 

likely to be important for fishes and ecological processes in temperate regions. For 

example, nearshore vegetated sediments are important nurseries for many temperate 

fishes and their location in temperate seascapes is likely to facilitate ontogenetic 

migrations to adult habitats.  

In chapter 2, I demonstrate that a significant proportion of the spatial 

variability in temperate fishes observed on rocky reef habitat was explained by the 

amount seagrass in the surrounding seascape. I propose that this is most likely due to 

seascape connectivity of nursery and adult habitats which promote increased 

abundances and diversity of fishes. However, rocky reefs surrounded by a large 

amount of seagrass could potentially be facilitating other processes such as foraging 

and seeking refuge, which in turn may be driving greater diversity and abundances of 

fishes in these areas. I also suggest that the abundance of adult black rockcod is 

likely to be influenced by seascape connectivity of nursery habitats (Lord Howe 

Island lagoon) and adult habitats (Lord Howe Island Shelf) which facilitate 

ontogenetic migration (Chapter 3).  These findings suggest the need to incorporate 

the seascape connectivity into temperate MPA design, as a habitat representation 

approach may fail to identify such regions where these processes are operating. My 

findings, along with other research on the topic of seascape connectivity (Olds et al., 

2012a; Olds et al., 2016) highlight the need to acknowledge and represent seascape 
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connectivity in MPA design. This is because highly connected habitats or patches 

within seascapes appear to disproportionately influence biodiversity and ecological 

processes compared to unconnected habitats or patches.  

With the use of benthic habitat maps it is possible to incorporate seascape 

metrics such as connectivity into the design of MPAs. If seascape metrics strongly 

correlate to species diversity, abundances and ecological processes, using such 

metrics as surrogates offers a cost effective and time efficient procedure to guide the 

placement of reserve boundaries. In tropical settings, only a few studies have 

proposed ways to incorporate seascape connectivity in MPA design. These have 

included i) the use of algorithms to quantify connectivity between mangroves and 

coral reef habitats (Mumby 2006), ii) the use of network analyses to quantify 

connectivity across habitat mosaics for species with different home ranges then 

evaluate whether an existing MPA is adequately representing connectivity 

(Engelhard et al., 2016) and iii) more recently, using Marxan to identify seascape 

connectivity of nursery and adult habitats for conservation prioritisation (Weeks et 

al., 2017). There have been no studies to my knowledge that have used a conceptual 

approach to incorporate seascape connectivity in the design of MPAs in temperate 

regions. This is probably due to two main reasons. First, to incorporate seascape 

connectivity into MPA design, such metrics need to be appropriately scaled to the 

species of interest. In contrast to coral reef fishes (see Green et al., 2015) there is a 

paucity of accurate information on the home ranges of temperate fishes as well as 

their larger movements such as spawning and ontogenetic migrations. Second, 

historically, temperate marine environments are difficult to map and consequently, 

have not received as much attention as tropical regions. Both of these factors limit 

the ability to run theoretical simulations on how seascape connectivity may enhance 
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MPA functioning. However, with the increasing technological advances in acoustic 

telemetry and temperate habitat mapping this information will become available in 

the future, which will help managers incorporate seascape connectivity in MPA 

design. Nevertheless, acknowledging that seascape connectivity is likely to be 

important for temperate fishes, basic and easily accessible information on the 

distribution habitat patches in temperate systems (e.g. derived from aerial 

photography) can be used to quickly identify nursery habitats and highly connected 

seascapes in nearshore environments which could be prioritised in MPA planning. 

Although, more research needs to be completed to establish links between temperate 

fishes and seascape patterning, I believe any attempt to incorporate seascape 

connectivity is likely to improve the representation of temperate biodiversity and 

ecological processes.  

Using a habitat class representation approach for MPAs planning also 

neglects the importance of intra-habitat variability such as structural complexity on 

biota. Many habitats that planners use to guide MPA design (e.g. seagrass, rocky reef 

and coral reef) can vary substantially in their three-dimensional structure which in 

turn can influence species distributions on those habitats. In chapter 4, I demonstrate 

that seafloor complexity strongly influenced the abundance of a targeted species of 

fish. Higher abundances of yellowtail kingfish were observed on structurally 

complex reefs compared to reefs of lower structural complexity. This finding 

highlights that all reefs within the Lord Howe Island Park are not of equal value to 

yellowtail kingfish, and to adequately protect this species, representation of complex 

habitats is required within reserve boundaries. Similar sentiments were made by 

Rees et al, (2014), who showed complex rocky reefs harboured higher abundance 

and richness of sessile invertebrates and therefore should be prioritised in MPA 
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planning. Therefore, when data exists on the structural complexity of seafloor 

habitats (e.g. digital terrain models), this variability should be represented in MPA 

boundaries to ensure that the biodiversity associated with these habitats is adequately 

protected. 

6.4 Implications for the assessment of MPAs 
The majority of MPAs around the world exist as single isolated marine 

reserves (Lester et al., 2009). Additionally, many MPAs worldwide have no data on 

the natural temporal and spatial variability of biological assemblages collected prior 

to their implementation. For MPAs that lack baseline data prior to their 

establishment and sufficient spatial replication of management zones, Control Impact 

(CI) assessments of their performance may be confounded by underlying seascape 

variability (Table 6.1). This is problematic as assessments that do not account for 

seascape differences may lead to false positive or false negative results on MPA 

performance. To overcome this issue, CI assessments on MPA efficacy should 

account for seascape differences by including a covariate in the statistical test, or be 

performed in areas displaying similar seascape attributes. For example, Friedlander 

et al., (2007) and Harborne et al., (2008) only revealed a positive MPA effect when 

comparisons between zones were made on the same habitat type. Similarly, 

Huntington et al., (2010) detected no reserve effect on coral reef fishes in the 

Caribbean Sea until the assessment standardised seascape connectivity. My findings 

support the previous literature highlighting the importance of accounting for 

underlying seascape differences in MPA assessments. By including a measure of 

habitat structural complexity into the assessment, I demonstrate that the accuracy and 

precision of the evaluation increased (Chapter 4). Furthermore, the addition of 

habitat structural complexity, revealed a more thorough understanding of the effect 
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of the cessation of fishing on targeted taxa. This finding emphasises that despite the 

costs and difficulties associated with obtaining high quality habitat mapping in 

MPAs, the benefits are likely to lead to substantially better conservation 

management and outcomes. 

 

Table 6.1 Possible scenarios where seascape variability may potentially confound 

assessments of Marine Protected Area effectiveness. 
Scenario Likelihood of 

seascape 
confounding 

Method to overcome potential confounding 

1. A single marine reserve 
with no biological data 
collected prior to 
establishment and no 
habitat mapping used to 
guide the MPAs design. 

High 1. Ensure assessment is completed over similar habitat 
classes (rocky reef, seagrass etc) (Harborne et al., 
2008). 

2. An asymmetrical design with high replication of 
adjacent reference areas. This will increase the 
likelihood of sampling unprotected areas of similar 
seascape attributes. 

3. High replication of an asymmetrically designed CI 
assessment through time. 

4. Incorporate a measure of seascape variability during 
sampling campaign or via remote sensing. 

5. Caution: seascape variability measure needs to be 
calculated at the appropriate scale for 
assemblage/taxa of interest. 

2. A single marine reserve 
with biological data 
collected prior to 
establishment and no 
habitat mapping used to 
guide the MPAs design. 

Moderate 1. Ensure assessment is completed over similar habitat 
classes (rocky reef, seagrass etc) (Harborne et al., 
2008). 

2. An asymmetrical Before After Control Impact design 
(BACI) with high replication of adjacent reference 
areas. This will increase the likelihood of sampling 
unprotected areas of similar seascape attributes. 

3. Incorporate a measure of seascape variability during 
sampling campaign or via remote sensing. 

4. Caution: seascape variability measure needs to be 
calculated at the appropriate scale for 
assemblage/taxa of interest. 

4. A single marine reserve 
with no biological data 
collected prior to 
establishment and habitat 
mapping has been used to 
represent seascape 
attributes evenly between 
protected and unprotected 
zones. 

