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Origin of Photoelectrochemical Generation of Dihydrogen by a Dye-
Sensitized Photocathode without an Intentionally Introduced Catalyst

Abstract
Dye-sensitized photocathodes have been observed on several occasions to sustain light-driven H 2 generation
without intentionally introduced catalysts. Herein, plausible mechanisms addressing this phenomenon are
probed by a combination of long-term photoelectrochemical measurements with concurrent gas
chromatography, transient absorption spectroscopy, and inductively coupled mass spectrometry using a
perylenemonoimide-sexithiophene-triphenylamine (PMI-6T-TPA) sensitized NiO electrode. The
experimental evidence obtained discounts the possibility for direct reduction of hydrogen by the dye and
demonstrates that the availability of interfaces between dye molecules and any electrically disconnected NiO
particles exposed to the electrolyte solution is critical for photoelectrocatalytic H 2 generation. These
interfaces are postulated to serve as photoactive sites for the formation of a hydrogen evolution catalyst, e.g.,
metallic nickel, which can accept photogenerated electrons from the excited dye molecules. The Ni 0 catalyst
can form via photoelectroreduction of Ni 2+ , which has been found to slowly dissolve from the NiO support
into the solutions during the photoelectrochemical measurements. Additionally, dependence of the H 2
generation rate on the anion within the electrolyte has been identified, with the highest rates of 35-40 nmol h
-1 cm -2 achieved with acetate. The origin of this dependence remains unsolved at this stage but is clearly
demonstrated to be not associated with the different rates of dissolution of NiO, the presence of other
transition metal contaminants, nor electronic impacts of the anion on the NiO valence band. Overall, the
results herein demonstrate that the effects of the chemical nature of the electrolyte, metallic nickel deposited
from dissolved Ni 2+ , and availability of the interfaces between disconnected NiO and adsorbed dye should
be considered when interpreting the photoelectrocatalytic performance of dye-sensitized photocathodes for
dihydrogen evolution.
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ABSTRACT 

Dye-sensitized photocathodes have been observed on several occasions to sustain light-driven H2 

generation without intentionally-introduced catalysts. Herein, plausible mechanisms addressing 

this phenomenon are probed by a combination of long-term photo-electrochemical measurements 

with concurrent gas chromatography, transient absorption spectroscopy and inductively coupled 

mass spectrometry using a perelenmonoimid-sexithiophene-triphenylamine (PMI-6T-TPA) 

sensitized NiO electrode. The experimental evidence obtained discounts the possibility for direct 

reduction of hydrogen by the dye and demonstrates that the availability of interfaces between dye 

molecules and any electrically-disconnected NiO particles exposed to the electrolyte solution is 

critical for photo-electrocatalytic H2 generation. These interfaces are postulated to serve as 

photo-active sites for the formation of a hydrogen evolution catalyst, e.g. metallic nickel, which 

can accept photo-generated electrons from the excited dye molecules. The Ni0 catalyst can form 

via photo-electroreduction of Ni2+, which has been found to slowly dissolve from the NiO 

support into the solutions during the photo-electrochemical measurements. Additionally, 

dependence of the H2 generation rate on the anion within the electrolyte has been identified, with 

the highest rates of 35–40 nmol h-1 cm-2 achieved with acetate. The origin of this dependence 

remains unsolved at this stage, but is clearly demonstrated to be not associated with the different 

rates of dissolution of NiO, the presence of other transition metal contaminants, nor electronic 

impacts of the anion on the NiO valence band. Overall, the results herein demonstrate that the 

effects of the chemical nature of the electrolyte, metallic nickel deposited from dissolved Ni2+, 

and availability of the interfaces between disconnected NiO and adsorbed dye should be 

considered when interpreting the photo-electrocatalytic performance of dye-sensitized 

photocathodes for dihydrogen evolution.  
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INTRODUCTION 

Artificial photosynthesis, as a renewable alternative to fossil fuel extraction, is a notion that 

continues to motivate researchers since it was first popularized over a century ago.1–3 Based 

conceptually on existing biogenic photosynthesis, this process involves the use of energy from 

solar irradiation to drive both the water oxidation reaction (equation 1), and a fuel-forming 

reduction process. The most facile fuel-forming process is the hydrogen evolution reaction 

(HER, equation 2).4 

2H2O ⇌ O2 + 4H+ + 4e- E0 = 1.23 V vs. RHE  

(RHE is reversible hydrogen electrode) 

(1) 

2H+ + 2e- ⇌ H2 E0 = 0.00 V vs. RHE (2) 

2H2O ⇌ 2H2 + O2 ΔE = 1.23 V (3) 

Dye-Sensitized Photo-Electrochemical Cells (DSPECs)5 are a device architecture for H2 

generation by light-driven water splitting that has seen an increasing interest amongst researchers 

as evidenced by the number of new publications in the field (see6–8 and references therein). Built 

upon many years of research into Dye-Sensitized Solar Cells (DSSCs), they also involve the 

sensitization of mesoporous wide-band gap semiconductors with light-absorbing dyes. DSPECs 

differ from DSSCs in that the photo-generated charges from the photo-excited dye 

oxidize/reduce H2O rather than a reversible redox mediator. All published single electrode 

systems require the application of external potential to carry out the overall water splitting 

reaction.6,9 Instead, a tandem configuration involving a DS photocathode and photoanode can 

provide a sufficient driving force to decompose water into H2 and O2, ideally using p-type and n-

type dyes absorbing at complementary wavelengths of the solar spectrum. Optimization of this 

non-trivial, multi-component device requires studies on individual photoelectrodes, which are 



 4 

achieved by substituting the input from the opposite electrode with an applied potential in a 

standard three-electrode setup. The best hitherto reported photoanodes perform at a substantially 

higher level than their photocathode counterparts, thus driving strong research interest in 

photocathode development as the best way to boost overall tandem device performance. 

