
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
1954-2016 University of Wollongong Thesis Collections

2016

A Framework for Semantic Effect Annotation of Business Process Models A Framework for Semantic Effect Annotation of Business Process Models

Kerry G. Hinge
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Hinge, Kerry G., A Framework for Semantic Effect Annotation of Business Process Models, Doctor of
Philosophy thesis, School of Computing and Information Technology, University of Wollongong, 2016.
https://ro.uow.edu.au/theses/4959

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F4959&utm_medium=PDF&utm_campaign=PDFCoverPages

A Framework

for

Semantic Effect Annotation

of
Business Process Models

Kerry G. Hinge

Supervisor:
Professor A. Ghose

Co-supervisor:
Dr. H. Khan Dam

This thesis is presented as part of the requirements for the conferral of the degree:

Doctor of Philosophy

The University of Wollongong
School of Computing and Information Technology

August 2016

Declaration

I, Kerry G. Hinge, declare that this thesis submitted in partial fulfilment of the re-

quirements for the conferral of the degree Doctor of Philosophy, from the University

of Wollongong, is wholly my own work unless otherwise referenced or acknowled-

ged. This document has not been submitted for qualifications at any other academic

institution.

Kerry G. Hinge

October 8, 2017

Abstract

A key challenge in devising solutions to a range of problems associated with busi-

ness process management, such as process life cycle management, compliance ma-

nagement and enterprise process architectures, is the problem of identifying pro-

cess semantics. The current industry standard business process modelling notation,

BPMN, provides little by way of semantic description of the effects of a process

(beyond what can be conveyed via the nomenclature of tasks and the decision con-

ditions associated with gateways). This thesis describes the conceptual underpin-

nings, design and implementation of the Process Semantic Effect Evaluation and

Reasoning (ProcessSEER) framework. The framework supports several strategies

for obtaining semantic effect descriptions of BPMN process models without impo-

sing the overly onerous burden, of providing formal specification, on the business

analyst. As a validation of the framework, a tool has been implemented that re-

quires business analysts to describe the immediate effects of each task in a process

model. These are then accumulated in an automated fashion to obtain cumulative

effect annotations for each task in a process. The tool leverages, and contributes to,

domain ontologies wherever they are available. The tool also permits the business

analyst to specify immediate effect annotations in a practitioner-accessible format

that enables formal specification using a limited repertoire of natural language for-

mats. An example is provided of the tool being used in a logistical setting showing

the benefits of semantic effect annotation. Further research findings reveal how cro-

wdsourcing techniques can be utilised to broaden the scope of the tool’s knowledge

acquisition capabilities. Applied to a clinical environment the tool is shown to detect

treatment conflicts between multiple treatment protocols that are co-incident (on

the same patient). Detection is a difficult and open problem that is particularly exa-

cerbated in the context of treating multiple medical conditions co-occurring in aged

patients. For example, a clinical protocol for prostate cancer treatment requires the

administration of androgen-suppressing medication. This could negatively interact

with another, co-incident, protocol, if the same patient were being treated for renal

disease via haemodialysis, where androgen-enhancers are frequently administered.

Treatment conflicts such as these are subtle, and usually difficult to detect using

automated means.

iii

Dedication

I dedicate this thesis in loving memory of my father and mother,

George and Gwennyth Hinge,

without whose assistance this would not have been possible.

iv

Acknowledgments

My sincere gratitude goes to Professor Aditya Ghose for his continued support and

understanding through my difficult circumstances.

v

Contents

Abstract iii

List of Publications x

1 Introduction 1

2 Background 7

2.1 Business Process Model and Notation 8

2.2 Petri Nets . 13

2.3 Workflow Management Systems . 14

2.4 Controlled Natural language . 15

2.5 Ontology . 18

2.6 Description Logics . 20

2.7 Knowledge Representation . 22

2.8 Entity-Relationship Model . 23

2.9 Resource Description Framework . 23

2.10 The Web Ontology Language . 24

2.11 Semantic Web Services . 25

2.12 Action Languages . 27

2.13 Possible Worlds Approach . 29

2.14 Clinical Process/Careflow Management 30

2.15 Artifact-centric Business Process Models 31

2.16 Related Work . 32

2.17 Summary . 35

3 The ProcessSEER Framework 36

3.1 What is an Action? . 36

3.2 What is an Effect? . 39

3.3 What is a Condition? . 45

3.4 Scenarios . 47

3.4.1 Effect Scenarios . 47

3.4.2 Condition Scenarios . 48

vi

CONTENTS vii

3.4.3 Immediate Effect Scenario . 50

3.4.4 Cumulative Effect Scenario . 52

3.5 World List . 53

3.6 Accumulation . 53

3.6.1 Accumulating with Scenario Labels 54

3.6.2 Accumulation Functions . 57

3.6.3 Decision Function . 57

3.6.4 Combinatorial Function . 58

3.6.5 Pair-wise Accumulation Function 58

3.7 Gateway Structure . 59

3.7.1 Accumulation over Gateway Structures 60

3.7.2 Ancestor Sequences . 61

3.7.3 Branch Combinations . 62

3.8 Accumulating BPMN Elements . 64

3.8.1 Accumulating an Activity following another Activity 65

3.8.2 Accumulating a Parallel or Inclusive Gateway Split 65

3.8.3 Accumulating an Exclusive Gateway Split 65

3.8.4 Accumulating an Activity following an Exclusive/Inclusive Ga-

teway Split . 66

3.8.5 Accumulating an Exclusive Gateway Split following an Exclu-

sive/Inclusive Gateway Split 66

3.8.6 Accumulating a Parallel/Inclusive Gateway Split following an

Exclusive/Inclusive Gateway Split 66

3.8.7 Accumulating an Inclusive Gateway Split 67

3.8.8 Accumulating an Exclusive Gateway Join 67

3.8.9 Accumulating a Parallel or Inclusive Gateway Join 67

3.8.10 Branch Cluster . 71

3.8.11 Cluster Function . 72

3.8.12 Branch Group . 72

3.8.13 Group Function . 72

3.8.14 Join Accumulation Function 73

3.8.15 Branch Combinatorial Function 74

3.8.16 Parallelism with Scenario Labels 74

3.9 Example of Process Annotation and Accumulation 77

3.10 Summary . 95

4 Clinical Applications 96

4.1 Introduction . 96

4.2 Detecting inter-process interactions 97

CONTENTS viii

4.3 A Clinical Example . 100

4.4 Clinical Case Study . 102

4.5 Information Gathering . 104

4.6 Annotating Effects . 104

4.7 Task Labelling . 107

4.8 The Purpose of a Process Model . 108

4.9 Sentence Structure of Task Labels . 109

4.10 Representing Urgency . 113

4.11 Future Vision . 115

4.12 Summary . 116

5 CrowdSourcing Annotations 118

5.1 Techniques for Combining Effect Scenarios 124

5.1.1 Single Immediate Effect Scenario Merging 126

5.1.2 Merging Multiple Immediate Effect Scenarios 128

5.1.3 Indirect Inconsistency Detection 131

5.1.4 Context Identification . 131

5.1.5 Event Merging . 132

5.2 Summary . 133

6 Implementation 134

6.1 A SPOTON State Description . 135

6.2 Graphic User Interface (GUI) Design and Data Entry 136

6.2.1 Immediate Effect Tab . 137

6.2.2 Immediate Effect Data Entry 138

6.2.3 Conditions Tab . 139

6.2.4 Condition Data Entry . 140

6.2.5 Cumulative Effect Tab . 140

6.3 Back-end Implementation . 142

6.3.1 Process Node Class . 142

6.3.2 Effect Scenario Implementation 144

6.3.3 Condition Scenario Implementation 148

6.3.4 KB Manager Class . 148

6.3.5 Accumulator Class . 149

6.3.6 Scenario Label Class . 149

6.4 ProcessSEER Accumulation Implementation 150

6.4.1 Process Node Queue . 151

6.4.2 Process Node List . 151

6.4.3 Components Involved in Accumulation 152

6.4.4 Processing Zero Preceding Nodes 154

CONTENTS ix

6.4.5 Processing a Single Preceding Node 154

6.4.6 Processing Multiple Preceding Nodes 159

6.5 World List Implementation . 161

6.6 Ancestor Sequence Implementation 162

6.7 Branch Combination Implementation 162

6.8 Processing Gateway Structures . 164

6.9 Future Implementations . 165

6.10 Summary . 167

7 Conclusion 169

7.1 Research Questions . 169

7.1.1 RQ1 . 169

7.1.2 RQ2 . 169

7.1.3 RQ3 . 170

7.1.4 RQ4 . 170

7.1.5 RQ5 . 170

7.1.6 RQ6 . 170

7.2 Contributions to the Research Community 171

7.3 Contributions to the Practitioner Community 171

Bibliography 172

A Algorithms 188

B Standards and Specifications 203

C Governing Organisations 204

D Applications 205

List of Publications

E. D. Morrison, A. K. Ghose, H. K. Dam, K. G. Hinge, and K. Hoesch-Klohe,

“Strategic alignment of business processes,” in WESOA’11. Proceedings of the 7th

International Workshop on Engineering Service-Oriented Applications, December

2011.

K. Hinge, A. Ghose, and A. Miller, “A framework for detecting interactions bet-

ween co-incident clinical processes,” International Journal of E-Health and Medical

Communications, vol. 1, no. 2, pp. 2435, 2010.

K. Hinge, A. Ghose, and G. Koliadis, “Process SEER: A tool for semantic effect

annotation of business process models,” in Proceedings of the Thirteenth IEEE

International EDOC Conference. IEEE, September 2009

x

List of Figures

1.1 A simple business process model depicting a sequence of two activities. 2

2.1 BPMN Elements: Pools, Swimlanes, Tasks, Start Events, End Events,

Intermediate Events and Sequence Flows/Sequence Edges. 10

2.2 BPMN Elements: Exclusive Gateways. 10

2.3 BPMN Elements: Parallel Gateways. 11

2.4 BPMN Elements: Inclusive Gateways. 11

2.5 The architecture of a knowledge representation system based on Des-

cription Logics.[12] . 21

3.1 A film strip showing individual frames which are snapshots of the

world from a specific point of view. 37

3.2 The two basic business process models contain text annotations indi-

cating values assigned to the events and tasks. Events are indicated

by circles, and tasks by boxes with rounded corners. 37

3.3 A basic BPMN model of two rugby players kicking a ball. (version 1) 40

3.4 A basic BPMN model of two rugby players kicking a ball. (version 2) 41

3.5 A basic BPMN model of two rugby players kicking a ball. (version 3) 41

3.6 A basic BPMN model of two rugby players kicking a ball. (version 4) 41

3.7 A BPMN model showing four activities in sequence. 55

3.8 A simple exclusive Gateway structure with only two alternative Acti-

vities. 57

3.9 A Parallel Gateway Structure represented as a subprocess. 60

3.10 Diagram showing the breakdown of accumulating a BPMN parallel

join. 70

3.11 Diagram showing the breakdown of accumulating a BPMN inclusive

join. 71

3.12 A parallel gateway structure containing sequential activities. 74

3.13 A BPMN model from the document “BPMN 2.0 by Example”[110] . 77

xi

LIST OF FIGURES xii

3.14 An example of how Effect Scenarios are replicated inside Ancestor

Sequences and World Lists are copied to all branches when accumu-

lated through a parallel gateway split. Ancestor sequences have been

drawn vertically with the beginning at the top. 81

4.1 A section from a prostate treatment BPMN process model showing

the prescription of anti-androgen medication. 101

4.2 A section from a prostate treatment BPMN process model showing a

sub process for monitoring radiation treatment. 101

4.3 An administrative BPMN model for dispensing drugs in a hospital

pharmacy. 110

4.4 An instructional BPMN model for dispensing drugs in a hospital phar-

macy. 111

4.5 A process model example from the BPMN 2.0.2 Specification [111] . . 112

4.6 A Choreography Diagram example from the BPMN 2.0.2 Specifica-

tion [111] . 113

5.1 A warehousing process model. 120

5.2 Abstract process model. 129

6.1 The ProcessSEER GUI showing the Immediate Effect data entry tab. 137

6.2 The ProcessSEER IEffect Tab showing data entry on the left and

Immediate Effect Scenario display on the right. 138

6.3 Effect data input fields in the ProcessSEER tool. 138

6.4 The ProcessSEER Conditions Tab showing data entry on the left and

Condition Scenario display on the right. 140

6.5 Condition data input fields in the ProcessSEER tool. 140

6.6 The ProcessSEER GUI showing the CEffect Tab for Cumulative Effects.141

6.7 Data Displayed in the CEffect Tab. Example taken from a test pro-

cess model with only dummy data used. 141

6.8 The ProcessSEER GUI showing accumulation progress bar. 142

6.9 A basic BPMN model showing a parallel gateway structure. 150

6.10 A BPMN looping structure supported by the ProcessSEER tool. . . . 152

6.11 A BPMN fragment with the start event highlighted. A start event

has no preceding nodes. 154

6.12 A pairing showing an exclusive gateway split being accumulated with

a previous task. 156

6.13 A pairing showing a parallel gateway split being accumulated with a

previous task. 157

LIST OF FIGURES xiii

6.14 A pairing showing an inclusive gateway split being accumulated with

a previous task. 157

6.15 A parallel gateway split showing how the top Cumulative Effect Sce-

nario is duplicated in an Ancestor Sequence and how the Cumulative

World List is duplicated for each branch. 157

6.16 A pairing showing a parallel gateway split being accumulated with a

previous exclusive gateway split. 159

6.17 A pairing showing a task being accumulated with a previous exclusive

gateway split. 160

6.18 A pairing showing an exclusive gateway join being accumulated with

two previous tasks. 160

6.19 A pairing showing a parallel gateway join being accumulated with

two previous tasks. 160

6.20 A pairing showing an inclusive gateway join being accumulated with

two previous tasks. 161

6.21 Structure of a World List containing branch Stacks of Effect Scenarios

(Ancestor Sequences). 162

6.22 Diagram showing how Branch Combinations are generated before a

parallel gateway join. 163

6.23 A use case diagram showing existing and intended features to support

collaboration. 166

List of Algorithms

A.1 Decision Function . 188

A.2 Combinatorial Function . 189

A.3 Possible Worlds Function . 190

A.4 Pair-wise Accumulation Function . 191

A.5 Pair-wise Accumulation Function Extended 192

A.6 Accumulation of 〈T, T 〉, 〈P, T 〉, 〈XJ, T 〉, 〈PJ, T 〉, 〈IJ, T 〉 193

A.7 Accumulation of 〈T, P 〉 or 〈T, I〉 . 194

A.8 Accumulation of 〈T,X〉, 〈XJ,X〉, 〈PJ,X〉, 〈IJ,X〉, 〈P,X〉 194

A.9 Accumulation of 〈X,T 〉 or 〈I, T 〉 . 195

A.10 Accumulation of 〈X,X〉 or 〈I,X〉 . 196

A.11 Accumulation of 〈X,P 〉 or 〈X, I〉 . 196

A.12 Accumulation of 〈B,XJ〉 . 197

A.13 Accumulation of 〈B,PJ〉, 〈B, IJ〉 . 198

A.14 Cluster Function . 199

A.15 Branch Group Function . 200

A.16 Join Accumulation Function . 201

A.17 Branch Combinatorial Function . 202

xiv

Chapter 1

Introduction

Modern day visionaries like Tim Berners-Lee have painted us a picture of the Se-

mantic Web [17], an environment in which intelligent agents can negotiate on our

behalf and in general make interaction with the internet more meaningful. This

prediction initially caused a great deal of excitement and much effort was invested

towards achieving this design but the reality of its construction soon became ap-

parent. Many were unwilling to invest the necessary time into something that had

questionable returns on investment. From an economic perspective the semantic

web seems like a lot of hard work for little reward. In fact many of the benefits at-

tributed to the Semantic Web apply to consumers rather than the people investing

in its development. This is one possible reason why the business community have

not enthusiastically engaged in the semantic mark-up of their existing web sites.

Apart from the extra work required to add semantic mark-up to web sites, the

terminology used must be referenced to an ontology. An ontology is a relationship

model describing relationships between words as they are used within a specific

domain [135]. These context specific descriptions and relationships act as an explicit

definition of the meaning of a word. Manually building an ontology requires a lot

of time and effort and further adds to the cost of Semantic Web development [69].

Given that the main purpose for semantic mark-up is the retrieval of more accurate

information then the business case scenario does not appear to be very profitable.

If the Semantic Web is ever to become a reality then it will certainly require world-

wide adoption by the business community. For that to happen, there needs to be a

greater incentive for business to embrace the development of this infrastructure.

An area of research that has attracted a great deal of business interest and

investment is Enterprise Resource Planning (ERP). The implementation of an ERP

system requires all business processes within an organisation to be modelled [56]. A

process model is a visual representation of the order in which actions are performed

(see Fig:1.1). The visualisation evokes recognition more effectively (with regard to

communicating information) than text alone. This improved recognition translates

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: A simple business process model depicting a sequence of two acti-
vities.

into more efficient methods of communicating instructions. The purpose of the

model is to maintain consistency in process execution. The visualisation of a process

also assists with process analysis. Components of the model can be easily moved

around to experiment with different configurations to achieve optimal efficiency.

In most cases process models provide a managerial perspective of workflow

within an organisation. They communicate the flow of activities and the movement

patterns of employees in the workplace. Process models can be optimised for ef-

ficiency and quickly checked for compliance. From a business analyst perspective

this is by far the most common use of a business process model. A manager, on the

other hand, will consult a business process model and issue instructions to employ-

ees. An IT specialist may translate a business process model into execution code

such as WSBPEL [14] to coordinate web services. An employee could conceivably

use a business process model as an instruction manual to explain the how-to of a

particular job. These different uses produce subtly different process models that are

explored further in section 4.8.

Business process models are limited by the quality of information they can com-

municate which often leads to costly errors in judgement occurring as a consequence

of optimisation initiatives. In [80], Koliadis et al. describe a method of adding

semantic effect annotations to business process models with the intent of impro-

ving process change within an organisation. There are definite cost-saving benefits,

with regard to optimisation efforts, that are associated with this form of semantic

mark-up. If these semantically annotated business process models could be used to

generate Semantic Web content then an economic incentive would exist for business

participation in this development. Koliadis et al. are describing a reasoning engine

for processing the annotations if they existed. Ghose et al. expand upon this idea

[52] by defining an explicit grouping of tasks within a business process model called

a Scenario Label. This grouping acts as a structure for accumulating semantic anno-

tations so they can be processed by the reasoning engine. The intent behind this is

to automate the analysis of business process models to assist analysts with design-

CHAPTER 1. INTRODUCTION 3

time decisions. Although the structure is defined, the method of accumulation is

not.

The opportunity therefore exists to build an application that can annotate bu-

siness process models and accumulate the semantic annotations into a format that

can be machine interpreted. Given that the business community will be producing

semantically annotated models with such an application the next logical step will

be to extend the functionality to convert the business process models into Semantic

Web content [86, 151, 130, 25]. Such an application will present an attractive oppor-

tunity for the business community to become actively involved with the Semantic

Web and consequently hasten its development.

The application proposed by Ghose and Koliadis focuses on supplying real-time

analytics to improve strategies like business process design, change management

consistency checking and compliance management. It is not sufficient to simply

annotate business process models with semantics. A reasoning engine must have

machine interpretable annotations before it can process and analyse the data. Wri-

ting semantic effect annotations in formal logic is not an attractive proposition for

business analysts who have no training in that discipline. This research investiga-

tes alternate solutions to overcome this problem and identifies a critical component

necessary for the success of the proposed application.

If the effect annotations are going to be truly semantic then the words used in

the annotations must be linked to an ontology so that their meaning can be verified.

This implies that the proposed application must include ontology management ca-

pabilities. We investigate some ontology tools and current industry standards under

development to arrive at a solution for what has now become a proposed application

suite.

The final key ingredient required for the suite of applications is the ability to

convert from semantically annotated business process models to Semantic Web con-

tent. The particular area of interest is in the domain of Web Services. Web Services

are independently operating web applications that can collaborate to perform com-

plex business processes. Software already exists that can translate BPM’s into Web

Services but not Semantic Web Services. The latter requires semantically annota-

ted business process models to achieve this goal. The Semantic Web content that

is most likely to attract business interest will be Semantic Web Services because of

its ability to automate existing business processes and interface with customers and

suppliers online. The set of tools that can achieve this will not only encourage the

development of the Semantic Web but also improve business process management.

There is a trend towards an integrated development environment [109]. The tool

suite described in this document is a positive step towards this type of integrated

development.