Low – 
depends on 
how well 
seascape 
attributes have 
been 
represented. 

1. Ensure assessment is completed over similar habitat 
classes (rocky reef, seagrass etc) (Harborne et al., 
2008). 

2. Asymmetrical design with high replication of 
adjacent unprotected reference areas containing 
similar seascape attributes as reserve. 

3. High replication of an asymmetrically designed CI 
assessment through time  

4. Caution: similarity of seascape attributes between 
zones is species dependent. 

5. Incorporating a measure of seascape variability may 
still improve the accuracy and precision of the 
assessment. 

4. A single marine reserve 
with biological data 
collected prior to 
establishment and habitat 
mapping has been used to 
represent seascape 

Low – 
depends on 
how well 
seascape 
attributes have 
been 

1. Ensure assessment is completed over similar habitat 
classes (rocky reef, seagrass etc) (Harborne et al., 
2008). 

2. An asymmetrical Before After Control Impact design 
(BACI) with high replication of adjacent unprotected 
reference areas containing similar seascape attributes 
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attributes evenly between 
protected and unprotected 
zones. 

represented. as reserve. 
3. Caution: similarity of seascape attributes between 

zones is species dependent. 
4. Incorporating a measure of seascape variability may 

still improve the accuracy and precision of the 
assessment. 

5. A network of marine 
reserves with no 
biological data collected 
prior to establishment and 
no habitat mapping used 
to guide the MPAs 
design. 

Low 1. Ensure assessment is completed over similar habitat 
classes (rocky reef, seagrass etc) (Harborne et al., 
2008). 

2. CI assessment with high spatial replication of marine 
reserves and unprotected reference areas. This will 
increase the likelihood of sampling unprotected areas 
of similar seascape attributes. 

3. High replication of CI assessment through time. 
4. Incorporate a measure of seascape variability when 

surveying response measures. 
5. Incorporating a measure of seascape variability may 

still improve the accuracy and precision of the 
assessment. 

6. Caution: seascape variability measure needs to be 
calculated at the appropriate scale for 
assemblage/taxa of interest. 

6. A network of marine 
reserves with biological 
data collected prior to 
establishment and no 
habitat mapping used to 
guide the MPAs design. 

Low 1. Ensure assessment is completed over similar habitat 
classes (rocky reef, seagrass etc) (Harborne et al., 
2008). 

2. BACI assessment with high spatial replication of 
marine reserves and unprotected reference areas. This 
will increase the likelihood of sampling unprotected 
areas of similar seascape attributes. 

3. Incorporating a measure of seascape variability is 
still likely to improve the accuracy and precision of 
BACI assessment. 

7. A network of marine 
reserves with no 
biological data collected 
prior to establishment and 
habitat mapping has been 
used to represent seascape 
attributes evenly between 
protected and unprotected 
zones. 

Low  – 
depends on 
how well 
seascape 
attributes have 
been 
represented 

1. 1. Ensure assessment is completed over similar 
habitat classes (rocky reef, seagrass etc) (Harborne et 
al., 2008). 

2. CI assessment with high replication of adjacent 
unprotected reference areas containing similar 
seascape attributes as reserve. 

3. High replication of CI assessment through time. 
4. Caution: similarity of seascape attributes between 

zones is species dependent. 
5. Incorporating a measure of seascape variability may 

still improve the accuracy and precision of the 
assessment. 

8. A network of marine 
reserves with biological 
data collected prior to 
establishment and habitat 
mapping has been used to 
represent seascape 
attributes evenly between 
protected and unprotected 
zones. 

Very Low  – 
depends on 
how well 
seascape 
attributes have 
been 
represented 

1. Ensure assessment is completed over similar habitat 
classes (rocky reef, seagrass etc) (Harborne et al., 
2008). 

2. BACI assessment with high spatial replication of 
marine reserves and unprotected reference areas 
containing similar seascape attributes as reserve. 

3. High replication of BACI assessment through time. 
4. Caution: similarity of seascape attributes between 

zones is species dependent. 
5. Incorporating a measure of seascape variability may 

still likely to improve the accuracy and precision of 
the assessment. 
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6.5 Future directions 
 This thesis highlights several directions for future research on seascape 

ecology. More broadly, future research is needed to determine the importance of 

seascape patterning, composition and connectivity on marine biota in temperate and 

Polar Regions. Although, my preliminary findings suggest seascape connectivity to 

be a strong driver of the spatial patterns in temperate coastal fish assemblages, 

additional work, with a more directed experimental design (e.g. greater replication 

across multiple seascapes) is needed to better evaluate these relationships. 

Furthermore, my work has examined how patterns in seascape structural 

connectivity (spatial arrangement of patches) influence patterns in temperate fishes 

(Calabrese and Fagan, 2004). This represents a pattern-pattern approach (Pittman 

and Olds 2015) and future research should strive to quantify the functional 

connectivity (the actual movement) of temperate fishes across seascapes using 

methods such as acoustic telemetry. Determining whether seascape connectivity is 

an important driver of fish assemblages should also be a top research priority in other 

temperate regions around the world. For example, the Mediterranean region is 

similarly dominated by the three habitat classes; seagrass, rocky reef and 

unvegetated sediments in coastal areas (Guidetti 2000). Applying a seascape ecology 

framework in other temperate regions may provide evidence to support generality of 

the effect of seascape patterning on temperate fishes. Furthermore, if strong ties 

between seascape connectivity and fishes are uncovered in temperate regions, this 

would support the growing body of work from tropical regions demonstrating the 

importance of seascape connectivity. 

 The temporal scale of fish-seascape studies usually provides a ‘snapshot’ of 

the relationship between response measures and seascape patterning in time. To 
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achieve generalities in the seascape literature this may be problematic, as fishes 

display substantial temporal variability over a range of time scales. Furthermore, 

benthic habitats and their spatial patterning are dynamic as they are strongly 

influenced by disturbance events. In Chapter 4, I demonstrate that Seriola lalandi 

displayed the consistent responses to habitat structural complexity and MPA zoning 

for two time periods, thereby providing greater certainty around the effect of 

seascape patterning. Future research should strive, if possible, to do repeated 

sampling over a range of temporal scales to conclusively establish fish-seascape 

relationships. In addition, greater temporal replication of studies exploring seascape-

fish relationships will provide opportunities to understand the impact of 

anthropogenic disturbances, such as climate change and habitat degradation, on such 

relationships (Pittman et al., 2011). 

   Another avenue for future research in seascape ecology in temperate systems 

is to better understand the relationship between species ontogenetic habitat use and 

seascape connectivity (Gillanders et al., 1997). For example, in Chapter 2 I found 

similar abundances of Sparid across rocky reef, seagrass and unvegetated sediments. 

I predict however, that the age class structure of Sparid among these habitats would 

differ, as juveniles of this family recruit onto seagrass and unvegetated sediments 

before migrating to deeper rocky reefs as adults. This could be tested by quantifying 

the age structure of Sparids among nearshore habitats using a method like stereo 

BRUVS. Future research could also use acoustic telemetry to track fish movements 

from their juvenile life stage to adulthood. Active or passive acoustic tracking could 

be employed to examine ontogenetic movements of fishes among habitats to better 

understand the value and importance of seascape connectivity for this family (Hitt et 

al., 2011; Ferguson et al., 2013; Fetterplace et al., 2016).  
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 Future research using BRUVS to explore the relationship between seascape 

patterning and fishes should assess the benefits and limitations of using this survey 

technique. For example, by using bait to explore differences in fish assemblages 

among habitat classes in Chapter 2, fish may have been attracted from adjacent 

habitats resulting in a more homogenous assemblage. Therefore, the use of bait may 

have reduced the ability to detect an effect of habitat. In contrast, however, bait may 

be beneficial to understand the importance of seascape characteristics such as 

connectivity. For example, the use of an attractant such as bait, may improve the 

estimates of fish willing to move among different habitats. Future research should 

test the difference between BRUVS and unbaited RUVS to determine which 

approach is optimal for exploring seascape related questions in temperate systems.  