Upon illumination of a typical DS photocathode, p-type dye molecules adsorbed onto a p-type 

wide bandgap semiconductor (e.g. NiO) undergo photo-excitation (equation 4), followed by 

charge injection/separation on a typically sub-nanosecond timescale (equation 5).10–13 The 

generated dye anion can transfer an electron to an oxidized species in solution such as a redox 

mediator in a DSSC (equation 6a), or to a nearby electrocatalyst in a DSPEC (equation 6b). In 

the latter case, the electrocatalyst provides a low-energy-barrier pathway for the two electron, 

two proton H2 evolution reaction (equation 2).14 In addition to its efficiency for the HER, the 

physical integration of the catalyst on the surface of the electrode should be in a manner that 

allows for all the dye molecules to be close enough to promote effective electron transfer 

between the two with efficient charge transport within the dye layer also highly desirable. In 

reality, the combination of this electron transfer step and the multi-electron catalytic reaction 

struggles to keep pace with the fast single-electron photochemistry of the dyes. This results in a 

kinetic mismatch that produces very significant energy losses in the DSPEC electrodes via 

charge recombination (shown in equation 6c for photocathodes).6 

Dye-NiO + hv → Dye*-NiO (4)  

Dye*-NiO → Dye(-)-NiO(+) (5)  

Dye(-)-NiO(+) + X → Dye-NiO(+) + X- (6a)  
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Dye(-)-NiO(+) + Cat→ Dye-NiO + Cat(-) (6b)  

Dye(-)-NiO(+) → Dye-NiO (6c)  

A number of H2 evolution catalysts for DSPECs have been demonstrated to date, as well as 

methods for their integration into photocathodes. Molecular systems15 have commonly been 

employed and immobilized along with the dye on the semiconductor surface through drop-

casting,16 co-adsorption,17,18 covalent attachment,19,20 or ionic interactions.21,22 The catalyst was 

also designed to remain dissolved in solution in some cases.12,23 These approaches generally 

allow for a good dispersion of catalytic sites amongst the dye molecules, but both their catalytic 

activity and stability are major ongoing challenges. Heterogeneous solid-state catalysts are more 

active and robust than molecular ones, though approaches based on their use in DSPEC 

electrodes are rarely reported and less well studied, presumably due to difficulties in establishing 

efficient electron-transfer pathways in this configuration. Nevertheless, we have recently 

demonstrated very promising performance of a DSPEC photocathode modified with the state-of-

the-art H2 evolution electrocatalyst, viz. metallic platinum.24 Furthermore, iridium oxide particles 

have been successfully incorporated in DS photoanodes for significantly improved water photo-

electrooxidation.25 

Interestingly, H2 generation has been observed on p-type DS mesoporous NiO electrodes 

without the addition of any intended catalysts, under various conditions in four independent 

publications, though at comparatively low rates in all cases. In 2012, Tong et al.26 were the first 

to report on H2 evolution provided by the perelenmonoimid-sexithiophene-triphenylamine dye 

(PMI-6T-TPA) adsorbed on a 1.8 µm thick, 2 cm2 area photocathode. Photo-electrocatalytic H2 

generation at a rate (ωH2) of ca 80 nmol hour-1 cm-2 was achieved with this photocathode in 
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0.1 M aqueous sodium sulfate (pH 7.0) at an applied potential of 0.197 V vs. normal hydrogen 

electrode (NHE) (0.61 V vs. RHE) and under 600–800 mW cm-2 illumination from a Xe light 

source. Separately, Kamire et al.12 used a perylene-3,4-dicarbox-imide dye on a 1 µm thick, 

0.36 cm2 area photocathode that was additionally insulated by atomic layer deposited Al2O3 to 

demonstrate H2 evolution at rates of ca 30 nmol hour-1 cm-2. Therein, 0.1 M Na2SO4 + H2SO4 in 

an acetonitrile : water (1:1 vol.) mixed solvent was used as an electrolyte solution, while 

irradiation was provided by a white light emitting diode (200 mW cm-2; λ > 420 nm), with an 

applied potential of -0.19 V vs. NHE (undefinable vs. RHE due to uncertain pH). Antila et al.18 

have also detected trace H2 during experiments with coumarin 343 dye on a 1.0 µm thick, 

1.0 cm2 area photocathode. Finally, we have previously reported on the capacity of PMI-6T-

TPA-based photocathodes (2 µm thick, 2 cm2) to produce molecular hydrogen at 

ωH2 ≈ 5 nmol hour-1 cm-2 in 1.0 M phosphate buffer (pH 7.0) at 0.00 V vs. NHE (0.39 V vs. 

RHE) under 100 mW cm-2 irradiation provided by a Xe light source (AM1.5G spectrum, 

λ >400 nm) (hereinafter, 1 sun).24 

The origin of H2 evolution by the DS photocathodes reported in the aforementioned 

publications has been barely explored to date, although it might have important implications for 

DS photocathodes that are intentionally-functionalized with a HER catalyst. The present study 

aims to provide further insights into this phenomenon. Among other possibilities, we consider 

three mechanisms summarized in Scheme 1 as the most plausible pathways towards the photo-

electrochemical generation of molecular hydrogen by NiO electrodes sensitized with a p-type 

dye. Theoretically, the photo-potential provided by the dye anion is sufficiently negative, 

e.g. -0.70 V vs. NHE for PMI-6T-TPA,27,28 which corresponds to 0.60–0.48 V overpotential for 

the HER at pH 2–4, and, as such, can be expected to sustain observable rates of H2 generation. 
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Scheme 1. Hypothetical mechanisms for photo-electrochemical H2 evolution by a DS NiO 

cathode. I: dye-monolayer surface sustains the reaction via classical Volmer-Tafel or Volmer-

Heyrovsky schemes. II: adventitious metal cations from solution are photo-electroreduced to 

produce heterogeneous H2 evolution catalysts on the DS surface. III: interfaces between dye 

molecules and loose, electrically disconnected NiO particles serve as active sites, where an 

electrocatalyst is formed via reduction of either Ni2+ or adventitious admixtures from solution. 

In mechanism I, the dye monolayer is hypothesized to sustain H-H bond formation via 

classical Volmer-Heyrovsky or Volmer-Tafel schemes.29 In a Volmer step, H+ from solution is 

reduced to H• by a photo-generated electron on the dye surface. In a subsequent Heyrovsky step 

(Scheme 1: mechanism I, teal), a second photo-generation event, involving a second H+, leads to 

the formation of H2. Alternatively, in a Tafel step (Scheme 1: mechanism I, green), two H• 

species on neighboring dye molecules combine to produce molecular hydrogen. Dye reduction 



 8 

can occur either through direct photo-excitation, or indirectly elsewhere in the monolayer 

followed by lateral transport of the electron, which is not uncommon for DS electrodes.30,31 

In mechanism II, metal particulates formed at the photo-active sites on the DS cathode surface 

via (photo-)electroreduction of adventitious metal cations in solution serve as electrocatalysts for 

H2 evolution. The feasibility of this has been recently demonstrated for a PMI-6T-TPA-

sensitized NiO electrode intentionally-modified with electrodeposited Pt.24 It has furthermore 

been shown in studies on cobalt and nickel complexes that were initially designed to function as 

molecular HER catalysts for electrochemical H2 evolution, but were eventually proven to 

produce metallic electrodeposits that were responsible for the observed catalysis.32–37 The level 

of contamination in solutions that can be encountered in an electrochemical experiment is 

sometimes sufficient to produce electrodeposited catalytic species.38,39 

The central feature of mechanism III is the role of interfaces between dye molecules and loose, 

dye-free NiO particles within the mesoporous film that have poor electrical contact to the 

surrounding film (Scheme 1). Although no direct evidence exists, it is entirely possible that after 

the screen printing and subsequent sintering process, a number of NiO particles are not fully 

fused together. The resultant poor electrical connection to the surrounding semiconductor allows 

them to function independently without photo-generated holes to re-oxidise any reduced species. 