CHAPTER 1. INTRODUCTION 4

Annotating and analysing specifications of program functionality, in order to

help establish program correctness, has a long tradition dating back to the intro-

duction of the axiomatic techniques proposed by Hoare and Dijkstra [74]. With

sufficient information, these forms of annotations [137] provide a basis for answering

questions relating the identification of: the conditions enabling a process to be per-

formed (i.e. postdiction); the conditions resulting from a process being performed

in some context (i.e. prediction); and, the processes with the capability of realising

a set of conditions when executed in some context (i.e. planning). Recently, simi-

lar proposals have emerged in the domain of web services [104] [95]. These forms

of specification can be effective for performing analyst related tasks, however their

utility and availability in some situations can be limited (e.g. cost restrictions) –

warranting a need for “partiality” and “lightweight” approaches [76]. The contribu-

tion in this document are techniques to leverage a partial specification of functional

effects annotated to business process models. In exploring this space we asked the

following research questions:

RQ1 Is it possible to provide richer semantics for business process models via effect

annotations?

RQ2 Is it possible to determine, at design time, for any point in a process design,

the effects that a process would achieve if it were to execute up to that point?

RQ3 Is it possible to build a robust tool to support business analysts in developing

such annotated process models?

RQ4 Is it possible to support analysis tasks such as goal satisfaction, compliance

checking, semantic conformance checking and semantic simulation?

RQ5 Is it possible to crowd source these annotations?

RQ6 Do compelling use cases for this technology exist in use cases such as medicine?

The work presented in this document follows a Design Science model described

by Hevner et al.[62] consisting of three research cycles, the relevance cycle, the rigor

cycle and the design cycle. Answering the questions above establishes the relevance

of this research and its potential contribution to a real world environment. The term

‘Design Science’ evolved from the work of Herbert A. Simon in his treatise “Sciences

of the Artificial” [140] that explored the underlying “science of design” and stressed

the importance of real world application in any scientific research. In revealing

the science involved in design Simon crosses the boundaries between science and

engineering, showing that the same techniques used to investigate the natural world

are also applicable to the exploration of the artificial.

CHAPTER 1. INTRODUCTION 5

The Background chapter of this document provides the reader with information

about the different technologies underpinning this research. Many of the research

questions could be answered with a disparate selection of technologies but the focus

here has been on a solution that supports the interoperability of such technologies

with a distinct focus on complying with global standards. This chapter presents the

results of rigorous research into the complex web of often competing technologies

that have contributed to a solution to the problems and opportunities identified in

chapter 1. Also discussed are issues like why we need semantic annotations and

which technologies are necessary to establish a practitioner-accessible framework. A

review of related work in this field with comparisons to this research conclude the

Background chapter.

In chapter 3 the basic building blocks of the framework for semantic effect

annotation of business process models are introduced. Process effect accumulation

has another unique set of problems that are also identified in this chapter. Solutions

to these problems are discussed and supported by a set of algorithms that can be

found in Appendix A. The algorithms support a variety of accumulation methods

over a select group of process model instances. The concept of effect scenario labels

is also introduced as a control mechanism for algorithm selection. All algorithms

contribute to a fundamental pair-wise effect accumulation procedure that can adjust

to different process model configurations. These effect accumulation algorithms co-

participate with a background reasoning engine to derive alternate outcomes for any

point in a process model. Chapter 3 concludes with an extensive example of the

framework being used in a warehouse delivery service.

The design cycle mentioned in [62] is captured in chapters 3 and 6 where the

technologies discussed in chapter 2 are combined into a cohesive design developed

over several iterations in which the application software was tested in a real world

environment. Chapter 4 reports on the outcome of that testing in a medical environ-

ment. One element of the final application suite is effectively implemented and used

to model medical procedures. The chapter looks at the practicality of the framework

in real-life situations and in some cases life and death situations. Also included in

the chapter is a case study from which valuable insights are gained that contribute to

critical changes in application development, and to the underlying framework. The

potential application of the framework in dynamic workflow management systems

that support mobile instructional devices is also explored. It is worth noting that

although a clinical environment was chosen for testing, the framework has broad

reaching applications across a variety of domains.

Chapter 5 explores the potential of utilising crowdsourcing techniques as a me-

ans of expanding or refining a knowledge base to improve its content. Techniques

are described showing how this framework can contribute to the enrichment of a

CHAPTER 1. INTRODUCTION 6

domain ontology. In chapter 6 the main component in the application suite has

been implemented. The implementation of the conceptual elements from chapter 3

is described along with the user interface design. The chapter also describes how the

application can be linked to an ontology and how it can directly output an ontology

for knowledge acquisition purposes.

The thesis concludes with a summary of the work so far with recommendations

for future research and development. Appendix A contains a complete list of all

the algorithms described in chapter 3. Appendix B lists standards and specifica-

tions controlling application development. URL’s are also provided for accessing

associated documents. Appendix C lists some of the governing organisations invol-

ved with Semantic Web related activities. Appendix D lists applications referred to

throughout this document with associated URL’s.

Chapter 2

Background

Hypertext Markup Language (HTML) and Extensible Markup Language (XML)[116]

emerged from an international standard (ISO8879) called Standard Generalised Mar-

kup Language (SGML). HTML was adopted for the presentation of information on

the internet. Its purpose is to specify different elements of a web page and define

how they are displayed in a web browser. HTML uses tags that encapsulate data.

For example, <html> is an opening tag and </html> is a closing tag. Together

they specify that the content between the two tags is a HTML document. The first

mention of HTML on the internet was in a correspondence by Tim Berners-Lee in

1991 [19] in which he references the first internet published document on HTML

Tags [18]. HTML has a defined set of tags with which a compliant web browser can

correctly display an HTML document.

XML is syntactically similar to HTML but is not constrained by a fixed set

of tags. Users of XML are free to name their own tags but they must also pro-

vide an interpreter to make sense of any newly created tags like a web browser

interprets HTML. XML provides metadata about the information it contains. For

example, <author>John Smith</author> tells us that John Smith is an aut-

hor. It could be said that HTML describes what to do with the information whereas

XML describes how to interpret the information. Both HTML and XML are glo-

bal standards maintained by the World Wide Web Consortium (W3C). They are

platform independent, providing a structured framework for the global exchange of

information.

A key consideration when developing a framework for semantic effect annotation

of business process models is for businesses to be able to communicate freely without

having to purchase expensive middleware to translate between organisations. It is

therefore important that selected technologies are compliant with these internatio-

nal standards so that information can be easily exchanged over the internet. The

principal technology employed in this work is Business Process Model and Notation

(BPMN) which provides a mapping to XML.

7

CHAPTER 2. BACKGROUND 8

2.1 Business Process Model and Notation

The idea of recording and documenting work practices can be traced back to the

work of Frederick W. Taylor and Henry L. Gantt in the early 1900’s. Taylor intro-

duced the concept of scientific management in 1911 in his work “The Principles of

Scientific Management”[145]. It is attributed to being the first scientific study of

work practices. The motivation behind this was to discover what is now commonly

referred to as “Best Practice”. Gantt’s contribution [47] to the field of project ma-

nagement is still in use today, the “Gantt Chart”[155], a bar graph allocating jobs

and time completion deadlines.

Post WWII, Japan’s focus on Total Quality Control, fuelled by the work of Kaoru

Ishikawa[75], gave it a significant competitive advantage in the global market. The

notion of best practice had evolved into a system of management. A number of

Quality Management Systems (QMS) have gained acceptance over the years like

Total Quality Management (TQM) and Six Sigma. These systems have driven the

demand for process documentation.

In 1987 the ISO9000 series of standards for quality assurance was published.

Many organisations could not win contracts unless they were ISO9000 certified.

An important part of the ISO9000 certification involves the documentation of all

business processes. Documentation was regarded as a measure of repeatability such

that quality standards could be maintained but many organisations, having attained

certification, simply filed the process documentation away. Documented processes

in a textual format take considerable time to read before the underlying idea of the

process can be understood. On the other hand, a process model, using graphical

symbols to represent different elements of a process, proved to be a far more intuitive

means of communicating process ideas.

Process modelling is just one type of documentation in the quality management

toolkit. It dates back to as early as 1921 when the Flow Process Chart was intro-

duced to the members of the American Society of Mechanical Engineers (ASME)

by Frank and Lillian Gilbreth[53]. A Flow Process Chart is a graphical representa-

tion of process activities based on a rudimentary set of symbols. The Flow Process

Chart spawned many different variations of Flowcharts including, but not limited

to, Workflow Charts, Data Flowcharts, Program Flowcharts, System Flowcharts,

Document Flowcharts and Process Flowcharts.

By the 1990’s many different modelling notations were in existence and in the

field of software engineering this caused widespread incompatibility issues. In re-

sponse the Object Management Group (OMG) facilitated discussions between in-

dustry professionals to develop a standard visual software modelling notation. The

Unified Modelling Language (UML) [114] was adopted and published by the OMG

CHAPTER 2. BACKGROUND 9

in the mid 1990’s. Standardisation meant that code could be generated from UML

based software modelling tools, further improving productivity.

Business Process Management (BPM) also suffered from a fragmented market

of modelling notations. A group of professional organisations, many of whom had

contributed to the fragmentation of the business process modelling market, came

together to form the Business Process Management Institute (BPMI) whose agenda

was to standardise a business process modelling notation that was based on an exe-

cutable language. The outcome of this collaboration was the release of the Business

Process Model and Notation (BPMN)[112] version 1.0 in May 2004. The BPMI was

subsumed by the OMG in February 2006 who in turn have continued the develop-

ment and maintenance of the BPMN standard.

The development of the BPMN standard was motivated by a need to develop

a modelling notation that could bridge the gap between process design and process

implementation and translate easily into executable code, notably Business Process

Execution Language for Web Services (BPEL4WS) [154]. While other modelling

notations have proven effective at modelling programming code artifacts, in the case

of UML, or providing an intuitive visual representation for describing a process,

in the case of Workflow Diagrams, BPMN combined both these attributes into a

single notation. A BPMN model can therefore be used as a visual instructional

tool for human consumption and as a template for automated code generation.

When process segments are identified for automation then a programmer can use

the BPMN model to automatically generate code. This is an important economic

consideration when planning for future automation of processes that are currently

performed manually. BPMN is an evolving standard (currently at version 2.0.2) that

is continually growing in expressiveness through consultation with domain experts.

For further information about process modelling notations Rosemann et.al.[121,

122, 57] have evaluated various notations such as Petri nets, Event Driven Process

Chains and BPMN using quality benchmarks. In [127] Rosemann et.al. conduct

a survey of organisations about their business process management (BPM) service

requirements and capabilities, identifying a comprehensive list of 15 potential ser-

vices for effective business process management. The framework presented in this

document provides a foundation for many of the services identified in [127].

BPMN defines a large number of icons that can be used as nodes and a smaller

number of edge styles. It is now a popular method for defining business processes

that can be used as a visual representation of what either people or software appli-

cations do when performing a business process. The notation uses a broad selection

of graphical symbols to represent business process elements. Only a limited subset

of BPMN symbols have been implemented for this project. Future implementations

are intended to utilise the complete set of BPMN symbols. The subset of symbols

CHAPTER 2. BACKGROUND 10

Figure 2.1: BPMN Elements: Pools, Swimlanes, Tasks, Start Events, End
Events, Intermediate Events and Sequence Flows/Sequence Edges.

Figure 2.2: BPMN Elements: Exclusive Gateways.

that were used in this implementation include Pools, Empty Start Events, Empty

End Events, Empty Intermediate Events, Tasks, Sequence Flows/Sequence Edges,

Parallel Gateways, Exclusive(XOR) Gateways and Inclusive Gateways.

A Pool (Fig:2.1) represents an actor that is performing a task. The actor may

be a person, a department, an organisation or even a software application. The pool

metaphor arises from the shape representing an Olympic swimming pool. A pool is

a boundary device encompassing all activities performed by a single actor. An actor

can also be a group so Swimlanes are used to separate the individuals in the group.

Tasks, (Fig:2.1) define the actions performed by an actor. Each Task can either

describe what the actor is doing (declarative) or be an instruction indicating what

the actor must do (imperative) at a particular stage in the overall process. Tasks are

connected by Sequence Flows, also referred to as Sequence Edges. These are solid

lines with arrows that indicate the direction and order in which Tasks are performed

or in which Events occur.

Gateways (Figs:2.2, 2.3, 2.4) are used to either split or join Sequence Flows.

In the case of an exclusive gateway (Fig:2.2) it could represent a decision where if

a certain condition is met then sequence flow would continue one way but if the

condition was not met then the sequence flow would continue the other way. An

CHAPTER 2. BACKGROUND 11

Figure 2.3: BPMN Elements: Parallel Gateways.

Figure 2.4: BPMN Elements: Inclusive Gateways.

inclusive gateway (Fig:2.4) is also representative of a decision. The difference being

that sequence flow can continue along more than one branch depending on how many

conditions are satisfied. Parallel gateways occur when the actor represents a group

of people or an application running concurrent threads. The implication is that

the activities occurring on each parallel Sequence Flow are occurring at the same

time but this may not be the case and is an assumption that is not consistent with

BPMN. In this document the term Gateway Structure is used to refer to everything

that occurs between and including a gateway split and a gateway join. Typically a

Parallel Gateway Structure will include both the parallel gateway split and join and

everything between them including any nested gateway structures.

Finally, Start and End Events (Fig:2.1) simply denote the beginning and the end

of a process while Intermediate Events occur within the process model structure.

They can indicate certain conditions that exist but in the context of this document

only Empty Events are used. Events indicate actions that occur outside the control

of an actor. They can trigger actions or be the consequence of actions. In this

document Tasks and Events are generically and collectively referred to as either

activities or actions. Further information regarding BPMN can be found in the

“BPMN Modeling and Reference Guide” [153].

CHAPTER 2. BACKGROUND 12

A business process model is a flowchart and in its most abstract representation,

a directed graph of nodes and edges. A formal definition of Scenario Labels, a graph

based encoding of business process models, is provided in [63, 64]. A Scenario Label

is a sequence of activities that maps a single executable path through a process

model. When a task in a process model is selected, all possible paths that lead to

the selected task are mapped to Scenario Labels.

The growing interest in business process management (BPM) [2] methodologies

and tools, as well as the high levels of adoption of such technologies in industry has

led to a greater need for more sophisticated techniques for analysing and reasoning

with business process models. Much of the analysis required for process compliance

management [51], change management [80], enterprise process architectures [61],

strategic alignment [106], process improvement [65] and the management of life

cycles and inter-operation of business processes [83, 88] relies on being able to refer

to the semantics of those processes. BPMN as well as several other similar notations,

provide a means for describing the coordination semantics of business processes but

not the semantics of processes in terms of their effects. Thus a BPMN process

model might require that task A must precede task B, but does not provide any

indication of what is done by tasks A and B (beyond what might be implicit in their

nomenclature), i.e. their effects. It is difficult to determine from a process design in

BPMN what the effects achieved by a process might be at any point in the process

design.

This is one of the problems that this document seeks to address. The problem is

not alleviated by taking recourse to the formal semantics of process design notations

such as BPMN. Such semantics, as pointed out above, only describe the coordination

aspects of a process. In addition, there is no consensus on the semantics of BPMN

[3]. The ”ProcessSEER” tool, presented in [63], provided the capability to annotate

effects to BPMN tasks and events (henceforth also generically referred to as actions

or activities). The tool is also capable of accumulating effects across a process model

and reasoning about those effects thus allowing it to answer the question, ”What

would be the result if the process had executed up to this point?”. Version 1.0 of

ProcessSEER accumulated effect annotations by stepping through Scenario Labels

and performing pair-wise accumulation at each step. The current version of Process

SEER dispenses with Scenario Labels and accumulates at each activity as it walks

through the process model.

In 1998 Wil van der Aalst[1] proposed the use of Petri nets for modelling work-

flow, noting their formal semantics. BPMN is based upon Petri nets with much

of the BPMN documentation referring directly to Petri nets to explain execution

semantics. Petri nets have four graphical elements, a Place, a Transition, an Arc

and a Token. A Token can represent a product or a state. Process execution is

CHAPTER 2. BACKGROUND 13

represented by Tokens being passed along Arcs between Places and Transitions.

The properties of Petri nets underpin how semantic effects are accumulated across

a business process model. Petri nets have also influenced how and where semantic

effects are annotated which is explained later in the document.

2.2 Petri Nets

Petri Nets [124] consist of four elements:

• Transitions

• Places

• Tokens

• Arcs

Transitions

A Transition is equivalent to an action or activity or event or even a gateway on a

BPMN process. They consume Tokens and generate Tokens. Tokens do not pass

through them. The consumption of a Token is equivalent to the satisfaction of a

precondition.

Places

Places are place holders for states that exist prior to or following a Transition. They

hold Tokens.

Tokens

Tokens are representative of conditions or states. When a Token is in a Place it

means that a precondition exists for the following Transition to execute.

Arcs

Arcs connect Places to Transitions and Transitions to Places. They are directional,

indicating the direction in which Tokens are passed between Places and Transitions

and visa-versa. Arcs cannot connect a Transition to another Transition or a Place

to another Place. Arcs also represent the number of Tokens that can be passed

along them. The number of Tokens passed along each Arc is dependent upon the

weight of the Arcs. If an Arc has a weight of 2 then 2 Tokens WILL be passed along

that Arc. If 2 Tokens do not exist in the preceding Place then no Tokens will be

passed. The weighting of Arcs exiting a Transition indicates how many Tokens the

Transition will generate and pass along that Arc when it fires.

Petri Nets and BPMN

A Petri net represents a business process model in the following way. An activity

requires certain preconditions before it can be executed. The Place preceding that

CHAPTER 2. BACKGROUND 14

Activity/Transition holds Tokens and each Token represents a single precondition.

When the required number of Tokens/Preconditions exists in the preceding Place

then the Activity/Transition is Fired/Executed. When the Activity/Transition is

Fired/Executed it consumes all the Tokens/Preconditions and generates a new col-

lection of Tokens/Effects that are transferred to the Place following the Activi-

ty/Transition. In this case there is no difference between a precondition and an

effect. The Token is a common symbol used for both. What was an effect generated

by a previous Transition becomes a precondition for the following Transition. In the

case of a Gateway/Transition, they have two or more Arcs either exiting or entering

them.

2.3 Workflow Management Systems

The Workflow Management Coalition (WfMC) is a global consortium of consultants,

vendors and academics who promote and develop standards for the terminology and

interoperability of workflow applications. The Workflow Reference Model [67] was

published by the WfMC in 1995 and is still the model on which most workflow soft-

ware systems are built today. In [67], Hollingsworth defines workflow as:

“The computerised facilitation or automation of a business process, in

whole or part”.

Business process models describe workflow by the coordination made explicit in their

structure. However, they only specify the order of task execution, not the timing.

A Workflow Management System (WfMS) is defined in [67] as:

“A system that completely defines, manages and executes workflows

through the execution of software whose order of execution is driven

by a computer representation of the workflow logic. Such a system maps

to the Workflow Coalition’s reference model” [67].

A WfMS does not actually perform any of the tasks in a business process. It coor-

dinates and supports the timely execution of tasks and the provision of resources

[123]. In the context of this research, semantic effects are utilised by a WfMS to

monitor and evaluate the current conditions during process execution. This differs

from the standard process execution that simply initiates the next task to be per-

formed based on the task that has just completed. Evaluation of semantic effects

allows a WfMS to decide which task is the most appropriate to initiate under the

current conditions. Proposing suitable workflow management software is beyond the

CHAPTER 2. BACKGROUND 15

scope of this document. However, one of the guiding principles behind this research

is its potential use in WfMS.

2.4 Controlled Natural language

Natural Language refers to the common language spoken by people every day in-

cluding the written version of that spoken language. Humans interpret Natural

Language in a variety of ways based on understanding, context and personal opi-

nion. There is always the potential for misinterpretation with any Natural Language

which makes it unsuitable for machine interpretation. Machines communicate in

structured languages such as formal logic. Statements in formal logic like the one

below cannot be understood without training in the formal notation.

∃x(Boxer(x) −→ Dog(x)) (2.1)

While machines may be able to communicate and reason with this type of notation,

the majority of humans would have difficulty understanding it never mind writing it.

Business analysts in particular are generally not trained in writing formal notation.

Since business analysts are a primary contributor to semantic effect annotation

the notation employed must be within their current skill set if the framework for

semantic effect annotation is to be adopted.

Natural Language would be an ideal medium for business analysts to annotate

semantic effects to business process models. However, as previously discussed, they

suffer from ambiguity and although great strides have been made in the field of

Natural Language processing it was not considered to be mature enough, at the

time of this publication, to warrant further testing. One alternative considered was

Controlled Natural Language (CNL) [131] which is roughly positioned somewhere

between Natural Language and formal logic with regard to its understandability. In

earlier work [63] CNL was proposed for writing semantic effect annotations.

CNL is a subset of Natural Language and there are two varieties. The first

type of CNL is a simple form that concentrates on eliminating ambiguity in do-

cuments like instruction manuals. The misinterpretation of written instructions in

maintenance manuals could lead to catastrophic failures especially in the aerospace

industry. Simplified Technical English was originally developed by the Aircraft

European Contractors Manufacturers Association (AECMA) to avoid this type of

misinterpretation. The AECMA was later subsumed by the Aerospace and Defence

Industries Association of Europe (ASD) which currently maintains the standard

(STE-100[50]). CNL’s in this category are primarily designed for human consump-

tion. As such they are well suited for machine-to-human communication because of

CHAPTER 2. BACKGROUND 16

their characteristic ability to minimise misunderstanding. They are, however, not

suitable for human-to-machine or machine-to-machine interaction.

