
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part B 

Faculty of Engineering and Information 
Sciences 

2018 

Uniqueness Theorems For Topological Higher-rank Graph C*-algebras Uniqueness Theorems For Topological Higher-rank Graph C*-algebras 

Jean Renault 
Universite d'Orleans, France 

Aidan Sims 
University of Wollongong, asims@uow.edu.au 

Dana P. Williams 
Dartmouth College, danaw@uow.edu.au 

Trent M. Yeend 
University of Newcastle, Trent.Yeend@newcastle.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers1 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Renault, Jean; Sims, Aidan; Williams, Dana P.; and Yeend, Trent M., "Uniqueness Theorems For Topological 
Higher-rank Graph C*-algebras" (2018). Faculty of Engineering and Information Sciences - Papers: Part B. 
926. 
https://ro.uow.edu.au/eispapers1/926 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F926&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F926&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F926&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/926?utm_source=ro.uow.edu.au%2Feispapers1%2F926&utm_medium=PDF&utm_campaign=PDFCoverPages


Uniqueness Theorems For Topological Higher-rank Graph C*-algebras Uniqueness Theorems For Topological Higher-rank Graph C*-algebras 

Abstract Abstract 
We consider the boundary-path groupoids of topological higher-rank graphs. We show that all such 
groupoids are topologically amenable. We deduce that the $ C^*$-algebras of topological higher-rank 
graphs are nuclear and prove versions of the gauge-invariant uniqueness theorem and the Cuntz-Krieger 
uniqueness theorem. We then provide a necessary and sufficient condition for simplicity of a topological 
higher-rank graph $ C^*$-algebra, and a condition under which it is also purely infinite. 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Renault, J., Sims, A., Williams, D. P. & Yeend, T. (2018). Uniqueness Theorems For Topological Higher-rank 
Graph C*-algebras. Proceedings Of The American Mathematical Society, 146 (2), 669-684. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/926 

https://ro.uow.edu.au/eispapers1/926


UNIQUENESS THEOREMS FOR TOPOLOGICAL HIGHER-RANK
GRAPH C∗-ALGEBRAS

JEAN RENAULT, AIDAN SIMS, DANA P. WILLIAMS, AND TRENT YEEND

Abstract. We consider the boundary-path groupoids of topological higher-rank graphs.
We show that the all such groupoids are topologically amenable. We deduce that the
C∗-algebras of topological higher-rank graphs are nuclear and prove versions of the gauge-
invariant uniqueness theorem and the Cuntz–Krieger uniqueness theorem. We then pro-
vide a necessary and sufficient condition for simplicity of a topological higher-rank graph
C∗-algebra, and a condition under which it is also purely infinite.

1. Introduction

Groupoids are a powerful and widely applicable model for operator algebras. One area
of operator-algebra theory in which they have been particularly prominent recently is the
field of graph algebras and their analogues.

The inception of the field of graph C∗-algebras goes back to the work of Cuntz and
Krieger [5], and the subsequent work of Enomoto and Watatani [6], on simple purely
infinite C∗-algebras associated to finite binary matrices. However, the theory of graph
C∗-algebras really took off after the work of Kumjian–Pask–Raeburn–Renault [12]. The
analysis there was facilitated by realising the C∗-algebras of interest as groupoid C∗-
algebras and employing Renault’s structure theory [18].

Since then, the class of graph C∗-algebras has been generalised in various directions,
including ultragraph C∗-algebras [24], higher-rank graph C∗-algebras [11] and topological
graph C∗-algebras [10] to name a few. Though these generalisations have not all been
developed using groupoid methods, each has a natural groupoid model [8, 13, 15, 28].

In 2005, Yeend developed the notion of a topological higher-rank graph, simultaneously
generalising Katsura’s notion of a topological graph and Kumjian and Pask’s notion of a
higher-rank graph. Yeend associated to each topological higher-rank graph Λ a groupoid
GΛ and hence a C∗-algebra C∗(Λ) := C∗(GΛ). Yeend’s construction is sufficiently general
to capture Katsura’s algebras and the finitely aligned k-graph C∗-algebras of [16]. How-
ever, the question of amenability of GΛ remained unresolved in general, so Yeend’s key
C∗-algebraic results held only under additional hypotheses. In addition, the injectivity
hypothesis on Yeend’s uniqueness theorems is phrased in terms of functions on GΛ rather
than in terms of the underlying topological k-graph Λ.

The first version of the current paper, posted by Renault, Sims and Yeend on the arXiv
preprint server in 2009, aimed to resolve the question of amenability of Yeend’s groupoid
and to prove versions of the gauge-invariant uniqueness theorem and the Cuntz–Krieger
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2 JEAN RENAULT, AIDAN SIMS, DANA P. WILLIAMS, AND TRENT YEEND

uniqueness theorem with an injectivity hypothesis involving only the algebra of continuous
functions on the vertex set of the topological graph. Our approach to amenability was
to show that the kernel of the canonical Zk-valued cocycle c on GΛ was amenable (by
providing a measure-theoretic direct-limit decomposition into equivalence relations) and
then bootstrap up to amenability of GΛ by composing invariant means on c−1(0) with the
mean on Zk. Shortly after submission, Williams spotted an error in our bootstrapping
argument. The paper was withdrawn and Williams became involved as we considered how
to repair the gap. In the mean time, versions of the key results, namely the gauge-invariant
uniqueness theorem and the Cuntz–Krieger uniqueness theorem, were proved respectively
in [4] and [26] using the machinery of product systems (though our Proposition 4.2 is
required to identify the C∗-algebras described in [4] and [26] with Yeend’s C∗-algebra).
Consequently, this project lay dormant for some time.

Two recent developments brought the project out of mothballs. The first is Spielberg’s
clever argument used in the proof of [23, Proposition 9.3] which combines groupoid theory
and coaction theory to show that if c is a cocycle from an étale Hausdorff groupoid G into a
countable abelian groupG and c−1(0) is amenable, then G is amenable; this fixed the gap in
our original argument. (Inspired, to some extent, by this article in preprint form, the first-
and third-named authors have subsequently proved a generalisation of Spielberg’s result
using purely groupoid-theoretic techniques [20].) The second is the recent characterisation
of simplicity for the C∗-algebra of a second-countable locally compact Hausdorff étale
amenable groupoid G in [3]: Yeend showed in [29] that GΛ has all these properties except
for amenability, and simplicity was not addressed in either [4] or [26].

In this revised article, we combine Spielberg’s argument with our previous analysis to
prove that GΛ is amenable and prove a gauge-invariant uniqueness theorem. The proof
of what is now Proposition 3.1 has been significantly simplified by [4, Proposition 5.16].
We then use the results of [3] to prove a version of the Cuntz–Krieger uniqueness theorem
and to provide a necessary and sufficient condition for simplicity of C∗(Λ). We conclude
by providing a sufficient condition for C∗(Λ) to be purely infinite.