If they are close to photo-generated dye anions, the surfaces of these unfused NiO particles could 

either be reduced to nickel metal or serve as sites for the deposition of species as in mechanism 

II (Scheme 1). Regarding the former case, metallic nickel has long been known as a reasonably 

efficient catalyst for the hydrogen evolution reaction.40–43 

Herein, the photo-electro-generation of H2 by PMA-6T-TPA-sensitized NiO photocathodes 

without intentionally-introduced HER catalysts is examined under a range of varying conditions 
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to distinguish between the above possible mechanisms. The effects of pH, chemical nature of 

electrolyte, presence of admixtures in solutions, and the availability of the interfaces between 

unmodified, electrically disconnected NiO and adsorbed dye are examined. 

EXPERIMENTAL SECTION 

Materials. Reagent or analytical grade chemicals were used as received from commercial 

suppliers. Milli-Q water (resistivity 18.2 MΩ cm at 25 °C) was used to prepare all aqueous 

solutions. Fluorine-doped SnO2 (FTO) coated glass with a sheet resistance of 8 Ω square-1 was 

purchased from Dyesol (TEC8 Glass Plates). NiO particle powder (mean size 20 nm; 73.22 wt.% 

Ni) was used as received from Inframat. The PMI-6T-TPA dye was synthesized following a 

published procedure.31 Buffers and pH-adjusted solutions were prepared by alkalization of 

aqueous acid solutions and measured by a calibrated pH meter (metrohm pH Lab 827). 

Photocathode Preparation. Procedures for the deposition of the NiO layer and its 

sensitization with the PMI-6T-TPA dye were conducted similarly to our previous work.24 A NiO 

paste (# 1) was prepared by mixing NiO, ethyl cellulose (5 wt.% in ethanol) and terpineol in the 

ratio 4 : 23 : 23 (wt.), followed by ball milling at 400 rpm for 4 hours (Fritsch Pulverisette 7; 

50 mL zirconia cylinder; zirconia balls of 11, 7, 5 and 3 mm diameter). An alternative film (# 2) 

was prepared with a ratio of 4 : 34.5 : 23 (wt.). Circular NiO films with a geometric area of 1 cm2 

on FTO were printed with paste #1 using a commercial semi-automatic screen printer (Keywell). 

Two successive printing cycles were performed to give a film thickness of ca 2.0 µm as 

measured using a Veeco Dektak 6M stylus profilometer. Electrodes were sintered in air for 

30 min at 450 ºC and for 15 min at 500 ºC. For optimization studies, square films of 0.16 cm2 

were printed on laser-engraved FTO electrodes. Films of paste #1 were printed with 2 and 3 

layers (ca 2.0 and 3.0 µm thick, respectively) while films of paste # 2 were printed with 1, 2 and 
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3 layers (ca 1.0, 1.5 and 2.1 µm thick, respectively). Prior to sensitization, the NiO films were re-

sintered at 450 ºC for 30 min in air before being immersed while warm (ca 60 ºC) into a 

0.20 mM PMI-6T-TPA in N,N-dimethylformamide (DMF) and left overnight (15–20 h) at 

ambient temperature (ca 24 ºC). Following sensitization, the films were soaked in fresh DMF for 

10 mins to remove any unattached dye and dried under gentle air flow. Electrical contact to the 

electrodes was provided by soldering an aluminum wire onto part of the FTO surface. This 

connection and all remaining areas of the FTO surface were masked using a neutral (non-

corrosive) cure silicone sealant (Selleys). Prior to all measurements, the hydrophobic 

photocathodes were wetted with an isopropanol : water solution (1 : 1 vol.), which was followed 

by thorough rinsing with Milli-Q water. Dye loading on selected electrodes was reduced through 

immersion in 0.01 M NaOH in an ethanol : dichloromethane solution (1: 1 vol.) for 10 minutes. 

Relative dye-loading percentage was calculated using the absorption spectra as measured by a 

Varian Cary 300 UV-Vis spectrophotometer on solutions where dyed films had been immersed 

for 16 hours for complete dye desorption. 

Photo-electrochemical measurements. All photo-electrochemical experiments were 

performed with a Bio-Logic VSP electrochemical workstation using a three electrode setup under 

a high-purity Ar atmosphere (99.999%; O2 ≤ 2 ppm). A Ag|AgCl|KCl(sat.) reference electrode 

(CHI) was used in all measurements, but potentials are reported versus NHE and RHE according 

to relationships E vs. NHE = E vs. Ag|AgCl|KCl(sat.) + 0.197, and E vs. RHE = E vs. 

Ag|AgCl|KCl(sat.) + 0.197 - 0.059pH. Measurements were conducted in a custom-made photo-

electrochemical cell (PEEK and PTFE body) with a quartz window using a Ni counter electrode 

confined to a compartment separated by a Nafion membrane. Optimization studies were 

conducted in a separate custom-made photo-electrochemical cell (polyurethane body) with a 
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borosilicate glass window with a Pt counter electrode in a 0.1 M borate buffer (pH 9.2) with 0.1 

M [Co(ethylenediamine)3]Cl3 as an electron acceptor. A solar simulator (Newport, Model 67005) 

equipped with a 150 W Xenon lamp with a spectral distribution of AM1.5G and intensity of 1 

sun (100 mW cm-2) was used as the irradiation source. This source was calibrated by placing a 

reference solar cell (Frauenhofer ISE, CalLab; serial No. 010-2010, calibration mark: 1010-

2010014ISE0311) in the light beam and adjusting neutral density filters to reach the stated 

current-voltage profile and efficiency. Subsequently, a 400 nm band pass filter was positioned to 

limit the irradiation to the visible range, which was needed to prevent direct band gap excitation 

of NiO.45,65 All working electrodes were irradiated from the back side (dye- and NiO-free). 