 Finally, recent research has indicated that the distribution of pelagic fishes in 

coastal environments may be structured at smaller spatial scales (1-10’s km’s) than 

previously assumed. As the pelagic environment is highly dynamic both temporally 

and spatially, the concepts of seascape ecology could be transferred to this system 

with the aim to better understand the spatial ecology of pelagic fishes. For example, 

a seascape ecology framework could be applied to examine abiotic heterogeneity in 

the pelagic environment such as oceanographic fronts and eddies on pelagic fishes. 

This approach however, has been hinder by the difficulties in surveying pelagic 

fishes in coastal environments. Due to the recent improvements in the methodology 

of using mid-water remote underwater video to sample pelagic fishes however 

(Chapter 5; Heagney et al., 2007; Santana-Garcon et al. 2014a; Santana-Garcon et 

al., 2014c), there is now the opportunity for future research to explore seascape 

related questions for pelagic fishes. 
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Abstract

Networks of no-take marine reserves and partially-protected areas (with limited fishing) are being increasingly promoted as
a means of conserving biodiversity. We examined changes in fish assemblages across a network of marine reserves and two
different types of partially-protected areas within a marine park over the first 5 years of its establishment. We used Baited
Remote Underwater Video (BRUV) to quantify fish communities on rocky reefs at 20–40 m depth between 2008–2011. Each
year, we sampled 12 sites in 6 no-take marine reserves and 12 sites in two types of partially-protected areas with contrasting
levels of protection (n = 4 BRUV stations per site). Fish abundances were 38% greater across the network of marine reserves
compared to the partially-protected areas, although not all individual reserves performed equally. Compliance actions were
positively associated with marine reserve responses, while reserve size had no apparent relationship with reserve
performance after 5 years. The richness and abundance of fishes did not consistently differ between the two types of
partially-protected areas. There was, therefore, no evidence that the more regulated partially-protected areas had additional
conservation benefits for reef fish assemblages. Overall, our results demonstrate conservation benefits to fish assemblages
from a newly established network of temperate marine reserves. They also show that ecological monitoring can contribute
to adaptive management of newly established marine reserve networks, but the extent of this contribution is limited by the
rate of change in marine communities in response to protection.
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Introduction

Human activities, such as catchment development, overfishing,
pollution and maritime industries, have degraded marine and
estuarine environments [1,2]. Global concern for the health of
marine systems has driven an unprecedented increase in marine
protected area establishment over the last decade [3]. A small
percentage of these marine protected areas are marine reserves
where extraction of living marine resources is not permitted [4].
Many published studies have evaluated the responses of marine
ecosystems to reserve establishment [5]. These include highlight-
ing the types of species that do and do not benefit (e.g. [6,7])
cascading trophic responses (e.g. [8,9]), their influence on
surrounding areas (e.g. [10,11]), their influence on invasive species
(e.g. [12]) and the enforcement effort required for significant
changes to occur [13,14].

While individual marine reserves provide conservation benefits,
social and economic considerations often limit their size to a
fraction of the bioregion whose biodiversity they are often
designed to represent [4]. A limitation of most marine reserves is
that they are not large enough to be completely self-sustaining

because their size is less than the average dispersal distance of key
species [15]. Although this issue can be resolved by establishing
much larger marine reserves, socio-economic pressures are likely
to prevent this, particularly on densely populated coasts. In an
attempt to scale up the benefits of individual marine reserves to
broader regions, networks of marine reserves are increasingly
being established [4,16]. Effective networks of marine reserves
require adequate connectivity, such that each reserve can
contribute and receive sufficient adults and larvae from adjacent
reserves [4,17]. Theoretical models suggest that a network of
marine reserves may synergistically increase conservation benefits
relative to the sum of the benefits from unconnected individual
reserves [15,18–20]. However, published data on changes in
marine communities across marine reserve networks is limited
relative to research on individual marine reserves and rigorous
empirical tests of theoretical models optimizing marine reserve
network designs are still in their infancy [4,21].

Partially-protected areas are typically marine protected areas
with less restrictive regulations than marine reserves [22,23].
Depending on local objectives, they usually involve restrictions on
particular activities, gear types, user groups, target species, or
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extraction periods [23]. Partially-protected areas may also be used
to limit foreshore developments that require marine infrastructure
(e.g. marinas or discharge outlets) thereby further reducing
environmental threats [24]. Relative to marine reserves, there is
much less published information about ecological changes
associated with the establishment of partially-protected areas
[23]. A meta-analysis of 20 studies found that partially-protected
areas maintain higher biomasses, density and richness of marine
organisms than areas with less regulation, but do not provide the
same level of ecological benefits as no-take marine reserves [23].
These conclusions are, however, limited by (i) major differences in
fishing restrictions in partially-protected areas among the different
studies and (ii) most comparisons within a region being based on a
single marine reserve or partially-protected area (but see [25]).

The establishment of multiple-use marine parks with replicated,
closely spaced marine reserves, partially-protected areas and open
access areas provides the opportunity to test hypotheses about
networks of marine reserves and make rigorous comparisons of
change in marine communities associated with different levels of
environmental protection [26]. Over the last decade, six such
multi-zoned marine parks containing 115 individual marine
reserves (i.e. no-take sanctuary zones) have been established in
the state waters of New South Wales, Australia [27]. Built into the
legislation administering these marine parks are statutory require-
ments to review and, if necessary, adaptively manage the zoning
arrangements 5 years after establishment. Some species can
display significant changes after only a few years of protection (e.g.
,5 years [28]), while others may take decades [29,30]. Significant
changes in marine community structure may take well in excess of
15 years [28,31]. It is uncertain, therefore, the extent to which
marine environmental monitoring will contribute to evidence-
based adaptive management of marine park zoning arrangements
at a 5 year review.

To assess the recovery trajectory of a newly established marine
reserve network, we tested the hypothesis that reef-associated fish
assemblages in reserves will change significantly relative to fished
areas within 5 years of establishment. Concurrently, we also tested
the hypothesis that reef-associated fish assemblages vary with
different levels of environmental protection by including partially-
protected areas. We also evaluated the performance of individual
reserves within the network and related this to reserve size and
enforcement actions.

Materials and Methods

Study Area
This study was undertaken in the Batemans Marine Park, a

,85000 Ha multi-use marine park on the NSW South Coast,
Australia (northern boundary = 35u31.086’S and southern boun-
dary = 36u22.290’S) encompassing waters from the mean high tide
mark to the limit of state waters (ca. 3 nm from land). The zoning
plan for the marine park commenced in June 2007, after which
activities (e.g. fishing, recreation, foreshore development, boating,
pollution discharge, etc.) were regulated by the NSW Marine
Parks Act (1998) and Regulations (1999, 2009), as well as a range
of other legislation (e.g. Fisheries Management Act 1994, Coastal
Protection Act 1979, Protection of Environmental Operations Act
1997, Threatened Species Conservation Act 1995, etc.). Marine
park legislation specifically prohibits dredge and demersal
trawling, mining and long-lining throughout the entire park.

As part of the objective to achieve conservation of biodiversity,
the Marine Park was zoned into 4 types of areas: sanctuary zones,
habitat protection zones, general use zones and special purpose
zones, which represented 19.1%, 43.3%, 37.2% and 0.4% of the

entire park, respectively. The different zone types are interspersed
throughout the marine park creating a network of marine reserves
and partially-protected areas. Special purpose zones were not
included in the hypotheses tested because they only represented
,0.5% of the marine park and were created for a range of specific
management purposes (e.g. oyster farming, foreshore development
and cultural resource use).

Sanctuary zones are strict no-take marine reserves that allow for
non-extractive activities. Habitat protection zones are partially-
protected areas where the species that can be harvested and the
fishing methods that can be used are prescribed by legislation. For
example, lawful recreational fishing methods are allowed in
habitat protection zones with a few exceptions, but commercial
purse seining, lift netting, mesh-netting, estuary prawn and haul
netting are not permitted. With only the overall park-wide
prohibitions enforced, general use zones are the least restrictive
partially protected areas in NSW Marine Parks. Lawful commer-
cial and recreational fishing methods other than trawling and long-
lining are permitted in general use zones in the Batemans Marine
Park. More specific details about prohibited activities can be found
in Read and West [24].