Acknowledgement. We thank Toke Carlsen for his reading of a preliminary draft of
the manuscript, and for his valuable comments and input.

2. Background

Our results require a considerable amount of background. We do not give full detail,
especially as regards the theory of groupoids. For more detail see, for example, [2, 18, 29].

We regard Nk as a semigroup with identity 0, or sometimes as a category with a single
object and composition defined by the addition operation. For m,n ∈ Nk, we say m ≤ n if
mi ≤ ni for all i ∈ {1, . . . , k}. We write m∨n for the coordinatewise maximum of m and
n. We frequently work also with the set (N ∪ {∞})k; we extend the addition operation
and the order ≤ from Nk to (N ∪ {∞})k in the obvious way.

2.1. Groupoids. For details of what follows, see [18]. A groupoid G is a small category
with inverses. We denote the domain and codomain maps by s and r, the unit space by
G(0), and the collection of composable pairs by G(2). A topological groupoid is a groupoid
endowed with a topology under which both the inversion map and the composition map
are continuous. In this paper, we consider only locally compact Hausdorff groupoids.
A topological groupoid is étale if the range map is a local homeomorphism; when the
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topology is Hausdorff, it follows that G(0) is both open and closed in G. For each unit u
of an étale groupoid G the sets Gu := r−1(u) and Gu := s−1(u) are discrete.

The isotropy at a unit u ∈ G(0) is the group Guu : r−1(u) ∩ s−1(u). The phrase “points
with trivial isotropy” is frequently used in the literature to refer to the units u of a
groupoid G such that the isotropy at u is the trivial group. We say that a groupoid G is
principal if every unit u has trivial isotropy; algebraically, these principal groupoids are
just equivalence relations, but the term “equivalence relation” is typically used only for
the special case where G is endowed with the topology induced by the product topology
on G(0) × G(0).

The orbit of a unit u of a groupoid G is the set

[u] = {r(x) : s(x) = u};
that is, [u] = r(Gu) = s(Gu). A subset U of G(0) is invariant if [u] ⊆ U whenever u ∈ U .

2.2. Groupoid C∗-algebras. We will now summarise the constructions of the full- and
reduced groupoid C∗-algebras of an étale locally compact Hausdorff groupoid G. These
constructions can be carried through for any groupoid admitting a Haar system, but the
formulae are simpler in our situation. For full details see [18, Section II.1]; or for a detailed
treatment of étale groupoids, see [14] or [7, Section 3].

Consider the space Cc(G) of compactly supported complex-valued functions on G. For
x ∈ G and f ∈ Cc(G), the set {y : r(y) = r(x), f(y) 6= 0} is both compact and discrete
and hence finite. Thus we may sensibly define an operation ∗ : Cc(G) × Cc(G) → Cc(G)
by

(f ∗ g)(x) =
∑

r(y)=r(x)

f(y)g(y−1x).

The space Cc(G) becomes a topological ∗-algebra with the involution f ∗(x) = f(x−1) and
the convolution product ∗ defined above.

A representation of Cc(G) is a nondegenerate ∗-homomorphism π : Cc(G) → B(H)
which is continuous from the inductive limit topology on Cc(G) to the strong operator
topology on B(H). Renault’s disintegration theorem [19, Proposition 4.2] together with
[18, Propositions II.1.7 and II.1.11] implies that there is a pre-C∗-norm on Cc(G) deter-
mined by

‖f‖ = sup{‖π(f)‖ : π is a representation of Cc(G)}.
The full groupoid C∗-algebra C∗(G) is the C∗-completion of Cc(G) in this norm.

To define the reduced groupoid C∗-algebra, fix u ∈ G(0) and let `2(Gu) be the Hilbert
space with orthonormal basis {ξx : x ∈ Gu}. There is a representation Ind εu : Cc(G) →
B(`2(Gu)) such that for f ∈ Cc(G) and x ∈ Gu, we have

Ind εu(f)ξx =
∑
y∈Gu

f(yx−1)ξy.

The reduced groupoid C∗-algebra C∗r (G) is then the completion of Cc(G) in the C∗-norm

‖f‖r = sup
u∈G(0)

‖ Ind εu(f)‖.

There are at least two notions of amenability for groupoids: (topological) amenability [2,
Definition 2.2.8], and measurewise amenability [2, Definition 3.3.1]. Topological amenabil-
ity of G implies measurewise amenability of G [2, page 83] which in turn implies that C∗(G)



4 JEAN RENAULT, AIDAN SIMS, DANA P. WILLIAMS, AND TRENT YEEND

and C∗r (G) coincide [2, Proposition 6.18]. If G is both étale and second-countable, then
it has countable orbits and a continuous Haar system (consisting of counting measures),
and in this case [2, Theorem 3.3.7] implies that measurewise and topological amenability
are equivalent.

2.3. Topological higher-rank graphs. For the details of this and the next section, see
[27, 29]. A k-graph is a small category Λ equipped with a functor d : Λ → Nk which
satisfies the following factorisation property : if d(λ) = m + n then there exist unique
µ ∈ d−1(m) and ν ∈ d−1(n) such that λ = µν. We call d the degree map on Λ, and
denote d−1(n) by Λn.1 An argument using the factorisation property shows that Λ0 is
equal to the collection of identity morphisms of Λ. So the domain and codomain functions
determine maps s, r : Λ→ Λ0 which we call the source and range maps.

We regard a k-graph Λ as a kind of generalised directed graph: we think of Λ0 as a
collection of vertices; we think of each λ ∈ Λ as a path from s(λ) to r(λ); and the degree
map d plays the role of a generalised length function.

Given sets X, Y ⊆ Λ we write XY for the set {µν : µ ∈ X, ν ∈ Y, s(µ) = r(ν)}. In
particular, for V ⊆ Λ0 and X ⊆ Λ, V X = {λ ∈ X : r(λ) ∈ V } and XV = {λ ∈ X :
s(λ) ∈ V }. By the usual abuse of notation, for a singleton set {λ} ⊆ Λ, we write Λλ and
λΛ in place of Λ{λ} and {λ}Λ.

The factorisation property implies that if λ ∈ Λ and m ≤ n ≤ d(λ), then there
are unique λ(0,m) ∈ Λm, λ(m,n) ∈ Λn−m and λ(n, d(λ)) ∈ Λd(λ)−n such that λ =
λ(0,m)λ(m,n)λ(n, d(λ)). We think of λ(m,n) as the segment of λ from position m to
position n along λ.