Gas Chromatography analysis. Analysis of H2 evolved during chronoamperometric 

experiments was undertaken with a Perkin-Elmer Clarus 580 gas chromatograph (GC) equipped 

with a molecular sieve 13X column 45–60 mesh (0.6 m, 1/8 inch, 2.0 mm) thermostated at 30 ºC 

and a thermal conductivity detector (100 ºC). The GC analysis was arranged in a continuous flow 

mode, where a stable and precisely controlled stream of Ar carrier gas (1.0 mL min-1; mass-flow 

controller Bronkhorst EL Flow Select) flushed the gas-tight photo-electrochemical cell and then 

filled an injection loop (100 mL) in the chromatograph. The gas mixture in the injection loop 

was fed at specified intervals into the GC column where the concentration of H2 in the sample 

was measured. Calibration of the setup was performed using galvanostatic hydrogen evolution 

from a small area platinum working electrode and a 0.1 M H2SO4 aqueous electrolyte solution. 

Under these conditions, the faradaic efficiency was assumed to be 100%. The temporal 

relationship between the photo-electrochemical and GC responses involves two delays which are 

discussed in detail in our previous work.24 
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Inductively Coupled Plasma Mass Spectroscopy. Quantification of transition metal 

concentrations in electrolyte solutions was carried out by ICP-MS analysis (NexION 350D or 

2000B, Perkin-Elmer). Analysis solutions contained an aliquot of electrolyte solution acidified to 

give 1.4 vol.% HNO3. NiO dissolutions involved the addition of 3 mL of an electrolyte solution 

to a dyed NiO film (0.16 cm2, 3.1 µm) for 8 hours. Blank NiO film was dissolved in 2.5 mL aqua 

regia (HNO3(conc.) : HCl(conc.), 1 : 3 vol.) prior to subsequent dilutions. Sc, Ge and Rh ions were 

plumbed into the sample inlet as internal standards to allow correction for matrix effects and 

instrumental drift. Raw analyte counts were standardized by means of calibration curves 

constructed through systematic dilutions of commercially available stock solutions. For 

electrolyte solutions pre/post measurement this was 1 – 100 ppb and for NiO dissolution this was 

0.1 – 1000 ppb. Linearity outside this range cannot be confirmed and all counts outside this 

should be considered estimates. Background (baseline) counts were based on 1.4 vol.% HNO3 in 

Milli-Q water and were subtracted from all measurements. Five analyses of each sample were 

undertaken. Analysis of iron was conducted in Kinetic Energy Discrimination (KED) mode 

using a helium collision cell to eliminate the common polyatomic interference 40Ar16O+.66 

Transient Absorption Spectroscopy. Transient absorption spectroscopy (TAS) was 

performed using a Q-switched Nd-YAG laser (8 ns, 532 nm, 10 Hz, Quanta-Ray® INDI Spectra-

physics) as a pump and a white quartz halogen lamp (Bentham IL1) as a probe. Probe intensity 

was adjusted through a combination of band, long pass and neutral density filters used in front of 

the sample. The transmitted probe beam was dispersed by a monochromator (CM110, SP) and 

detected by a silicon (HCAS-200M-Si, Femto) or an InGaAs photoreceiver (HCA-S-200M-IN, 

Femto). A digital oscilloscope (DPO 4054, Tektronix) was used to digitize the voltage signals 

using dc coupling and 50 U impedance, typically averaging 512 pulses per measurement. The 
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time resolution of the setup was around 40 ns. Each photocathode was held at the designated 

potential for at least 3 mins prior to spectroscopic measurements. 

RESULTS 

Prior to investigating the photo-electrocatalytic properties of the PMI-6T-TPA-sensitized 

electrodes, the procedures for fabrication and the thickness of the mesoporous NiO layer were 

optimized by maximizing the photocurrent density for the reduction of cobalt(III) 

ethylenediamine in aqueous solutions, which is believed to be a fast outer-sphere electron 

transfer.44 This optimization study demonstrated reasonable reproducibility of the photo-

electroreductive properties of the examined DS electrodes (see experimental and Figure S1). 

Transition metal contaminants in the electrolyte solutions. Further experiments were 

undertaken using solutions without intentionally-added redox active species to investigate the 

photo-electrocatalytic properties of the PMI-6T-TPA-sensitized NiO electrodes for the hydrogen 

evolution reaction. Notwithstanding conventional measures taken to preclude contamination, viz. 

extensive washing of the labware and the use of ultra-pure water (18 MΩ cm), detectable 

concentrations of adventitious dissolved metals that could potentially serve as precursors for 

electrodeposited HER catalysts were detected in all solutions examined (Table 1). However, 

most contaminants were observed at levels close to the detection limit of 1 ppb with the 

exception of iron (detection limit 5 ppb), which was present at a comparatively large 

concentration of ca 2.8 µM in phosphate buffer and 0.3 µM in citrate buffer. Most probably, 

these admixtures originated from the salts/acids, as the solvent was shown to be pure (Table 1). 

Following photo-electrocatalytic experiments (ca 4–12 h duration; vide infra), selected 

solutions were again analyzed by ICP-MS and a substantial increase in the concentration of 

nickel from undetectable to a 101 µM level was found. This change presumably results from the 
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slow dissolution of the NiO support through defects not blocked by hydrophobic dye molecules. 

The NiO dissolution was additionally examined on DS electrodes kept in different solutions 

without applied potential under diffuse light for 8 hours, which resulted in the loss of 0.3 to 1.1% 

of the mesoporous support (Table S1). The differences in the amount of dissolved nickel were 

not substantial, though it is noted that sulfuric acid, acetate and formate buffers provided the 

most significant dissolution of NiO among tested electrolytes. 

Table 1. Concentrations (µM) of transition metals in studied electrolyte solutions as determined 

by ICP-MS. 

Electrolyte pH 

Fe Co Ni Mo 

As 

prepared 

Post[a] 

 

As 

prepared 

Post[a] 

 

As 

prepared 

Post[a] 

 

As 

prepared 

Post[a] 

 

H2O (18 MΩ cm) ~7.0 <0.090[b]  <0.017[c]  <0.017[c]  <0.021[c]  

1.0 M Acetate 2.3 0.091  0.037  0.033  <0.021 0.023 

 4.0 <0.090 <0.090 <0.017 <0.017 <0.017 57 <0.021  

1.0 M Citrate 4.0 0.310  <0.017  <0.017  0.077  

1.0 M Formate 4.0 0.144  <0.017  <0.017  0.028  

0.2 M Oxalate 4.0 0.103 <0.090 <0.017 <0.017 <0.017 13 <0.021 <0.021 

1.0 M Phosphate 7.0 2.8  <0.017  0.030  0.29  

1.0 M Propionate 2.1 0.12  <0.017  0.067  0.023  

 4.0 0.12 0.17 <0.017 <0.017 <0.017 36 0.034 <0.021 

1.0 M Pyridine/ 

1.0 M Acetate 

5.0 <0.090  0.034  0.040  <0.021  

0.1 M Sulfate ~1.0 <0.090  <0.017  <0.017  <0.021  

a After photo-electrochemical experiments. b Limit of detection 5 ppb (Kinetic Energy Discrimination mode used to eliminate 

polyatomic interferences reduces the sensitivity). c Limit of detection 1 ppb. 

