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The piezoelectric property of [001]-oriented 0.5%MnO2-(K0.5Na0.5)NbO3 (Mn-KNN) crystals was

studied as a function of domain size, being poled with different electric fields at 205 �C (above

orthorhombic to tetragonal phase transition temperature To-t). The piezoelectric coefficients d33 and

relative dielectric constants er were found to increase from 270 pC/N to 350 pC/N and 730 to 850

with the domain size decreasing from 9 to 2 lm, respectively. The thermal stability of piezoelectric

property was investigated, where the d33 value for [001]-oriented Mn-KNN crystals with domain

size of 2 lm was found to decrease to 330 pC/N at depoling temperature of 150 �C, with minimal

variation of �6%. The results reveal that domain size engineering is an effective way to improve

the piezoelectric properties of Mn-KNN crystals. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4913208]

I. INTRODUCTION

Sodium potassium niobate (KNbO3-NaNbO3) based solid

solutions have been widely studied for the potential candi-

dates of lead free ferroelectric materials due to the good pie-

zoelectric properties and high Curie temperature.1–13 In order

to further enhance the piezoelectric properties, different dop-

ants, such as Liþ, Ta5þor single crystal growths have been

considered,3–7 in which the 0.5%MnO2-(K0.5Na0.5)NbO3

(Mn-KNN) single crystals show higher piezoelectric/dielectric

properties than those of pure (K0.5Na0.5)NbO3 material, with

comparable orthorhombic to tetragonal phase transition tem-

perature and Curie temperature.8–12 Domain size engineering

is another important approach for obtaining enhanced piezo-

electric properties in lead free piezoelectric single crys-

tals.13–18 The experimental results revealed that the enhanced

piezoelectric coefficient was associated with high domain

wall density, for example, the piezoelectric coefficient d31

was found to increase from �98 pC/N to �230 pC/N with do-

main sizes of 40 lm and 5.5 lm in BaTiO3 crystals,15 while

the piezoelectric coefficient d33 was predicted to be greatly

increased with nano-size domain configuration.17 The theoret-

ical simulation indicated that the piezoelectric coefficient was

enhanced by reducing domain size, while an enhancement of

piezoelectric coefficient in BaTiO3 crystals with 90� twinned

domain configuration was predicted using Ginzburg-Landau-

Devonshire model.16,17 In addition, the piezoelectric coeffi-

cient d33 and relative dielectric constant er of [111]-poled tet-

ragonal PIN-PMN-PT single crystals were reported to

increase from 450 pC/N and 3000 to 1630 pC/N and 13 800

with the domain size of 50 lm and 500 nm, using domain size

engineering technique, respectively.18

In the present work, the piezoelectric/dielectric proper-

ties were investigated in the domain size engineered [001]-

oriented Mn-KNN lead free single crystal. As an experimen-

tal schedule, first, domain structures were in-situ observed in

Mn-KNN single crystal under various electric fields at

205 �C and 25 �C. Second, the crystal samples were poled

using field-cooled method and their piezoelectric/dielectric

properties were measured. Finally, the temperature stability

of electrical properties of the domain size engineered sam-

ples was evaluated.

II. EXPERIMENTAL

The 0.5%MnO2-(K0.5Na0.5)NbO3 (Mn-KNN) crystals

used in present work were grown by slow-cooling method.12

The sizes of crystal samples for domain observation and elec-

trical property measurements are 3 � 3 � 0.05 mm3 and

3� 3 � 0.5 mm3, respectively. Gold electrodes were sput-

tered on the large surfaces of the samples. The domain struc-

ture was subsequently investigated using a polarizing light

microscope (Olympus BX51) with heating-cooling stage

(LINKAM). The piezoelectric coefficient (d33) was measured

using a piezo-d33 meter (ZJ-4A). Unipolar strain-electric field

(S-E) was measured at 1 Hz using a modified Sawyer-Tower

circuit by a lock-in amplifier (Stanford Research System,

Model SR830). The high-field piezoelectric coefficient (d33
*)

was determined from the slope of S-E curve at the driving

field of 10 kV/cm. The relative dielectric constant was calcu-

lated from the capacitance measured by an HP4284A multi-

frequency LCR meter at 1 kHz. During thermal depoling

experiments, the poled samples with gold electrodes were

short-circuited and put in the furnace for 1 h at various high

temperatures, then cooled down to room temperature and

measured the d33 values using the piezo-d33 meter.

The various domain sizes were controlled by domain

size engineering approach using field-cooled method, as

summarized in Table I. First, the [001]-oriented samples

were heated to 205 �C (>To-t), then electric fields of 0 to

18 kV/cm were applied, finally electric field was remained
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and the temperature was decreased at a rate of 1 �C/min. Fig.

