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ABSTRACT: The field-effect transistor (FET) based microelectronics is approaching its size limit due to 

unacceptable power dissipation and short-channel effects. Molecular quantum-dot cellular automata 

(MQCA) is a promising transistorless paradigm, which encodes binary information with bistable charge 

configurations instead of currents and voltages. However, it still remains a challenge to find appropriate 

candidate molecules for MQCA operation. Inspired by recent progress in boron radical chemistry, we 

theoretically predicted a series of new MQCA candidates built from diboryl monoradical anions. The 

unpaired electron resides mainly on one boron center and can be shifted to the other by an electrostatic 

stimulus, forming bistable charge configurations required by MQCA. By investigating various bridge units 

with different substitutions (ortho-, meta-, and para-), we suggested several candidate molecules that are 

potential in MQCA applications. 
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1. INTRODUCTION 

When shrinking the size close to its quantum limit, the field-effect transistor (FET) based electronic devices 

will face a significant performance degradation as a result of the unacceptable power dissipation and short-

channel effects.1 As a promising alternative approach, quantum-dot cellular automata (QCA) has attracted 

considerable attentions for building the next-generation microelectronic elements.2-3 In QCA, binary 

information is represented by the charge configuration of a cell with four dots and two charges. The two 

charges favor a diagonal arrangement due to Coulomb repulsion, forming the bistable states that can be 

used to encode logic “0” and “1” (Scheme 1a). The binary signal transmission can be realized via 

intercellular Coulomb coupling with no current flow, thus resulting in extremely low power dissipation.4 

The first successful QCA was based on metal islands scaling at 60 nm, but only worked at cryogenic 

temperatures (below 100 mK).1,5 One solution to achieve room temperature operation is using magnetic 

metals6-7 or silicon atom dangling bonds8 to make the dots. The other way is decreasing the size of the 

device and molecular-sized QCA is expected to work at room temperature, making molecular QCA (MQCA) 

an attractive target.9-12 In the MQCA architecture, a single molecule usually contains two “dots” and can be 

viewed as a half-cell, thus there are two ways to construct a MQCA wire: side-by-side or head-to-tail 

(Scheme 1b).9 Signal transmission in MQCA occurs thanks to intermolecular Coulomb interaction, due to 

a neighboring molecule, alters the charge configuration of another molecule in a nonlinear way. In practice, 

it is not an easy task to find appropriate molecules that can be utilized in MQCA. The key requirement is 

that the candidate molecule needs to bear bistable charge configurations that can be switched by Coulomb 

interactions.13-15 During the last two decades, a variety of candidate systems have been proposed, including 

mixed-valence organometallic complexes,16-33 mixed-spin grid complexes,34 metal cluster carboxylates,35 

zwitterionic boron−allyl complexes,36-37 and double-cage fluorinated fullerene anions.38-39 It is still a 

challenge to put them to practical applications due to difficulties in synthesis or surface attachment. 

 
Scheme 1. (a) Schematic of QCA cells with two bistable states encoding logic “0” and “1”; (b) Two types 

of MQCA wires. The solid triangle represents the electrostatic driver.  
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Owing to the inherent electron deficiency, boron-centered radicals can be readily formed, which are good 

charge containers and may serve as the “dots” in MQCA. The diradical dianion of a diboryl compound 1-

Mes (2,2''-bis(dimesitylboranyl)-1,1':4',1''-terphenyl) was recently observed by electron paramagnetic 

resonance (EPR) measurements.40 Based on such kind of π-conjugated spacer linked diboryl structure, 

herein we proposed a new MQCA candidate system − diboryl monoradical anions, in which the charge was 

mainly localized on one boron atom and can be switched upon an electrostatic stimulus. We focus on the 

theoretical exploration of the eligibility of such kind of diboryl monoradical anions (e.g. 1-Mes•-) as MQCA 

candidates. Spin density distribution (Figure 1b) and the singly occupied molecular orbital (SOMO, Figure 

1c) obtained from density functional theory (DFT) calculations show that the unpaired electron in 1-Mes•- 

is primarily localized on one boron atom (60%), with 25% on the carbon atoms of the adjacent benzene 

moiety and negligible distribution on the central benzene unit. Analogous to the previous works,20, 38 the 

spin densities and Mulliken charges of the two boron atoms were chosen to characterize the charge 

configuration. In this work, it will be demonstrated that the unpaired electron can shift between the two 

boron centers upon an external electrostatic perturbation and form bistable charge configurations. Based on 

this framework, a series of analogous candidates with different spacers and substitutions have been 

investigated and a design strategy has been proposed. 