Photo-electrocatalytic H2 evolution. Cyclic voltammograms of the unmodified PMI-6T-

TPA/NiO photocathodes do not demonstrate any noteworthy dependence on the chemical nature 
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of the electrolyte or the solution pH (on the RHE potential scale), as exemplified in Figure 1a-c 

for acetate (pH 4) and citrate (pH 4) buffers as well as for the sulfuric acid solution (pH 1). In all 

cases, the voltammetric curves exhibited a faradaic process attributed to a surface-confined 

Ni2+/3+ transition.45,46 This was observed with a mid-point potential of ca 0.9-1.0 V vs. RHE,  

while there were no noticeable peaks at more reductive potentials. The magnitude of the 

reductive photocurrent density generated under 1 sun illumination at potentials less positive than 

0.50 V vs. RHE was also weakly influenced by the electrolyte and pH, and was typically within 

the 10–40 μA cm-2 range, concordant with our previous report.24 

Given the detectable level of transition metal contamination in the examined solutions 

(Table 1), the observed reductive photocurrent cannot be solely attributed to the catalytic 

evolution of H2. The latter must be quantitatively analyzed by an independent method like gas 

chromatography to establish the faradaic efficiency of the photo-electroreduction process. 

Dihydrogen detection was undertaken herein during long-term potentiostatic experiments in a 

‘flow-through’ setup, as detailed in the experimental section. Photocathodes were tested at 

0.00 V vs. NHE (0.059pH V vs. RHE) as a pH-independent reference, and at 0.05 V vs. RHE in a 

consecutive measurement. At either potential, electrocatalytic H2 evolution cannot occur and 

additional driving force provided by the dye under irradiation is needed. Under the potentiostatic 

conditions employed, the reductive photocurrent density rapidly decreased in all cases until 

reaching quasi-steady-state values within the microampere per cm2 range (all current densities 

are normalized to the geometric surface area hereinafter). The current-time transients and parallel 

H2 gas detection are exemplified in Figure 2 and Figure S2 with the reduction photocurrent 

density (jhv / μA cm-2) and faradaic efficiency (ε / %) data summarized in Table 2 and Table S2. 
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Tabulated photocurrent density values were calculated by using the dark current density at the 

end of the measurement at each potential as a baseline.47 

 

Figure 1. Cyclic voltammograms (scan rate, v = 0.020 V s−1) of the PMI-6T-TPA-sensitized NiO 

photocathodes in contact with Ar-saturated aqueous (a) acetate buffer (1.0 M, pH 4.0), (b) citrate 

buffer (1.0 M, pH 4.0) and (c) sulfuric acid (0.1 M, pH 1.0) in the dark (black) and under visible 

light illumination (100 mW cm-2, AM 1.5G, λ > 400 nm) (green, blue, red). Panel (d) shows the 

data for measurements undertaken with a photocathode pre-treated with chenodeoxycholic acid 

(CDCA) in contact with Ar-saturated acetate buffer (1.0 M, pH 4.0) under irradiation (orange) 

and in the dark (black). Quasi-stabilized, typically third, scans are shown. 
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Figure 2. Chronoamperograms (top sections) and the rate of H2 generation (ωH2) (bottom 

sections) measured during photo-electroreduction of Ar-saturated (a) acetate buffer (1.0 M, pH 

4.0), (b) citrate buffer (1.0 M, pH 4.0) and sulfuric acid (0.1 M, pH 1.0) solutions with PMI-6T-

TPA-sensitized NiO electrodes under 1 sun irradiation at 0.00 V vs. NHE. In panel a, data are 

shown for the photocathodes as prepared (green), or that were additionally modified with CDCA 

(orange), or treated with 0.01 M NaOH in an ethanol : dichloromethane solution (1:1 vol.) to 

remove ca 50% of adsorbed dye (magenta). The shaded areas indicate time periods of no 

illumination, with the red shading in panel b specific to the measurement in 0.1 M H2SO4. 
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Table 2. Photo-electrocatalytic H2 generation by PMI-6T-TPA-sensitized NiO cathodes   

(jhv – photocurrent density; ωH2 – rate of H2 generation; ε – faradaic efficiency). 

Electrolyte pH 

0 V vs. NHE (0.059pH V vs. RHE) 0.050 V vs. RHE 

jhv /  

µA cm-2 a 

ωH2 /  

nmol h-1 cm-2 a ε / % 
jhv /  

µA cm-2 a 

ωH2 /  

nmol h-1 cm-2 a 
ε / % 

1.0 M Acetate b 4.0 4.4 ± 0.8 35 ± 4 49 ± 9 - - - 

1.0 M Acetate c 4.0 4.2 35 45 3.2 42 71 

 2.3 6.2 40 35 5.0 40 43 

1.0 M Acetate d 4.0 3.8 14 20 2.7 16 32 

1.0 M Acetate e 4.0 2.4 35 78 - - - 

1.0 M Oxalate 4.0 2.2 17 42 - - - 

1.0 M Citrate 4.0 0.6 15 134 0.8 15 101 

1.0 M Propionate 4.0 2.8 <7 <13 2.9 <7 <13 

 2.1 1.9 <7 <20 1.4 <7 <27 

1.0 M Sulfate 1.0 2.7 <7 <14 2.2 <7 <17 

a Values taken from a point just prior to the end of the illumination. b Averaged across four electrodes with a geometric 

area of 1 (two samples) and 2 cm2 (two samples). c Individual measurement with 2 consecutively applied potentials 

(Figure S2g). d Photocathode was pre-treated with CDCA. e Photocathode was pre-treated with 0.01 M NaOH in an 

ethanol : dichloromethane solution (1 : 1 vol.) to desorb ca 50% of the dye. 

When the absolute value of the photocurrent was below 1 microampere, a high level of 

uncertainty was present in the results, especially in the determination of the faradaic efficiency. 