The second type of CNL again is a subset of Natural Language but is based on

formal logic. CNL’s in this category can be easily interpreted by both humans and

machines making them firm candidates for semantic effect annotation. Their quali-

fying features include that they have interpreters that translate between them and

first order logic and they can be easily understood by humans that speak the natural

language on which they are based. However, they still require the practitioner to be

trained in how to use them correctly [133] thus placing an additional burden on the

business analyst. Once trained though, the semantic effects annotated by a business

analyst would appear, to the user, to be written in a natural language and could

also be interpreted by a machine. Calculations derived from formal logic processing

could also be translated into CNL for human interpretation [134]. CNL could the-

refore act as a bridging mechanism between human and machine with regard to the

interpretation of textual content. Further information about CNL can be found at

[7].

A CNL that is becoming popular within the semantic web community is At-

tempto Controlled English (ACE)[45, 77]. ACE has a comprehensive set of tools

supporting its use for knowledge representation [44]. Semantic effect annotations

written in ACE are human readable, translatable into FOL and thus can be reaso-

ned with by machines. In the following observed effect, written in natural language,

the business analyst has combined three separate effect statements into a single

sentence using ‘and’ conjunctions.

The purchase amount is confirmed with a confirmation number and the

client is the owner of the object purchased and the credit limit of the

credit card is decreased by the purchase amount.

It can be seen from the above verbose example just how varied semantic effect

annotations can possibly be written without a strict syntax. When deconstructed it

can be seen that there are three separate observations the business analyst intends

to record.

The purchase amount is confirmed with a confirmation number.

The client is the owner of the object purchased.

The credit limit of the credit card is decreased by the purchase amount.

CHAPTER 2. BACKGROUND 17

The same sentences written in ACE would look like the following:

A purchase has a purchaseAmount that is confirmed by a

confirmationNumber.

A purchase has an objectPurchased that is owned by a client.

A creditCard has a creditLimit that is decreased by a purchaseAmount.

The above sentences are as easy to understand as the original sentences written in

natural language but there is an underlying structure to the way the ACE sentences

are constructed allowing them to be converted into FOL. First the ACE sentences

are paraphrased into the following:

There is a purchase X1.

There is a confirmationNumber X2.

The confirmationNumber X2 confirms a

purchaseAmount X3.

The purchase X1 has the purchaseAmount X3.

There is a client X4.

The client X4 owns an objectPurchased X5.

The purchase X1 has the objectPurchased X5.

There is a creditCard X6.

The purchaseAmount X3 decreases a creditLimit X7.

The creditCard X6 has the creditLimit X7.

The paraphrasing can then be assembled into the following FOL statements that

are machine processable:

has(purchase, purchaseAmount)

confirms(confirmationNumber, purchaseAmount)

owns(client, objectPurchased)

has(purchase, objectPurchased)

decreases(purchaseAmount, creditLimit)

has(creditCard, creditLimit)

Using CNL to represent semantic effects only solves the problem of translation to

and from a formal language. Machines may be able to reason with the effects and

present their conclusions in a human readable format but ambiguous terms can still

be used in CNL without the use of a domain specific ontology. A domain speci-

fic ontology also facilitates the translation of CNL into First Order Logic (FOL).

Languages such as OWL-S use variable names in their effect descriptions, e.g. object-

Purchased. Such a term would not ordinarily exist within the taxonomy of a CNL

application. A CNL interpreter (an application that can translate CNL into FOL)

CHAPTER 2. BACKGROUND 18

would require a domain specific ontology that includes such terms. CNL provides a

practitioner-accessible language for specifying effects (and thus, avoid the problems

associated with insisting that analysts become proficient in a formal notation) while

still making it relatively easy to translate these into an underlying formal represen-

tation. Its formal interchange capability and human readability positions ACE as

a suitable candidate for the language underpinning semantic effect annotation. Its

only drawback is that the business analyst must first be trained in its correct usage.

2.5 Ontology

The meaning and correct usage of the term ‘ontology’ is a hotly debated topic

within the fields of computer and information science. Traditionally ontology is

associated with a branch of philosophy known as metaphysics. It refers to the

study of the nature of being and in this regard it is a science. Ontological study

generates hierarchical graphs that categorise things and their relation to each other.

The computing industry has adopted the term ‘ontology’ to represent the knowledge

graphs generated by ontological study. A conflict exists between whether ontology

is the scientific study or the product of that study. The term is now so widely used

within the computing industry that its secondary meaning is now acknowledged

within that domain. An ontology, with regard to computing, can be thought of

as being a dictionary, thesaurus and relational database all rolled into one. The

Oxford Dictionary defines an ontology as “A set of concepts and categories in a

subject area or domain that shows their properties and the relations between them”.

Some key words used in other definitions of ‘ontology’ are, ‘conditions’, ‘relations’

and ‘dependency’ [135]. The key words refer to how an ontology links terminology.

The term ‘boxer’ could be used in a CNL sentence to describe a dog. It could

also be used to describe a fighter. A machine cannot determine the intended meaning

of the word without and ontology. When we write, “a boxer is a dog”, the term

‘Boxer’ has an ‘is a’ relationship with the term ‘dog’. It could also be described

as being a subclass of the term ‘dog’. However, this relationship only exists in the

domain of ‘pets’. In the domain of ‘self defence’, referred to earlier, a boxer is a

subclass of something completely different. Likewise, an ontology for the packaging

industry may link ‘boxer’ to an employee who packs boxes. The terms ‘business’ and

‘company’ have different definitions in a dictionary but they can be interchangeable

in certain domains. In those domains they would be considered to have a ‘same as’

relationship.

Ontologies are domain specific but they can and often do refer to each other.

Cross referencing literally improves an ontology. Take the case of the term ‘boxer’;

the pet domain ontology would include a subclass relationship between ‘dog’ and

CHAPTER 2. BACKGROUND 19

‘boxer’. A sentence in a piece of text may use the word ‘boxer’ and reference it to

the pet domain ontology indicating that within the context of the sentence the word

refers to a dog. The ontology becomes even more explicit when it cross references

the self defence and packaging domain ontologies with links stating the term ‘boxer’

is ‘different from’ the term ‘boxer’ used in those other domains.

An ontology, as a relationship reference model of domain specific terminology,

can ease the semantic annotation exercise in several ways (a substantial body of

work explores the role of ontology in this setting). First, an ontology can help avoid

naming conflicts in analyst-mediated immediate effect annotation (i.e., the same

concept being referred to by different names). Second, an ontology can help re-

solve abstraction conflicts, where effect descriptions are provided at different levels

of abstraction, and therefore in different vocabularies. Third, an ontology can pro-

vide the background knowledge base (KB) used for consistency checking of effect

accumulation. Such a background KB can be easily obtained by extraction from an

ontology those relations (rules) whose concept signatures are included in the con-

cept signature of the effect annotations provided (i.e., that refer precisely to those

concepts referred to in the effect annotations). Finally, an extension to the current

tool is planned that leverages ontology to generate suggestions to analysts in terms

of additional semantic effects that might be included in the annotation (for instance,

a causal rule a causes b that might be implicit in an ontology might be used to

suggest to an analyst that b be included in an annotation that contains a.

In [58], Guarino et.al. identify that “An ontology formally specifies a domain

structure under the limitation that its stakeholder understand the primitive terms

in the appropriate way”. Each of us has our own ontology that defines the way

we interpret the world. Interpretation may not correspond with intended meaning

causing confusion and misunderstanding. Knowledge Engineers craft an ontology

to formally specify the meaning of the terms used in a particular domain. Everyone

participating within that domain operates and communicates under those agreed

meanings. Participants are said to have a shared ontological commitment [58]. This

minimises confusion and facilitates cooperation.

An ontology defines the semantics but not the language. Although an ontology

is a formal definition there are varying degrees of formalism. A basic ontology

can simply be a definition of terms without any applied meaning whereas at the

other end of the scale we find ontologies based on logical languages like full first-

order logic (FOL). From the family of logical languages Description Logics are of

particular interest because of their decidability and because they underpin many

of the accepted standards for the development of the Semantic Web, covered later.

Decidability refers to whether a decision can be reached, i.e., a deductive closure of

reasoning. Tractability refers to how long a machine will take to arrive at a decision.

CHAPTER 2. BACKGROUND 20

While FOL supports a high degree of expressivity, in many cases theorem proving

with FOL can be intractable. Description Logics, on the other hand, guarantee

deductive closure of reasoning with efficiency [102].

2.6 Description Logics

In 1977, KL-ONE [24] emerged out of Ronald Brachman’s thesis [23] and is conside-

red to be the first description logic. KL-ONE was developed in response to the lack

of formal semantics in early semantic networks [143] and frame-based knowledge

representation [105]. Description logics (DL) are decidable fragments of first-order

logic [87] so they have a formal semantics. The expressiveness of description logics

and predicate logics has been analysed in [21]. Researchers in the DL space are inte-

rested in how machines can efficiently make decisions. In the real world, applications

need to make decisions within an efficient time frame, i.e., before the opportunity

for action has passed. However, what has really brought DL out of the realms of

academia and into mainstream popularity is its use in web-based applications [102].

Descriptions Logics are categorised based on the features they support. The

features supported by a DL are represented by a standardised set of scripted letters,

e.g. ALC. The basic Description Logic is referred to as ALC which stands for

“Attributive concept Language with Complements” [11], i.e., it is an Attributive

Language that includes the complements operator (¬). This basic language can be

extended in which the extension of ALC, that includes the transitive closure of roles

[10], is abbreviated to S. Extensions of different DL’s include:

H - supports role hierarchy

R - supports role box

O - supports nominals/singleton classes

I - supports inverse roles

N - supports number restrictions

Q - supports qualified number restrictions

F - supports functional number restrictions

A Description Logic knowledge base can be decomposed into two component secti-

ons, a TBox and an ABox (see Fig:2.5). The TBox defines the terminology used

within the domain of discourse, i.e., the concepts and roles (e.g. unary predicates in

FOL). The ABox contains assertions constructed from concepts and roles defined in

CHAPTER 2. BACKGROUND 21

Figure 2.5: The architecture of a knowledge representation system based on
Description Logics.[12]

the TBox (e.g. binary predicates in FOL). This breakdown of knowledge represen-

tation structurally underpins the framework described in this document. An Effect,

as used in this document (see Chapter 3.2), is an assertion and the terms used in

the construction of an Effect annotation must be defined within the TBox section

of the background knowledge base. When a business analyst annotates an Imme-

diate Effect to an activity they are free to use whatever terms they choose. This,

in a sense, provides the flexibility of annotating in a natural language. Letting the

business analyst choose their own words to describe an Effect removes the burden

of learning a new language. This flexibility means that the application program

used for semantic effect annotation must be able to contribute new terms into the

TBox of the background knowledge base. Integrating those new terms is beyond the

scope of a business analyst’s training and so it must fall within the responsibility of

knowledge engineers to perform those integration tasks.

The ABox of the background knowledge base will contain axioms that apply to

all processes in a domain. Each Effect Scenario in a process is a knowledge base

containing its own TBox and ABox. The terms defined in an Effect Scenario TBox

ultimately must exist in the background knowledge base if accumulation is to be

accurate. Accumulation is still possible even if the Effect Scenario terms do not

exist in the background knowledge base TBox but the results of accumulation will

not be reliable. Process models containing Effects that have not been integrated

with the background knowledge base are flagged until knowledge engineers have

integrated them. ABox is based on an open world semantics because in a real

world environment it cannot be assumed the the knowledge in the knowledge base

is complete.

CHAPTER 2. BACKGROUND 22

2.7 Knowledge Representation

The explicitly defined relationships or links in an ontology eliminate any ambiguity

surrounding a particular word. When a computer application processes textual

content, it can determine whether the terms used refer to the content it is seeking.

The terms used have a meaning which a machine can check by referring to an

ontology. However, an ontology is only part of a knowledge representation system.

The annotation of semantic effects to business process models is an act of do-

cumenting knowledge. An expert, being interviewed by a business analyst, relates

observed experience which is translated into a textual record and associated with a

model element. If the text is unstructured, e.g. a plain text document written in a

natural language, then machines cannot make sense of it never mind reason with it.

If the knowledge is encoded in a machine language then humans cannot understand

it without some type of interpreter. Before tackling the problem of reasoning with

semantic effect knowledge we must first solve the problem of how that knowledge

can be best represented both syntactically and semantically.

Research into Knowledge Representation (KR) is guided by five characteristic

properties [35]. First, a KR is fundamentally a surrogate or substitution for the

actual thing, i.e., the written word is a symbol used to represent the real world

thing. Second, a KR is an ontological commitment, i.e., The thing that a symbol

represents is dependent on the ontological commitment of the interpreter. Thus the

same symbol can represent different real world things to different interpreters. A

KR therefore establishes a fixed meaning to each word. All KR subscribers unani-

mously agree with the meanings. Third, a KR is a fragmentary theory of intelligent

reasoning. The initial insight that led to the selection of a symbol to represent a

thing is motivated by some act of intelligent reasoning. Typically, a symbol is only

representational of part of the overall intelligent reasoning that led to the insight

that motivated it. Fourth, a KR is a medium for efficient computation. Compu-

tational efficiency is of significant importance with regard to pragmatic application

throughout the business community. Fifth, a KR is a medium of human expression.

This final characteristic of a KR emphasises the importance of human-to-machine

and machine-to-human communications and has been a driving principle behind this

research.

This document refers to a background knowledge base with which Effect Scena-

rios (see chapter 3.4.1) must be consistent. The background knowledge base is part

of what is referred to in [12] as a Knowledge Representation System (KRS) (see

Fig:2.5). In [12], Baader et.al. depict a KRS as only contributing to application

programs. This document explores the idea of application programs contributing to

the KRS (see Fig:2.5) facilitating the evolution of a domain specific knowledge base.

CHAPTER 2. BACKGROUND 23

2.8 Entity-Relationship Model

The Entity-Relationship Model [30] proposed by Peter Chen in 1976 included a dia-

grammatic technique for representing database design. The diagrammatic technique

became popular because it could be intuitively understood by stakeholders with no

prior technical knowledge of database design. The Entity-Relationship Model is

based on the principle that the real world is made up of entities and relationships.

Entities are things that exist in the real world and relationships are a type of re-

ferencing system that interconnects and defines entities. Chen goes on to identify

the correlation between English language sentence structure and entity-relationship

diagrams [29] in which he proposes eleven rules of translation.

2.9 Resource Description Framework

For a global exchange of knowledge to occur it is critical that semantic effect anno-

tations comply with global standards. The Resource Description Framework (RDF)

was originally created [89] as a simple data model with a standardised syntax for

describing web related metadata, i.e., data about data. A resource within the ori-

ginal context of RDF refers to a Universal Resource Identifier (URI) that uniquely

identifies where a resource can be found. The W3C first published RDF 1.0 [79] as a

standard in 2004. It is often mistakenly thought of as an XML format but the RDF

abstract data model has been encoded in many different formats of which XML is

only one. The XML format is referred to as RDF/XML [94, 15]. The basic RDF

model consists of three elements:

Resources - concepts, objects, things that exist

Properties - attributes of resources or relationships to other resources

Statements - a resource, a property and an attribute value for that property or;

- a resource, a property and another resource if the property expresses a rela-

tionship.

The extensible nature of XML has allowed RDF to evolve beyond its original scope

where it is now commonly used to represent data. RDF Schema (RDFS) [59] extends

the basic RDF model allowing it to represent vocabularies. RDF works on similar

principles to the Entity Relationship Model. A sentence, written in English can be

broken down into three component parts, a subject, a predicate and an object. These

RDF statements are referred to as “triples”. In entity-relationship terms, the subject

and object are entities and the predicate is the relationship between them. Simple

sentences in a natural language can be decomposed into an RDF triple, e.g. subject(

CHAPTER 2. BACKGROUND 24

The ball), predicate(has the colour), object(red). The RDF data model is used

as a structured method for entering Effect data into semantic effect annotations.

Throughout this document, whenever reference is made to something being written

in RDF it refers to the structural nature of RDF (a triple) not RDF/XML format.

Further research [98, 20, 60] has shown how RDF/XML and RDFS can be ex-

tended to support knowledge representation. RDF has become a globally accepted

W3C standard for knowledge representation on the web. In the early 2000’s the

Ontology Inference Layer (OIL) [72], also referred to as the Ontology Interchange

Language, was proposed as an extension to RDFS [39, 26]. In 2002 Horrocks pro-

posed a combination of the DARPA Agent Markup Language (DAML) and OIL to

extend web markup languages, like RDF and RDFS, into a description logic. Effecti-

vely, RDF triples could be used to represent concepts defined in a description logic

TBox. In 2003 Horrocks goes on to propose the Web Ontology Language (OWL)[71]

which has now become another accepted W3C standard for the web.

2.10 The Web Ontology Language

The Web Ontology Language (OWL) [8] is a knowledge representation language.

There are three varieties of OWL: OWL Full, OWL-DL and OWL Lite. OWL Full,

like FOL, is so powerful that reasoning can be intractable making it inefficient for

real world applications like those employed on the web. However, OWL Full is an

extension of RDF which means that an RDF document is a legal OWL Full document

and vice versa. There has been research into using an FOL theorem prover with

OWL Full [147] but currently there has been no need for translating existing RDF

documents into OWL so OWL Full falls outside the scope of this research.

OWL-DL [103] is equivalent to the description logic SHOIN (D) [70] where D

indicates that some domain/datatypes have been integrated, e.g. boolean, integer,

float and double. It is a sublanguage of OWL Full and is commonly used on the

web because of its decidability and computational completeness, i.e., computations

in OWL-DL are guaranteed to finish within a finite time. Any document written

in OWL-DL is also a legal RDF document. However, not all RDF documents are

a legal OWL-DL or OWL Lite document. Mappings from RDF to OWL and vice

versa can be found in [118].

OWL Lite corresponds with the description logic SHIF(D) and was primarily

designed for a market requiring only simple classification of terms. The DL ex-

tensions SHIF indicate that OWL Lite supports role hierarchy, inverse roles and

functional number restrictions. It is a sublanguage of OWL-DL thus any OWL Lite

document is a legal OWL-DL document. Like OWL-DL it is decidable but it has

limited expressivity.

CHAPTER 2. BACKGROUND 25

The latest version, OWL2 [13, 117], corresponds with the description logic

SROIQ(D) meaning it supports the DL extensions role box, nominal/singleton

classes, inverse roles and quantified number restrictions with some domain/data-

types. As the OWL specification evolves we can expect further improvement in

expressivity while still maintaining decidability.

An OWL knowledge base consists of Classes (DL Concepts), Properties (DL

Roles), Individuals (Instances of Classes) and Data Values. There are two types of

properties, Data Properties and Object Properties. A Data Property can be thought

of as connecting an Individual with a Data Value (describing an attribute and its

value) whereas an Object Property would connect an Individual to another Individual

(a relationship). Each Individual is subsumed by a Class and Classes can subsume

other Classes. These subsumption hierarchies are the type of models generated by

the philosophical science of ontology.

The interconnection between FOL, DL, OWL, RDF and the English language

can be expressed as follows. A FOL or DL binary predicate assertion,

role(concept, concept),

would translate into an OWL statement as either

object Property(individual,individual) or

data property(individual, data value).

These translations relate back to the RDF triple breakdown of an English sentence

predicate(subject, object).

This fundamental idea serves as a structural underpinning for the framework des-

cribed in this document. One element of OWL that is used extensively in the

implementation of the ProcessSEER framework is Functional Properties. A functi-

onal property can only have one value which makes it ideal for updating the values

of Effects when reasoning about the outcomes of an activity. The tool, based on the

ProcessSEER framework, utilises the OWL API [68] to generate OWL ontologies.

2.11 Semantic Web Services

The term ‘Web Service’ refers to the service offered by an application running on

a web server. They are distinct from regular web applications first, because web

services can exist without any graphical interface for manipulating them and second,

because they can be controlled remotely. Web Service technology complies with

many different standards like SOAP, WSDL and WSBPEL [152]. In their most

basic form web services accept requests that may or may not contain data and

return data as a response.

A Web Service is an application that offers an Application Programming In-

terface (API) and is described by a ‘Web Services Description Language’ (WSDL)

CHAPTER 2. BACKGROUND 26

file [93]. That file usually resides on the web server where the Web Service applica-

tion is located. A WSDL file, among other things, describes what information the

Web Service requires as input and what information the Web Service will return as

output. WSDL files are written in Extensible Markup Language (XML) and are

therefore platform independent.

Another language associated with Web Services is the Web Services Business

Process Execution Language (WSBPEL) [14] also written in XML format. WSBPEL

is a scripting language used to coordinate Web Services and control how they in-

teract. It works like an instruction set for a WfMS except that it is not restricted

to in-house functionality potentially allowing WfMSs to communicate on a global

scale. The standard is specified by the Oasis group, a consortium of public and

private sector technology leaders, users and influencers involved in the development

of open standards for the global exchange of information. There are other formats

associated with Web Services but this thesis is only concerned with WSDL and

WSBPEL.