Given µ and ν in Λ, we say that λ is a common extension of µ and ν if we can factorise
λ = µµ′ and λ = νν ′ for some µ′, ν ′ ∈ Λ. We say that λ is a minimal common extension
of µ and ν if it is a common extension such that d(λ) = d(µ) ∨ d(ν). We denote by
MCE(µ, ν) the set of all minimal common extensions of µ and ν. If r(µ) 6= r(ν), then
MCE(µ, ν) = ∅. Given subsets X, Y ⊆ Λ, we define

MCE(X, Y ) :=
⋃

µ∈X,ν∈Y

MCE(µ, ν).

A topological k-graph is a k-graph Λ endowed with a second-countable locally compact
Hausdorff topology such that each Λn is open, the range map is continuous, composition
is continuous and open, and the source map is a local homeomorphism.

We say that the topological k-graph Λ is compactly aligned if, for every pair of compact
subsets X, Y ⊆ Λ, the set MCE(X, Y ) is also compact. Given v ∈ Λ0 we say that a subset
E of Λ is compact exhaustive for v if E is compact, r(E) is a neighbourhood of v, and for
all λ ∈ r(E)Λ there exists µ ∈ E such that MCE(λ, µ) 6= ∅.

An important class of examples of higher-rank graphs, which we will use to make sense
of the notion of an infinite path in a k-graph, are the (discrete) higher-rank graphs Ωk,m.
These are defined as follows. For fixed k ≥ 1 and m ∈ (N ∪ {∞})k, the k-graph Ωk,m has
morphisms {(p, q) : p, q ∈ Nk, p ≤ q ≤ m}. The range and source maps are r(p, q) = (p, p)
and s(p, q) = (q, q), composition is determined by (p, q)(q, r) = (p, r), and the degree map
is given by d(p, q) = q − p. We usually abbreviate a vertex (p, p) of Ωk,m as p.

1When k = 1 so that n ∈ N, there is a slight clash of notation here with the usual notation for the
product space

∏n
i=1 Λ; but the meaning is usually clear from context.
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A k-graph morphism x from a k-graph Λ to a k-graph Γ is a functor x : Λ→ Γ which
intertwines the degree maps. Given a k-graph Λ, each λ ∈ Λ determines, and is determined
by, the unique k-graph morphism xλ : Ωk,d(λ) → Λ such that xλ(m,n) = λ(m,n) for all
m ≤ n ≤ d(λ). By analogy, for arbitrary m ∈ (N∪{∞})k, we regard a k-graph morphism
x : Ωk,m → Λ as a (possibly infinite) path in Λ, and define r(x) := x(0), and d(x) = m. If
mi <∞ for all i, then we also write s(x) for x(m), but if mi =∞ for some i, then x has
no source.

For m ∈ (N ∪ {∞})k, a boundary path of degree m in a topological k-graph Λ is a k-
graph morphism x : Ωk,m → Λ such that for every n ∈ Nk with n ≤ m and each compact
exhaustive set E for x(n, n), there is an element λ of E such that d(x) ≥ n + d(λ) and
x(n, n+d(λ)) = λ. Fix a boundary path x of degree m. For each n ∈ Nk with n ≤ m, there
is a unique boundary path σn(x) of degree m−n defined by σn(x)(p, q) = x(n+p, n+q) for
all (p, q) ∈ Ωk,m−n. Given µ ∈ Λ with s(µ) = r(x), there is a unique boundary path µx of
degree d(µ)+m such that (µx)(0, d(µ)) = µ and such that (µx)(p+d(µ), q+d(µ)) = x(p, q)
for all (p, q) ∈ Ωk,m. We have σd(µ)(µx) = x = x(0, n)σn(x).

We denote the collection of all boundary paths in Λ by ∂Λ. For a subset U of Λ, we
denote by Z(U) the collection

{x ∈ ∂Λ : x(0, n) ∈ U for some n ∈ Nk with n ≤ d(x)}.

The collection of sets

(2.1) {Z(U) ∩ Z(F )c : U ⊆ Λm is relatively compact and open, F ⊆ UΛ is compact}

form a basis for a locally compact Hausdorff topology on ∂Λ.

2.4. The boundary-path groupoid of a topological higher-rank graph. Given a
compactly aligned topological k-graph Λ, we define a set GΛ by

GΛ := {(x,m− n, y) : m,n ∈ Nk, x, y ∈ ∂Λ,m ≤ d(x), n ≤ d(y) and σm(x) = σn(y)}.

Define G(0)
Λ := {(x, 0, x) : x ∈ ∂Λ}, and identify it with ∂Λ via (x, 0, x) 7→ x. For

(x, p, y) ∈ GΛ, define r(x, p, y) = x and s(x, p, y) = y. With structure maps

(x, p, y)−1 = (y,−p, x), and (x, p, y)(y, q, z) = (x, p+ q, z),

the set GΛ becomes a groupoid with unit space ∂Λ, and c(x, p, y) := p defines a continuous
1-cocycle c : GΛ → Zk.

For U, V ⊆ Λ, define U ∗s V := {(µ, ν) ∈ U × V : s(µ) = s(ν)}. For F ⊆ Λ ∗s Λ and
p ∈ Zk, define

Z(F, p) := {(µx, p, νx) : (µ, ν) ∈ F, d(µ)− d(ν) = p, s(µ) = s(ν), x ∈ s(µ)∂Λ}.

The following follows from Yeend’s results, but it is worthwhile to state it explicitly.

Lemma 2.1. Let Λ be a compactly aligned topological k-graph. Then

{Z(U ∗s V, p− q) ∩ Z(F, p− q)c : p, q ∈ Nk, U ⊆ Λp and V ⊆ Λq,

U, V are relatively compact and open,

and F is a compact subset of
⋃
α∈Λ Uα× V α}

is a basis for a locally compact Hausdorff topology on GΛ under which GΛ becomes a locally
compact Hausdorff étale groupoid.
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Proof. Proposition 3.6 and Theorem 3.16 of [29] imply that the sets of the form described
in the lemma are a basis for a second-countable, locally compact, Hausdorff topology
on the path groupoid GΛ of Λ, and that GΛ is an étale groupoid under this topology.

Propositions 4.4 and 4.7 of [29] show that ∂Λ is a closed invariant subset of G
(0)
Λ . Since

GΛ is by definition the restriction of GΛ to ∂Λ, the result follows. �

Notation 2.2. Given U ⊆ Λp and V ⊆ Λq and a compact subset F ⊆
⋃
α∈Λ Uα × V α,

it is unambiguous to abbreviate the basic open set Z(U ∗s V, p − q) ∩ Z(F, p − q)c as
Z(U ∗s V ) ∩ Z(F )c, and we will frequently do so.

The topological higher-rank graph C∗-algebra C∗(Λ) is defined to be the full groupoid
C∗-algebra C∗(GΛ).