In particular, this applied to the photo-electrocatalytic tests undertaken with the citrate buffer 

where jhv and the amount of evolved H2 were very low, rendering the quantification of both 

subject to a significant experimental error (Table 2). Nevertheless, these results can be 

confidently interpreted as a qualitative confirmation of the photo-electrocatalytic effect 
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(Figure S2), which is very weak and consequently cannot be quantified reliably. In other cases 

where jhv was above 2 μA cm-2 and reasonable amount of H2 was evolved, the faradaic efficiency 

also demonstrated some variability, though within a satisfactory, physically sensible range (e.g. 

see data for the acetate electrolyte in Table 2 and Table S2). We estimate our detection limit for 

H2 generated via the photo-electrocatalytic reaction at ωH2 > 7 nmol hour-1 cm-2 with 1 cm2 

electrodes (chromatograms exemplified in Figure S3). 

In our previous work,24 H2 generation was observed when the photocathodes were tested in the 

presence of phosphate buffer (1.0 M, pH 7.0), although any H2 generation was below the 

detection limit in H2SO4 (0.1 M, pH 1.0). To observe the influence of the nature of the 

electrolyte anion, further electrolyte compositions were investigated. The use of organic 

electrolytes such as acetate, citrate and oxalate enabled photo-electrocatalytic H2 evolution by 

the DS cathode, with the consistently highest rates achieved in the presence of the CH3COO- 

anion (Figure 2, Figure S2 and Table 2). Conversely, no H2 evolution was detected with 

phosphate (1.0 M, pH 7.0), propionate (1.0 M, pH 4.0), formate (1.0 M, pH 4.0), sulfate (1.0 M, 

pH 4.0) or pyridine/acetate (1.0 M, pH 5.0); nor with 0.1 M H2SO4 / Na2SO4 in H2O and CH3CN 

(1 : 1 vol.), or phosphate (0.1 M, pH 7.0 with added 0.9 M LiBF4 and 0.1 M n-methyl 

benzimidazole). It is important to emphasize that this does not necessarily mean that the photo-

electrocatalytic reaction is impossible with the given electrolyte systems, rather that the 

dihydrogen generation rates (ωH2) were below 7 nmol hour-1 cm-2 under our conditions. The 

combination of this detection limit with a smaller electrode size in the present study (1 cm2), 

means that H2 evolution in 1.0 M phosphate is undetectable herein, whereas we previously 

measured rates of ca. 5 nmol hour-1 cm-2 with geometrically larger electrodes (2 cm2 used in 

Ref.24). 
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Typically, the jhv values recorded at 0 V vs. NHE (0.059pH V vs. RHE) and 0.05 V vs. RHE 

were very similar (Figure S2), which reflects weak dependence of the photocurrent on applied 

potential within the range examined and is consistent with the voltammetric data (Figure 1). 

However, in some cases, values of jhv obtained at 0.059pH V vs. RHE were unexpectedly slightly 

higher than those derived from subsequent measurements at the more negative potential of 

0.05 V vs. RHE (Table 1), presumably reflecting slow degradation of the electrodes. It is 

important to note that the detected hydrogen evolution never occurred at 100% faradaic 

efficiency, meaning that other photo-electrochemical process(es) always contributed to the 

measured jhv. 

In contrast to the pronounced effect of the electrolyte anion on the photo-electrochemical 

generation of H2 by PMI-6T-TPA-sensitized cathodes, no obvious of influence of pH on ωH2 was 

established. Indeed, notwithstanding some differences in the photo-electroreduction current 

density between sodium acetate buffer (pH 4.0) and acetic acid (pH 2.2), or between 

Na2SO4 (pH 4.0) and H2SO4 (pH 1.0), the rates of the hydrogen gas generation were not 

significantly affected by changing the concentration of hydroxonium (Figure 2, Figure S2, Table 

2 and Table S2). The illumination intensity within the range 0.2 to 2 suns was also found to 

weakly influence H2 evolution (Figure S4). 

Several experiments were undertaken using acetate-buffered solutions with intentionally-

introduced dissolved nickel as a potential precursor for an electrodeposited HER catalyst. In one 

type of measurement, a PMI-6T-TPA-sensitized cathode was studied in the presence of 1 mM 

Ni(CH3COO)2. Introduction of this substantial amount of dissolved Ni2+ did not significantly 

affect the photocurrent density at the start of the experiment. However, it provided a more stable 

jhv in the longer term that resulted in a value of 8.2 µA cm-2 after 4 hours of measurement 
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(Figure S5, Table S2), which is approximately double that for an initially Ni-free solution. At the 

same time, the addition of notable amounts of dissolved Ni2+ significantly delayed the onset of 

H2 generation and suppressed the quasi-steady-state rate (25 vs. 30-40 nmolH2 hr-1 cm-2), 

eventuating in decreased faradaic efficiency of the process (Table S2). In another type of 

experiment, electrodes were prepared with an extra 1 cm2 of unmodified NiO film adjacent to the 

dyed layer (photograph in Figure S6). The unmodified nickel oxide part of the cathode was not 

illuminated during experiments and served as a source of slowly dissolving nickel species to the 

solution. Under these conditions, a comparatively large initial reductive photocurrent density of 

unknown origin was observed (ca -55 µA cm-2), which decreased quickly and trended towards 

the jhv value found with a conventional photocathode configuration after several hours of 

measurements (ca. -5 µA cm-2; Figure S5). No influence of the additional source of nickel 

leaching into the solution on the H2 generation rate during the initial 2 hours of the experiments 

was found, but suppression of ωH2 was observed for the subsequent 2 hours. 

Finally, the effects of two types of pre-treatment on the photo-electrocatalytic properties of the 

PMI-6T-TPA-sensitized NiO electrodes were explored. In one case, the photocathodes were 

modified with chenodeoxycholic acid (CDCA) to block surface sites on the mesoporous NiO 

support where the dye failed to adsorb. This resulted in a noticeable suppression of the Ni2+/Ni3+ 

voltammetric peaks when compared to untreated DS cathodes in the same media, indicating 

improved surface passivation (cf. Figure 1a and Figure 1d). Most importantly, despite similar 

amplitudes of the quasi-stable current density observed during long-term photo-electrochemical 

experiments, a significant suppression in H2 generation rate was detected (ca 7 vs. 40 nmol h-1 

cm-2). An alternative pre-treatment involved soaking the sensitized electrodes in 0.01 M NaOH 

in an ethanol : dichloromethane solution (1: 1 vol.). This desorbs ca 50% of the dye as 
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determined by UV-Vis spectrophotometry. Such pre-treatment induced a slight improvement in 

the H2 evolution rate at the initial stages, despite the halving of the concentration of photo-active 

species on the electrode surface (Figure 2). In the quasi-steady-state regime, there was no loss in 

ωH2 and the faradaic efficiency was significantly improved upon partial bleaching of the 

photocathode (Table 2). 