1(a) shows the experimental configuration to observe domain

structures with applied electric field and the crossed polar-

izer/analyzer (P/A) pair. Figs. 1(b) and 1(c) show the sponta-

neous polarization (Ps) in orthorhombic (O-phase) and

tetragonal (T-phase) phase of Mn-KNN crystals with applied

electric field along [001] direction, respectively. With [001]

applied electric field, new domain patterns with different do-

main sizes were fabricated in the Mn-KNN crystals. In order

to optimize the poling condition, in-situ observation of do-

main structure has been carried out at various temperatures

and electric fields.

III. RESULTS AND DISCUSSION

Fig. 2 shows the domain pattern of [001]-oriented Mn-

KNN crystals as a function of temperature. Two types of

domains were presented in the sample at room temperature,

as shown in Fig. 2(a), one with domain walls parallel to [100]

directions, the other tweed domain structure with domain

walls parallel to [110], indicating the coexistence of

orthorhombic phase 60�, 120�, and 90� domains. Upon

increasing temperature, the ferroelectric phase transformation

from orthorhombic to tetragonal was found to occur at

187 �C, where a laminar tetragonal 90� domain structure with

boundaries along the [110] direction was observed, as shown

in Fig. 2(b). The mixed tetragonal phase and orthorhombic

phase domains persisted at 187.5 �C, as shown in Fig. 2(c).

At 250 �C, the clear laminar tetragonal domain structure with

size of 7 lm was observed, as given in Fig. 2(d).

Fig. 3 shows the tetragonal domain structure in [001]-

oriented Mn-KNN crystals at different electric fields along

[001] direction at 205 �C (above the polymorphic phase tran-

sition temperature To-t). It was found that higher electric field

favor smaller domain size, meanwhile the domain pattern

remained the same. The domain size was about 7 lm in tet-

ragonal Mn-KNN crystals at zero electric field, as shown in

Fig. 3(a), decreasing to about 2.5 lm, 1.7 lm, and 1.5 lm

with electric field strengths at 6 kV/cm, 12 kV/cm, and

18 kV/cm, as shown in Figs. 3(b)–3(d), respectively. As

shown in Figs. 4(a)–4(d), the samples with domain sizes of

9, 6.5, 2.5, and 2 lm were obtained when the samples were

cooled down to room temperature, corresponding to the do-

main structures shown in Fig. 3. Based on the domain

TABLE I. The piezoelectric/dielectric properties in [001]-oriented Mn-KNN crystals with different domain configuration.

Sample Poling condition Domain pattern Domain size (lm) d33(meter) (pC/N) d*
33 (pm/V) er tand (%) To-t (oC) Tc (oC)

Mn-KNN 120 �C/20 kVcm�1 laminar 9 270 250 730 3 193 416

205 �C/6kVcm�1 laminar 6.5 285 260 750 3 193 416

205 �C/10 kVcm�1 laminar 4 300 290 780 3 193 416

205 �C/12 kVcm�1 twinned 2.5 320 320 800 3.5 193 416

205 �C/18 kVcm�1 twinned 2 350 360 850 3.5 193 416

KNNa 120 �C/20 kVcm�1 laminar 25 160 / 240 2 208 423

aReference 2.

FIG. 1. (a) Schematic diagram for domain observation under electric field

using a polarizing light microscope, spontaneous polarization in (b) ortho-

rhombic and (c) tetragonal Mn-KNN crystals under applied electric field

along [001] direction.

FIG. 2. Real-time domain observation in [001]-oriented Mn-KNN crystals at

(a) 25 �C, (b) 187 �C, (c) 187.5 �C, and (d) 250 �C.
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observation results, the optimum poling condition for achiev-

ing different domain sizes and domain patterns, including

the poling temperature and applied electric field strength,

were summarized in Table I. It is interesting to note that the

laminar domain pattern changed to twinned domain structure

when the poling electric field was above 10 kV/cm, with the

temperature decreasing from 205 �C to room temperature, as

shown in Figs. 4(c) and 4(d), which was reported to account

for the enhanced piezoelectric properties.17

Figs. 5(a)–5(e) show the unipolar strain behavior of Mn-

KNN crystals at a field of 10 kV/cm for samples with aver-

age domain sizes of 9, 6.5, 4, 2.5, and 2 lm, respectively.

The high-field piezoelectric coefficient d33
* calculated from

the strain-field curve was found to increase with decreasing

the domain size, being 360 pm/V for samples with average

domain size of 2 lm. It can be seen that the enhancement of

piezoelectric coefficient d can be partly attributed to the

increase of relative dielectric constant, since the coefficient d
of perovskite ferroelectrics is proportional to PQe (P is spon-

taneous polarization, Q is electrostrictive coefficient).19 In

addition, the orthorhombic to tetragonal phase transition

temperature and Curie temperature were found to maintain

the same values with decreasing the domain size from 9 to

2 lm, as shown in Table I.