3. Injectivity of representations on functions on the unit space

The uniqueness theorems in [29] assume the existence of a representation of C∗(GΛ)

which restricts to an injection of C0(G(0)
Λ ) = C0(∂Λ). For graph C∗-algebras, topological

graph C∗-algebras and higher-rank graph C∗-algebras, the usual hypothesis is that the
given representation be injective on the embedded copy of C0(Λ0). We show that the
two hypotheses are equivalent by showing that injectivity on C0(Λ0) implies injectivity
on C0(∂Λ). That is, the usual hypothesis also suffices for topological higher-rank graphs.

The definition of the topology on ∂Λ ensures that the range map r : x 7→ x(0) is
continuous from ∂Λ to Λ0. Proposition 4.3 of [29] implies that r is surjective. It therefore
induces an injection

r∗ : C0(Λ0) ↪→ C0(∂Λ) such that r∗(f) = f ◦ r for all f ∈ C0(Λ0).

Proposition 3.1. Let Λ be a compactly aligned topological k-graph. Let π be a represen-
tation of C∗(GΛ). If π|r∗(Cc(Λ0)) is injective, then π|

C0(G(0)
Λ )

is injective.

Proof. The ideal ker(π)∩C0(∂Λ) consists of all functions supported on some open invariant
subset U of ∂Λ. So X := ∂Λ \ U is a closed invariant set and π factors through a
representation of GΛ|X . That π ◦ r is injective on Cc(Λ

0) implies that X ∩ Z(V ) 6= ∅ for
every open V ⊆ Λ0. Fix v ∈ Λ0 and a fundamental sequence of compact neighbourhoods
(Kn)∞n=1 of v ∈ Λ0. We have just seen that X ∩Kn 6= ∅ for all n, so fix a sequence (xn)∞n=1

with each xn ∈ X ∩Kn. By compactness we may pass to a convergent subsequence with
limit x, and then continuity of the range map ensures that r(x) = v. Hence K ∩ v∂Λ 6= ∅.

Proposition 5.16 of [4] implies that the only closed invariant set of ∂Λ which intersects
each v∂Λ is ∂Λ itself. So K = ∂Λ, and hence ker(π) ∩ C0(∂Λ) = {0}. �

4. Amenability and the gauge-invariant uniqueness theorem

In this section we prove a variant of an Huef and Raeburn’s gauge-invariant uniqueness
theorem [9] for topological higher-rank graph C∗-algebras. A key ingredient is amenability
of GΛ which guarantees that C∗(GΛ) and C∗r (GΛ) coincide; it follows from [18, Proposi-

tion 4.8] that the conditional expectation of C∗(GΛ) onto C0(G(0)
Λ ) is faithful.

Recall that given a topological higher-rank graph Λ, we denote by c the canonical
1-cocycle c : GΛ → Zk given by c(x,m, y) = m.

Theorem 4.1 (The gauge-invariant uniqueness theorem). Let Λ be a compactly aligned
topological k-graph, and let r∗ : C0(Λ0) → C0(∂Λ) be the homomorphism f 7→ f ◦ r.
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Suppose that π : C∗(Λ)→ B is a homomorphism such that π ◦ r∗ is injective on Cc(Λ
0).

Suppose that there is a strongly continuous action β : Tk → Aut(B) such that for each
n ∈ Nk and f ∈ Cc(GΛ) with supp(f) ⊆ c−1(n), we have βz(π(f)) = znπ(f). Then π is
injective.

To prove the theorem, we first show that Yeend’s boundary-path groupoid is amenable
in the sense of [2], and then follow the standard argument of [11]. We begin by showing
that the kernel of c is amenable. For us, amenability of GΛ is important only as a hypoth-
esis which ensures that C∗(GΛ) and C∗r (GΛ) coincide, so we will not dwell on the rather
technical definition. We thank Toke Carlsen for pointing out an error in an earlier version
of the proof of this result.

Proposition 4.2. Let Λ be a compactly aligned topological k-graph. Then the kernel

H := c−1(0) of c is amenable, principal and satisfies H(0) = G(0)
Λ .

Proof. For m ∈ Nk, let Rm denote the subgroupoid of H defined by

Rm := {(x, 0, x) : x ∈ ∂Λ} ∪ {(x, 0, y) : d(x) = d(y) ≥ m,σm(x) = σm(y)}
= {(x, 0, x) : x ∈ ∂Λ} ∪ {(αz, 0, βz) : z ∈ ∂Λ, α, β ∈ Λmr(z)}.

Each Rm is an equivalence relation, and each Rm is also an Fσ set (that is, a countable
union of closed sets) in ∂Λ × ∂Λ because GΛ is locally compact. We claim that each
Rm is proper as a Borel groupoid [2, Definition 2.1.2]. By [2, Examples 2.1.4(2)], this
is equivalent to the quotient space being a standard Borel space. The Mackey–Glimm–
Ramsay dichotomy [17, Theorem 2.1] implies that this in turn is equivalent to the assertion
that orbits are locally closed.

Fix m ∈ Nk. To see that the orbits in Rm are indeed locally closed, first observe that
the orbit [x] of x in Rm is equal to {x} if d(x) 6≥ m, and is equal to {ασm(x) : α ∈
Λm, s(α) = x(m)} otherwise. In the first case, [x] = {x} is in fact closed because the
topology on G0

Λ is Hausdorff. In the second case, we claim that

(4.1) [x] =
(
R(0)
m ∩ Z(Λm ∗s Λm)

)
∩ {(ασm(x), 0, βσm(x)) : d(α) = d(β) = m}.

To see this, observe that the right-hand side clearly contains [x], so we need only show
the reverse inclusion. Fix

(w, p, z) ∈
(
R(0)
m ∩ Z(Λm ∗s Λm)

)
∩ {(ασm(x), 0, βσm(x)) : d(α) = d(β) = m}.

Then w = z ∈ ∂Λ, p = 0, and d(w) ≥ m. Fix a sequence of pairs (αj, βj) ∈ Λmx(m) ×
Λmx(m) such that (αjσ

m(x), 0, βjσ
m(x))→ (w, 0, w). In particular, αjσ

m(x), βjσ
m(x)→

w in ∂Λ. Then [29, Proposition 3.12](i) ensures that the αjσ
m(x)(0, p∧ d(x)) converge to

w(0,m + p) for all p ≤ d(w) −m, which implies that d(w) ≤ d(x) and then that in fact
(αjσ

m(x))(0, q)→ w(0, q) for all q ≤ d(w). It therefore suffices to show that d(w) ≥ d(x).
Suppose for contradiction that i ≤ k satisfies d(w)i < d(x)i. Then mi ≤ d(w)i < d(x)i,
which gives

(αjσ
m(x))(d(w), d(w) + ei) = x(d(w), d(w) + ei) for all j ∈ N.

In particular, the set

Jd(w),i = {j ∈ N : d(αjσ
m(x))i ≥ d(w) + ei}
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is equal to N and hence infinite, but the sequence (αjσ
m(x))(d(w), d(w) + ei)j∈Jd(w),i

is

the constant sequence, and in particular is not wandering, contradicting [29, Proposi-
tion 3.12](ii). This proves (4.1).