Transient absorption spectroscopy. In principle, a specific electrolyte environment can alter 

the position of the NiO valence band edge,48,49 and consequently the thermodynamic driving 

force for charge injection from the photo-excited dye. This effect might change the rate of charge 

recombination (equation 6c), and thereby the photo-electrocatalytic performance of the DS 

electrode. A higher rate of recombination leads to a shorter lifetime of the photo-reduced dye, 

which can be probed by transient absorption spectroscopy (TAS).18,28,50,51 

All TAS measurements were undertaken herein with a probe wavelength of 800 nm where the 

dye anion absorbs28 (Figure S7) and at the same potential as that used in the photo-

electrocatalytic experiments (0 V vs. NHE), where the band gap states are full.52 The dye-anion 

signal was also the most long lived at this potential (Figure S8). Under our conditions, transient 

absorption measurements on the same photocathode in 1.0 M sodium acetate buffer did not 

reveal well-defined changes in the dynamics of spectral decay upon changing pH within the 4.1–

9.1 range (Figure S9). Similar invariance was observed in sodium phosphate buffer across a 

wider pH range from 2 to 12 in the temporal region faster than 10 µs (Figure S9). However, there 

appears to be a slight dependence of the spectral decay on the solution pH at longer timescales. 

TAS data were obtained in the presence of 1.0 M phosphate, acetate and sulfate electrolytes at 

pH 4.1 (Figure 3), though no obvious correlation with the photo-electrocatalytic performance 

was identified. The half-life of the photo-generated dye-anion (t1/2) recorded with the CH3COO- 
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and SO4
2- anions is essentially the same (~20 µs), while there is a 5-fold difference in the rates of 

H2 evolution (Table 2). Somewhat faster decay is observed when phosphate is used as the 

electrolyte (t1/2 ≈ 10 µs). Photo-electrocatalytic hydrogen generation is very slow under these 

conditions, although this is also the case in the presence of the sulfate anion. As such, this 

increased decay could instead be due to the dye reducing iron from the quantified contamination 

in the electrolyte (Table 1). 

 

Figure 3. Normalized transient absorption decay recorded for the PMI-6T-TPA-sensitized NiO 

films in contact with Ar-saturated 1.0 M sodium acetate buffer (green), 1.0 M sodium phosphate 

buffer (purple) and 1.0 M Na2SO4 (red) at pH 4.1. Observation wavelength: 850 nm; excitation 

wavelength: 532 nm; pulse energy: 100 µJ cm-1. 

DISCUSSION 

Hydrogen generation was unambiguously observed on the PMI-6T-TPA-sensitized NiO 

electrodes maintained at potentials more positive than 0 V vs. RHE and under 1 sun illumination 

in aqueous electrolyte solutions, in confirmation of previous results.24 The rate of this generation 

was found to depend very weakly (if at all) on illumination intensity, pH and dye loading 

amongst other variables tested. However, if the reaction would occur on the dye surface via a 
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classical way as depicted in mechanism I (Scheme 1), then one would expect the rate of the 

reaction to be strongly dependent on all of these parameters. Firstly, variation in illumination 

intensity affects the number of photo-generated electrons on the dyes, which would subsequently 

alter the rate of the Volmer reaction step. Secondly, increases in the substrate concentration by at 

least an order of magnitude should increase the rates of all of the elementary steps. Finally, a 

reduced concentration of dye on the surface would also lower the concentration of active sites 

and therefore result in slower kinetics. On this basis, we adjudge that the contribution of 

mechanism I to the photo-electrocatalytic generation of molecular hydrogen by the PMI-6T-

TPA-sensitized NiO cathode is minimal, and that electrocatalytic sites, which are not provided 

by the dyed surface, are required to sustain adsorption and successive reduction of H+. 

As suggested in mechanism II (Scheme 1), transition metal particles (photo-)electrodeposited 

on the cathode surface from admixtures present in solutions might function as the required 

electrocatalytic sites. Such deposits are frequently observed in the field of electrocatalytic water 

splitting,32–39 and charge-transfer between heterogeneous catalysts and dye molecules has also 

been previously reported.24,25,53,54 Common transition metals capable of catalyzing H2 evolution 

include cobalt, nickel, iron and molybdenum.40,55,56 However, ICP-MS analysis of the electrolyte 

solutions used herein did not show significant presence of admixtures except for iron in the 

phosphate and citrate buffers. Importantly, no clear correlation exists between the concentrations 

of iron in the solutions (Table 2) and the corresponding photo-electrocatalytic performance of the 

photocathodes (Table 1). On the other hand, further ICP-MS analysis clearly demonstrates the 

presence of significant amounts of dissolved nickel (>101 µM), which is unsurprising given the 

instability of the underlying NiO semiconductor at pH < 10 (Figure S10).57,58 At the same time, 

the reduction potential of the dye anion is -0.70 V vs. NHE,27,28 while the phase transition of the 
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two-electron reduction of Ni2+ to Ni0 occurs at ca -0.4 V vs NHE.58 Thus, a thermodynamic 

driving force of ca 0.3 V exists for nickel deposition, and Ni0 is then expected to remain 

metastable (Fig S10). This surface could then provide electrocatalytic sites for the observed 

generation of H2, similar to electrodeposited platinum metal in our previous work.24 Such 

dissolution, deposition and HER catalysis has been previously proposed with nickel electrodes in 

acidic solutions,43 and nickel in general has long been known to be a reasonably efficient catalyst 

for the hydrogen evolution reaction.40–43 

Ideally, electron microscopy techniques would be used to gather direct evidence of deposited 

particles, as in previous reports.32–35 However the large nickel background from the mesoporous 

NiO electrode inhibits such direct observations. Instead, low faradaic efficiencies found for 

experiments undertaken with enhanced concentrations of Ni2+ clearly suggest it is indeed 

electroreduced by the PMI-6T-TPA-sensitized photocathodes (since Ni+ is unknown, the product 

is logically Ni0). At the same time, excessively large concentrations of dissolved nickel do not 

improve the H2 evolution rate. Thus, if mechanism II applies, then the concentration of Ni2+ 

precursor should be maintained at some optimal level to sustain the metastable state of the 

electrodeposited catalyst without suppressing the hydrogen evolution reaction through further 

deposition and parasitic occupation of the photo-electrochemically active sites. 