Web Services are advertised in searchable repositories and one of the key con-

cerns with this methodology is the ambiguity surrounding their description. Adding

semantic annotations to Web Service descriptions has become an attractive propo-

sition for overcoming this ambiguity, making discovery more precise. However, most

Web Services currently only function on a syntactic level and lack the framework

for semantic annotation [6].

Semantic Web Services (SWS) became a distinct research field in 2001 [97, 146,

4, 16] and has attracted a great deal of business interest but the implementation

of SWS is still in its infancy. Because of the extensible nature of XML, the WSDL

standard that describes a web service can be extended to include semantic anno-

tations. In November 2005 IBM and the University of Georgia submitted a white

paper to the World Wide Web Consortium (W3C) outlining a proposal for WSDL-S

[5], an extension of the current WSDL specification. The document describes four

fundamental semantic annotations of input, output, preconditions and effects for

the purpose of improving service discovery. Other semantic annotation languages

like Web Service Modelling Ontology (WSMO) [27, 84, 126] and Semantic Web On-

tology Language (OWL-S) [96, 84] offer much richer expressivity for describing web

services but they were regarded as being too revolutionary to be adopted by the

WSDL using community. All these languages contain the same four fundamental

annotations. These annotations are also necessary components for the automated

analysis of business process models. They offer a framework for machines to make

informed decisions about the services they wish to interact with. The potential

therefore exists for business analysts to directly affect the orchestration of Semantic

Web Services based on dynamic feedback from web service description files.

CHAPTER 2. BACKGROUND 27

WSDL-S has evolved into the W3C recommended standard Semantically An-

notated Web Services Description Language (SAWSDL) [129]. This new standard

extends WSDL to include semantic annotations. Web services can consequently be

composed using ontology reasoning rather than having the composition hard coded.

This will allow a web service to seek out its own collaborating web service and ne-

gotiate independently. Rules and conditions can be applied to a web service that

govern when and how it will enter into any transaction. As more web services utilise

the SAWSDL standard so will the prevalence of automated transactions increase.

A key component of this research was to identify a mapping path from ex-

pressions and terminology familiar in the business domain to the more technical

requirements of an application specification. XML is the key language underpin-

ning all these other standards. Models in BPMN can be translated into WSBPEL,

SAWSDL files can accept semantic effect annotations from a semantically annotated

BPMN model if those annotations conform with an XML based standard like RDF

and RDF effect annotations can be stored and reasoned with in an OWL ontology.

There is one additional piece to the puzzle and that is to provide the ability for a

web service to decide the type of web service it needs to transact with and that re-

quires it to evaluate the current conditions and choose an appropriate collaborating

service. This is different from one web service simply evaluating which of a selection

of similar web services will be the most appropriate. The web service choreography

may have to choose between a selection of completely different services so rather

than a fixed choreography in WSBPEL an individual web service has the freedom

to decide for itself where the execution path will lead. To do that involves Artificial

Intelligence (AI) planning.

2.12 Action Languages

There are two types of Action Languages, Action Description Languages used to

describe a transition system and Action Query Languages used to make assertions

about a transition system[49]. The research presented in this document is primarily

interested in Action Description Languages at this time. The Oxford Dictionary

defines a Language as:

A system of symbols and rules for writing programs or algorithms.

Expanding on this definition we define a Language as a formal set of symbols gover-

ned by a set of rules that determine how those symbols can be combined to infer

meaning. Under this definition an Action Description Language is a set of symbols,

representing actions, that are governed by a set of rules that determine how those

actions interact, and their consequences. Fundamental to the set of symbols is their

CHAPTER 2. BACKGROUND 28

underlying structure which Gelfond et al. [49] refer to as an Action Signature. An

Action Signature is a template that contains all the functions and data needed to

transform one state into another in a transition system. A state transition in its

simplest form can be represented as 〈s, A, s′〉 where s is the original state, A is an

action and s′ is the consequent state. An Action Description Language describes

how the action A transforms s into s′.
The Stanford Research Institute Problem Solver(STRIPS) [40] is an AI plan-

ning tool that was introduced in 1971 for reasoning about actions. The STRIPS

acronym has since been adopted to represent a formal language used to describe

how actions are evoked and how they affect an environment. An Action Description

for a STRIPS planner is a pair 〈P,X〉 where P and X are super sets of conditions.

The set P contains two sets {Pt, Pf} where Pt is the set of preconditions that must

be true and Pf is a set of preconditions that must be false for the action to execute.

The set X contains two sets {Xt,Xf} where Xt is a set of conditions that are made

true and Xf is a set of conditions that are made false as a consequence of the action

being executed.

The Action Description Language (ADL) [119] extends the STRIPS language

providing improved expressivity. An Action Description in ADL is a tuple 〈P,A,D,U〉
where P is the set of preconditions, A is a set of conditions to be added to the state

description, D is a set of conditions that must be deleted from the state description

and U is a set of clauses used to update the state description. ADL operates on an

open world assumption whereas STRIPS operates on a closed world assumption.

The Planning Domain Definition Language (PDDL) [101] has evolved from a

number of different AI planning languages of which ADL is one. The effort behind

the development of PDDL is motivated by an attempt to standardise planning lan-

guages. PDDL separates a model of a planning problem into a domain description

and a problem description making the problem easier to specify. The language em-

ploys the same information as other planning languages albeit in a different format.

What is evident from these Action Languages is that they all require data in the

form of actions, state descriptions, preconditions and effects. The functionality be-

hind how an AI planner processes these data is beyond the scope of this body of

research.

In this document, Action Description Languages are explored purely from a

supplier perspective, i.e., providing the data needed for an AI planner to reason

with and construct a plan from business process information. Providing the correct

data in the correct format to a planner offers the potential to dynamically generate

business process models. It is shown later in this document how the framework

for semantic effect annotation of business process models provides all the elements

necessary for an organisation to build a library of action descriptions that can be

CHAPTER 2. BACKGROUND 29

utilised by an AI planner which in turn could generate dynamic instruction sets for

a WfMS.

2.13 Possible Worlds Approach

The STRIPS approach to reasoning relies on the programmer including every pro-

positional statement about the world that must be changed when an action occurs.

The outcome is predefined and requires the programmer to know and record every

possible consequence. If a rule in the background knowledge base states that a par-

ticular combination of propositions infers another proposition then the additional

proposition will not be included in the consequent world description unless explicitly

included into a STRIPS add list. The more complex the world description, the more

onerous the task, of specifying add and delete lists for actions, becomes.

Ginsberg and Smith address this problem of inferred states with their Possible

Worlds Approach [54]. Inferring states can lead to unexpected results that render a

world description inconsistent. Ginsberg et al. overcome this problem by reviewing

consistent subsets of the inconsistent world description. Subsets that are considered

maximal (i.e., they represent a world closest to the original world with the minimum

number of changes) are treated as possible worlds. Using this approach, inference

rather than action can affect an outcome. The definitions provided in [54] are based

on a world description that contains all formulae about the world including the

rules governing it. These rules are referred to as protected sentences that cannot be

changed. An example of a protected sentence given by Ginsberg et al. is:

on(x, y) ∧ y 6= z → ¬on(x, z)

Translated, it states that an object x cannot be on two different things at the same

time. A consequent world must include these protected sentences. An action’s add

list is a set of formulae that constitute a partial description of a consequent world.

An action’s delete list is no longer required when using this approach. If the union

of the consequent world with the existing world is inconsistent then the maximal

subsets of the unioned worlds become the possible worlds that could follow from the

action. The maximal subsets must include all protected sentences and must include

all formulae from the consequent partial world.

Definition 2.13.0.1. Let S be an existing state description of the world such that

S = {s1, . . . , sn} where si ∈ S is a well formed formula. Let R be a set of inference

rules such that R ⊆ S. Let A be an action occurring in S. Let C be a partial

consequent state description of the action A such that C = {c1, . . . , cn} where ci ∈ C

is a well formed formula. Let W be a possible world that results from performing

CHAPTER 2. BACKGROUND 30

the action A in the existing world S. To qualify as a possible world W must satisfy

the following conditions:

1. W is consistent

2. C ⊆ W

3. R ∩ S ⊆ W

4. @W ′|W ⊂ W ′

The possible worlds approach is utilised in the ProcessSEER framework for

reasoning about actions and is henceforth referred to as Accumulation. A business

analyst need only annotate the partial consequent states to activities in a business

process model. The delete list mentioned in many AI planners is not necessary and

can be derived from the resulting possible worlds generated by a reasoning engine.

This allows the tool to answer the question, “What would be the result if the process

had executed up to this point?”

2.14 Clinical Process/Careflow Management

The notion of careflow management [115] has become the focus of considerable re-

search attention. It builds on the premise that process management principles and

techniques can deliver value in encoding (and coordinating execution via process

engines) of clinical guidelines. More generally, careflow management also addresses

the administrative aspects of health care, both from the perspective of health care

providers and patients [34]. Clinical procedures are performed by a variety of clini-

cians and treatments are often prescribed autonomously. Even with the abundance

of text-based documentation on medical procedure it can be difficult to identify

potential conflicts between treatments. Patient records may contain a summary of

existing and past treatments but lack certain details that could impact on future

or concurrent treatments if undetected. Having this text-based documentation does

not guarantee that it will be used whereas computer-based patient-specific remin-

ders that are integrated into the clinician’s work flow have proven to be far more

effective [144].

Careflow processes are often represented in a diagrammatical format that pro-

vides a visually intuitive representation of the activities required to treat a patient’s

condition. Although process modelling has been used extensively in the business

community it is a relatively new innovation within the health care industry. In [34]

Curry et al describe a tool that utilises Workflow Reference Models [67] to visu-

alise a patient’s journey through a Health Care Organisation (HCO). The models

CHAPTER 2. BACKGROUND 31

prove to be particularly useful for encouraging group communication within a HCO

and promoting ownership and responsibility among active participants involved in

the process. The models are particularly good for training purposes because they

visually translate much easier than a text document.

The integration of Careflow Management Systems (CMS) can greatly improve

a patient’s journey through the health care system. CMSs can be used in a variety

of ways, as control mechanisms to constrain the operations of health care workers

to predefined treatment protocols [33], as decision support mechanisms that assist

clinicians with prescribing treatment protocols [99] and as central repositories for

the comparison and analysis of different treatment protocols [128]. Of these three

only [128] addresses the need for internet compatibility so that stored information

may be accessed by any HCO. This is particularly important given that a patient’s

journey through the health care system will place them in the hands of many au-

tonomous HCOs. Internet access to other autonomous HCOs’ treatment protocols

would greatly assist clinicians with the prescription of their own treatments [9].

Clinical Decision Support Systems (CDSS) fall into six categories, ‘Alerts and

Reminders’, ‘Diagnostic Assistance’, ‘Therapy Critiquing and Planning’, ‘Prescri-

bing Decision Support Systems’, ‘Information Retrieval’ and ‘Image Recognition

and Interpretation’ [32]. Relative to this taxonomy, the research reported here cor-

responds most closely to ‘Prescribing Decision Support Systems’, and to a lesser

degree to ‘Alerts and Reminders’ and ‘Therapy Critiquing and Planning’.

2.15 Artifact-centric Business Process Models

Artifact-centric business process modelling (ACBPM)[73] focuses on the artifacts

that are affected by activities in a business process. Whereas planning notations

like PDDL have at their core, a structure for specifying an action and its effect on

the world, ACBPM focuses on a structure for specifying the artifacts and how they

change. Principally, the conditions specified in a planning action describe the states

achievable by artifacts in ACBPM. The difference lies in the way they are stored.

Artifact descriptions are associated with the action in a planning notation whereas

actions are associated with the artifact in ACBPM. In a very simplistic way these two

approaches to modelling change in the world, bear the same relationship to that of

an activity diagram and a state diagram in the Unified Modelling Language (UML).

A point of interest in this research is the difference between these two perspectives

and how that affects process modelling.

Cohn et al. [31] goes much deeper into the life-cycle of artifacts which gives

them a life of their own, independent to the actions performed on them. The data

in this case is related. The artifact-centric model uses the artifact as the container

CHAPTER 2. BACKGROUND 32

for state descriptions that only apply to that artifact. It also contains rules governing

allowable state descriptions and the order in which those state descriptions can be

applied. Although some of these rules may be imposed by humans, many will express

fundamental physical laws that apply to the artifact.

ACBPM is built on a four dimensional framework “BALSA”, Business Arti-

facts, Life-cycles, Services and Associations [73]. Business Artifacts translate into

concepts but the concept is only a label for a mini database of facts about the con-

cept. Life-cycles would be a part of each concept’s mini database that govern the

order in which state descriptions can occur. Services refer to business process acti-

vities and Associations connect Artifacts to Services. In this document, an effect

is regarded as a description of an Artifact and a Service is an activity. The act

of annotating an effect to an activity establishes an Association but the notion of

Life-cycles introduces an additional feature. Life-cycles denote an ordering of state

descriptions for a single artifact or class of artifacts [156]. Life-cycle constraints can

be used to question the observations of experts or the interpretations of business

analysts during the design phase of business processes thus improving the quality of

design.

2.16 Related Work

A lot of effort is currently being directed into semantic annotation for web service

or process discovery. A semantic annotation framework was developed to facilitate

the interchange of process models and their discovery [92]. Ontology is used in

this framework as a classification repository for the identification of processes or

subprocesses that satisfy the selection criteria. The tool specified in this document

will reduce the risk of modifying existing processes by alerting the analyst to the

consequences of design time decisions. We use ontology to define the vocabulary

used in the Effect annotations such that they can be translated into formal logic.

Our process differs from that described in [92] in that Effect annotations are not

simply used for term comparison but also for reasoning about process outcomes.

A framework is described in [66] that proposes using a Status and Action Ma-

nagement model (SAM) for generating process models to achieve a specified goal. A

SAM is referred to as a business object that closely resembles the artifacts described

in [73, 31]. The business object is the focal point to which state descriptions and

actions are linked. The method presumes that a fixed state description will always

result from a particular action when performed on a business object. This research

recognises that these fixed state descriptions (Immediate Effects) form only part

of the overall outcome of an action. In fact some Immediate Effects may actually

change when an action is performed on a business object under different circum-

CHAPTER 2. BACKGROUND 33

stances. In [66] the repository of business objects is searched to devise a plan for

reaching a goal, i.e., a process model. A plan is devised by assembling a sequence of

actions such that the effects of each action satisfy the preconditions of the following

action until an action is reached whose effects satisfy a goal condition. Hoffmann

et al.[66] propose the complete replacement of existing state descriptions by the Ef-

fects of the action on the business object whereas this research recognises that the

outcomes can be affected by the sequence of actions when Effects are allowed to

propagate. The ProcessSEER framework can reveal side-effects that may not have

been considered. The framework also utilises a business artifact repository but it is

not the sole source of reasoning.

In [142], a Generic Process Model (GPM) is proposed to encode and extend the

representation of processes with state and stability (i.e. goal) relevant information.

These notions of state and stability lead to a general notion of validity of process

models (primarily w.r.t. goal reachability). In [141], the GPM is used as a basis

for identifying the scope of changes that can be made to an existing process given

changes to GPM-related phenomena (e.g. goal change). Some of the techniques out-

lined in this paper, such as the accumulation procedure, help leverage partial and

symbolic state descriptions to perform goal and change relevant analysis. In the

SBPV approach [150], a scheme for annotating and propagating a restricted form

of axiomatic task descriptions is introduced for a restricted class of process models,

but differs in several key ways to this work. The approach presented in this docu-

ment provides a parsimonious extension to the modelling framework (the analyst’s

effort is only extended by requiring Immediate Effect specifications of tasks in the

BPMN model) and is driven by the need to identify the minimal amount of semantic

annotation required to meet the requirements of functions such as compliance mana-

gement, process change and life-cycle management, enterprise process architectures

etc. The SBPV approach, on the other hand, requires complete specifications of

both pre-conditions and post-conditions that are context-sensitive, thus placing a

somewhat onerous burden on the analyst (besides additional annotations that are

required for reachability analysis, which are not considered in this framework). The

machinery for contextualising context-independent task Effect specifications, provi-

ded by analysts, solves a harder problem, by permitting non-determinism in Effect

Scenarios. Consequently the ProcessSEER framework cannot provide polynomial-

time guarantees as the SBPV framework can. This is not considered to be a signi-

ficant impediment since design, annotation and propagation tasks do not normally

involve real-time constraints, and afford the luxury of slower off-line computation.

Evaluation shows that the ProcessSEER framework is still able to meet reasonable

processing-time bounds. In [55], similar process annotation techniques are used for

compliance checking.

CHAPTER 2. BACKGROUND 34

Many clinicians are hesitant to adopt Workflow Management Systems (WfMS)

because of the prescribed approach to performing activities. The user must follow

the procedure to the letter. In a clinical environment this is rarely the case. Proce-

dures need to be modified continuously to cater to the ever changing circumstances.

A WfMS that offers no guidance until the prescribed task has been completed beco-

mes useless when a clinician deviates from the prescribed path of operation. Mulyar

et al. seek to overcome this problem with their CIGDec language [107] that provides

flexibility in the specification of workflow models. The flexibility allows a WfMS to

recover from deviant behaviour by the user. Guidance can still be offered to the user

through constraints applied to certain activities, e.g., this activity must follow this

activity. If no constraints exist then the clinician is free to choose from a selection

of activities.

The CIGDec approach relies on constraints to provide limited control flow. The

constraints are based on pre- and post- conditions. In the examples provided, those

conditions refer to activities, e.g., a blood test cannot be enacted until the patient has

consulted with a doctor. The WfMS is still functioning on an imperative framework.

Decisions are based on actions and guidance is offered on the dependencies of actions

to each other. The activity dependencies have no connection to patient related data.

However, the ability to specify whether a sequence flow is a hard or soft constraint

has definite application to this research. This capability would assist in the selection

of next activities to perform. The BPMN 2.0.2 Specification [111] does not cater

for these hard and soft constraints. All sequence flows can either be interpreted as

hard constraints, leading to an inflexible WfMS, or all soft constraints, leading to a

completely flexible WfMS that simply presents the user with a set of activities from

which to select.

The ProcessSEER framework offers a completely flexible approach but provides

guidance about activity selection based on patient state descriptions. The back end

rules govern state transitions not activity transitions. Activities are selected based

on desired outcomes, not on a rule governing the prescribed order of execution.

There is scope for applying both types of rules in a WfMS but the potential exists

for conflicts to occur between the rule types. If a patient condition dictates that a

particular activity should be enacted and an execution rule dictates that another

activity must be enacted immediately given that some activity has just been com-

pleted then the two prescribed activities could potentially be in conflict. Combining

both sets of rules could be a challenge.

Of particular interest for this research is the patient state step in GLIF3 [22]

that allows the state of a patient to be encoded. The encoding then affects how the

WfMS compensates for deviant behaviour. The WfMS must be able to interpret

the encoded state which therefore must comply with the terminological rules of a

CHAPTER 2. BACKGROUND 35

back end ontology. The ProcessSEER framework provides this functionality and

the prototype tool complies with the RDF standard. The potential exists for the

data generated by the ProcessSEER framework to be integrated with computer-

interpretable guideline languages that could act as a flexible instruction set for a

completely dynamic WfMS that could assemble workflow activities in real time.

Although the details behind the instruction sets governing a WfMS are beyond the

scope of this research, the work herein has a definite application with regard to

languages that govern WfMS operation.

2.17 Summary

This chapter discusses the different technologies needed to support a framework for

semantic effect annotation of business process models. The diverse ways in which

the ProcessSEER framework can be utilised are also explored, e.g. semantic web

services and automated planning. Clinical use cases in careflow management are

also discussed. The chapter concludes with a review of similar work.

Chapter 3

The ProcessSEER Framework

ProcessSEER stands for Process Semantic Effect Evaluation and Reasoning. The

framework provides a means by which a business analyst can annotate business pro-

cess models with semantic effects that support automated reasoning and evaluation

of model design. Before embarking upon a definition of a framework for semantic

effect annotation of business process models it is necessary to clearly understand the

two fundamental elements in a business process that contribute to this framework,

actions and effects.

3.1 What is an Action?

The Oxford Dictionary defines an action as “A thing done; an act” or “A gesture

or movement”. As a noun, an action becomes a thing, a concept that is objectified

in our minds. In reality, the only thing about an action that is objectifiable is its

name, the words used to describe the action. When we refer to a thing performing an

action we are referring to a sequence of instances involving the thing being observed.

This can be easily seen when we take video footage of a thing performing an action.

The result is a series of instances or frames (see Fig:3.1) in which the observer (the

camera) captures the position of the thing at a particular point in time. Using

time-lapse photography we could capture a different series of instances. Some may

match instances in the video footage while others may be unique. This is due

to the different capture rates. We could capture one instance of a thing prior to it

performing an action and another instance upon completion of the action and declare

that in between these two instances an action occurred. In this case the action is

the gap between two instances (frames). However, when we name an action we

are typically referring to a sequence of observable instances. The action name is

chosen to represent the sequence of instances not the gap between instances. The

sequence is important, thus an action is representative of order. We therefore have

two ways in which to consider an action, as a gap between states or as a sequence

36

CHAPTER 3. THE PROCESSSEER FRAMEWORK 37

Figure 3.1: A film strip showing individual frames which are snapshots of the
world from a specific point of view.