Since GΛ is étale, the unit space R
(0)
m = G(0)

Λ is open. Each Z(Λn ∗s Λn) is open in GΛ

by definition of the topology on GΛ, so

R(0)
m ∩

⋃
n≥m

Z(Λn ∗s Λn)

is open in the relative topology on Rm. Hence [x] is the intersection of an open set and
a closed set in Rm and hence is locally closed. So Rn is a proper Borel groupoid; in
particular it is measurewise amenable.

The groupoid H =
⋃
n∈Nk Rn is therefore a direct limit (in the sense of [2, Section 5.3f ])

of measurewise amenable groupoids, and hence is itself measurewise amenable by [2,
Proposition 5.3.37]. Since GΛ is étale by [29, Theorem 3.16 and Definition 4.8], H is
also étale. Since it is second-countable, it follows that orbits are countable in H, so [2,
Theorem 3.3.7] implies that H is topologically amenable.

The factorisation property in Λ implies that if d(α) = d(β), then for any x ∈ ∂Λ, we
have αx = βx if and only if α = β. So H is principal. �

In the earlier withdrawn version of this article, the first-, second- and fourth-named
authors gave an incorrect proof that if G is a second-countable, locally compact, Hausdorff,
étale, groupoid and admits a continuous cocycle c into an amenable group such that the
kernel of c is an amenable groupoid, then G itself is amenable. Our proof was flawed
because it required strong surjectivity of c. The canonical Zk-valued cocycle on the
groupoid of a topological k-graph is usually not strongly surjective unless the range-map
in Λ is both proper and surjective on each Λn, in which case Yeend’s original results [29]
apply. Fortunately, this gap is now filled by a result of Spielberg [23] (see also [20]).

Corollary 4.3. Let Λ be a compactly aligned topological k-graph, and let GΛ be the asso-
ciated groupoid as in [29]. Then GΛ is (topologically) amenable and C∗(Λ) is nuclear.

Proof. Proposition 9.3 of [23] says that if c is a continuous cocycle on a Hausdorff étale
groupoid G taking values in a discrete abelian group G and the kernel of c is amenable,
then G is amenable. To prove this result, Spielberg shows that C∗(G) is nuclear and then
applies [2, Corollary 6.2.14(ii)]. So the result follows from Spielberg’s argument combined
with Proposition 4.2. �

Proof of Theorem 4.1. Let H := c−1(0). Averaging over the gauge-action γ : Tk →
Aut(C∗(Λ)) determines a faithful conditional expectation Φγ : C∗(GΛ) → C∗(H). Aver-
aging over the action β : Tk → Aut(B) determines a conditional expectation Φβ : B →
π(C∗(H)) such that π ◦ Φγ = Φβ ◦ π, so by a standard argument [22, Lemma 3.14] it
suffices to show that π|C∗(H) is injective.

By hypothesis π is injective on r∗(Cc(Λ
0)), and it follows from Proposition 3.1 that π is

injective on C0(G(0)
Λ ) = C0(H(0)). Since Proposition 4.2 implies that H is both principal

and amenable, it follows from [18, II, Proposition 4.6] that π|C∗(H) is injective. �

5. The Cuntz–Krieger uniqueness theorem and simplicity

In this section we use groupoid machinery to recover Yamashita’s version of the Cuntz–
Krieger uniqueness theorem [26]. (Yamashita’s proof uses the technology of product
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systems and Cuntz–Pimsner algebras.) We also use the results of [3] to characterise
simplicity of C∗(Λ) in terms of the structure of Λ, and to establish a condition under
which C∗(Λ) is purely infinite.

Recall from [29] that given a topological higher-rank graph Λ, a boundary path x ∈ ∂Λ
is said to be aperiodic if σm(x) 6= σn(x) for all distinct m,n ∈ Nk with m,n ≤ d(x).

Theorem 5.1 (The Cuntz–Krieger uniqueness theorem). Let Λ be a compactly aligned
topological k-graph. Let r∗ : C0(Λ0) → C0(∂Λ) be the homomorphism f 7→ f ◦ r. The
following are equivalent.

(1) For every open set V ⊆ Λ0 there exists an aperiodic element x ∈ Z(V ).
(2) Every homomorphism π : C∗(Λ) → B such that π ◦ r∗ is injective on Cc(Λ

0) is
injective.

Remark 5.2. Condition (1) in Theorem 5.1 is precisely Yeend’s aperiodicity condition (A)
(see [29, Theorem 5.2]). Wright shows in Theorem 3.1 of [25] that Λ satisfies condition (A)
if and only if

(5.1)
for every pair U, V of open subsets of Λ such that s(U) = s(V ) and s|U , s|V are
homeomorphisms, there exists τ ∈ s(U)Λ such that MCE(Uτ, V τ) = ∅.

Since it does not involve elements of ∂Λ, which are hard to identify in practise, this
condition is easier to check than condition (1) of Theorem 5.1 (see [25, Section 4]). We
give an independent, although somewhat circuitous, proof of Wright’s result in Lemma 5.6.

The relationship between Yeend’s aperiodicity condition and Yamashita’s Condition (B)
[26, Definition 4.9] is not transparent. However, since [26, Theorem 4.14] says that Con-
dition (B) implies (2) of Theorem 5.1, we deduce that Condition (1) is at least formally
weaker than Condition (B).

As in [3], we say that a topological groupoid G is topologically principal if the set{
u ∈ G(0) : Guu = {u}

}
of units with trivial isotropy is dense in G(0), and we say that G is

minimal if the only open invariant subsets of G(0) are ∅ and G(0).

Proof of Theorem 5.1. Lemma 2.1 says that GΛ is second-countable, locally compact,
Hausdorff and étale. Corollary 4.3 implies that it is amenable.

Theorem 5.2 of [29] says that Λ satisfies (1) if and only if GΛ is topologically principal.
Combined with the preceding paragraph, [3, Proposition 5.5] implies that GΛ is topolog-
ically principal if and only if every nontrivial ideal of C∗(GΛ) has nontrivial intersection

with C0(G(0)
Λ ). Finally, Proposition 3.1 implies that every nontrivial ideal of C∗(GΛ) has

nontrivial intersection with C0(G(0)
Λ ) if and only if C∗(Λ) satisfies (2). �

We now employ the full strength of the characterisation [3, Theorem 5.1] of simplicity
for C∗-algebras of second-countable locally compact Hausdorff étale amenable groupoids
to characterise simplicity of topological higher-rank graph C∗-algebras.