Sampling Methodology
Baited Remote Underwater Video (BRUV) was used to test

hypotheses about changes in fish assemblages across the network
of marine reserves and partially-protected areas. In many
situations, BRUV units are preferred over other sampling
techniques because they can be deployed in environments
unsuitable for conventional diver based assessments [32], they
are able to detect diver-shy species [33], they provide usable
estimates of the relative abundance of economically-important
species [33] and they provide a permanent visual record of surveys
[32]. BRUV was particularly suitable for our study because it is a
non-destructive sampling technique appropriate for high conser-
vation areas (e.g. no-take marine sanctuaries) and survey depths
often exceeded 30 m. Like all fish survey methods, BRUV only
samples a subset of the fish community with a tendency towards
sampling more predatory species than other methods on shallow
reefs (e.g. underwater visual census [34]). The observed fish
assemblage with BRUV systems can also be influenced by the
presence of large predatory species (e.g. sharks [35]). Importantly,
these issues did not systematically vary among zone types and, as
such, did not influence the hypotheses that were tested here.

BRUV units were deployed on rocky reef at 12 sites in
sanctuary zones, 6 habitat protection and 6 general use zones
(Fig. 1). This design allowed for planned balanced comparisons
between no-take and fished areas (12 sites vs 12 sites) and between
the two types of partially protected areas (6 sites vs 6 sites) (see
design below). The sanctuary zones included were between 2 km
to 14 km apart, which is likely within the range of either larval or
adult movements for many common reef fish species (e.g. [36] and
references within), especially considering the East Australia
Current [37,38]. Sites were haphazardly interspersed throughout
the Marine Park from Brush Island (35u31.086’S) to Potato Point
(35u06.172’S) (Fig. 1). Each site was dominated by rocky reef and
was sampled in 2008, 2009, 2010 and 2011. In 2008, sampling
occurred from January to May and for the following years it
occurred from June to August. This change in timing was related
to the implementation of a state-wide monitoring program and
was not a major consideration for interpretation of results because
there is often no clear seasonal signal in demersal fish assemblages
in this region [39]. This likely stems from substantial spatial-
temporal variation and relatively mild winters. Moreover, the key
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hypotheses of this study focused on differences between sanctuary
zones and partially protected areas rather than temporal variation.

In each site, 4 BRUV units were deployed at approximately
200 m intervals onto reef habitat. The mean (6S.E.) depth of
deployments was 26.0 (1.3) m, 26.3 (1.6) m and 26.6 (0.5) m for
sanctuary, habitat protection and general use zones, respectively,
and did not differ significantly among zones (PERMANOVA,
pseudo-F2,21 = 1.48, P = 0.13). Each BRUV unit was constructed as
per Malcolm et al. [40], which included a galvanized metal frame
containing a video camera (mini DV SONY) pointed at a bait bag
mounted horizontally at the end of a 1.5 m long bait arm.
Cameras were housed within high-pressure polyvinyl chloride pipe
with flat acrylic end-ports yielding a field of view of 110u. For each
BRUV deployment, the bait bag was replenished with ,500 g of
chopped pilchards (Sardinops spp.) and each BRUV unit was left on
the bottom for 30 minutes. This bait type was determined to yield

the most consistent outcomes compared to others previously tested
(e.g. abalone viscera or crushed urchin [41]). This bottom time was
considered appropriate for sampling reef fish between 20–40 m
because there is no significant differences among fish assemblages
and the max N of many common species when deployment times
of 30, 60, and 90 minutes were compared (D. Harasti, unpublished
data). Furthermore, the replication levels of sites and camera
deployments within sites provide adequate power to reliably detect
significant differences between fish species richness and total max N
in sanctuary zones compared to fished areas with mean differences
of 30% and 100%, respectively (B. Kelaher, unpublished data).

Videos were analyzed in the laboratory using a field of view 2 m
behind the bait bag, which represented a standardized area of
9.4 m3 [40]. For each replicate BRUV deployment, we deter-
mined species richness, total max N, and max N of each fish species.
Max N for a species was the maximum number of individuals in

Figure 1. Map showing the configuration of zones in the part of the Batemans Marine Park (NSW, Australia) included in our study.
The map highlights spatial arrangement of the network of no-take marine sanctuaries. N indicates the location of each BRUV sites.
doi:10.1371/journal.pone.0085825.g001
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any frame and total max N was the sum of max N’s for each
deployment [32]. When the abundances of families of fishes were
analyzed, the max N value used for each replicate was the summed
max N of each fish species in that family. Analyses were restricted
to fin fish to avoid complications associated with extra protection
of all but two species of elasmobranchs (i.e. Mustelus antarcticus and
Galeorhinus galeus) in habitat protection zones.

Comparisons across a Network of Marine Reserves and
Partially-protected Areas

Hypotheses about changes in fish assemblages across the
network of no-take marine reserves and partially-protected areas
were tested using 2 factor analyses with zone type (3 levels,
orthogonal and fixed) and years since the commencement of the
zoning plan (4 levels, orthogonal and fixed), with analyses based on
site averages. To test for differences in fish assemblages between
no-take sanctuary zones and fished areas a contrast was included
to compare sanctuary zones against zones where fishing was
allowed. To test for differences in fish assemblages between the
two types of partially-protected zones a contrast was included
comparing fish assemblages in habitat protection and general use
zones.

Hypotheses were based on multivariate comparisons of fish
assemblage structure and univariate comparisons of fish species
richness and total max N. Hypotheses were also tested using the
total max N of four numerically-dominant families, Carangidae,
Kyphosidae, Labridae and Monacanthidae, which represented
17%, 29%, 14% and 7% of the overall total max N, respectively.
Analyses were also conducted on fish species with a summed max
N that totaled more than 300 individuals and are commonly-
caught in NSW waters. Each species is currently assessed as either
moderately fished, fully fished, growth overfished or overfished
indicating that they are each under fishing pressure. These taxa
were Pagrus auratus [snapper, growth overfished], Pseudocaranx
georgianus [silver trevally, growth overfished], Scorpis lineolata [silver
sweep, moderately to fully fished], Ophthalmolepis lineolatus [southern
maori wrasse, moderately fished], Trachurus novaezelandiae [yellow
tail scad, fully fished] and Nemadactylus douglasii [grey morwong,
overfished] (see [42] for details). In Batemans Marine Park each of
the above species is caught recreationally, as well as in the
commercial ocean trap and line fishery. However, T. novaezelandiae
is mostly caught in purse seine nets [42], which cannot be used in
habitat protection zones.

Hypotheses about changes in fish assemblages and individual
families and species were tested with non-parametric multivariate
analysis of variance (PERMANOVA [43]). These non-parametric
procedures are robust to variable ecological data commonly
obtained from marine communities [44]. All univariate analyses
were done using Euclidean distance to create similarity matrices.
All multivariate analyses used the Bray-Curtis similarity coefficient
[45]. Non-metric multidimensional scaling (nMDS) [46] was used
to generate two-dimensional ordination plots which graphically
illustrated multivariate patterns in fish assemblages.

Comparisons of the Performance of Individual Marine
Reserves

The 12 sanctuary zone sites were located within six of the 10
offshore sanctuary zones in the Batemans Marine Park. From
north to south, these were Brush Island, Murramarang, Tollgate
Islands, Burrewarra Point, Broulee Island and Mullimburra (GPS
co-ordinates of boundaries included in the NSW Marine Parks
(Zoning Plan) Regulation 1999). These zones encompassed the
smallest and largest offshore sanctuary zones in the marine park.

As well as size, these sanctuary zones varied across a range of
marine park planning criteria (see Table 1 for details). To compare
the individual performance of these 6 sanctuary zones since the
commencement of the zoning plan, a ratio was established with
(xSZ+1)/(XFA+1), where xSZ was the response variable from each
sanctuary zone BRUV deployment and XFA was the average of the
closest two sites in areas where fish could be legally caught. This
sanctuary zone/fished area ratio (hereafter called SZ/FA ratio)
provided an indication of relative changes in fish assemblages in
no-take and fished zones in a local area around individual
sanctuary zones rather than across the network of reserves and
partially-protected areas.