As a class of conjugated organoborane, the neutral para-substituted diboryl compounds with various π-

linkers studied in this work may have potential applications in optoelectronics, such as organic light-

emitting diodes (OLEDs), organic field-effect transistors (OFETs) and photovoltaic devices,41,42 due to the 

overlap of empty p-orbital on boron with the π*-orbitals of the conjugated bridging moieties. They may 

also act as effective anion sensors owning to the electron deficiency in the boron atom.43 
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Figure 1. (a) Chemical structure, (b) spin density distribution and (c) SOMO of 1-Mes•-. Spin densities and 

SOMO were calculated at UCAM-B3LYP/6-31G(d) and drawn at the isovalue of 0.005 e/Bohr3 and 0.05 

(e/Bohr3)1/2, respectively. 

 

 

2. COMPUTATIONAL DETAILS 

All geometry optimizations and single point energy calculations were carried out at the (U)CAM-B3LYP/6-

31G(d) level of theory, which has been proved to be robust in describing the electronic structures of diboryl 

compounds.40 Vibrational frequency calculations were carried out to confirm that all optimized geometries 

correspond to energy minima. The energy of the lowest unoccupied molecular orbital (LUMO) for 1 was 

evaluated at the B3LYP/6-311+G(d,p) level, which proves to perform well in predicting the half-wave 

reduction potential for arylborane compounds in experimental cyclic voltammogram measurements.44 An 

electric dipole field was applied along the axis connecting the two boron atoms (B1 and B2) to model the 

external electric field. The electrostatic driver was modeled with a unit point charge. The dipole moment 

was calculated using molecular center of mass as the origin. The spin density distributions and SOMOs 

were drawn at the isovalue of 0.005 e/Bohr3 and 0.05 (e/Bohr3)1/2, respectively. No constraint was exerted 

when doing geometry optimizations in the presence of an electric field. All calculations were performed 

with the Gaussian 09 program package.45 

 

 

3. RESULTS AND DISCUSSION 

3.1. Simplification of the Model: Replacing Mes with Ph. 

In compound 1-Mes•-, the 2,4,6-trimethylphenyl (Mes) substituents around the boron centers are rather 

bulky (Figure 1a). By comparing the electronic structures of 1-Mes•- and its phenyl (Ph) derivative 1•-, we 
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find that replacing the Mes substituent with phenyl group resulted in similar charge localization property. 

As shown in Table 1, for both compounds the spin density mainly resides on B1 with significantly low 

population on B2. The Mulliken charge displays a consistent scenario, where B1 is negatively charged 

while B2 bears a nearly zero charge. Both 1-Mes•- and 1•- have a large dipole moment, which is in line 

with the highly localized charge distribution. Comparing the data in Table 1, we can see the differences in 

spin densities are only 0.037 and 0.025 for B1 and B2, respectively. The Mulliken charges differ within 

0.01 and the dipole moments are identical. Therefore, to save computational cost, we based our study on 

such model compounds with phenyl group as the substituent. 

 

Table 1. Spin densities (SB1, SB2)a, Mulliken charges (QB1, QB2) and dipole moments (µx, in Debyeb) of 1-Mes•- and 

1•-. 

 SB1 SB2 QB1 QB2 µx 

    1-Mes•- 0.604 0.018 –0.218 –0.027 13.0 

    1•- 0.567 0.043 –0.209 –0.022 13.0 
aB1 and B2 represent the two boron atoms. bThe x direction corresponds to the axis that connects B1 and B2. 