Theorem 5.3. Let Λ be a compactly aligned topological k-graph. Then C∗(Λ) is simple
if and only if both of the following conditions are satisfied:

(1) Λ satisfies condition (1) of Theorem 5.1; and
(2) For every x ∈ ∂Λ and open U ⊆ Λ0 there exists n ∈ Nk such that n ≤ d(x) and

UΛx(n) 6= ∅.
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Lemma 5.4. Let Λ be a compactly aligned topological k-graph. Suppose that V ⊆ Λm

is open, F ⊆ V Λ is compact and Z(V ) ∩ Z(F )c 6= ∅. Then there exists p ≥ m and a
nonempty open subset W of Λp such that Z(W ) ⊆ Z(V ) ∩ Z(F )c. In particular, if U is
an open subset of ∂Λ, then there exist n ∈ Nk and an open subset W of Λn such that
Z(W ) ⊆ U .

Proof. We follow the proof of Theorem 5.2 of [29]. Since s|Λm is a local homeomorphism,
we may assume that it restricts to a homeomorphism on U . Let E := {λ(m, d(λ)) : λ ∈
F}. As in [29, Definition 3.10], the map λ 7→ λ(m, d(λ)) is continuous on each F ∩ Λp.
Since F is compact and d : Λ → Nk is continuous, d(F ) is finite, and it follows that E
is compact. Fix x ∈ Z(V ) ∩ Z(F )c, and let λ := x(0,m). Since x 6∈ Z(F ), we have
σm(x) 6∈ Z(E). Since σm(x) ∈ ∂Λ it follows that either r(E) is not a neighbourhood of
x(m), or E is not exhaustive for r(E). Suppose first that r(E) is not a neighbourhood of
x(m). Since E is closed, it follows that there is an open neighbourhood S of x(m) which
does not intersect r(E); and then n := m and W := US does the job. Now suppose that
r(E) is not exhaustive for r(E). Then there exists λ ∈ r(E)Λ such that λΛ ∩ EΛ = ∅.
Since EΛ closed there is then a neighbourhood S of λ in Λd(λ) such that SΛ ∩ EΛ = ∅.
Now n := m+ d(λ) and W := US does the job.

The final statement follows as the Z(V ) ∩ Z(F )c are a base for the topology. �

Lemma 5.5. Let Λ be a compactly aligned topological k-graph. The following are equiv-
alent:

(1) Λ satisfies condition (2) of Theorem 5.3.

(2) G(0)
Λ has no nontrivial open invariant subsets.

Proof. First suppose that Λ satisfies condition (2) of Theorem 5.3. Fix x ∈ ∂Λ. It suffices

to show that [x] = ∂Λ. To see this, fix y ∈ G(0)
Λ = ∂Λ. Each neighbourhood of y contains

a basic open neighbourhood Z(U) ∩ Z(F )c of y where U ⊆ Λm is relatively compact and
F ⊆ UΛ is compact. Lemma 5.4 yields p ∈ Nk with p ≥ m and an open subset W of Λp

such that Z(W ) ⊆ Z(U)∩Z(F )c. Proposition 4.3 of [29] implies that each v∂Λ 6= ∅, and
so WΛ∩FΛ = ∅. Since s(W ) is open, condition (2) of Theorem 5.3 gives us n ≤ d(x) such
that WΛx(n) 6= ∅, say α ∈ WΛx(n). Then ασn(x) ∈ [x] ∩ Z(W ) ⊆ [x] ∩ Z(U) ∩ Z(F )c.

Hence y ∈ [x].

Now suppose that G(0)
Λ has no nontrivial open invariant subsets. Fix an open U ⊆ Λ0

and an element x ∈ ∂Λ. Since [x] is a nonempty closed invariant set, it is all of ∂Λ.
Since Z(U) is open it follows that [x] ∩ Z(U) is nonempty. By definition of GΛ, we have
[x] = {λσn(x) : n ∈ Nk, λ ∈ Λx(n)}, so Λ satisfies condition (2) of Theorem 5.3. �

Proof of Theorem 5.3. As in the proof of Theorem 5.1, GΛ is second-countable, locally
compact, Hausdorff, étale and amenable. Hence Theorem 5.1 of [3] implies that C∗(Λ) is
simple if and only if GΛ is topologically principal and minimal. Theorem 5.1 of [29] implies
that GΛ is topologically principal if and only if Λ satisfies condition (1) of Theorem 5.1.
So the result follows from Lemma 5.5. �

Lemma 3.3 of [3] implies that a second-countable locally compact Hausdorff groupoid
G is topologically principal if and only if it satisfies the apparently weaker condition
(genuinely weaker in the absence of the assumption that G is second countable) that the
interior of the isotropy subgroupoid

⋃
u∈G(0) Guu of G is precisely G(0). Since this condition
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should be easier to check, we describe what it says for a topological k-graph: it is a
topological analogue of the condition called “no local periodicity” in [21]. The third
condition below is Wright’s finite-paths aperiodicity condition [25, Theorem 3.1(C)]; as
mentioned above, our argument below recovers the equivalence (1) ⇐⇒ (3) of [25,
Theorem 3.1] via results of [3] and [29].

Throughout the rest of the section we make frequent use of the notational convenience
of Notation 2.2; that is, we write Z(U ∗sV )∩Z(F )c in place of Z(U ∗sV, p−q)∩Z(F, p−q)c
when the former is unambiguous.

Lemma 5.6. Let Λ be a compactly aligned topological k-graph. The following are equiv-
alent:

(1) Λ satisfies condition (1) of Theorem 5.1.
(2) For every open set V ⊆ Λ0 and every pair m,n of distinct elements of Nk there

exists x ∈ Z(V ) such that either d(x) 6≥ m ∨ n or σm(x) 6= σn(x).
(3) Λ satisfies (5.1).

Proof. We first prove (1) ⇐⇒ (2). We have seen that Λ satisfies condition (1) of
Theorem 5.1 if and only if GΛ is topologically principal. Lemmas 3.1 and 3.3 of [3] show
that GΛ is topologically principal if and only if

(5.2) every open subset of GΛ \ G(0)
Λ contains an element (x,m, y) such that x 6= y.

So it suffices to show that (5.2) is equivalent to (2).

First suppose that Λ satisfies (2). Fix an open set O ⊆ GΛ \ G(0)
Λ .

By definition of the topology on GΛ, the set O contains a nonempty subset of the form
Z(U ∗s V ) ∩ Z(F )c where U ⊆ Λp and V ⊆ Λq are relatively compact with s(U) = s(V ),
s|U and s|V are homeomorphisms, and F is a compact subset of

⋃
α∈Λ Uα × V α. Since

the map (µα, να) 7→ µα and the map µα 7→ (µα)(p, p + d(α)) are continuous, it follows

that F = {(µα, να) : (µ, ν) ∈ U ∗s V, α ∈ K} for some compact K ⊆ s(U)Λ. It suffices to
find (x, p− q, y) ∈ Z(U ∗s V ) ∩ Z(F )c with x 6= y.