Figure 3.2: The two basic business process models contain text annotations
indicating values assigned to the events and tasks. Events are indicated by circles,
and tasks by boxes with rounded corners.

of states. Analysis of the sequences of states is commonly used in sport to improve

performance and minimise injury. In business an action is more commonly viewed

as the gap between one state and another, i.e., given the current state, an action

is performed in order to achieve a desired state or in other words have a desired

effect. We can also consider an action from a mathematical perspective. The two

process models in 3.2 show the similarity between a process and an equation. It can

clearly be seen in the bottom diagram that the activity is equivalent to a function,

e.g. −1(4) = 3. The −1 function has a domain of 4 and a range of 3. The state

descriptions (4 and 3) represent the pre and post conditions respectively. In this

particular equation the −1 function accepts only integers and produces integers as

an output.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 38

An action written in an Action Language like STRIPS [40], ADL [119], PDDL

[101] or OCL [149, 113] contains information about the existing state of the world,

the consequent state of the world and an instruction set that controls the changes

between the two states. Consider a state transition defined as 〈s, A, s′〉 where s is

the original state of the world, A is an action performed within that environment

and s′ is the consequent state of the world after the action has been performed. The

action A in this case can similarly be considered as a function A(s) = s′ where s

is the domain and s′ is the range of the function. Both s and s′ are sets of literals

whose format will be discussed later.

The action A can also be viewed as a tuple (P, A, +L, -L) where P represents the

preconditions, A is the action label, +L is the add list (containing all propositional

statements to be added to s) and −L is the delete list (containing all propositional

statements to be deleted from s). The action label is simply an identifier. Data

that was previously accessed internally with A(s) is now passed as parameters to

the function A(s, P,+L,−L) = s′.
Artifact-centric process modelling [73] views actions (services) as transformati-

ons to a specific artifact. The artifact is the container for all the state descriptions

and instruction sets for performing the transformations. Life-cycles are artifact

specific rules that define sequential transformations of the artifact and relate those

transformations to actions. An actionable function in artifact-centric modelling may

look like a(si, A) = s′i where a is an artifact, si ∈ s is a description of an existing

state of the artifact, A is the action and s′i is the consequent state of the artifact.

Life-cycle rules contained within the artifact along with the corresponding action

dictate s′. Life-cycle rules pertaining to an artifact are changeable within the context

of a process. Their applicability is governed by time and state descriptions.

In a BPMN process model an action is a textual description, inside a round

cornered box (see Fig:3.2). An action can also be an event, represented by a circular

icon. Actions are either performed by an agent or are enacted upon an agent. The

description serves as a label to identify the activity. This label can also be used as an

instruction but to do so imposes certain requirements on how the label is composed.

An instruction must be an imperative sentence yet it was found that even within

the BPMN documentation tasks were sometimes written as declarative sentences.

These findings about task label composition are discussed later in chapter 6.

At a very basic level an action can be nothing more than an edge connecting

two nodes in a directed graph. In all these representations of actions we find that

an action, whether a function or a parameter, is nothing more than a label used to

symbolise change. The label, whether it be a single word like “move” or a complete

sentence like “Hit the ball.” is a symbol that has been chosen to represent an

observed change in the world. An Action Language seeks to take those labels and

CHAPTER 3. THE PROCESSSEER FRAMEWORK 39

translate them into actionable and decidable code that machines can utilise. An

action is therefore defined as a label in the form of an imperative sentence that

symbolises the transformation of one state into another.

Note that an action is not considered to be the thing that performs the transfor-

mation. The imperative sentence is an instruction to an agent or actor to perform

the transformation. Under this definition an action does nothing as the name would

imply. An action is nothing more than a symbol to represent change. Throughout

this document the words action or activity are used as generic terms to represent a

BPMN task or event.

3.2 What is an Effect?

If we are to develop a framework for semantic effect annotation of business process

models then we need to be clear about what is meant by the term ‘Effect’. We asked

a group of people, “What would be the effect of them chopping down a tree?” The

answers varied but essentially each one described the effect as “the tree falls down”.

It is very common to think of effects in this way, I chop down a tree and the effect

is that the tree falls down. In this case we are thinking of an effect as an action

that immediately follows another action. Perhaps it is because we are thinking of

the action performed by the tree rather than being performed by us that we regard

the action of the tree as an effect of our own action.

We can also consider the effect of an action as being the overall effect on many

different things, as with the damage a falling tree causes, or we can think of an effect

as being in relation to only a single thing as with the tree. The word “thing” is used

throughout this document to refer to either an object or a concept. In this case an

effect, being a state description, can consist of just a single sentence or a collection

of sentences such as a paragraph or even an entire document of text depending on

the number of things being described. Given that an agent can also effect change

in many things (“effect” used as a verb) illustrates the ambiguity surrounding the

word “effect”. To avoid this ambiguity the meaning of the word “effect” is further

refined to only include a single sentence describing the state of a single thing that

has changed as a consequence of some action.

The Oxford English Dictionary defines the word “consequence” as meaning “a

result or effect” so we could also consider the tree falling down as a consequence

of our chopping. The Merriam-Webster Dictionary defines “consequence” as “so-

mething that happens as a result of a particular action or set of conditions”. The

consequence in this case is something that happens indicating an action that sequen-

tially follows another action or set of conditions. The fact that this consequential

action is defined as a result qualifies it as an effect. According to the Cambridge

CHAPTER 3. THE PROCESSSEER FRAMEWORK 40

Figure 3.3: A basic BPMN model of two rugby players kicking a ball. (version
1)

English Dictionary the prefix “con” means “with” or “together”. The word “con-

sequence” would therefore mean “in sequence with”, i.e. an action that follows

sequentially after another action. The Merriam-Webster Dictionary defines “effect”

as “a change that results when something is done or happens: an event, condition, or

state of affairs that is produced by a cause.” In all these definitions it can be clearly

seen that an effect can be a statement describing either a static or dynamic state

provided that the said state is the result of a particular action or set of conditions.

The following examples explore how dynamic Effects can be represented in BPMN.

Using an incident from a game of rugby as an example we observe that Player

1 kicks the ball to Player 2 and Player 2 catches the ball. If we were to model this

using BPMN it would look similar to Fig.3.3. Now if we think about what happens

as a consequence of the first activity, i.e., Player 1 Kicks the ball to Player 2, we

could be forgiven for thinking that ‘The ball travels through the air toward Player 2’

is the effect of this activity, but let’s rethink this in the context of a BPMN model.

A model represents actors as swimlanes, ‘Player 1’ and ‘Player 2’, and actions as

activities or events, ‘Kick ball to Player 2’ and ‘Catch Ball’. These are standardised

symbols of the notation. The important thing to recognise is that actions in BPMN

have clearly defined symbols. Now when we think about the statement, ‘The ball

travels through the air towards Player 2’, we can see that it describes an action, an

action of the ball. We could model this action as an event but then we are faced with

the challenge of which swimlane to place the event since it is an event that happens

to both Player 1 and Player 2 (see Figs.3.4 and 3.5). An alternative solution would

be to treat the ball as an actor. Although not an instigator of activity, a ball still

qualifies as an actor within the BPMN syntax. It can therefore be represented as

a swimlane in which its actions are represented as activities (see Fig.3.6). We have

made the claim that BPMN has no representation for the effects of activities yet

clearly here we can see that an effect can be represented using the existing notation.

The problem lies in the ambiguity surrounding the word, ‘effect’. Consider the

following alternative effect descriptions: “The ball is in the air”; “The ball is in the

CHAPTER 3. THE PROCESSSEER FRAMEWORK 41

Figure 3.4: A basic BPMN model of two rugby players kicking a ball. (version
2)

Figure 3.5: A basic BPMN model of two rugby players kicking a ball. (version
3)

Figure 3.6: A basic BPMN model of two rugby players kicking a ball. (version
4)

CHAPTER 3. THE PROCESSSEER FRAMEWORK 42

hands of Player 2”. In both these statements we are describing the state of the ball

rather than the action it is undergoing. The thing that is missing from BPMN is

the ability to represent the state of things and how they change as a consequence of

actions. Thus, when we refer to the effect of an activity in a BPMN model we are

referring to a state description of the world immediately following that activity. The

state description can be abstract as in “the players are in their starting positions”

or specific as in “Player 2 is in the Wing position” and “Player 1 is in the Fullback

position” etc.

A dynamic state is one that is changing and implies motion or action. A sentence

used to describe a dynamic state is an abstract description of a sequence of static

states. If we consider the tree that is falling down and we film that dynamic state,

we would get a sequence of individual snapshots (frames - static states). The effect,

”The tree falls down”, is a summary of that sequence of static state descriptions

which for all intents and purposes is a far more efficient method of communication

than to describe each static state in sequence. This idea follows from the previous

section “What is an Action?”.

The Business Process Modelling Notation (BPMN) provides task and event sym-

bols for representing actions (motion sequences). A BPMN model could represent

the effect of the tree falling down as a sequential activity occurring in a swimlane re-

presenting the tree. The preceding activity, “chop down tree”, would be positioned

in a separate swimlane representing the person doing the chopping. If the intention

is to capture effects that include dynamic state descriptions then the ProcessSEER

effect annotation framework will overlap with the current BPMN framework. The

purpose of effect annotation is to explicitly capture information that would other-

wise be implicitly represented in BPMN. To achieve this, effect statements must be

limited to static state descriptions.

While we may not be interested in every static state that occurs during a motion

sequence, we are interested in the static states immediately prior to and following

that sequence. These changes in state are referred to as state transitions [49]. Each

state transition contains an existing original state description and a consequent state

description and refers to how the state of the world changes as a consequence of some

action. The consequent state description is often referred to as the effects of an

action. Note the deliberate use of the plural, effects. A state description is therefore

a collection of one or more declarative sentences describing the static states of one or

more things and by definition, an effect is one of those declarative sentences within

a state description. Effect sentences may each describe different things or they may

describe different aspects of the same thing. A sentence describing the state of a

single thing can either be describing an attribute of that thing or its relationship

to some other thing. Thus a state description of a single thing can contain many

CHAPTER 3. THE PROCESSSEER FRAMEWORK 43

declarative sentences describing its different attributes and its different relationships

to other things.

A single declarative sentence describing the state of a thing is still not a refined

enough definition to be workable. A single sentence can contain descriptions of one

or more attributes and or relationships between things, e.g. the water is boiling in

the pot on top of the stove. Such a declarative sentence can be broken down into

three separate sentences:

1. The water is boiling.

2. The water is in the pot.

3. The pot is on top of the stove.

Sentence 1 describes an attribute of the water while sentences 2 and 3 describe

relationships between the water with the pot and the pot with the stove respectively.

An effect is therefore differentiated from a declarative sentence by constraining it to

only describe a single attribute of a thing or a single relationship between one thing

and another. Breaking down each of these sentences into their component parts,

subject, predicate and object, reveals:

1. The subject is always the thing being described.

2. The predicate is either an attribute or a relationship.

3. The object can differ depending on whether the sentence is describing an

attribute or a relationship. A sentence describing a relationship will always

have another thing as its object but the object of a sentence describing an

attribute can be either a value or another thing. For example, “The ball has

the colour, red” has a subject, “The ball”, a predicate, “has the colour” and an

object, “red”. The colour “red” is a concept not a value whereas the sentence

“The ball has a diameter in centimetres of 15” uses the value “15” as its object.

Decomposing a sentence into its component parts provides a framework for the ma-

nual annotation of effects. However, those component parts can contain different

types of information. This differentiation is explored further in the section on Ma-

nual Annotation but for now, a sentence describing an effect can be translated into

a binary predicate statement in the following forms:

• Attribute(Subject, V alue)

• Attribute(Subject, Object)

• Relationship(Subject, Object)

CHAPTER 3. THE PROCESSSEER FRAMEWORK 44

Rule 11 in [29] states:

“a sentence in English corresponds to one or more entity types connected

by a relationship type, in which each entity type can be decomposed (recur-

sively) into low-level entity types interconnected by relationship types”.

The premise behind this rule is that sentences can be decomposed into clauses which

can be further decomposed into subclauses and the corresponding entity types can be

decomposed into, what Chen refers to as, low-level entity types with interconnecting

relationships. Sentences that would otherwise be represented by n-ary predicates can

therefore be decomposed into a conjunction of binary predicates.

The three Effect binary predicate examples above consist of five component parts:

• Subjects

• Objects

• V alues

• Attributes

• Relationships

These five categories can be further reduced into:

• Concepts and

• Relations (roles in FOL)

Under this categorisation Concepts subsume Subjects, Objects and V alues and,

Relations subsume Attributes and Relationships. An Effect is therefore defined as

a single sentence that describes the static state, of a relationship or an attribute, of

some thing that has changed as a consequence of some action.

An Effect is either a positive binary predicate statement

Relation(Concept1, Concept2)

or a negative binary predicate statement

¬Relation(Concept1, Concept2)

where Relation is the predicate of the sentence, Concept1 is the subject of the

sentence and Concept2 is the object of the sentence. The positive and negative

versions can be interpreted respectively as the Effect holds or does not hold in the

current state description. In this regard an Effect is an ontological assertion.

This basic syntactic structure, Relation(Concept1, Concept2), underpins all Ef-

fect annotations referred to in this document. Effects are annotated to BPMN tasks

and events and grouped into what is referred to as an Effect Scenario (see 3.4.1).

CHAPTER 3. THE PROCESSSEER FRAMEWORK 45

3.3 What is a Condition?

Dictionary definitions describe an effect as the result of an action or set of conditions.

Again, there is ambiguity surrounding the word “Condition”. The difference between

an Effect and a Condition is semantic rather than syntactic. The difference lies in

how the statements are interpreted. An Effect is a statement of fact whereas a

Condition, in the context of this research, is a query used to test for the existence of

Effects. Gelfond and Lifschitz [49] refer to Conditions, and specifically preconditions,

as fluents, variables to which no truth value has been assigned whereas Effects are

literals, having been assigned values of true or false. A condition can be assigned

the value true or false under the notion of it being a fluent. However, within the

context of this research, a Condition specifies its value by being represented as a

positive or negative literal. A Condition is therefore defined as a single sentence

that describes the static state, of a relationship or an attribute, of some thing and

indicates that the sentence must exist in the current state description. A Condition

is either a positive binary predicate statement

Relation(Concept1, Concept2)

or a negated binary predicate statement

¬Relation(Concept1, Concept2)

where Relation is the predicate of the sentence, Concept1 is the subject of the

sentence and Concept2 is the object of the sentence. The positive and negative

versions can be interpreted respectively as the Condition must hold or must not

hold in the current state description. In practice this translates into whether the

corresponding Effect statement exists in the current state description. A statement

that is missing from the current state description does not qualify as satisfying a

negated Condition. A negated binary predicate statement specified by the Condition

must explicitly exist in the current state description to satisfy the requirements of

the Condition.

Within the BPMN syntax, Effects are annotated to tasks and events while

Conditions are annotated to the outgoing edges of exclusive and inclusive gateway

splits. Throughout this document Effects and Conditions are referred to as binary

predicates. They are the base elements of the semantic effect annotation framework.

Preconditions

The Immediate Effects of an activity are indicative of the observed changes in the

state of the world as a consequence of the activity. As such, an Immediate Effect is

an assertion of fact that automatically over-rides any previously described conflicting

state descriptions. When considering the effects of an activity, a business analyst

must also consider the preconditions of the following activity. Do the Immediate

CHAPTER 3. THE PROCESSSEER FRAMEWORK 46

Effects of the current activity satisfy the requirements of the next activity? This

may not always be the case. An Immediate Effect Scenario is only a partial state

description that captures only those things that change as a consequence of the

action. Conditions may already exist that were established prior to the current

activity and providing the Immediate Effects of the current activity do not over-ride

them then they will remain in effect for the next activity.

This establishes a previous Cumulative Effect Scenario as a legitimate checklist

against which an activity can determine whether its execution requirements have

been met. Much the same as an Effect can double as a gateway Condition (structu-

rally they are identical) so too can an Effect be utilised as a precondition. This idea

corresponds with the Petri net concept of Tokens. When a Token (Immediate Effect)

is generated by a Transition it becomes the precondition for the next Transition.

The Cumulative Effect Scenario may contain extraneous Effects that are not

absolutely necessary for execution of the next activity but that is the nature of

preconditions anyway as identified in the field of AI as the “Qualification Problem”.

The Qualification Problem recognises the impossibility of listing all the preconditions

necessary for an action to achieve its intended effects. The important thing to note

is that a Cumulative Effect Scenario, even though only a partial state description,

is saying, “This is the state of the world prior to the execution of the next activity”.

Every Effect statement therefore becomes a check point. If an Effect is missing

or is different from what is expected then this is enough reason to question the

continuation of process execution.

If Cumulative Effect Scenarios are treated as pre-conditional statements then

multiple Effect Scenarios introduce an interesting process design check point. Gi-

ven two alternative Cumulative Effect Scenarios, do both describe a world that is

necessary for the next activity to execute? Both scenarios may very well describe

states of the world in which the next activity can successfully execute which means

that the Effects they share in common are the important preconditions necessary

for execution. Alternatively, if one of the Cumulative Effect Scenarios describes a

world that is not conducive to process execution then it indicates to the business

analyst that a gateway is required in the design.

It is the business analyst’s responsibility to make sure that the preconditions

of each activity are met but rather than double the work required by mandating

precondition annotations, they need only check that the necessary preconditions

exist in the Cumulative Effect Scenario. If the preconditions do not exist then

additional activities may need to be introduced that have the required Immediate

Effects to provide those needed conditions.

If a business analyst is required to annotate preconditions to an activity then

it is assumed that they know what those preconditions are. If they know what

CHAPTER 3. THE PROCESSSEER FRAMEWORK 47

the preconditions are then they can design tasks that will generate the required

Effects necessary for the execution of the next task. The accumulation process

will determine whether the required state descriptions will be in effect prior to the

commencement of the next task.

The next question is whether it is necessary to define the state of everything?

Can we use a closed world assumption for each process? It makes sense that we

can because of the focused nature of a business process. It is only concerned with

the objects and activities involved in the process. The same qualification problem

arises when we consider exception handling in process models. We can never define

enough exceptions to cover all contingencies. To do so would render the process

model unreadable. This raises another interesting issue with regard to what we are

trying to capture in a process model. In general it would appear that a process

model is meant to describe the process by which a particular goal can be achieved

given that no unexpected outside interference is encountered. Once we begin to

cover the possibility of outside interference we run into the qualification problem

again.

3.4 Scenarios

An observer’s focus of attention is commonly drawn to state transitions in the obser-

vable environment being the consequences of actions performed in that environment.

The state of everything else that does not change state, does not capture the obser-

ver’s attention and thus is not recorded. A state description of effects will, in the

majority of cases, be incomplete with regard to the overall environment. The focus

of the observer’s attention will limit the description to only things of interest while

ignoring irrelevant things or it will describe only a limited number of attributes of

a thing or its relationships to other things. When we observe the effects of some

action we are selectively identifying the things that change while ignoring the things

that are not of interest. For this reason, the effects described by a domain expert

will only ever represent a partial state description within the domain of discourse.

These partial state descriptions contain either one or many effects.

3.4.1 Effect Scenarios

State descriptions, in general, can contain one or many statements. They can be

partial or complete. The statements used to describe an Effect are no different to

those used to describe a Condition and are no different to those used to describe an

observed state. What differentiates an Effect from an observed state description is

its association with an action. Remove that association and the Effect becomes a

CHAPTER 3. THE PROCESSSEER FRAMEWORK 48

state description even though only partial. A state description may refer to a thing

that has remained unchanged by an action. Recording these static states is referred

to, in AI, as the frame problem [125] which inflates the amount of data, needed to

accurately describe a state, thus increasing the computational cost of calculating

state changes. For this reason an Effect Scenario is only a partial state description

containing only descriptions of things that have changed as a consequence of some

action or actions. Effect Scenarios are either annotated to activities in a BPMN

model or are generated by an accumulation function, discussed in the Accumulation

section 3.6. A state description containing only Effects is referred to as an Effect

Scenario. Effect Scenario is a generic term used to describe a set of Effects. There

are two types of Effect Scenarios, immediate (see 3.4.3) and cumulative (see 3.4.4).

Definition 3.4.1.1. Effect Scenario

An Effect Scenario is a set of Effects that can be associated with one or more acti-

ons. In this regard an Effect Scenario is a generic term for any collection of Effects

where each Effect may or may not be associated with an immediate action perfor-

med in the current state. In other words an Effect Scenario may contain Effects

from actions that have previously occurred.

Let 〈T1, T2〉 be a sequence of two actions. Let ES be an Effect Scenario such that

ES contains known Effects that exist after the execution of T2. Let (e, Tj)i be an

Effect such that e is associated with the action Tj and i is an index in ES. An Effect

Scenario can therefore be represented as a set {(e, Tj)1, (e, Tj)2, . . . , (e, Tj)n} where

j = 1 or j = 2.