     

 

    For the sake of experimentalists following this work, the half-wave reduction potential (E1/2
Red) of the 

non-radical neutral compound 1, as well as the energy for disproportionation (Ed) of monoradical 1•- to 

neutral 1 and diradical dianion [1••]2-, were investigated prior to exploring the QCA properties of 1•-. The 

reduction potential E1/2
Red was estimated to be –2.71 V vs FcH/FcH+ based on 1’s LUMO energy level (see 

SI for calculation details), indicating that 1•- is potentially accessible via reduction of 1. The 

disproportionation energy (Ed = 42.0 kcal/mol) calculated in the gas phase implies the disproportionation 

from the monoradical form to the neutral and dianionic species is not energetically favored. Therefore, we 

expect that the synthesis of such diboryl monoradical compound should be experimentally feasible. 

 

 

3.2. Electric Field Induced Bistable Charge Configurations Transformation 

To achieve the switch between logic “0” and “1” states, the charge should be able to shift between the 

MQCA “dots” driven by Coulomb interactions. By applying an external electric dipole field (E) with 

increasing intensities on 1•-, we observed an evident charge transfer from B1 to B2 when E was greater 

than 0.001 au. As shown in Table S1 and Figure 2, a weaker electric field (E = 0.0005 au) only causes a 

slight charge redistribution. However, when E rises from 0.0005 au to 0.0007 au, SB1 decreases dramatically 

while SB2 goes up significantly. The Mulliken charges show the same trend. The dipole moment flips to the 
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opposite direction with a similar magnitude. When E increases further to 0.002 au, the changes become less 

pronounced. It is worth mentioning that all these data were obtained based on single point energy 

calculations on the same geometry, i.e., the optimized geometry of 1•- in the absence of an electric field, 

indicating that 1•- is highly polarizable and this intramolecular charge transfer can happen without 

significant geometric changes. To investigate the influence of the electric field on the molecular structure 

of 1•-, geometry optimizations under E intensities of 0.001, 0.0015 and 0.002 au were performed, resulting 

in nearly identical structures with all atom positional root-mean-square deviations (RMSDs) < 0.04 Å 

(Figure S1). Then the field was removed and a subsequent geometry optimization, which can be regarded 

as a “relaxation” process, led to the counterpart of 1•-, named 1•-'. Bearing the same energies, but inversed 

spin densities, dipole moments and bonding conditions, 1•- and 1•-' formed bistable charge configurations 

(Figures 3 and S2, Table S2) that can be switched by applying an external electric field. 

 
Figure 2. (a) Spin density, (b) Mulliken charge and (c) dipole moment of 1•- under different electric field 

intensities. 
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Figure 3. Bistable charge configurations formed via intramolecular charge transfer driven by an external 

electric field, displayed as the inversion of spin density and dipole moment (E = 0.001 au). 

 

3.3. Signal Transmission through MQCA 

In order to determine whether the binary signal, which is represented as bistable charge configurations 1•- 

and 1•-', can be transmitted via intercellular Coulomb interactions, the response to an external driver has 

been investigated based on a dimer model with either side-by-side or head-to-tail arrangement (see Figure 

S3a and S3b for more details). The dimer model consists of two equivalent 1•- molecules and only single 

point energy calculations were performed without geometry optimization due to large computational cost. 

According to the above results in Section 3.2, the intramolecular charge transfer can take place without 

geometric relaxation, which validates our model setup. The driver was modeled by a negative unit point 

charge (q = –1.0e). The location of the driver and the intermolecular distance was chosen to guarantee 

sufficient Coulomb coupling between neighboring molecules without much unfavorable long range 

electrostatic interactions, while maintaining a roughly square geometry.12 

Even without an external driver, the dimer in side-by-side arrangement displays a diagonal charge 

configuration (Figure S3c) due to Coulomb repulsion, which, in contrast, pushes the charges to the 

molecular edges in the head-to-tail array (Figure S3d). When a negatively charged driver was placed beside 

the dimer, the extra charge residing on the nearest boron center would be driven to the other boron center, 

which subsequently induced the charge transfer of the neighboring molecule (Figure 4). And adjusting the 

position of the driver would achieve either “0” to “1” or “1” to “0” logic level conversion (Figures 4 and 