To test whether the performance of individual sanctuary zones
was variable, a two factor PERMANOVA analysis was carried out
on overall fish species richness, total max N and the total max N of
four numerically-dominant families: Carangidae, Kyphosidae,
Labridae and Monacanthidae with the factors sanctuary zones (SZ,
6 levels orthogonal and random) and years since zoning plan
commencement (4 levels, orthogonal and fixed). These univariate
analyses used Euclidean distance to create similarity matrices and
were based on individual BRUV deployments.

The average direction of change of the six key fish outlined
above (Pagrus auratus, Pseudocaranx georgianus, Scorpis lineolata,
Ophthalmolepis lineolatus, Trachurus novaezelandiae and Nemadactylus
douglasii) in each sanctuary zone was determined by calculating
Pearson’s correlation coefficient for the average SZ/FA ratio vs
years since commencement of the zoning plan. These correlation
coefficients were then averaged to determine a generalized
direction of change (rav) for each individual sanctuary zone with
rav being a value between 21 and 1 with positive and negative
values indicative of positive and negative associations between SZ/
FA ratio and time since establishment, respectively. To evaluate
potential explanations for variation in individual sanctuary zone
performance, the rav for individual sanctuary zones were
correlated using Pearson’s correlation coefficient with the number
of enforcement actions by marine park staff from 1 July 2009 to 30
June 2011 and the size of the sanctuary zone. To control for Type
1 error, the significance level of these correlations was corrected
with sequential Bonferroni’s technique [47]. Qualitative compar-
isons were also made between individual sanctuary zone
performance and other important aspects of individual sanctuary
zones, including whether they (i) terminated at the 3 nm limit
maximizing cross shelf diversity, (ii) were directly linked to no-take
estuarine areas facilitating connectivity, (iii) were buffered by
habitat protection zones limiting accidental damaging activities or
(iv) were adjacent to terrestrial reserves reducing land-based
impacts (e.g. urban run-off).

Ethics Statement
This study was conducted with the permission of the NSW

Marine Parks Authority and the NSW Department of Primary
Industries. BRUV work was done under the auspices of the
University of Wollongong animal ethics committee (approval
number AE12/07). The study complied with the current laws of
Australia.

Results

Comparisons across a Network of Marine Reserves and
Partially-protected Areas

In total, 17,681 individuals from 89 species of fin fish were
identified from the 384 BRUV deployments from 2008–2011. The
structure of fish assemblages in no-take marine reserves (i.e
sanctuary zones) differed significantly from fished areas (Table 2,
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Fig. 2). In contrast, the structure of fish assemblages in habitat
protection zones did not differ significantly from general use zones
(Table 2, Fig. 2).

The richness of fish species was significantly greater in general
use zones than in habitat protection zones, but did not differ
significantly between sanctuary zones and fished areas (Table 2,
Fig. 3). In contrast, the total max N of fishes was 37% greater in no-
take marine reserves (i.e. sanctuary zones) compared to fished
areas, which was significant (Table 2, Fig. 2). There was a trend
towards more fish in general use zones compared to habitat
protection zones (P = 0.053, Fig. 3). Of the numerically-dominant
families examined, the mean max N of kyphosids was significantly
higher in no-take sanctuary zones compared to fished areas
(Table 3, Fig. 3). For monacanthids, however, the differences in
mean max N were significant between fished zones (Table 3, Fig. 3).
The total max N of carangids and labrids did not differ significantly
among zone types (Table 3).

In general, the max N’s of individual species were more variable
than univariate community measures (i.e. species richness and
total max N) or family groups, leading to fewer significant results.
There was, however, a trend towards more P. auratus (snapper) in
sanctuary zones than fished areas in 2008, 2010 and 2011 (Fig. 4).
The max N of P. georgianus (silver trevally), S. lineolata (silver sweep),
O. lineolatus (southern maori wrasse), T. novaezelandiae (yellow tail
scad) and N. douglasii (grey morwong) did not vary significantly
among zone types since the zoning plan’s establishment (Table 4,
Fig. 4). The average max N of S. lineolata increased in sanctuary
zones with years since establishment.

Comparisons of the Performance of Individual Marine
Reserves

There were significant differences in the SZ/FA ratio in the
richness and total max N of fish assemblages among individual
sanctuary zones (Table 5, Fig. 5). These ratios indicated a trend forT

a
b

le
1

.
A

ve
ra

g
e

d
ir

ec
ti

o
n

o
f

as
so

ci
at

io
n

fo
r

th
e

si
x

ab
u

n
d

an
t

an
d

co
m

m
o

n
ly

-c
au

g
h

t
fis

h
sp

ec
ie

s
(s

ee
m

et
h

o
d

s)
si

n
ce

th
e

co
m

m
en

ce
m

en
t

o
f

th
e

zo
n

in
g

p
la

n
an

d
p

o
te

n
ti

al
ex

p
la

n
at

o
ry

va
ri

ab
le

s
in

si
x

o
ff

sh
o

re
sa

n
ct

u
ar

y
zo

n
es

in
th

e
B

at
em

an
M

ar
in

e
P

ar
k.

B
ru

sh
Is

la
n

d
M

u
rr

a
m

a
ra

n
g

T
o

ll
g

a
te

Is
la

n
d

s
B

u
rr

e
w

a
rr

a
B

ro
u

le
e

Is
la

n
d

M
u

ll
im

b
u

rr
a

r
P

D
ir

e
ct

io
n

o
f

a
ss

o
ci

a
ti

o
n

si
n

ce
th

e
e

st
a

b
li

sh
m

e
n

t
o

f
th

e
zo

n
in

g
p

la
n

A
ve

ra
g

e
P

ea
rs

o
n

’s
r

fo
r

fis
h

re
sp

o
n

se
va

ri
ab

le
s

2
0.

07
2

0.
46

0.
64

0.
06

2
0.

19
2

0.
20

P
o

te
n

ti
a

l
e

x
p

la
n

a
to

ry
v

a
ri

a
b

le
s

En
fo

rc
em

en
t

ac
ti

o
n

s
8

7
10

4
11

8
26

0.
91

,
0

.0
1

Sa
n

ct
u

ar
y

zo
n

e
ar

ea
(h

a)
17

09
24

49
32

91
31

2
17

2
45

42
0.

12
0.

82

Te
rm

in
at

es
at

3
n

m
b

o
u

n
d

ar
y

Y
es

Y
es

Y
es

N
o

N
o

Y
es

D
ir

ec
tl

y
Li

n
ke

d
to

es
tu

ar
in

e
sa

n
ct

u
ar

y
zo

n
es

N
o

N
o

N
o

N
o

N
o

Y
es

B
u

ff
er

ed
b

y
H

ab
it

at
P

ro
te

ct
io

n
Z

o
n

e
N

o
N

o
Y

es
P

ar
t

N
o

Y
es

A
d

ja
ce

n
t

to
m

ai
n

la
n

d
N

at
io

n
al

P
ar

k/
N

at
u

re
re

se
rv

e
Y

es
Y

es
N

o
N

o
Y

es
Y

es

d
o

i:1
0.

13
71

/j
o

u
rn

al
.p

o
n

e.
00

85
82

5.
t0

01

Figure 2. nMDS ordination of fish assemblages represented as
centroids for each site within sanctuary (white circles), habitat
protection (light grey triangles) and general use (dark grey
squares) zones since the commencement of the zoning plan for
the Batemans Marine Park. As there were no significant interactions
between years and main effect contrasts (Table 1), points indicate site
centroids averaged across years since establishment.
doi:10.1371/journal.pone.0085825.g002
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Table 2. PERMANOVA analyses comparing the structure of fish assemblages using multivariate data on the richness and
abundance (total max N) of fishes among zone types and among years since the commencement of the zoning plan.