If p = q, then since O ∩ G(0)
Λ = ∅ and since the groupoid H of Proposition 4.2 is

principal, any (x, 0, y) ∈ Z(U ∗s V )∩Z(F )c does the job. So we may suppose that p 6= q.
By Lemma 5.4, there exists m ∈ Nk with m ≥ p and an open W0 ⊆ Λm such that
Z(W0) ⊆ Z(U) ∩ Z(UK)c. Let n := m− p and let W := {λ(p,m) : λ ∈ W0} ⊆ Λn. Then
r(W ) ⊆ s(U) = s(V ) and Z(UW ∗s VW ) ⊆ Z(U ∗s V )∩Z(F )c ⊆ O. Let p′ := p− (p∧ q)
and q′ := q − (p ∧ q). Then p 6= q forces p′ 6= q′. Since the source map in Λ is open,
s(W ) = s(W0) is open, so condition (2) implies that there exists x ∈ Z(s(W )) such that
either d(x) 6≥ p′∨ q′ or σp

′
(x) 6= σq

′
(x). Let µ ∈ UW and ν ∈ VW be the unique elements

such that s(µ) = s(ν) = r(x). Then (µx, p− q, νx) ∈ O.
We will show that µx 6= νx; equation (5.2) then follows. We consider two cases. First

suppose that d(x) 6≥ p′ ∨ q′. Since p′ ∧ q′ = 0 it follows that there exists i ≤ k such that
d(x)i <∞ and p′i 6= q′i. Thus pi 6= qi, and since d(µ) = p+ n and d(ν) = q + n, it follows
that d(µ)i − d(ν)i 6= 0. Since d(x)i <∞, we have d(µx)i − d(νx)i = d(µ)i − d(ν)i 6= 0. In
particular d(µx) 6= d(νx), forcing µx 6= νx as required. Now suppose that d(x) ≥ p′ ∨ q′.
Then (2) says that σp

′
(x) 6= σq

′
(x). Since µ ∈ UW ⊆ Λp+n and ν ∈ VW ⊆ Λq+n, we have

σp+n+q′(µx) = σq
′
(x) 6= σp

′
(x) = σq+n+p′(νx).

Since p+ n+ q′ = p+ q − (p ∧ q) + n = q + n+ p′, we deduce that µx 6= νx as required.
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Now suppose that Λ does not satisfy (2). Fix an open set V ⊆ Λ0 and distinct m,n ∈ Nk

such that d(x) ≥ m ∨ n and σm(x) = σn(x) for all x ∈ V ∂Λ. Then Z(V Λm ∗s V Λn) is

a nonempty open subset of GΛ which does not intersect G(0)
Λ whose every element is an

isotropy element, and so (5.2) does not hold. This completes the proof of (1) ⇐⇒ (2)
We now establish (1) ⇐⇒ (3). As above, it suffices to show that (5.2) is equivalent

to (3).

First suppose that Λ satisfies (5.1). Fix an open subset B of GΛ \ G(0)
Λ . As above

there exist m,n ∈ Nk and open sets U ⊆ Λm and V ⊆ Λn such that s(U) = s(V ), s|U
and s|V are homeomorphisms and Z(U ∗s V ) ⊆ B. By (5.1), there exists τ ∈ s(U)Λ
such that MCE(Uτ, V τ) = ∅. Let α ∈ U and β ∈ V be the unique elements such that
s(α) = s(β) = r(τ) and fix x ∈ s(τ)∂Λ. Then g := (ατx,m− n, βτx) ∈ Z(U ∗s V ) ⊆ B,
and since MCE(ατ, βτ) = ∅, we have ατx 6= βτx.

Now suppose that Λ does not satisfy (5.1). So there exist m,n ∈ Nk and open U ⊆ Λm

and V ⊆ Λn such that: (1) s(U) = s(V ) = W , say; (2) the source map restricts to
homeomorphisms of U and V onto W ; and (3) MCE(Uτ, V τ) 6= ∅ for all τ ∈ WΛ. By
passing to subneighbourhoods, we may assume that U and V are compact and contained
in sets on which s is a homeomorphism, and that MCE(Uτ, V τ) 6= ∅ for all τ ∈ s(U).
Fix µ ∈ U and ν ∈ V with s(µ) = s(ν). Then MCE(µ, ν) 6= ∅ (consider τ = s(µ)), so
µ(0,m ∧ n) = ν(0,m ∧ n) and for each τ ∈ s(µ)Λ, we have

µ(0,m ∧ n) MCE(µ(m ∧ n,m)τ, ν(m ∧ n, n)τ) = MCE(µτ, ντ) 6= ∅.

So by replacing U with {µ(m∧n,m) : µ ∈ U} and V with {ν(m∧n, n) : ν ∈ V }, we may
assume that m ∧ n = 0. We will show that Z(U ∗s V ) consists entirely of isotropy. We
first establish the following claim.

Claim. For each p ∈ N, the set WΛpm is compact exhaustive for each v ∈ s(U). The
claim is trivial for p = 0, so suppose as an inductive hypothesis that WΛpm is compact
exhaustive for each v ∈ s(U) = W . Since m∧n = 0 and hence (p+ 1)m∧n = 0, we have
MCE(UΛpm, V ) ⊆ V Λ(p+1)m. Furthermore, for ν ∈ V and τ ∈ s(µ)Λ(p+1)m, the element
µ ∈ U with s(µ) = r(τ) satisfies MCE(µ, ντ) 6= ∅, so ντ ∈ MCE(UΛpm, V ). Hence

MCE(UΛpm, V ) = V Λ(p+1)m for all p ∈ N.

Since each of U and WΛpm is compact, continuity of composition implies that UΛpm is
compact. Since V is compact also, and Λ is compactly aligned, it follows that V Λ(p+1)m

is compact. Since λ 7→ λ(m, d(λ)) is continuous on Λn+(p+1)m, we deduce that WΛ(p+1)m

is compact. It remains to show that it is exhaustive for each v ∈ W . For this fix τ ∈ WΛ.
The inductive hypothesis supplies an element η of MCE(WΛpm, τ). By choice of U and
V , we have MCE(Uη, V η) 6= ∅, say µηξ = νηζ ∈ MCE(Uη, V η) with µ ∈ U and ν ∈ V .
By definition of η, we have d(η) = (pm)∨d(τ) ≥ pm, so d(νηζ) = d(µηξ) ≥ d(µ)+d(η) ≥
(p + 1)m. Since d(ν) ∧ m = 0, it follows that d(ηζ) ≥ (p + 1)m. Since η(0, d(τ)) = τ ,
we have (ηζ)(0, d(τ) ∨ (p+ 1)m) ∈ MCE(τ,WΛ(p+1)m). So WΛ(p+1)m is exhaustive for v.
This proves the claim.