An Effect Scenario may also be referred to as a conjunction of Effects such that

ES = ((e, Tj)1 ∧ (e, Tj)2 ∧ . . . ∧ (e, Tj)n) where j = 1 or j = 2.

The Semantic Effect Annotation Framework utilises a background knowledge base

(KBR), the specifics of which are discussed in the chapter 6. All Effects within

an Effect Scenario must be consistent with the KBR, i.e., no Effect can contradict

directly or indirectly any other Effect within the same Effect Scenario such that

ES ∪KBR is consistent.

This definition of an Effect Scenario is purely theoretical. When implemented,

an Effect Scenario is much more complex containing instruction sets similar to those

used in Action Languages for controlling change. The definition of an Effect Scenario

is revised in chapter 6.

3.4.2 Condition Scenarios

When a person makes a decision to take a particular course of action then the

world changes as a consequence of that decision. That means that an activity can

CHAPTER 3. THE PROCESSSEER FRAMEWORK 49

generate alternate state descriptions (Effect Scenarios) depending on the decision.

For example, an activity, “Flip a coin”, would generate two state descriptions, one in

which the coin displayed heads facing up and the other in which the coin displayed

tails facing up. An activity of this type may be followed by a decision gateway

that splits the workflow. If the outcome of the coin was heads then workflow would

proceed in one direction and if tails it would proceed in the other direction.

A sequence flow is a directed line that connects elements in a BPMN model. It

indicates the sequence in which activities are executed in a process. It can also be

referred to as a path, an edge, a sequence edge or a branch. A sequence flow connects

the “Flip a coin” activity to an exclusive gateway split which splits the workflow

into two outgoing edges. The semantics of a BPMN exclusive gateway split indicate

that it controls along which of these outgoing edges the workflow will proceed. This

would indicate that the exclusive gateway split generates a different Effect Scenario

for each outgoing branch. If a decision gateway is treated as an action that generates

alternative Effect Scenarios then it becomes difficult to specify which Effect Scenario

applies to which outgoing edge. It could be argued that a decision does nothing and

thus has no effect on the physical world.

The following method involves annotating alternate Effect Scenarios to the “Flip

a coin” activity and Condition Scenarios to the outgoing edges of the exclusive ga-

teway split. The alternate Effect Scenarios pass through the exclusive gateway split

and are duplicated for each outgoing edge, i.e., two Effect Scenarios are passed along

each branch, one containing the “Heads” Effect and the other containing the “Tails”

Effect. The Condition Scenario on one branch will contain the “Heads” Condition

and the Condition Scenario on the other branch will contain the “Tails” Condition.

Only the Effect Scenario containing the “Heads” Effect will be propagated along

the branch with the “Heads” Condition Scenario and vice versa for the branch with

the “Tails” Condition Scenario.

Definition 3.4.2.1. Condition Scenario

A state description containing only Conditions is referred to as a Condition Scenario.

A Condition Scenario is a set of Conditions that represent a partial state description.

A Condition Scenario dictates which Effect Scenarios are passed along a sequence

flow to the next activity. Only Effect Scenarios that contain every Condition in

a Condition Scenario qualify as valid descriptions of the state of the world under

those conditions.

Let CS be a Condition Scenario. Let ci be a Condition where i is an index in CS

such that CS = {c1, c2, . . . , cn}
A Condition Scenario may also be referred to as a conjunction of Conditions

(c1 ∧ c2 ∧ . . . ∧ cn)

All Conditions within a Condition Scenario must be consistent with a background

CHAPTER 3. THE PROCESSSEER FRAMEWORK 50

knowledge base KBR, i.e., no Condition can contradict directly or indirectly any

other Condition within the same Condition Scenario.

CS ∪KBR is consistent.

The difference between Effect Scenarios and Condition Scenarios is the same as the

difference between Effects and Conditions. Syntactically they are identical but they

differ in their semantics. A Condition Scenario is used to test an Effect Scenario.

An Effect Scenario will only satisfy a Condition Scenario iff all Conditions in the

Condition Scenario exist in the Effect Scenario. Let ES be a Effect Scenario. We

say that ES satisfies CS iff ES ` CS

Condition Scenarios are annotated to the outgoing edges of decision gateways. Each

outgoing edge will contain at most one Condition Scenario.

3.4.3 Immediate Effect Scenario

Before discussing an Immediate Effect Scenario an Immediate Effect must first be

defined.

Definition 3.4.3.1. Immediate Effect

Let T1 be an activity in a BPMN model. Let e be an Effect. We say that e is an

Immediate Effect iff e is the direct consequence of T1 and that e has been annotated

to T1. A BPMN activity can have zero to many Immediate Effects annotated to it.

Immediate Effects are the business analyst’s access window into the worlds cre-

ated by a business process model. A business analyst consults with an expert about

an activity, performed by the expert, then annotates the Immediate Effects, descri-

bed by the expert, to the activity in the BPMN model. These annotated Immediate

Effects are grouped into an Immediate Effect Scenario. An Immediate Effect Sce-

nario is a partial state description reflecting only things that have changed as a

consequence of the activity in question. They do not describe any state that existed

prior to the activity.

An Immediate Effect Scenario is a consistent set of Immediate Effects corre-

sponding to an observed state description that is a direct consequence of an action.

The word “observed” is used to emphasise that the state description is incomplete

(partial) and describes only the things of interest to the observer. To qualify as

an Immediate Effect Scenario all Immediate Effects within the set must have been

added to the set manually and be associated directly with the task or event to which

they have been annotated. This differentiates an Immediate Effect Scenario from a

Cumulative Effect Scenario (see 3.4.4).

In many cases the consequences of an activity are non-deterministic, e.g. the

activity “Flip a coin” described in 3.4.2 can have two Immediate Effect Scenarios,

the coin lands with either heads or tails facing up. Each activity in a BPMN model

CHAPTER 3. THE PROCESSSEER FRAMEWORK 51

may have multiple disjoint Immediate Effect Scenarios annotated to it, each being

a unique observed state description.

Each BPMN activity will contain zero to many Immediate Effect Scenarios. Im-

mediate Effect Scenarios must comply with the same rules as all Effect Scenarios.

Definition 3.4.3.2. Immediate Effect Scenario

Let KBR be a background knowledge base. Let IES be an Immediate Effect Sce-

nario such that IES is a set of Immediate Effects. Let iei ∈ IES be an Immediate

Effect such that IES = {e1, e2, . . . , en}.
An Immediate Effect Scenario may also be referred to as a conjunction of Immediate

Effects such that IES = (ie1 ∧ ie2 ∧ . . . ∧ ien).

An Immediate Effect Scenario must be consistent with KBR such that IES∪KBR

is consistent.

Let T1 be an activity in a BPMN model. Let AES be the set of alternate Immediate

Effect Scenarios of T1. Let (IES, T1)j be an Immediate Effect Scenario such that

all Immediate Effects in IES have been annotated to T1 and j is an index in AES.

Alternate Immediate Effect Scenarios for the activity T1 are represented as a set

{(IES, T1)1, (IES, T1)2, . . . , (IES, T1)n}.
A set of alternate Immediate Effect Scenarios is a disjunction of Immediate Effect

Scenarios such that AES = ((IES, T1)1 ∨ (IES, T1)2 ∨ . . . ∨ (IES, T1)n) and @j′
such that (IES, T1)j ∪ (IES, T1)j′ ∪KBR is consistent.

Although Immediate Effect Scenarios are disjoint an Immediate Effect can exist in

more than one Immediate Effect Scenario. Let IE be a set of identical Immediate

Effects. Let n be the cardinality of AES. Let m be the cardinality of IE. Let iej

be an Immediate Effect where j is an index in AES such that iej ∈ (IES, T1)j. It

can therefore be said that iej ∈ IE iff m ≤ n and @j′(j = j′). It is quite common

for Immediate Effects to occur in more than one Immediate Effect Scenario.

An Immediate Effect Scenario is not closed under logical consequences.

An Immediate Effect Scenario, being partial state description, contributes new

information to an already existing state description. This existing state description

is referred to as a Cumulative Effect Scenario and it is the result of an accumulation

function.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 52

3.4.4 Cumulative Effect Scenario

Before discussing a Cumulative Effect Scenario a Cumulative Effect must first be

defined.

Definition 3.4.4.1. Cumulative Effect

Let KBR be a background knowledge base. Let T1 be an activity in a BPMN

model. Let PES be an Effect Scenario describing the current state of the world

prior to T1 being executed. Let IES be an Immediate Effect Scenario containing

Immediate Effects annotated to T1. Let CES be an Effect Scenario representing the

consequent state of the world immediately following the execution of T1. Let acc()

be a belief revision function such that acc(PES, IES) ` CES and CES ∪KBR is

consistent. Let e be an Effect. We say that e is a Cumulative Effect when e ∈ CES.

We say e is a previous Cumulative Effect when e ∈ PES. A Cumulative Effect in

CES may originate from PES, IES or KBR.

A Cumulative Effect Scenario is a set of Effects that is consistent with the back-

ground knowledge base and is a derived description of the state of the world as it

exists after one or more activities have occurred. A Cumulative Effect Scenario can

be an empty set {∅} in the case of the previous Cumulative Effect Scenario of a

Start Event. In the majority of cases though a Cumulative Effect Scenario will be

the result of a pair-wise accumulation function whose arguments are a Cumulative

Effect Scenario from a previous activity and an Immediate Effect Scenario from the

current activity being accumulated. We define “previous” in this statement to mean

the activity immediately preceding the current activity in the sequence of execution

denoted by the BPMN model.

Definition 3.4.4.2. Cumulative Effect Scenario

Let KBR be a background knowledge base. Let T1 be an activity in a BPMN

model. Let PES be an Effect Scenario describing the current state of the world

prior to T1 being executed. Let IES be an Immediate Effect Scenario containing

Immediate Effects annotated to T1. Let CES be an Effect Scenario representing the

consequent state of the world immediately following the execution of T1. Let acc()

be a belief revision function such that acc(PES, IES) ` CES and CES ∪KBR is

consistent. We say CES is a Cumulative Effect Scenario of T1. The acc() function

will generate one or more Cumulative Effect Scenarios for each activity in a BPMN

model.

A Cumulative Effect Scenario is closed under logical consequences.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 53

3.5 World List

We have stated that any activity in a BPMN model may be the cause of multiple

alternate outcomes. The activity may postulate direct outcomes in the case of

Immediate Effect Scenarios or it may generate outcomes in the case of Cumulative

Effect Scenarios. Each outcome is a possible world [54] and each possible world is

disjoint from every other possible world associated with a particular activity.

Definition 3.5.0.1. World List

Let WLt be a set of Effect Scenarios of a fixed type t such that WL consists of all

Immediate Effect Scenarios or all Cumulative Effect Scenarios.

Let ESx be an Effect Scenario where x is a type, the value of which is either a

Cumulative Effect Scenario or an Immediate Effect Scenario.

Let ESx ∈ WLt iff x = t.

Let Tj be an activity in a BPMN model where j is an identifier of T .

Let ESx,j denote that ESx is associated with Tj. It may be the case that ESx,j is

an Immediate Effect Scenario or a Cumulative Effect Scenario of Tj

A World List is a disjoint set of Effect Scenarios associated with a single BPMN

activity such that WLt = {(ESx,j)1 ∨ (ESx,j)2 ∨ . . . ∨ (ESx,j)n}
We say that WLt qualifies as a World List iff ∀i((ESx,j)i ∈ WLt) | x = t and j and

t are constants.

Each activity in a BPMN model will be associated with at most one World List

of Immediate Effect Scenarios and exactly one World List of Cumulative Effect

Scenarios.

3.6 Accumulation

The Oxford Dictionary defines a Language (in relation to Computing) as:

A system of symbols and rules for writing programs or algorithms.

The Merriam-Webster Dictionary defines Language (in relation to Computing) as:

A formal system of signs and symbols including rules for the formation

and transformation of admissible expressions.

The accumulation of Effect Scenarios involves a background knowledge base (KB)

with which all Effect Scenarios must be consistent. The background knowledge

base contains all terms used within the scope of a semantically annotated business

process model repository. It also contains rules that govern the syntax of admissible

expressions. However, it does not contain rules that govern the semantics or the

transformation of admissible expressions. These rules are acquired from a separate

CHAPTER 3. THE PROCESSSEER FRAMEWORK 54

set of rules (R) and a repository of defined artifacts (A). Together they satisfy the

definition of a Language L. The set of rules (R) contains global rules that apply to

all Effect Scenarios. In contrast the rules contained in the artifact repository are

instance-based rules that apply only to specific state descriptions. Henceforth they

will be referred to as Artifact Rules. A simple example of an artifact rule may be

that if the current state of an artifact is s then if an action A is performed within

an Effect Scenario containing s then s MUST be transformed into s′. The global

rules repository (R) contains things like government legislation whereas an artifact

repository will contain things like operational rules or physical laws that govern the

transformation of an artifact. It is expected that conflicts will arise between these

two sets of rules. Conflicts serve to improve compliance thus when a new piece of

legislation is introduced, conflicts in the established repositories are highlighted. If

the legislation conflicts with a physical law then the legislation cannot be enacted.

If any existing rule, other than a physical law, is in conflict with a new piece of

legislation then the existing rule must change.

Effect Scenarios are transformed by an accumulation process, part of which

is a pair-wise accumulation function. The accumulation process is a complex set

of algorithms for processing the different types of elements and structures found

in BPMN. Accumulation can be performed using two methods. The first method

computes what we refer to as Scenario Labels that direct the pair-wise accumulation

process. The second method simply walks through the process performing pairwise

accumulation at each progression.

3.6.1 Accumulating with Scenario Labels

A Scenario Label is a precise, partially ordered, set (poset) of tasks that define a

path leading from the Start Event in a model to the selected task. The simplest

form of Scenario Label is a sequence of tasks. For example, 〈S, T1, T2〉 is a Scenario

Label where S is the start event. A Scenario Label can either be a sequence, denoted

by the 〈 〉 delimiters, or a set denoted by the { } delimiters or combinations of both.

The set delimiters are used to deal with parallel splits, and distinct elements in a

set can be performed in any order.

The ProcessSEER framework [63] is implemented as a tool that allows practi-

tioners to annotate semantic effects to process activities/tasks and performs on-

demand, anytime computation of Cumulative Effects. There are two stages to effect

accumulation using Scenario Labels. The first stage in effect accumulation involves

deriving a Scenario Label [52] which provides the organising locus for our procedure.

Obtaining an Effect Scenario at a given point in a process involves a computation

of the set of Scenario Labels at that point. Gateways introduce more complexity

CHAPTER 3. THE PROCESSSEER FRAMEWORK 55

Figure 3.7: A BPMN model showing four activities in sequence.

into the computation of Scenario Labels.

Using Fig:3.7 as an example the second stage of effect accumulation involves

the processing of Immediate Effect annotations for each of the tasks listed in the

Scenario Label using a pair-wise operation where a Cumulative Effect Scenario of

T1 is accumulated with an Immediate Effect Scenario of T2, the result being a

Cumulative Effect Scenario at T2. The Cumulative Effect Scenario at T2 is then

accumulated with an Immediate Effect Scenario of T3 resulting in a Cumulative

Effect Scenario at T3 and so on up to Tn.

Contiguous Tasks: We define a process for pair-wise effect accumulation, which,

given an ordered pair of tasks with effect annotations, determines the cumulative

effect after both tasks have been executed in contiguous sequence. It is assumed

throughout this document, the existence of a background knowledge-base (KB) that

provides an additional basis for consistency. Consider the following simple example,

where task T2 follows task T1, such that T2 somehow “undoes” the effects of T1

or changes the status of some entity referred to in T1. For instance, the status of a

cheque submitted in T1 might be “not yet cleared”, while the immediate effect of

the “Clear cheque” task T2 might be to set its status to “cleared”. A background

rule that specifies that a cheque cannot have a “cleared” and “not yet cleared”

status simultaneously ensures that we do not counter-intuitively obtain both status

descriptions in the same Effect Scenario.

The procedure serves as a methodology for analysts to follow if only informal

annotations are available. It is assumed that the effect annotations have been repre-

sented in conjunctive normal form (CNF) where each clause is also a prime implicate

[120] (this provides a non-redundant canonical form). Simple techniques exist for

translating arbitrary sentences into the conjunctive normal form, and for obtaining

the prime implicates of a theory (references omitted for brevity).

Let 〈Ti, Tj〉 be an ordered pair of tasks connected via a sequence flow such

that Ti precedes Tj, let ei be an effect scenario associated with Ti and ej be the

immediate effect annotation associated with Tj. Let ei = {ci1, ci2, . . . , cim} and

ej = {cj1, cj2, . . . , cjn}. If ei ∪ ej is consistent, then the resulting cumulative effect,

denoted by acc(ei, ej), is ei∪ej. Else, we define e′i ⊆ ei such that e′i∪ej is consistent

and there exists no e′′i such that e′i ⊂ e′′i ⊆ ei and e′′i ∪ ej is consistent. We define

CHAPTER 3. THE PROCESSSEER FRAMEWORK 56

acc(ei, ej) = e′i ∪ ej. Note that acc(ei, ej) is non-unique i.e. there are multiple

alternative sets that satisfy the requirements for ei. In other words, the cumulative

effect of the two tasks consists of the effects of the second task plus as many of the

effects of the first task as can be consistently included. The procedure removes those

clauses in the effect annotation of the first task that contradict the effects of the

second task. The remaining clauses are undone, i.e., these effects are overridden by

the second task.

In the preceding, it is assumed that all consistency checks implicitly include a

background knowledge base (KBR) containing rules and axioms. Thus, the state-

ment that e′i ∪ ej is consistent, effectively entails e′i ∪ ej ∪KBR is consistent. The

following example illustrates an application of this definition.

Example:

Let e1 and e2 represent Effect annotations at T1 and T2 in a process model where

T2 immediately follows T1. Let e1 represent a Cumulative Effect Scenario while e2

represents an Immediate Effect Scenario. At T1 the Cumulative Effect Scenario is

(p∧ q) and the Immediate Effect Scenario of T2 is r. A rule exists in the KBR that

states KBR = r → ¬(p ∧ q).

e1 = (p ∧ q)

e2 = r

KBR = r → ¬(p ∧ q)

¬(p ∧ q) ≡ (¬p ∨ ¬q)

Applying the definition above, the two alternative Effect Scenarios describing the

Cumulative Effects at T2 are {p, r} and {q, r}.
Much of the earlier and following discussion pertains to flows within individual

pools. Message flow links across pools can be dealt with in a relatively straig-

htforward fashion by requiring an Immediate Effect annotation for each incoming

message. These Effects are combined via conjunction with the Immediate Effects of

the task associated with the incoming message. Once again it is assumed that no

inconsistencies appear between the message and task effects – such inconsistencies

would only appear in erroneous process designs.

The procedure described above does not satisfactorily deal with loops, but can

perform approximate checking by partial loop unravelling. Some Effect Scenarios

generated using this approach might be infeasible. Note that the objective is to

devise decision-support functionality in the compliance management space, with

human analysts vetting key changes before deployment.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 57

Figure 3.8: A simple exclusive Gateway structure with only two alternative
Activities.

3.6.2 Accumulation Functions

Accumulation is performed across an entire BPMN model but for the purpose of ex-

plaining the functions involved a single instance of accumulation is used, i.e., when

the Immediate World List of a single activity is accumulated with the previous Cu-

mulative World List. An accumulation instance involves three functions, a pair-wise

accumulation function acc(), a decision making function dec() and a combinatorial

function combo(). For simplicity the descriptions of these functions restricts expla-

nation to sets of Effect Scenarios rather than sets of Ancestor Sequences (see 3.7.2).

In practice accumulation is performed on sets of Ancestor Sequences.

3.6.3 Decision Function

The first step in an accumulation instance involves determining the previous Cumu-

lative Effect Scenarios. The first step is to determine the type of BPMN element

immediately preceding the selected element. If the immediately preceding element

is a decision gateway then the first accumulation function utilised is the dec()

function (see Appendix A.1). Using Fig:3.8 as an example the activity label at T1

will indicate a decision to be made and T1 will be annotated with alternate Im-

mediate Effect Scenarios, i.e., an Immediate World List. The accumulation at T1

will generate alternate Cumulative Effect Scenarios, i.e., a Cumulative World List.

Using this approach gateways are never annotated, therefore an Immediate Effect

Scenario of a gateway is an empty set. Having no Immediate Effect Scenario, asso-

ciated with X1, to accumulate, the previous Cumulative Effect Scenarios from T1

are simply propagated as the current Cumulative Effect Scenarios of the gateway

X1. That means that the current Cumulative Effect Scenarios at X1 are identical

to the current Cumulative Effect Scenarios at T1.