(a) Fish assemblages (b) Species richness (c) Total max N

df MS p-F P MS p-F P MS p-F P

Zone type 2 3926.20 2.16 ,0.01 21.17 2.34 0.10 3210.50 5.61 ,0.01

SZ vs FA 1 5352.00 2.96 ,0.01 5.16 0.56 0.48 5188.40 9.22 ,0.01

HPZ vs GUZ 1 2500.40 1.41 0.17 37.19 7.57 ,0.01 1232.70 4.42 0.05

Years 3 4194.00 2.30 ,0.01 47.52 5.26 ,0.01 1978.90 3.46 ,0.05

Zone type 6 Years 6 1058.90 0.58 0.99 3.86 0.43 0.86 228.44 0.40 0.88

Years 6 SZ vs FA 3 894.56 0.49 0.99 4.73 0.52 0.67 363.55 0.65 0.60

Years 6HPZ vs GUZ 3 1223.20 0.69 0.92 2.98 0.61 0.60 93.32 0.33 0.79

Residual 84 1820.70 9.03 571.82

Fish assemblages (a) used Bray-Curtis similarity measures following square root transformation while species richness (b) and total max N (c) used Euclidean distance to
generate similarity matrices. Contrasts were included to compare sanctuary zones (SZ) with fished areas (FA) and habitat protection zones (HPZ) with general use zones
(GUZ).
p-F = pseudo F ratio generated by PERMANOVA.
doi:10.1371/journal.pone.0085825.t002

Figure 3. Mean (±1 SE) richness and total max N of fish assemblages and numerically-dominant family groups in general use (dark
grey bars), habitat protection (light grey bars) and sanctuary (white bars) zones since the commencement of the zoning plan for
the Batemans Marine Park.
doi:10.1371/journal.pone.0085825.g003
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greater max N of fish in sanctuary zones (i.e. the probability (P) of 6
ratios greater than 1 = 0.059) and substantially richer fish
assemblages in two of the six sanctuary zones sampled (i.e. where
the mean plus standard error bar is greater than 1 on Fig. 4).
However, the average number of fish species in the Mullimburra
sanctuary zone plus one standard error was less than 1, indicating
fewer fish species in this sanctuary zone relative to the surrounding
fished area (i.e. mean plus standard error are less than 1 on Fig. 5).

The SZ/FA ratio of total max N for carangids, kyphosids and
labrids also varied significantly among individual sanctuary zones
demonstrating variation in individual reserve performance
(Table 5, Fig. 5). For four out of six sanctuary zones, the SZ/FA
ratio was close to one. For labrids, however, the average total max
N plus one standard error was less than 1 in the Murramarang
reserve indicating fewer of these fishes in this sanctuary zone than
in the surrounding fished areas (Fig. 4). The SZ/FA ratio of total
max N for carangids and monacanthids interacted significantly
among sanctuary zones and years since establishment (Table 5).
Post hoc tests (PHT) revealed that the patterns of average SZ/FA
ratio for these fish taxa varied significantly among sanctuary zones
in some years but not others (PHT: P,0.05). For example, the
SZ/FA ratio of carangids did not vary among individual sanctuary
zones in 2008 and 2011, but was significantly greater at
Mullimburra than other sanctuary zones in 2009 (PHT: P,0.05)
and significantly smaller than other sanctuary zones in 2010 (PHT:
P,0.05). The average SZ/FZ ratio for monacanthids and
carangids indicated more of these fishes in 5 out of 6 and 3 out
of 6 sanctuary zones than the surrounding fished areas,
respectively (Fig. 4). The average SZ/FA ratio plus one standard

error for monacanthids at the Mullimburra reserve was less than 1
for each year of sampling (2008 SZ/FA ratio [SE] = 0.41 [0.08],
2009 = 0.32 [0.04], 2010 = 0.21 [0.03], 2011 = 0.51 [0.085]).
Similarly, the average SZ/FA ratio plus one standard error of
carangids in the Murramarang reserve, was less than 1 for three of
the four years of sampling (2008 SZ/FA ratio [SE] = 0.67 [0.10],
2009 = 0.28 [0.06], 2010 = 0.11 [0.02], 2011 = 1.17 [0.61]).

The rav for the six abundant species considered to be important
for commercial and recreational fishing in NSW waters varied
substantially among individual sanctuary zones (Table 1). The
value of 0.64 for the Tollgate Island sanctuary zone was strongly
positive with each of the six species having a positive association
between SZ/FA ratio and the years since the zoning plan’s
commencement (Table 1). In contrast, the average direction of
change at Murramarang (rav = 20.46) and Mullimburra
(rav = 20.20) suggested limited performance in these marine
reserves for the species we considered. For the remaining three
sanctuary zones, there was no strong average directional
association between SZ/FA ratio and the years since the zoning
plan’s commencement (0.20.rav,20.20).

After P-values were corrected using sequential Bonferroni’s
technique, there was a significant correlation between the rav for
the six key fish species and the number of enforcement actions
undertaken (Table 1), indicating a positive association between
individual reserve performance and compliance activity. In
contrast, there were no significant correlations between average
directional association of the SZ/FA ratio for the six key fish
species since the park’s establishment (rav) and the size of sanctuary
zones (Table 1). With respect to key reserve attributes (Table 1),

Table 3. PERMANOVA analyses comparing the total max N of the numerically-dominant families among zone types and among
years since the commencement of the zoning plan using Euclidean distance.

(a) Carangidae (b) Kyphosidae

df MS p-F P MS p-F P

Zone type 2 146.12 1.32 0.29 803.43 6.03 ,0.01

SZ vs FA 1 142.59 1.32 0.26 1600.70 12.37 ,0.01

HPZ vs GUZ 1 149.64 2.11 0.17 6.20 0.14 0.70

Years 3 92.76 0.84 0.50 48.76 0.37 0.77

Zone type 6 Years 6 19.05 0.17 0.98 72.47 0.54 0.78

Years 6 SZ vs FA 3 15.91 0.15 0.93 81.74 0.63 0.58

Years 6HPZ vs GUZ 3 22.19 0.31 0.84 63.20 1.38 0.26

Residual 84 110.57 133.24

(c) Labridae (d) Monacanthidae

df MS p-F P MS p-F P

Zone type 2 2.27 0.42 0.65 44.87 5.12 ,0.01

SZ vs FA 1 0.32 0.06 0.82 7.04 0.74 0.40

HPZ vs GUZ 1 4.23 0.99 0.32 82.69 9.94 ,0.01

Years 3 63.84 11.71 ,0.01 15.89 1.82 0.15

Zone type 6 Years 6 2.18 0.40 0.89 9.64 1.10 0.37

Years 6 SZ vs FA 3 1.14 0.21 0.88 12.15 1.27 0.31

Years 6HPZ vs GUZ 3 3.21 0.75 0.53 7.14 0.86 0.46

Residual 84 5.45 8.76

Contrasts were included to compare sanctuary zones (SZ) with fished areas (FA) and habitat protection zones (HPZ) with general use zones (GUZ).
p-F = pseudo F ratio generated by PERMANOVA.
doi:10.1371/journal.pone.0085825.t003
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the large reserve at Mullimburra was the only one to have full
coverage from the shore to the 3 nm limit of state waters, to be
directly linked to estuarine sanctuary zones, to be buffered by
habitat protection zones and to be adjacent to mainland National
Parks. In contrast, the only key attribute possessed by the relatively
small Broulee Island Reserve was that it was adjacent to a Nature
Reserve. Moreover, the small Burrewarra reserve only had partial
buffering from habitat protection zones. The reserves at Brush
Island and Murramarang each terminated at the 3 nm limit and
were adjacent to National Parks. The Tollgate Island Reserve ran
out to the 3 nm limit of state waters and was buffered by habitat
protection zones. As it commenced approximately 1 km offshore
(Fig. 1), the Tollgate Island reserve could not link directly to
estuarine sanctuary zones. It was, however, directly adjacent to the
Clyde River Estuary that included several substantial no-take
estuarine sanctuaries. Although the Tollgate Islands Reserve was
adjacent to urban development, its distance from shore (Fig. 1)
provided a substantial buffer from land-based impacts. The

Tollgate Islands themselves are Nature Reserves not accessible
to the general public.