S4). The transmission of information maintained when the charge of the driver was reduced from –1.0e to 

–0.5e. To further examine the state switching between two pairing four-dot cells, we replaced the driver 

with two point charges located in the position of two antipodal boron atoms to mimic the charge 

perturbation from a neighboring cell (Figure S5). The magnitude of charge (q = –0.645e) was set as the 

sum of the Mulliken charge of the boron radical center along with the two phenol substituents (-BPh2). A 

similar charge configuration switching was observed (Figure S5), demonstrating that binary signal control 

and information transmission can be fulfilled. The success of building MQCA with 1•- inspires us to explore 

other candidates based on diboryl monoradical anions and in the following sections, we will focus on 

regiochemical effect and the influence of central bridge unit. 
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Figure 4. MQCA response to a point charge driver (the blue triangle) demonstrated by spin density 

redistributions. The translucent blue shades and circles are used to highlight “dots” in an MQCA cell. 

 

 

3.4. Design of Other MQCA Candidates 

3.4.1. Bridge Effect 

The electronic structure of spacer connected radical compounds has a bridge dependence.46-48 It is 

interesting to probe the influence of bridge moiety on the performance of MQCA candidates. Adopting the 

ortho-substitution that is similar to 1•-, eight spacers were investigated, including oligophenyl, naphthyl, 

anthryl, (oligo)thiophene and ethynyl groups (Figure 5). After geometry optimization, again we examined 

the charge distribution properties that are shown in Table 2 and Figure 6, which display two distinct profiles. 

While 2•-, 3•-, 4•- and 6•- manifest similar properties to 1•- with charge localized on one boron center and 

may serve as potential MQCA candidates, the rest exhibit symmetrical charge distributions, either mainly 

over the bridge (5•-, 7•-, 8•-) or having a proportion evenly on two boron centers (9•-). It is interesting that 

the switchover from dot-localized to bridge-localized behavior occurs in an all-or-nothing fashion. Going 

from phenyl to triphenyl bridge group (from 1•- to 2•- to 3•-), the charge localization maintains with 

increasing magnitude of dipole moment. However, when replacing the phenyl group to thiophene, only the 

monothiophene connected 6•- exhibits localized charge. Although bearing similar spacers, 4•- and 5•- show 

considerably different properties. The isomer of 5•- (5•-'), in which the boron-Ph2 groups were bonded to 

the two peripheral benzene rings of the anthracene bridge, shows similar spin density distribution (Figure 

S6). It appears that diboryl monoradicals with planar bridge units bearing larger conjugation extent, like 

the anthryl, bithiophene and trithiophene groups, favor a bridge-localized structure. By applying an external 

electric field upon the bridge-localized candidates (5•-, 7•-, 8•-, 9•-) like we did for 1•- in Section 3.2, we 
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found the symmetrical charge distribution changes gradually to a dot-localized pattern when the field 

intensity increases from 0.001 au to 0.002 au (Table S3), thus featuring potential MQCA candidates. This 

result indicates that a molecule with a zero or negligible dipole moment under field-free conditions may 

also function in an MQCA application, as long as its polarizability is sufficient to localize charge on one 

side of the molecule in response to an appropriate driving electric field. However, since a strong electric 

field (0.002 au) is required to achieve the charge localization state, such bridge-localized MQCA candidates 

are not the ideal choice compared to the naturally dot-localized ones.  

 

 
Figure 5. Diboryl monoradical anions with different bridge moieties. The blue shades show the distribution 

of the unpaired electron. 

 

 
 
Table 2. Spin densities, Mulliken charges and dipole moments (in Debye) of the designed diboryl monoradical anions. 

 SB1 SB2 QB1 QB2 µx 

2•- 0.602 0.003 –0.226 0.035 22.5 

3•- 0.600 0.003 –0.226 0.034 31.7 

4•- 0.604 0.012 –0.224 0.042 16.7 

6•- 0.571 0.018 –0.203 0.031 12.8 

5•- 0.028 0.028 0.058 0.058 0.0 

7•- 0.103 0.103 –0.011 –0.011 0.0 

8•- 0.000 0.074 0.048 0.000 4.1 

9•- 0.240 0.238 –0.068 –0.067 0.0 
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Figure 6. Spin density distributions for the designed diboryl monoradical anions. 