Recall that each outgoing edge of a decision gateway has a single set of anno-

tated Conditions, i.e., a Condition Scenario. The Conditions are used to filter the

CHAPTER 3. THE PROCESSSEER FRAMEWORK 58

Cumulative Effect Scenarios of a decision gateway. The dec() function takes two

arguments, a previous World List from a decision gateway and a Condition Scenario

from an outgoing branch of the decision gateway. The function returns a World List

for the branch associated with the Condition Scenario. The Condition Scenario is

a subset or equal to each Cumulative Effect Scenario in the returned World List

indicating that a Cumulative Effect Scenario satisfies the Condition Scenario.

3.6.4 Combinatorial Function

The combo() function (see Appendix A.2) takes two arguments, the previous World

List pWL (a set of Cumulative Effect Scenarios) and the Immediate World List iWL

(a set of Immediate Effect Scenarios). The combo() function groups Effect Scenarios

from each World List into pairs in a Cartesian product style matching between pWL

and iWL. Each pair is a sequence 〈pCES, IES〉 containing a previous Cumulative

Effect Scenario pCES and an Immediate Effect Scenario IES. Each Effect Scenario

pair is passed to the acc() function (see Appendix A.4) which returns a World List.

The Cumulative Effect Scenarios in each World List derived from a pair are added

to the final current World List cWL of the current activity. Each Cumulative Effect

Scenario in the current World List is an alternate state description representing one

possible outcome had the process executed up to and including the current activity.

3.6.5 Pair-wise Accumulation Function

The acc() function (see Appendix A.4) performs pair-wise accumulation on two

Effect Scenarios, a previous Cumulative Effect Scenario and an Immediate Effect

Scenario. The pair-wise accumulation of Effect Scenarios involves more than just

asserting the Effects from the Immediate Effect Scenario into the previous Cumu-

lative Effect Scenario. For example, consider the pair-wise accumulation function

cWL = acc(pCES, IES) where cWL is the current World List of cCES (current

Cumulative Effect Scenarios), pCES is the previous Cumulative Effect Scenario and

IES the Immediate Effect Scenario. Now apply the following value assignments:

pCES = p

IES = ¬p
Monotonic reasoning would result in cCES = p ∧ ¬p which is inconsistent whereas

non-monotonic reasoning would give us the correct result of cCES = ¬p. All Effects

in IES must hold in cCES. Pair-wise accumulation is not as simple as replacing

one Effect with another. For example, take two sequential activities, the first T1 is

labelled “Paint object red” and the second T2 is labelled “Paint object green”. A

Cumulative Effect Scenario of T2, after T1 has been accumulated, could be either

of the following:

CHAPTER 3. THE PROCESSSEER FRAMEWORK 59

1. {(object, hasColour, red), (object, hasColour, green)} or

2. {(object, hasColour, green)} or

3. {(object, hasColour, brown)}.

In the first case a rule stipulates that the object is allowed to have more than one

colour. In the second case, painting the object replaces any existing colour and

in the third case, the colours are mixed. The acc() function is dependent on the

background knowledge base, rule repository and artifact repository KBR for de-

livering the correct Cumulative Effect Scenario. If the union of pCES and IES

is inconsistent then the acc() function passes the inconsistent Effect Scenario to a

Possible Worlds function (see Appendix A.3) that returns a set of Cumulative Effect

Scenarios that are consistent maximal subsets of the inconsistent Effect Scenario.

The Possible Worlds function minimises the number of consistency checks required

by first testing whether each new permutation of the inconsistent Effect Scenario is

a subset of already established subsets in the return set. If a maximal subset, that

includes the permutation, already exists then no consistency check is required and

the permutation is discarded. In most cases it was found that the acc(pCES, IES)

returns a single Cumulative Effect Scenario from the Possible Worlds function. Ho-

wever, the function can return more than one consistent maximal subset thus expan-

ding the number of Cumulative Effect Scenarios but possibly identifying previously

unconsidered outcomes.

3.7 Gateway Structure

This document only covers instances of Exclusive, Inclusive and Parallel gateways. A

Gateway Structure is marked by a gateway split at its beginning and a gateway join

at its end (see Fig:3.9). Informal joins and gateway splits without a corresponding

join are not covered in this document. A beginning gateway will split an incoming

World List in different ways depending on the type of gateway. Different possible

worlds will be propagated along the branches by exclusive and inclusive gateway

splits while identical copies of the incoming World List will be propagated along

the branches by a parallel gateway split. Gateway Structures may also be nested.

It is necessary to think of a Gateway Structure like a subprocess (see Fig.3.9). A

possible world enters a subprocess from one end, is changed within the subprocess

and its changed state exits from the other end. The changed state may have split

into multiple alternate possible worlds but they all originated from the one possible

world. A similar thing occurs when accumulating a single previous Cumulative

Effect Scenario with an activity that has two alternate Immediate Effect Scenarios.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 60

Figure 3.9: A Parallel Gateway Structure represented as a subprocess.

The previous Cumulative Effect Scenario is accumulated with each of the Immediate

Effect Scenarios to produce two Cumulative Effect Scenarios. The activity example

is the simple case while the subprocess example illustrates the complexity of what

can happen as a single possible world is acted upon by many different activities, not

all of them in sequence.

3.7.1 Accumulation over Gateway Structures

The base accumulation procedure becomes more complex when BPMN structures

are introduced. A Gateway Structure is defined here as beginning with a Gateway

Split and ending with a corresponding Gateway Join including all sequence flows

and activities that occur in between. Gateway Structures can be nested. Algorithms

are provided for the three most commonly used gateways in the BPMN standard, an

exclusive gateway, an inclusive gateway and a parallel gateway. Although the BPMN

syntax allows informal joins and splits, the methods described in this document only

consider Gateway Structures. Accumulating over these structures requires further

modifications to the underlying elements in the accumulation procedure.

A Cumulative Effect Scenario is a snapshot of the world that has resulted from

an action occurring in a previous state of the world. When a Cumulative Effect

Scenario passes through a parallel or inclusive gateway split it is literally split. A

copy of the Cumulative Effect Scenario is propagated along each outgoing branch.

It is important to understand that each of these copies is the same world acted upon

by different activities. When each copy arrives at the corresponding gateway join,

they need to be reassembled. The problem is the copies are individually altered by

activities on different paths of the Gateway Structure so when they arrive at the

corresponding gateway join and there are multiple copies on each branch, it becomes

impossible to identify which copy should be reassembled with which.

Each Cumulative Effect Scenario needs to be tracked as it passes through a

Gateway Structure so that it can be matched to its corresponding copy on other

branches. This could be easily achieved by tagging Cumulative Effect Scenarios with

CHAPTER 3. THE PROCESSSEER FRAMEWORK 61

a serial number but a serial number does not contain information about what the

Cumulative Effect Scenario was like before it was split. When tasks are performed

in parallel, BPMN does not stipulate whether they occur concurrently so they may

occur at exactly the same time or at different times. This freedom of execution

means that the tasks in parallel Gateway Structures can be executed in any order

or all at once. Every possible ordering requires a different mapped pathway through

the structure. These mapped pathways were referred to in [63] as Scenario Labels.

The problem with this method is that the number of Scenario Labels increases

exponentially as the number of activities in the Gateway Structure increases.

With the understanding that Effects describe attributes or relationships of

things in the real world, the possibility exists for the same attribute or relationship

of a thing to be changed by different activities on different branches of a Gateway

Structure. In a concurrent execution of parallel activities, this would amount to tur-

ning a light switch on and off at the same time which is impossible in the real world.

Under non-concurrent execution, the order of execution will influence whether the

light switch is on or off at the conclusion of the Gateway Structure. If a business

analyst cannot determine the outcome of a business process, it makes no sense to

design the process in the first place. Changes to the same attribute or relationship

of the same thing on different branches of a Gateway Structure are therefore consi-

dered to be erroneous and should be brought to the attention of the business analyst

designing the process.

Detecting changes to identical artifacts on different branches can only be achie-

ved by comparing them to their original states, i.e., the state they were in prior to

entering the Gateway Structure. This requires a record to be kept of every Cumula-

tive Effect Scenario. When it comes time to reassemble Cumulative Effect Scenarios

that have been split by a gateway, the records can be compared to determine whet-

her changes have occurred to the same artifact on different branches. The records

of changes to Cumulative Effect Scenarios are referred to as Ancestor Sequences.

3.7.2 Ancestor Sequences

Accumulation over parallel and inclusive Gateway Structures requires the ancestry

of an Effect Scenario to be tracked throughout a BPMN model. Each time an

Effect Scenario is accumulated its revised state is added to an Ancestor Sequence.

An Ancestor Sequence represents an evolutionary timeline of one particular Effect

Scenario. The last Effect Scenario in the sequence represents the current state and

the first Effect Scenario, its origin. All Effect Scenarios in an Ancestor Sequence

other than the last Effect Scenario are referred to as an Effect Scenario History of

the last Effect Scenario in the Ancestor Sequence. Ancestor Sequences contain only

CHAPTER 3. THE PROCESSSEER FRAMEWORK 62

Cumulative Effect Scenarios. Immediate Effect Scenarios do not occur in Ancestor

Sequences.

Definition 3.7.2.1. Ancestor Sequence

An Ancestor Sequence is a sequence of Effect Scenarios. Every Effect Scenario in an

Ancestor Sequence is the same Effect Scenario as it existed at different sequential

points in a process. An Ancestor Sequence is a record of the instances of a single

Effect Scenario as it changes after each accumulation.

Let es be an Effect Scenario.

Let as be an Ancestor Sequence such that as = 〈es1, es2, . . . , esn〉 where index 1 is

the oldest ancestor of an Effect Scenario and index n is the most current.

We say 〈es1, es2, . . . , esn−1〉 is the Effect Scenario History of esn

With the introduction of Ancestor Sequences a Cumulative World List becomes

a set of Ancestor Sequences whereas an Immediate World List remains a set of

Immediate Effect Scenarios. This alters the algorithms used for accumulation. For

example, we need to extend the acc() function to accept previous Ancestor Sequences

instead of previous Cumulative Effect Scenarios (see Appendix A.5). One more

element needs to be introduced into the mix. Effect Scenarios that are split at the

beginning of a parallel or inclusive Gateway Structure must be reassembled at the

corresponding join. Now that it is possible to detect the origin of a Cumulative

Effect Scenario by its Ancestor Sequence, matching Cumulative Effect Scenarios are

collected into what is referred to as a Branch Combination.

3.7.3 Branch Combinations

Exclusive gateway splits do not split the workflow. The workflow will only pro-

ceed along one outgoing branch of an exclusive gateway split. A parallel gateway

split will distribute workflow along every outgoing branch and an inclusive gateway

split will distribute workflow along a variable number of outgoing branches depen-

ding on whether an Effect Scenario exists to satisfy the Conditions of the outgoing

branch. When workflow is split an Effect Scenario is split into copies of itself. When

the workflow encounters a corresponding gateway join, those split Effect Scenarios

need to be reassembled. Branch Combinations are used to collect the split Effect

Scenarios for reassembly.

Effect Scenarios change as they are accumulated along different branches so

it’s impossible to identify which Effect Scenarios should be included in a Branch

Combination. The importance of Ancestor Sequences becomes evident when trying

to match accumulated Effect Scenarios from different branches. The Effect Scenario

History is used to identify Ancestor Sequences that have originated from the same

CHAPTER 3. THE PROCESSSEER FRAMEWORK 63

ancestor. Only Ancestor Sequences with identical Effect Scenario Histories qualify

for reassembly.

A Branch Combination is a set of Ancestor Sequences containing exactly one

Ancestor Sequence from each branch entering a parallel or inclusive gateway join. All

Ancestor Sequences in a Branch Combination share the same Effect Scenario History

(see 3.7.2.1). All Branch Combinations of a parallel gateway join (a Parallel Branch

Combination) will contain exactly the same number of Ancestor Sequences as there

are incoming branches (one from each branch) whereas Branch Combinations of

an inclusive gateway join (an Inclusive Branch Combination) can contain varying

numbers of Ancestor Sequences depending on how many branches contain Ancestor

Sequences with Effect Scenarios that satisfy the Conditions of the branch. An

Ancestor Sequence will not be split evenly across all branches of an inclusive Gateway

Structure.

Definition 3.7.3.1. Parallel Branch Combination

A Parallel Branch Combination is a set of Ancestor Sequences containing exactly one

Ancestor Sequence from each incoming branch and each Ancestor Sequence shares

the same Effect Scenario History (see 3.7.2.1).

Let B be a set of branches entering a parallel or inclusive gateway join.

Let bx be a branch such that bx ∈ B and x is an index.

Let (asx) be an Ancestor Sequence where x denotes an association with bx.

Let (esx) be an Effect Scenario such that (esx) ∈ (asx) where x denotes an associ-

ation with (asx).

Let t be an integer denoting the last element in (asx) such that

(asx) = 〈(esx)1, (esx)2, . . . , (esx)t〉 and t = |(asx)|.
Let h be an Effect Scenario History such that h is a sequence 〈(esx)1, (esx)2, . . . , (esx)t−1〉.
Let PBCh be a Parallel Branch Combination such that |PBC| = |B| and where h

denotes a qualifying sequence.

Let i be an index in PBCh

(asx)i ∈ PBCh iff ∀i(h ⊂ (asx)i) and i = x.

Definition 3.7.3.2. Inclusive Branch Combination

An Inclusive Branch Combination is a set of Ancestor Sequences containing at most

one Ancestor Sequence from each incoming branch and each Ancestor Sequence

shares the same Effect Scenario History (see 3.7.2.1).

Let B be a set of branches entering a parallel or inclusive gateway join.

Let bx be a branch such that bx ∈ B and x is an index.

Let (asx) be an Ancestor Sequence where x denotes an association with bx.

Let (esx) be an Effect Scenario such that (esx) ∈ (asx) where x denotes an associ-

ation with (asx).

CHAPTER 3. THE PROCESSSEER FRAMEWORK 64

Let t be an integer denoting the last element in (asx) such that

(asx) = 〈(esx)1, (esx)2, . . . , (esx)t〉 and t = |(asx)|.
Let h be an Effect Scenario History such that h is a sequence 〈(esx)1, (esx)2, . . . , (esx)t−1〉.
Let IBCh be an Inclusive Branch Combination such that |IBC| ≤ |B| and where h

denotes a qualifying sequence.

Let i be an index in IBCh

(asx)i ∈ IBCh iff ∀i(h ⊂ (asx)i) and i = x.

3.8 Accumulating BPMN Elements

This section looks at different sequences of two BPMN elements and how that affects

accumulation algorithms. Accumulation in its most basic form is the transformation

of one world into another based on a reasoning process. We know that actions in

the world can have different outcomes so when propagating these outcomes across a

business process model, an activity may be presented with multiple worlds in which

it could be executed. Accumulation suddenly becomes an operation of transforming

multiple worlds into multiple worlds instead of one world into multiple worlds. In

real life we do something and observe the outcome then based on that outcome we

choose to do something else so in real life there is constant monitoring and updating.

At each check point there is only one Effect Scenario to consider, the one that is

factual, not the others that are theoretical. This describes the difference between

run-time BPMN models and design-time BPMN models. At design-time we are

concerned about all the possible outcomes that could occur and how we plan to

respond to them. The following notation applies to the different BPMN elements:

T A task or event (an activity)

X An exclusive gateway split

XJ An exclusive gateway join

I An inclusive gateway split

IJ An inclusive gateway join

P A parallel gateway split

PJ A parallel gateway join

B A set of incoming branches to a gateway join

Pair-wise accumulation of two BPMN elements in sequence is denoted by 〈E1, E2〉
where E is a BPMN element, e.g., 〈T, T 〉 indicates that an accumulation is being

CHAPTER 3. THE PROCESSSEER FRAMEWORK 65

performed on the second activity using the Cumulative Effect Scenarios from the

first activity and the Immediate Effect Scenarios from the second activity. Some

algorithms apply to more than one of these BPMN element sequences. The sequences

to which the algorithm applies are listed in each section.

3.8.1 Accumulating an Activity following another Activity

Let’s start with the simplest of accumulation procedures, two activities T1 and

T2 in sequence. In this case we are referring to tasks but these could easily be

replaced by events or any combination of the two. It has been established that the

Cumulative World List that was accumulated from T1 is the previous Cumulative

World List of T2. Cumulative Effect Scenarios in the previous Cumulative World

List are accumulated with the Immediate Effect Scenarios in the Immediate World

List from T2 to produce a current Cumulative World List for T2. The algorithm

(see Appendix A.6) applies to the following accumulation instances: 〈T, T 〉, 〈XJ, T 〉,
〈PJ, T 〉, 〈IJ, T 〉.

3.8.2 Accumulating a Parallel or Inclusive Gateway Split

Accumulating Effect Scenarios for a parallel gateway split is comparatively easy

compared to other types of accumulation. The parallel gateway split contains no

Immediate World List but at this point it is necessary to start tracking a Cumulative

Effect Scenario. For simplicity we will assume that all Ancestor Sequences in the

previous Cumulative World List contain only a single Cumulative Effect Scenario.

The Cumulative Effect Scenario is copied and added to the Ancestor Sequence.

Doing this allows the last Cumulative Effect Scenario (the copy recently added) in

the Ancestor Sequence to be accumulated while retaining its original form as the

first element in the sequence. The algorithm (see Appendix A.7) applies to the

following accumulation instances: 〈T, P 〉, 〈XJ, P 〉, 〈PJ, P 〉, 〈IJ, P 〉, 〈T, I〉, 〈XJ, I〉,
〈PJ, I〉, 〈IJ, I〉, 〈P, I〉.

3.8.3 Accumulating an Exclusive Gateway Split

There is no need to track a Cumulative Effect Scenario through an exclusive Gateway

Structure because the Cumulative Effect Scenario is never split. It can only be

propagated along a single branch so it never has a counter-part to be reassembled

with. This makes accumulation at an exclusive gateway split the simplest of all types

of accumulation. The previous Cumulative World List is simply copied to become

the current Cumulative World List. The algorithm (see Appendix A.8) applies to

the following accumulation instances: 〈T,X〉, 〈XJ,X〉, 〈PJ,X〉, 〈IJ,X〉, 〈P,X〉.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 66

3.8.4 Accumulating an Activity following an Exclusive/In-

clusive Gateway Split

The first activity that follows an exclusive gateway split must determine which of

the previous Cumulative Effect Scenarios satisfy the Conditions of the branch. This

generates a unique set of previous Cumulative Effect Scenarios for the incoming

sequence flow to the activity. Accumulation can then proceed using the filtered set

of previous Cumulative Effect Scenarios. The algorithm (see Appendix A.9) applies

to the following accumulation instances: 〈X,T 〉, 〈I, T 〉.

3.8.5 Accumulating an Exclusive Gateway Split following

an Exclusive/Inclusive Gateway Split

Gateway splits have no Immediate World List so the previous Cumulative World

List is simply copied as the current Cumulative World List. When the preceding

BPMN element is an exclusive gateway split or an inclusive gateway split, there

are Conditions annotated to the sequence flow connecting the two gateway splits.

A new previous Cumulative World List needs to be constructed that satisfies the

Condition Scenario before it can be copied into the current Cumulative World List

of the second gateway split. The algorithm (see Appendix A.10) applies to the

following accumulation instances: 〈X,X〉, 〈I,X〉.

3.8.6 Accumulating a Parallel/Inclusive Gateway Split fol-

lowing an Exclusive/Inclusive Gateway Split

Gateway splits have no Immediate World List so the previous Cumulative World

List is simply copied as the current Cumulative World List. When the preceding

BPMN element is an exclusive gateway split or an inclusive gateway split, there

are Conditions annotated to the sequence flow connecting the two gateway splits.

A new previous Cumulative World List needs to be constructed that satisfies the

Condition Scenario before it can be copied into the current Cumulative World List

of the second gateway split. When the second gateway split is a parallel or inclusive

gateway split then the last Effect Scenario in each Ancestor Sequence must be du-

plicated and added to the end of the Ancestor Sequence before copying it into the

current Cumulative World List. The algorithm (see Appendix A.11) applies to the

following accumulation instances: 〈X,P 〉, 〈I, P 〉, 〈X, I〉.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 67

3.8.7 Accumulating an Inclusive Gateway Split

An inclusive Gateway Structure caters to Cumulative Effect Scenarios that satisfy

more than one set of Conditions. A Cumulative Effect Scenario may split over two

branches out of three branches or maybe only one branch out of three or perhaps

all branches. The possibility of it splitting is why Ancestor Sequences are needed.

For this reason, Branch Combinations at an inclusive gateway join do not have

to contain an Ancestor Sequence from every branch. When an inclusive gateway

split is the current BPMN element being accumulated with a preceding activity,

the algorithm (see Appendix A.7) is used. When an inclusive gateway split is the

preceding BPMN element being accumulated with a current activity, the algorithm

(see Appendix A.9) is used.

3.8.8 Accumulating an Exclusive Gateway Join

Gateway joins have no Immediate World List so accumulation is a matter of combi-

ning the Cumulative World Lists entering the gateway join. Each incoming branch

to an exclusive gateway join has an associated Cumulative World List. The Ancestor

Sequences in each Cumulative World List are completely independent of any other

Ancestor Sequence in any other branch Cumulative World List. No Ancestor Se-

quence in any branch Cumulative World List needs to be combined with any other

Ancestor Sequence. At the exclusive gateway join the Ancestor Sequences only need

to be grouped into a single set. The algorithm (see Appendix A.12) applies to the

following accumulation instances: 〈B,XJ〉.