Discussion

On average there were 38% more fish in the network of marine
reserves than in fished areas of the Batemans Marine Park. The
largest contribution to this effect came from Kyphosids (drum-
mers). Compared to global averages for individual reserves (e.g.
166%, n = 124 reserves [5]) the elevated fish abundances across
the network of marine reserves was modest, but well within the
spectrum of positive responses. This may, in part, be due to the
marine park only being in place for 5 years (e.g. [30,48]) and
previous fishing pressure being regulated by conventional fisheries
management [42]. It may also stem from the fished areas being
partially-protected such that even the most unprotected places in
the marine park (general use zones) were free from potentially
damaging activities such as demersal trawling and long-lining [24].

Figure 4. Mean (±1 SE) max N of fish species important to recreational and commercial fisheries in general use (dark grey bars),
habitat protection (light grey bars) and sanctuary (white bars) zones in each year since the commencement of the zoning plan for
the Batemans Marine Park.
doi:10.1371/journal.pone.0085825.g004
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Despite the total max N of fishes being significantly greater in
marine reserves than in fished areas, there were no significant
differences in the richness of reef fishes across the network of no-
take reserves compared to fished areas. There was, however,
greater richness of reef fish species in Brush Island and Burrewarra
reserves compared to the adjacent fished areas. Similar to richness,
there were also no significant differences in the abundances of
some family groups and commonly-caught fish species among
zone types. Large variation in the measurement of fish populations
contributed to these results. For example, although there was 37%
more Carangids in marine reserves than in fished areas, this
comparison was not close to being significant due to substantial
variation among zones and sites in fished areas. Nonetheless, it was
to be expected that only the very large changes in fish assemblages
would be detected because power analyses demonstrated that, for
the levels of replication used, effects of 30% and 100% were
required to reliably detect significant differences in the richness
and max N between reserves and fished areas, respectively.

Another consideration for the non-significant results was the
influence of time since reserve establishment. In comparisons of
other temperate Australian marine reserves to fished areas from
before to three years after establishment, Edgar et al [49]
demonstrated few changes in the abundance of fish and
invertebrates in the marine reserves compared to fished areas.
They concluded that the three-year period studied after reserve
commencement may have been insufficient to generate clear
trends in fish population recoveries. The results from our study
suggest that 5 years may also not be sufficient to detect change of
some fish species whose abundances have been demonstrated to

recover in much older marine reserves (e.g. Pagrus auratus, snapper
[28]). Similar conclusions were reached about fish populations on
shallow subtidal reefs sampled using underwater visual census over
the first five years following the establishment of the Batemans
Marine Park [50].

An important consideration for interpreting positive effects of
marine reserves on fish abundances is whether marine reserves
were deliberately placed in areas with more fish. For the Batemans
Marine Park this was not the case because, although some data
was collected prior to the parks’ establishment [31,51], detailed
regionally specific data on reef fish assemblages and reef extent
and complexity were not available to marine park planners prior
to the marine parks establishment. Furthermore, there are two
lines of evidence to support positive reserve effects: (i) the
abundances of some species increased in sanctuary zones over
time (e.g. S. lineolata, silver sweep) and (ii) sampling conducted prior
to the zoning plan’s establishment indicated that there were similar
if not fewer fish in marine reserves compared to fished areas [48].

Given that all levels in the factor zone type were replicated with
multiple sites and BRUV deployments were haphazardly located
on reefs of similar structure, our study was of the form of a
standard ecological field experiment where the manipulation was
the implementation and enforcement of marine park regulations.
While this sampling was sufficient for testing the proposed
hypotheses about reserve effects, similar to most published field
experiments, the ability to attribute treatment effects to the
manipulation (e.g. conservation measures in this case) rather than
site selection could be improved by the incorporation of pre-
establishment data into comparisons (e.g. BACI-type experimental

Table 4. PERMANOVA analyses comparing the max N of key fish species among zone types and among years since the
commencement of the zoning plan.

(a) P. auratus (b) P. georgianus (c) S. lineolata

df MS p-F P MS p-F P MS p-F P

Zone type 2 2.20 2.95 0.07 13.20 1.06 0.37 31.73 0.81 0.45

SZ vs FA 1 1.76 2.32 0.15 0.15 0.01 0.92 63.38 1.67 0.22

HPZ vs GUZ 1 2.64 4.51 ,0.05 26.26 1.96 0.18 0.08 0.01 0.95

Years 3 0.74 0.99 0.41 27.44 2.20 0.09 5.88 0.15 0.94

Zone type 6 Years 6 0.87 1.16 0.34 8.70 0.70 0.70 28.19 0.72 0.62

Years 6 SZ vs FA 3 1.21 1.59 0.19 1.38 0.11 0.95 37.98 1.00 0.41

Years 6HPZ vs GUZ 3 0.53 0.90 0.44 16.02 1.19 0.31 18.40 0.96 0.44

Residual 84 0.75 12.48 39.20

(d) O. lineolatus (e) T. novaezelandiae (f) N. douglasii

df MS p-F P MS p-F P MS p-F P

Zone type 2 1.04 0.31 0.74 92.33 1.07 0.36 1.86 1.87 0.13

SZ vs FA 1 ,0.01 ,0.01 1.00 137.16 1.65 0.19 0.07 0.06 0.85

HPZ vs GUZ 1 2.08 0.70 0.43 47.50 0.95 0.38 3.66 2.64 0.07

Years 3 31.49 9.37 ,0.01 70.34 0.81 0.48 1.33 1.34 0.27

Zone type 6 Years 6 1.94 0.58 0.76 9.65 0.11 0.99 1.02 1.03 0.39

Years 6 SZ vs FA 3 0.69 0.21 0.90 12.79 0.15 0.93 0.51 0.49 0.77

Years 6HPZ vs GUZ 3 3.20 1.08 0.40 6.52 0.13 0.95 1.53 1.11 0.33

Residual 84 3.36 86.55 0.99

Contrasts were included to compare sanctuary zones (SZ) with fished areas (FA) and habitat protection zones (HPZ) with general use zones (GUZ).
p-F = pseudo F ratio generated by PERMANOVA.
doi:10.1371/journal.pone.0085825.t004
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designs [52]). The marine park planning process is, however, not
always conducive to implementation of robust BACI experimental
designs. For the Batemans Marine Park, there was around 14
months between the declaration of the Park and the implemen-
tation of the zoning plan [27]. Most of this period was taken up
with planning and public consultation, leaving only a few months
between when the locations of the marine reserves were finalized
and the zoning plan coming into effect. Consequently, there was
insufficient time to collect the inter-annual pre-establishment data
required for a temporally-replicated BACI-style experimental
design.

In general, fish assemblages either did not differ between the
partially-protected areas with different levels of protection or there
were more species in general use zones than habitat protection
zones. There was, therefore, no evidence that the additional
restrictions associated with habitat protection zones, such as
removal of commercial purse seining, lift netting and set lining,
improved conservation outcomes for reef fish assemblages on
offshore reefs after 5 years. Given that trawling and long-lining
were removed from the entire Batemans Marine Park, the removal

of other less damaging commercial fishing activities from habitat
protection zones probably had limited additional influence on fish
communities. Furthermore, the designation of habitat protection
zones could have attracted some increased recreational fishing
effort, therefore reducing differences between the two different
zones. This is because habitat protection zones are often promoted
as enhancing recreational fishing opportunities through reduced
commercial fishing effort, with similar types of areas in NSW
estuaries (e.g. Recreational Fishing Havens) being perceived by
recreational anglers as improving catch rates [53]. Management
strategies that result in shifting recreational fishing effort towards
partially-protected areas may limit the conservation benefits of
these areas.