 

 

3.4.2. Regiochemical Effect 

Since the boron-Ph2 groups in the above diboryl compounds are ortho-substituted to the two peripheral 

benzenes, it would be of interest to investigate their meta- and para-isomers. For the meta-isomer 1-m•-, 

similar charge localization on one boron atom was observed (Figure 7) with a higher spin density (0.620) 

than 1•- (0.567). In contrast, the para-isomer 1-p•- exhibits a delocalized charge distribution (Figure 7) 

mainly over boron atoms (0.203) and the transverse bonds of the central triphenyl moiety (0.360). By 

comparing their geometries (Figure S7), we found 1-p•- was symmetrical and more like a quinonoid 

structure with a larger bond length alternation (BLA ~ 0.04 Å) of the central triphenyl group, as well as a 

longer boron-carbonbridge bond length (1.531 Å). While 1•- and 1-m•- were unsymmetrical with a benzenoid 

central triphenyl group (BLA ~ 0.01 Å). The results for isomers of 2•-– 9•- are shown in Tables S4-S5 and 

Figures S8-S9. It is evident that all the isomers of 2•-, 3•- and 4•- display charge distribution on one side of 

the molecule, while the para-isomers of the rest exhibit delocalized spin density distribution mostly over 

the spacer and boron atoms. Except 5•- and 8•-, all the other meta-isomers show an uneven charge 

distribution. Therefore, candidate molecules with meta-substitution of the charge carrying unit are 

considered as the most promising when designing such kind of MQCA. The charge delocalization feature 

of the para-isomers, although not desirable for MQCA operation, may lead to optoelectronic properties if 

considerable overlap of the vacant boron p-orbital with the π-linker is present. Thus we conducted a rather 

preliminary exploration on the frontier molecular orbitals of the neutral compounds of the para-isomers (1-

p – 9-p). Similar to many other triarylboranes,41,42 an evident p-π* conjugation was observed in the LUMO 

delocalized over the whole molecule (Figure S10a), while the HOMO exhibits a major distribution on the 

π-conjugated bridge. So these compounds may probably be useful in the development of optoelectronic 

materials, which needs experimental verification in the future. 
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Figure 7. Spin density distributions for the meta- and para-isomers of 1•-. 

 

 

 

 

4. CONCLUSIONS 

Based on diboryl monoradical anions, a series of MQCA candidates have been proposed. DFT calculations 

show that the unpaired electron can be localized on either boron center, resulting in bistable charge 

configurations that can be switched either by an external electric field or by point charge drivers. With a 

dimer model, we demonstrated that the signal transmission can be realized via intermolecular Coulomb 

interaction. The study on bridge and regiochemical effects indicates meta-substitution of the charge 

carrying units connected by certain types of π-linkers as the optimal choice in the design of π-conjugated 

spacer linked diboryl MQCA candidates, which provides insightful guidance to experimental work. In 

addition, the neutral para-substituted diboryl compounds may have potential optoelectronic applications 

due to the presence of p-π* conjugation. It is worth noting that in laboratory synthesis, bulky substituents 

such as Mes need to be adopted to protect the boron radical centers and achieve better stability. Furthermore, 

as these candidates are radical anions, counterions are required to maintain charge neutrality of the system, 

which may perturb the local electric field and thus influence information transmission. This can be 

circumvented either by choosing appropriate counterions or by using neutral zwitterionic complexes. Future 

work on counterion effects and preparation of stable diboryl monoradical anions is under way. 

 

 

Supporting Information: 

Calculations of E1/2
Red and Ed; Spin densities, Mulliken charges and dipole moments (Tables S1-S5); 

Geometries (S1, S2, S7); Spin density distributions (S3-S6, S8, S9); Frontier molecular orbitals (S10) 
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