The piezoelectric coefficients d33 for [001]-oriented Mn-

KNN crystals as a function of domain size are shown in Fig.

6. Similar with the simulation in Ref. 18, the exponential

decay function is used to fit the experimental data, and the

relationship between the piezoelectric coefficient and do-

main size follows the formula:

d33 ¼ 250þ 320 exp ð�Wd=1:6Þ;

where Wd is defined as domain size (width). From the for-

mula, the d33 value would be significantly increased from

270pC/N to 550pC/N with the domain size decreasing from 9

lm to 0.1 lm, below which, the d33 value will be saturated.

It was generally accepted that the increased non-180�

ferroelastic domain wall density was the dominant factor to

FIG. 3. Real-time domain observation in [001]-oriented Mn-KNN crystals at

205 �C under various electric field applied along [001] direction (a)

E¼ 0 kV/cm, (b) E¼ 6 kV/cm, (c) E¼ 12 kV/cm, and (d) E¼ 18 kV/cm.

FIG. 4. Domain patterns of [001]-oriented Mn-KNN crystal with various

domain sizes (a) 9 lm, (b) 6.5 lm, (c) 2.5 lm, and (d) 2 lm.

FIG. 5. Unipolar strain in [001]-oriented Mn-KNN crystal with different

domain size (Wd) (a) 9 lm, (b) 6.5 lm, (c) 4 lm, (d) 2.5 lm, and (e) 2 lm.
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the enhanced piezoelectric property in domain size engi-

neered BaTiO3 single crystals.15 In addition, the simulation

data in Ref. 17 also revealed that the high density of 90�

twinned domain boundaries accounted for the improved pie-

zoelectric coefficients. In present work, experimental results

revealed that the enhanced piezoelectric coefficients were

associated with the domain size decreasing. However, as a

concomitant phenomenon, the domain wall thickness became

thinner with smaller domain size. Thus, from the viewpoint

of free energy, the domain state will be unstable in the do-

main size engineered samples with fine domain size.

However, the domain wall thickness cannot be exactly meas-

ured by polarizing light microscope because of the misalign-

ment between light beam and domain walls. In classic theory,

the relationship between domain wall thickness and tempera-

ture was predicted as20,21

Wt / ðT� TcÞ�1;

where Wt is defined as domain wall thickness. The domain

wall thickness becomes larger when the temperature is far

above Curie temperature (Tc). The domain wall thickness

will be monotonically increased with domain wall energy

density increase as a function of temperature from room tem-

perature to O-T polymorphic phase transition temperature.

That is to say, the domain state in domain size engineered

Mn-KNN crystals is unstable with increasing temperature.

In order to evaluate the thermal stability of the piezoelec-

tric properties for [001]-oriented Mn-KNN crystals with vari-

ous domain size, the thermal depoling on piezoelectric

coefficient (d33) with domain sizes of 9, 6.5, and 2 lm were

performed and the results are given in Fig. 7. For the sample

with domain size of 2 lm, the value of d33 slightly decreased

from 350pC/N to 330pC/N at depoling temperature of 150 �C,

above which, the value was sharply decreased to 250 and

190pC/N at 180 and 200 �C, respectively. For the samples with

domain size of 6.5 lm, the d33 value was decreased to 270 and

170pC/N at 150 and 200 �C, respectively. For the sample with

domain size of 9 lm, the d33 value was decreased to 260 and

170 pC/N at 150 and 200 �C, respectively. Of particular inter-

est is that there was slightly change of the domain structure in

the Mn-KNN crystals with domain size of 9, 6.5, and 2 lm

from 25 to 150 �C. The possible reason of this phenomenon is

that the increase of domain wall thickness is below the resolu-

tion of optical method. Above 150 �C, the phenomenon of the

sharply decrease of d33 value in all the samples was thought to

be related to the unstable domain state at the temperature near

to O-T polymorphic phase transition temperature.

IV. CONCLUSIONS

Various domain configurations in Mn-KNN single crys-

tals have been prepared using field-cooled poling method,

the laminar domain pattern with size of 9 lm was found to

change to twinned domains with size of 2 lm, when the tem-

perature decreased from 205 �C to room temperature at

poling electric field of 18 kV/cm. The piezoelectric/dielectric

properties were clearly improved for the samples with em-

bedded twinned domains, showing minimal property varia-

tions during thermal depoling measurement. Based on the

experimental results, domain size engineering is expected to

achieve large piezoelectric response in KNN based lead free

material with nano-size domain configuration, while main-

taining the high polymorphic phase transition temperature

and Curie temperature.
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