Although there was a general increase in overall fish abundance
in marine reserves across the network, there was significant
variation among the performance of individual reserves. The six
commonly caught fish species in marine reserves at the Tollgate
Islands showed the strongest positive trend over the 5 years of
reserve protection (Pearson’s r = 0.64). Although quantitative data
on fishing effort was not collected consistently across the Batemans

Figure 5. Mean (±1 SE) sanctuary zone to local fished areas ratio (SZ/FA) for richness and total max N of fish assemblages and
numerically-dominant family groups in the Brush Island (BH), Murramarang (MG), Tollgate Islands (TL), Burrewarra (BA), Broulee
Island (BE) and Mullimburra (MA) sanctuary zones. Bars represent the main effects of sanctuary zone averaged across years since
establishment.
doi:10.1371/journal.pone.0085825.g005
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Marine Park prior to its establishment, it was well known that the
Tollgate Islands were heavily targeted by boat-based fishers prior
to the enforcement of marine park regulations, as the islands are
adjacent to the largest town and boating facilities in the region.
This offshore reserve was also one of the most commonly patrolled
because of its central location and proximity to a relatively safe
ocean bar crossing. The substantial reduction in fishing effort
combined with the greatest compliance effort would have
contributed to the Tollgate Islands reserve showing the strongest
positive responses to protection over the first 5 years.

Effective compliance cannot be underestimated in achieving
positive marine conservation outcomes [13,14]. As expected,
enforcement actions were positively associated with individual
reserve performance in the Batemans Marine Park. As well as
active enforcement, the Batemans Marine Park operational plan
included priority actions aimed at increasing voluntary compli-
ance. This included local education and awareness activities,
programs to improve signage and zone markers as well as
proactively restricting potentially harmful activities through
permitting. In response to these strategies, we contend that public
knowledge of the marine park zoning arrangements improved
substantially since the parks establishment. For example, marine
park awareness by tourists increased from 47% (n = 203) to 72%
(n = 36) from 2008 to 2011 (Eurobodalla Shire Council and NSW
Marine Park Authority, unpublished data). Public knowledge and
support for marine reserves increases voluntary compliance, which
can both improve the effectiveness of marine reserves and reduce

the costs of enforcement [54,55]. Greater consideration of
compliance planning during establishment and adaptive manage-
ment of marine reserve networks can enhance voluntary
compliance and improve conservation outcomes [24].

Marine reserve size is generally regarded as a fundamental
principle in effective marine reserve design with larger reserves
often having greater conservation benefits [56]. By this criterion,
the largest marine reserve in our study, Mullimburra, did not
perform as well as smaller reserves in the network. Consequently,
factors other than reserve size must have been driving this result.
Importantly, the Mullimburra reserve had many characteristics
considered important for effective reserve design (Table 1).
Mullimburra marine reserve was adjacent to the Eurobodalla
National Park minimizing potential land-based threats to the
marine ecosystem [57,58]. It was also directly linked to no-take
estuarine reserves ensuring undisrupted connectivity between
juvenile and adult habitats [59,60]. Mullimburra marine reserve
had cross-shelf coverage from the shore to the 3 nm limit of NSW
state waters, maximizing reef habitat representation [61], which is
known to be extensive in inner- and mid-shelf waters in the region
[51]. It was also surrounded by extensive partially-protected areas
(i.e. habitat protection zones) buffering it from unintentional
commercial fishing activities [62].

Given all these key reserve attributes, it is not clear why the
large reserve at Mullimburra did not perform as well as some
smaller reserves, although it should be noted that the BRUV sites
in fished areas adjacent to this reserve were further away than they
were for other reserves. A more likely explanation is the influence
of compliance levels because the least effective reserves, Murra-
marang and Mullimburra, also had the lowest number of
enforcement actions per unit area. A review of compliance related
issues from the Great Barrier Reef Marine Park suggests that even
a small amount of poaching can have major ecological
consequences [26]. Although there are no data available to
discriminate between compliance efficacy and the amount of
illegal fishing activity in the Batemans Marine Park, the significant
relationship between enforcement actions and reserve perfor-
mance suggests that quantitative monitoring of compliance and
illegal activities should be prioritized to facilitate adaptive
management to maximize marine conservation outcomes.

It is not possible from our results to determine whether the
performance of individual marine reserves within the first 5 years
will be a useful predictor of long-term reserve performance. This
raises important questions about how much park-specific ecolog-
ical monitoring can contribute to evidence-based adaptive
management of marine park zoning arrangements at a 5 year
review, as is currently required in NSW. Certainly, clear advice
can be given that the network of marine reserves in the Batemans
Marine Park had a positive influence on the abundance of fishes,
particularly kyphosids, despite differences in the performance of
the individual marine reserves we examined. In contrast, there
were no consistent effects to validate the efficacy of habitat
protection zones. Ongoing enforcement will also be required to
maintain reserve efficacy and extra compliance attention should be
focused on the large marine reserves at Mullimburra and
Murramarang, which appear to be underperforming given their
attributes (see Table 1).

Apart from this general advice, 5 years of ecological monitoring
was insufficient to provide scientific evidence that would justify
changing the current network of marine reserves and partially-
protected areas in the Batemans Marine Park to improve long-
term conservation of biodiversity. Nonetheless, the broader
scientific literature about marine reserves will still have an
invaluable contribution to the review process, with rigorous

Table 5. PERMANOVA analyses comparing the sanctuary
zone to local fished area ratio (SZ/FA) for univariate measures
of fish assemblages, numerically-dominant families and key
fish species among sanctuary zones (SZ) and among years
since the commencement of the zoning plan for the
Batemans Marine Park.

(a) Species richness (b) Total abundance

df MS p-F P MS p-F P

SZ 5 1.70 16.15 ,0.01 6.97 4.57 ,0.01

Years 3 0.18 1.24 0.33 4.39 2.25 0.13

SZ 6 Years 15 0.15 1.47 0.13 2.03 1.33 0.21

Residual 168 0.11 1.52

(c) Carangidae (d) Kyphosidae

df MS p-F P MS p-F P

SZ 5 26.72 3.38 ,0.05 114.14 8.60 ,0.01

Years 3 2.64 0.12 0.96 30.17 2.04 0.14

SZ 6 Years 15 25.65 3.24 ,0.01 15.05 1.13 0.35

Residual 168 7.91 13.27

(e) Labridae (f) Monacanthidae

df MS p-F P MS p-F P

SZ 5 2.18 6.77 ,0.01 9.98 4.28 ,0.01

Years 3 1.10 2.30 0.12 15.18 3.29 ,0.05

SZ 6 Years 15 0.51 1.57 0.10 5.04 2.16 ,0.05

Residual 168 0.32 2.33

p-F = pseudo F ratio generated by PERMANOVA.
doi:10.1371/journal.pone.0085825.t005
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assessments of reserve attributes (e.g. size, habitat linkages,
buffering) from much older marine reserve networks being
particularly informative. After the initial 5 year review, NSW
marine parks are reviewed every 10 years. At the 15 year review,
sufficient time should have passed for substantial changes in the
structure of marine communities to have occurred [28,30]. At this
point, the results from local ecological monitoring and other
complimentary research will be in a much stronger position to
drive evidence-based adaptive management to enhance long-term
conservation objectives.

In conclusion, few studies have examined changes in fish
assemblages across a network of marine reserves relative to fished
areas with different levels of environmental protection. We show
that after 5 years of protection, fish abundances were 37% greater
across the network of marine reserves compared to partially-
protected areas, although not all individual reserves performed
equally and performance was temporally variable. These changes
are relatively modest compared to some reserve networks (e.g.
[63]), but still add to the growing weight of evidence that
conservation outcomes from planned networks of marine reserves
are greater than those from individual reserves [4,26]. Our results
also provide insight into factors (e.g. past fishing effort and
compliance) that promote early conservation benefits to fish in
temperate marine reserves and thus should be carefully considered
in marine reserve establishment and management. As coastal

population growth and associated development increases stress on
marine environments, it is critical that networks of marine reserves
are designed and adaptively managed to maximise their conser-
vation objectives. Although local environmental monitoring can
contribute to adaptive management of newly established marine
reserve networks, the extent of this contribution will be limited by
the rate of change in marine communities in response to
protection. The adaptive management processes of newly estab-
lished marine reserve networks could, therefore, be enhanced by
rigorous assessment of the efficacy of ecological attributes and
planning principles from much older networks.
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