One could hypothesize that different anions could alter dissolution rates to achieve this 

operational level. This might help explain the unexpected effect of the electrolyte anion on the 

photo-catalytic capacity of the DS cathodes. The order of the electrolyte anion dependence for 

photo-electrochemical H2 evolution by the PMI-6T-TPA-sensitized photocathodes was found to 

be acetate > citrate, oxalate >> propionate, formate, phosphate, sulfate. However, there is no 

correlation between the amount of dissolved Ni2+ and the observed photo-electrocatalytic effect. 
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Indeed, similar levels are found in sulfuric acid, formate and acetate, but H2 generation is 

observed in the latter case only. Thus, the combined data on the dissolution of nickel oxide and 

the presence of other metal admixtures in solutions reported herein do not provide an explanation 

of the electrolyte-dependent photo-electrocatalytic performance of the PMI-6T-TPA-sensitized 

cathodes. Further work is needed to understand the origin of the observed electrolyte 

dependence. TAS analysis shows similar rates of charge recombination in different electrolyte 

solutions (Figure 3), ruling out electronic impacts of the anion on the NiO valence band. 

Furthermore, t1/2 values are significantly longer (at 101 µs) than those expected for electron 

transfer between dye molecules and hydrogen evolution catalysts, which have been show to 

occur on the scale of nanoseconds or even faster.10,18,30 At this stage, the role of anion is not 

understood and experimental techniques available to us cannot provide further insights beyond 

those reported above. 

Although the significance of mechanism II cannot be discarded, there is also no clear-cut 

confirmation that it is the dominant pathway for H2 generation. Apart from the significant 

electrolyte anion effect on ωH2, the rate of the reaction herein was most influenced by the pre-

treatment of the electrode by CDCA. Through adsorption onto accessible MOx (M = Ti, Ni) sites, 

CDCA molecules have been previously used in DSSCs to improve device performance59–63 via 

suppression of interfacial charge-recombination reactions64 – a major energy loss pathway in this 

type of device. Without labile redox species, this pathway is less significant in DSPECs, 

although CDCA has been found to stabilize photocurrent in a reported H2-evolving DS 

photocathode.20 

Herein, adsorption of CDCA onto the PMI-6T-TPA-sensitized photocathodes substantially 

decreased their H2-evolving capability (Figure 2a). Meanwhile, lowering the dye loading on the 
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electrode by 50%, i.e. exposing more NiO sites to the electrolyte solution, does not suppress H2 

generation. On the contrary, the rate of the hydrogen evolution reaction normalized to the 

amount of dye is enhanced by a factor of two compared to a fully covered photo-cathode (Figure 

2a). The improvement in performance is also clearly reflected by significantly enhanced faradaic 

efficiency (Table 2). Changes in the Ni2+ concentration and availability of the NiO leaching 

sources does not clearly affect the H2 generation rate (Figure S5 and Table S2), and therefore 

cannot be invoked to explain the effects of CDCA adsorption and partial bleaching of the dye-

sensitized electrodes. On the other hand, the aforementioned treatments obviously change the 

surface density of the interfaces between dye molecules and any disconnected, unmodified NiO 

that are in contact with the electrolyte solution, leading to the conclusion that the photo-

electrocatalytic H2 generation by the PMI-6T-TPA-sensitized photocathodes primarily occurs via 

the mechanism most dependent on these interfaces, viz. mechanism III (Scheme 1). Indeed, 

decreasing the concentration of these interface sites through adsorption of CDCA results in lower 

photo-electrocatalytic reaction rate. Meanwhile, decreased dye loading, resulting in more 

interfaces, leads to greater H2 evolution (per dye molecule) and a higher faradaic efficiency. The 

precise origin of the electrocatalyst at these dye|NiO sites is unknown, but our present results 

indicate either the reduction of poorly fused sections of the NiO surface and/or dissolved Ni2+ to 

metallic nickel, which is meta-stable (Fig S10) and can catalyze the hydrogen evolution reaction 

under the examined conditions. 

On the basis of the above, we conclude that H2 generation predominately occurs via 

mechanism III (Scheme 1). Photo-generated charges allow the formation of a Ni0 catalyst, 

presumably from dissolved Ni2+, at the interfaces between adsorbed dye molecules and 

disconnected NiO particles that act as nucleation sites. Nickel-metal catalyst formed at these 



 28 

interfaces is capable of accepting the photo-generated electrons from the dye and provides active 

sites for hydrogen adsorption and subsequent H-H bond formation. 

CONCLUSIONS 

In summary, we have investigated H2 generation on DS photocathodes without intentionally-

added HER catalysts and considered three feasible mechanisms to rationalize this phenomenon. 

Our data do not support the hypothesis that the dye alone is responsible for the observed H2 

generation. Nor can the presence of transition metal ions in solutions, either as contamination or 

due to dissolution of the NiO semiconductor, that can be (photo-)electroreduced to form a 

hydrogen evolution catalyst on the photo-cathode surface be considered as the limiting factor 

determining the H2-evolving capability of the dye-sensitized electrodes either. Instead, the key 

role of the interfaces between the adsorbed dye molecules and poorly-connected or disconnected 

NiO particles in the mesoporous support was identified. These interfaces are suggested to serve 

as photo-active sites for the formation of a Ni0 electrocatalyst, which can accept photo-generated 

electrons from the contiguous dye molecules and thereby sustain the hydrogen reduction 

reaction. The source of this catalyst is most probably dissolved Ni2+ that was found to be 

released to the solution from NiO in appreciable concentrations of 101 μM during photo-

electrochemical experiments.  

The rate of light-driven dihydrogen generation via the postulated mechanism shows an 

unexpected dependence on the chemical nature of the electrolyte anion present. Transient 

absorption spectroscopic studies indicate that the electrolyte effect is not caused by changes in 

the charge-recombination kinetics, and that the lifetime of the photo-reduced dye is sufficient to 

allow for electron transfer. The effects of contaminants and various levels of NiO dissolution 

provided by different electrolytes were also ruled out. Although the origin of this electrolyte 
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effect requires further investigation, we believe that this phenomenon may have important 

implications for the design of efficient DS photo-electrode systems which function in aqueous 

solutions for both solar fuel synthesis and solar cell technologies. 

The best photo-electrochemical production of dihydrogen by a dye-sensitized photo-cathode 

without an intentionally-introduced catalyst was observed herein with the presence of acetate 

anions at the rate of 35-40 nmol h-1 cm-2. This is only 14-fold lower than the rate achieved with 

the most efficient DS photocathodes for water-splitting reported to date (see24 and references 

therein). It is therefore important to consider the effects of dissolved transition metal ions, 

dye|NiO interfaces, and chemical nature of the electrolyte in future work focused on 

development and mechanistic interpretation of dye-sensitized cathodes for hydrogen generation 

even in the presence of an intentionally-introduced catalyst. 
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