Now fix (µ, ν) ∈ U ∗s V and x ∈ s(µ)∂Λ so that (µx,m − n, νx) is a typical element
of Z(U ∗s V ). We must show that µx = νx. The claim and the definition of ∂Λ imply
that for each p ∈ N there exists µ ∈ WΛpm such that d(x) ≥ d(µ) and x(0, pm) = µ. In
particular, d(x)i = ∞ whenever mi > 0, and similarly d(x)i = ∞ whenever ni > 0. So
d(µx) = d(νx) = d(x), and p ≤ d(x) if and only if p ≤ d(µx). By choice of U and V , we
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have MCE(µx(0, p), νx(0, p)) 6= ∅ for all p ≤ d(x). Hence (µx)(0, p) = (νx)(0, p) for all
p ≤ d(µx) = d(νx). That is, µx = νx as required. �

We use Anantharaman-Delaroche’s criterion for pure infiniteness of a groupoid C∗-
algebra [1, Proposition 2.4] to provide a criterion under which C∗(Λ) is simple and purely
infinite. Recall from [1, Definition 2.1] that a groupoid G is locally contracting if, for
every open U ⊆ G(0) there exist an open subset V of U and an open bisection B such that
V ⊆ s(B) and r(BV ) ( V .

Definition 5.7. Given a compactly aligned topological k-graph Λ, we say that a precom-
pact open subset U of Λ0 is contracting if there exist m 6= n ∈ Nk and nonempty precom-
pact open sets Ym ⊆ Λm and Yn ⊆ Λn such that all of the following hold: s(Ym) = s(Yn);

r(Ym) ⊆ r(Yn) = U ; the source map restricts to a homeomorphism on each of Ym and
Yn; for every µ ∈ Ym and ν ∈ Yn such that r(µ) = r(ν), we have MCE(µτ, ν) 6= ∅ for all
τ ∈ s(µ)Λ; and there exists an open subset W of YnΛ such that {ζ(0, n) : ζ ∈ W} = Yn
and MCE(µ, ζ) = ∅ for all µ ∈ Ym and ζ ∈ W .

Proposition 5.8. Let Λ be a compactly aligned topological k-graph. Suppose that for
every v ∈ Λ0 there exist p ∈ Nk and an open set V ⊆ Λp such that v ∈ r(V ) and
s(V ) is contracting. Then GΛ is locally contracting. If Λ also satisfies the hypotheses of
Theorem 5.3, then C∗(Λ) is simple and purely infinite.

To prove the proposition, we first prove that contracting neighbourhoods in Λ0 give rise
to contracting bisections in GΛ.

Lemma 5.9. Let Λ be a compactly aligned topological k-graph. Suppose that U ⊆ Λ0 is
contracting, and let m, n, Ym ⊆ Λm, Yn ⊆ Λn and W ⊆ YnΛ be as in Definition 5.7. Let Y ′n
be a nonempty open set with Y ′n ⊆ Yn, and let Y ′m := s−1(Y ′n)∩Ym. Then r(Z(Y ′m ∗s Y ′n)) (
s(Z(Y ′m ∗s Y ′n)).

Proof. We first claim that MCE(Ym, Yn) = YmΛ(m∨n)−m, and s(Ym)Λ(m∨n)−m is compact
exhaustive for each v ∈ s(Ym).

The containment MCE(Ym, Yn) ⊆ YmΛ(m∨n)−m is clear. For the reverse containment,
fix τ ∈ s(Ym)Λ(m∨n)−m, let µ be the unique element of Ymr(τ), and fix ν ∈ Yn such that
r(ν) = r(µ). By hypothesis, MCE(µτ, ν) 6= ∅, and since d(µτ) = m ∨ n, it follows that
µτ ∈ MCE(Ym, Yn).

To prove the claim, it remains to show that s(Ym)Λ(m∨n)−m is compact exhaustive for
each v ∈ s(Ym). First observe that MCE(Ym, Yn) is compact because Λ is compactly
aligned. Since λ 7→ λ(m,m ∨ n) is continuous, it follows that {λ(m,m ∨ n) : λ ∈
MCE(Ym, Yn)} is compact, so the first statement of the lemma shows that s(Ym)Λ(m∨n)−m

is compact. To see that it is exhaustive for each v ∈ s(Ym), fix τ ∈ s(Ym)Λ. Let µ ∈ Ym
and ν ∈ Yn be the unique elements whose sources are equal to r(τ). By hypothesis,
we have MCE(µτ, ν) 6= ∅, say µτα ∈ MCE(µτ, ν). Then d(µτα) ≥ m ∨ n, and so

η := (τα)(0, (m ∨ n) − m) belongs to s(Ym)Λ(m∨n)−m. In particular τα ∈ MCE(τ, η) ⊆
MCE(τ, s(Ym)Λ(m∨n)−m). This proves the claim.

It follows from the claim and the definition of ∂Λ that

r(Z(Y ′m ∗s Y ′n)) = Z(Y ′m) ⊆ Z(Y ′n) = s(Z(Y ′m ∗s Y ′n)).

To see that the containment is strict, observe that Z(W ) ∩ Z(Y ′n) is a nonempty open
subset of Z(Y ′n) \ Z(Y ′m). �
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Proof of Proposition 5.8. To see that GΛ is locally contracting, fix a nonempty open subset

U of G(0)
Λ = ∂Λ. By Lemma 5.4 there exist q ∈ Nk and a nonempty open set X ⊆ Λq

such that Z(X) ⊆ U . Since the source map is open, s(X) is nonempty and open. Fix
v ∈ s(X). By hypothesis, there exist p ∈ Nk and an open set V ⊆ Λp such that v ∈ r(V )
and s(V ) is contracting. Fix m, n, Ym, Yn and W as in Definition 5.7. Since each of
Ym, Yn, X and V is open and since composition is an open map, each of XV Ym and
XV Yn is open. Hence Z(XV Ym) and Z(XV Yn) are open. Let B := Z(XV Ym ∗sXV Yn).
Then B is a precompact open bisection. Fix λ ∈ XV Yn and an open neighbourhood Y ′n
of λ(p + q, p + q + n) such that Y ′n ⊆ Yn. Let K := Z(XV Y ′n). Then K ⊆ s(B), and
Lemma 5.9 implies that

r(BK) = (σp+q)−1(r((Z(Y ′m ∗s Y ′n)))) ∩ Z(XV )

= (σp+q)−1
(
r((Z(Y ′m ∗s Y ′n)))

)
∩ Z(XV )

( (σp+q)−1(s(Z(Y ′m ∗s Y ′n))) ∩ Z(XV ) = K,

so GΛ is locally contracting as required.
For the final statement, observe that Theorem 5.1 of [29] implies that GΛ is topologically

principal and Lemma 5.5 implies that GΛ is minimal. Theorem 4.3 implies that GΛ is
amenable. Hence [1, Proposition 2.4] implies that C∗(Λ) = C∗(GΛ) is simple and purely
infinite. �
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