3.8.9 Accumulating a Parallel or Inclusive Gateway Join

Within this subsection the term “gateway join” refers to either a parallel or inclusive

gateway join but not an exclusive gateway join. In [81], Koliadis et. al propose that

Effect accumulation occurs separately along each parallel branch and at the parallel

Gateway join the Cumulative Effects of each incoming edge are unioned together.

Gateway joins have no Immediate World List so accumulation is a matter of com-

bining the Cumulative World Lists entering the gateway join. Gateway joins must

identify which Cumulative Effect Scenarios, entering from each incoming branch,

have originated from the same Cumulative Effect Scenario entering at the gateway

split. This is achieved by comparing the Effect Scenario Histories of Ancestor Se-

quences. An Ancestor Sequence with the same Effect Scenario History on a different

branch becomes a candidate for inclusion into a Branch Combination. Exactly one

candidate Ancestor Sequence from each branch Cumulative World List is added to a

Branch Combination. Each Branch Combination must include exactly one Ancestor

CHAPTER 3. THE PROCESSSEER FRAMEWORK 68

Sequence from each branch Cumulative World List when accumulating a parallel

gateway join. When accumulating an inclusive gateway join then Branch Combi-

nations will contain at most one Ancestor Sequence from each branch Cumulative

World List.

Multiple Ancestor Sequences, originating from the same Cumulative Effect Sce-

nario, may have been generated on each branch so each one must be grouped with

each instance of an original from other branches. Nested Gateway Structures com-

pound the number of Ancestor Sequences that need to be matched. The explanations

of algorithm use given here adopt the perspective of an individual performing a task,

in which case it is unknown what is happening on other parallel branches. The in-

dividual only knows about what they have done and how it has affected the state

of the world. This approach greatly improves computational efficiency but does not

result in a complete list of possible Effect Scenarios for activities occurring within

a parallel or inclusive Gateway Structure. For a complete list of Cumulative Effect

Scenarios the scenario label approach is recommended (see section 3.6.1). The same

algorithms are used in the scenario label approach but the method adversely affects

computational efficiency.

Once a complete set of Branch Combinations has been created, the accumulation

procedure merges the Ancestor Sequences in each Branch Combination into a single

Ancestor Sequence. The resulting Ancestor Sequence is a union of all Ancestor

Sequences in the Branch Combination. The union of Ancestor Sequences involves

accumulation and replication. The last Effect Scenario of each Ancestor Sequence

in a Branch Combination is unioned together then the Effects in the second last

Effect Scenario in the Ancestor Sequence are removed from the union. The Effects

of the second last Effect Scenario of all Ancestor Sequences in a Branch Combination

should be identical because they were matched based on identical Effect Scenario

Histories.

The second last Effect Scenario in an Ancestor Sequence represents the state of

the Effect Scenario before it entered the parallel gateway split. It is only natural

that some of these original Effects may have remained unchanged by activities within

the Gateway Structure. If original Effects have been changed on a single branch in

the parallel Gateway Structure then they will conflict with their unchanged versions

on other branches where they have simply been propagated along the branch. This

is why the original Effects need to be removed from the unioned Effect Scenarios.

With no original Effects in the union, it is then tested for consistency. If it is

inconsistent then an Effect attribute or relationship has been altered on different

branches which indicates an erroneous design. The business analyst must correct

the design to maintain control over the outcome.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 69

If the union is consistent then the union must be accumulated with the original

Effect Scenario. In this case the union acts like an Immediate Effect Scenario of the

gateway join and the second last Effect Scenario in each of the Ancestor Sequences

becomes the previous Cumulative Effect Scenario in the accumulation procedure.

The resulting Cumulative Effect Scenario then replaces the last two Effect Scenarios

in the Ancestor Sequence. The Ancestor Sequence is consequently reduced in size

at the gateway join as are the number of Ancestor Sequences reduced when they

are unioned together. This method treats the entire Gateway Structure as a single

activity that is accumulated with whatever preceded it. The only difference between

a parallel and an inclusive gateway join accumulation is that Branch Combinations

must contain an Ancestor Sequence from each incoming branch whereas an inclusive

gateway join will accept at most one Ancestor Sequence from each incoming branch.

The gateway join accumulation involves four steps:

1. Clustering – produces Branch Clusters (or just Clusters)

2. Grouping – produces Branch Groups (or just Groups)

3. Combining – produces Branch Combinations

4. Accumulating – produces Cumulative Effect Scenarios

Four additional functions are required to accumulate a parallel or inclusive ga-

teway join. The first function clusters together Ancestor Sequences on the same

branch that have originated from the same Cumulative Effect Scenario at the be-

ginning of the Gateway Structure. This creates a set of Clusters for the incoming

branch. The next function groups Clusters from each branch whose Ancestor Se-

quences originated from the same Cumulative Effect Scenario at the beginning of

the Gateway Structure. This creates a set of Branch Groups. A Branch Group for

a parallel gateway join will contain exactly one Cluster from each branch whereas

Branch Groups for an inclusive gateway join will contain at most one Cluster from

each incoming branch. The third function combines the Ancestor Sequences in each

Cluster into all possible permutations. This creates Branch Combinations that con-

tain exactly one Ancestor Sequence from each Cluster in the Branch Group. The

final function then accumulates these Branch Combinations as described previously.

The algorithm (see Appendix A.13) applies to the following accumulation instances:

〈B,PJ〉 and 〈B, IJ〉.
Diagram Fig:3.10 shows how the Ancestor Sequences are reassembled through

the different stages of parallel join accumulation. The letters, A, B and C represent

three original Ancestor Sequences that entered the parallel gateway structure. Note

that on different branches some originals have become two alternate Ancestor Se-

quences, e.g., A1 and A2 on the top branch have both originated from an original

CHAPTER 3. THE PROCESSSEER FRAMEWORK 70

Figure 3.10: Diagram showing the breakdown of accumulating a BPMN parallel
join.

Ancestor Sequence A. Some activity along that branch has generated two possi-

ble outcomes from the original state. The box surrounding the Ancestor Sequences

represents a World List for each branch.

The diagram shows how clustering assembles the Ancestor Sequences for each

branch. At this point the surrounding box of the Branch Clusters is still related

to the branch. The boxes surrounding the Branch Groups is not related to the

branch. It simply defines a Branch Group. Branch Groups contain Clusters from

each branch. The boxes surrounding Branch Combinations also do not relate to the

branches. They are simply containers for the Branch Combinations. The Branch

Combinations show how the Clusters in each Branch Group affect the number of

Branch Combinations.

Diagram Fig:3.11 shows how an inclusive gateway is accumulated. Note that

certain Ancestor Sequences only appear on one or two branches due to the outgoing

Conditions at the inclusive gateway split. Not all branches will contain matching

Ancestor Sequences therefore Branch Groups can contain less Ancestor Sequences

than the number of branches. The other steps mirror those of the parallel accumu-

lation in Fig:3.10.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 71

Figure 3.11: Diagram showing the breakdown of accumulating a BPMN inclu-
sive join.

3.8.10 Branch Cluster

When alternate Cumulative Effect Scenarios are generated on a single branch they

have a common origin. There may be multiple Ancestor Sequences entering a branch

and each one could generate alternate Ancestor Sequences. The potential exists for

multiple Ancestor Sequences that originated from the same Ancestor Sequence to

arrive at a gateway join on a single branch. Ancestor Sequences from the same origin

need to be grouped into what are referred to as Clusters. This naming practice has

been used in an attempt to minimise confusion when describing sets within sets

within sets so a Cluster is a set of Ancestor Sequences that all have the same Effect

Scenario History and exist within a single Cumulative World List on an incoming

branch to a gateway join.

Definition 3.8.10.1. Cluster

Let pWL be a previous Cumulative World List of one incoming branch to a gateway

join.

Let pAS be an Ancestor Sequence such that pAS ∈ pWL.

Let pCESn be the last Cumulative Effect Scenario in pAS.

Let pASh be an Effect Scenario History of pAS such that pASh = pAS − pCESn.

Let H be an Effect Scenario History constant.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 72

Let C be a set of Ancestor Sequences.

C is a Cluster iff ∀pAS ∈ C(pASh = H).

3.8.11 Cluster Function

The cluster() function (see Appendix A.14) operates on a single branch World List

and returns a set of Clusters. It first groups Ancestor Sequences with the same

Effect Scenario History into a Cluster then assembles all the Clusters into a set.

This transforms the previous Cumulative World List of an incoming branch from a

set of Ancestor Sequences into a set of Clusters.

3.8.12 Branch Group

A Branch Group is a set of Clusters. A Branch Group for a parallel gateway join

contains one Cluster from each incoming branch. A Branch Group for an inclusive

gateway join contains at most one Cluster from each incoming branch. All Ancestor

Sequences in all Clusters in a Branch Group share the same Effect Scenario His-

tory. They have originated from the same Ancestor Sequence that first entered the

Gateway Structure.

Definition 3.8.12.1. Branch Group

Let B be a set of incoming branches to a gateway join.

Let n = |B|.
Let SCi be a set of Clusters for a single incoming branch to a gateway join where i

is an index.

Let C be a Cluster such that C ∈ SCi.

Let cAS be an Ancestor Sequence such that cAS ∈ C.

Let cCESn be the last Cumulative Effect Scenario in cAS.

Let cASh be an Effect Scenario History of cAS such that cASh = cAS − cCESn

Let H be an Effect Scenario History constant.

Let G be a set of Clusters.

G is a Branch Group iff ∀C ∈ G(cASh = H) and |G| = |B| and only one cluster

from each branch.

3.8.13 Group Function

The group() function (see Appendix A.15) operates on all incoming branches to a

gateway join. Before it can be utilised each World List on each incoming branch

must be transformed into a set of Clusters. Each set of Clusters from each inco-

ming branch is collected into a super set that is passed to the group() function as a

CHAPTER 3. THE PROCESSSEER FRAMEWORK 73

parameter. The function groups Clusters, from different branches, together. All An-

cestor Sequences inside all Clusters inside a Branch Group must all have originated

from the same Cumulative Effect Scenario. The group() function therefore collects

one matching Cluster from each branch into a Branch Group. It then returns the

complete set of all Branch Groups.

3.8.14 Join Accumulation Function

The joinAcc() function (see Appendix A.16) performs an accumulation on a single

Branch Combination. A Branch Combination is a set of Ancestor Sequences, one

from each incoming branch to a parallel or inclusive gateway join. All Ancestor Se-

quences in a Branch Combination have the same Effect Scenario History, i.e., they

have originated from the same Cumulative Effect Scenario that entered the corre-

sponding parallel or inclusive gateway split. The last Cumulative Effect Scenario

in each of these Ancestor Sequences is the result of accumulation for the branch.

If there has been no erroneously designed activities in the process model then all

these last Cumulative Effect Scenarios can be consistently unioned together. If the

union is inconsistent then the business analyst needs to be notified of the erroneous

design.

The union of last Cumulative Effect Scenarios from each Ancestor Sequence

will contain Effects that have remained unchanged throughout the accumulation

along the branch. Some branches may have changed those Effects so when the last

Cumulative Effect Scenarios are combined, the changed Effects from one branch will

conflict with the unchanged Effects from another branch. It is therefore necessary to

remove all the unchanged Effects from the union before checking it for consistency.

The second last Cumulative Effect Scenario in each Ancestor Sequence is the parent

of all the last Cumulative Effect Scenarios so the second last’s Effects are removed

from the union before checking for consistency.

The resulting union, containing no Effects from the second last Cumulative Ef-

fect Scenario, now becomes a substitute Immediate Effect Scenario for the gateway

join. It contains only Effects that have been altered within the Gateway Structure.

The next element to consider is the Cumulative Effect Scenario when it first entered

the Gateway Structure, i.e., the second last Cumulative Effect Scenario in all the

Ancestor Sequences in the Branch Combination. This becomes the previous Cumu-

lative Effect Scenario that is accumulated with the Immediate Effect Scenario of

the gateway join, i.e., the union. The result is a single Cumulative Effect Scenario

for the gateway join or it could be thought of as a Cumulative Effect Scenario for

the Gateway Structure.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 74

Figure 3.12: A parallel gateway structure containing sequential activities.

To maintain Effect Scenario Histories for nested Gateway Structures the last two

Cumulative Effect Scenarios from any Ancestor Sequence in a Branch Combination

(they will all be the same) are removed and the Cumulative Effect Scenario for the

gateway join is added to the Ancestor Sequence. This then becomes one Ancestor

Sequence in the Cumulative World List of the gateway join.

3.8.15 Branch Combinatorial Function

The combo() function (see Appendix A.2) needs to be modified so it can process

Clusters inside Branch Groups. Clusters in Branch Groups can contain different

numbers of Ancestor Sequences. The combo() function performs a matching of

pairs similar to a Cartesian Product. Pair matching only involved two sets to com-

bine. Branch Groups can contain multiple Clusters and all combinations of Ancestor

Sequences between those Clusters must be matched into what is called a Branch

Combination. Therefore the branchCombo() function (see Appendix A.17) must

assemble more than just a pair of Ancestor Sequences into a Branch Combination. A

Branch Combination will contain exactly one Ancestor Sequence from each Cluster

in a Branch Group and each Branch Combination will be unique for the entire set

of branches.

3.8.16 Parallelism with Scenario Labels

Scenario Labels containing parallel or inclusive Gateway Structures cannot be sim-

ply transformed into a set of sequences. As explained earlier, an Effect Scenario is

split by a parallel or inclusive gateway. Each version of the same Effect Scenario is

propagated along all branches of the Gateway Structure. Gateway joins reassemble

these split Effect Scenarios which is not the same as accumulation. Therefore deri-

ving only sequences from a Scenario Label containing parallel or inclusive Gateway

Structures will result in only accumulation being performed at each step without the

appropriate reassembly of split Effect Scenarios. Doing this will result in erroneous

CHAPTER 3. THE PROCESSSEER FRAMEWORK 75

outcomes. For example, the BPMN model in Fig:3.12 will generate the Scenario

Label.

〈S, T1, P1, {〈T2, T3〉, 〈T4, T5〉}, PJ1, T6, E〉.
From this partially ordered set (poset), six sequences can be derived.

1. 〈S, T1, P1, T2, T3, T4, T5, PJ1, T6, E〉

2. 〈S, T1, P1, T2, T4, T3, T5, PJ1, T6, E〉

3. 〈S, T1, P1, T2, T4, T5, T3, PJ1, T6, E〉

4. 〈S, T1, P1, T4, T5, T2, T3, PJ1, T6, E〉

5. 〈S, T1, P1, T4, T2, T3, T5, PJ1, T6, E〉

6. 〈S, T1, P1, T4, T2, T5, T3, PJ1, T6, E〉

Each of these sequences represents a valid ordering of execution. Pair-wise accumu-

lation at each step along the sequence prioritises the Effects of the current activity

over the Effects of the previous activity. If, for example, the activity at T2 was to

turn on a switch and the activity at T4 was to turn off the same switch then at

PJ1 there can be two alternate Effect Scenarios, one where the switch is off and

the other where the switch in on. Clearly the business analyst has no control over

this outcome because different agents are allowed to affect the same artifact without

any clearly defined ordering. Parallel Gateway Structures in BPMN do not indicate

concurrency and even if they did it would be interesting to see what the outcome

would be of two agents fighting over whether the switch should be on or off.

These sequences may offer a complete set of Effect Scenarios at each activity in

a parallel Gateway Structure but they do not accurately represent the outcome at

any given activity in the parallel Gateway Structure. The reason for this can be seen

in the accumulation process of a parallel gateway join (see 3.8.9). Accumulation of

Effect Scenarios from different branches of a parallel Gateway Structure involves a

union of the Effect Scenarios from different branches accumulated with the original

Effect Scenario as it entered the parallel Gateway Structure. This is because the

Effect Scenarios on different branches are representative of the same world only

with different things happening in them at the same time. They must eventually be

reassembled before updating their original state. Deriving a set of sequences from

a Scenario Label translates the actions of two separate agents into the actions of a

single agent repeatedly executed in the different orders prescribed.

Knowing what the combined effects will be of two independently operating

agents involves merging what is known about the world, by the two agents, into

a single conjunction of Effects before attempting to update the world that was pre-

viously known by both agents. This procedure is not replicated in the Scenario

CHAPTER 3. THE PROCESSSEER FRAMEWORK 76

Label approach of separate sequences so parallel activities update each other. If

there are no conflicting Effects from different branches then Effects from one branch

are simply propagated during accumulation giving the same result as if the Effect

Scenarios had been unioned. Checking for conflicting parallel Effects is much more

complex using this Scenario Label method. Parallel activities must be identified so

that joining procedures can be employed before accumulation procedures. Conflict

checking occurs each time parallel Effect Scenarios are unioned so the number of

paths increases and the number of conflict checks increases.

The original Scenario Label 〈S, T1, P1, {〈T2, T3〉, 〈T4, T5〉}, PJ1, T6, E〉 provi-

des a template for generating all possible accumulation methods for a single parallel

activity. The following set of Scenario Labels are derived from the original and

show the different execution paths for each parallel activity rather than the entire

process. Parallel activities are denoted by { } and indicate a joining/union proce-

dure whereas 〈 〉 denotes sequential execution warranting accumulation procedures.

Where two Scenario Labels are given for a single instance it means that the Effect

Scenarios will be identical. These posets act as instruction sets controlling which

accumulation functions are employed and in what order.

1. T2 〈S, T1, P1, T2〉

2. T2 〈S, T1, P1, {T2, T4}〉 or 〈S, T1, P1, {T4, T2}〉

3. T2 〈S, T1, P1, {T2, 〈T4, T5〉}〉 or 〈S, T1, P1, {〈T4, T5〉, T2}〉

4. T3 〈S, T1, P1, T2, T3〉

5. T3 〈S, T1, P1, {〈T2, T3〉, T4}〉 or 〈S, T1, P1, {T4, 〈T2, T3〉}〉

6. T3 〈S, T1, P1, {〈T2, T3〉, 〈T4, T5〉}〉 or 〈S, T1, P1, {〈T4, T5〉, 〈T2, T3〉}〉

7. T4 〈S, T1, P1, T4〉

8. T4 〈S, T1, P1, {T4, T2}〉 or 〈S, T1, P1, {T2, T4}〉

9. T4 〈S, T1, P1, {T4, 〈T2, T3〉}〉 or 〈S, T1, P1, {〈T2, T3〉, T4}〉

10. T5 〈S, T1, P1, T4, T5〉

11. T5 〈S, T1, P1, {〈T4, T5〉, T2}〉 or 〈S, T1, P1, {T2, 〈T4, T5〉}〉

12. T5 〈S, T1, P1, {〈T4, T5〉, 〈T2, T3〉}〉 or 〈S, T1, P1, {〈T2, T3〉, 〈T4, T5〉}〉

Each of the three instances for each parallel activity will generate its own set of

alternate Effect Scenarios the combination of which will be a complete representa-

tion of all possible outcomes if the process had executed up to and including the

CHAPTER 3. THE PROCESSSEER FRAMEWORK 77

Figure 3.13: A BPMN model from the document “BPMN 2.0 by Example”[110]

selected activity. Note that Scenario Labels 2 and 8 are identical as are 6 and 12.

At the parallel gateway join, the alternate Effect Scenarios are matched with their

counterparts from other branches based on their origin in the Ancestor Sequences

then assembled into Branch Combinations. Duplicate Effect Scenarios will become

one during the joining procedures (see 3.8.9 for a full description of this procedure).

3.9 Example of Process Annotation and Accumu-

lation

The BPMN model in Fig:3.13 is taken from a document “BPMN 2.0 by Exam-

ple”[110]. It depicts a process in a Hardware Retail Store showing the preparatory

steps required prior to shipping goods to a customer. There are three experts invol-

ved in this process: The Clerk, The Warehouse Worker and the Logistics Manger.

The business analyst designing this process model will now proceed to add semantic

effect annotations. We step through the annotation procedure and then show how

the semantic effects are accumulated.

The first step is to identify all the artifacts that will be involved in this process.

Remember that artifacts can be concepts not just material objects. Some obvious

objects that stand out to the business analyst are:

Goods

Package

Normal Post

Special Carrier

Insurance

Post Label

Paperwork

CHAPTER 3. THE PROCESSSEER FRAMEWORK 78

These artifacts stand out because they are implied by the task labels. This is the

style of reasoning a business analyst must employ using current BPMN models.

The activities are the only source of information provided by the model. These

artifacts are also limited by the business analyst’s understanding of the process,

e.g., the term “Paperwork” does not adequately describe any particular artifact.

This should prompt the business analyst to seek clarification regarding the meaning

of the term. After consultation with the experts involved the following additional

artifacts are identified. The Clerk listed the following artifacts:

Goods

Paperwork – What is this? What does it include?

Shipment Form – A clarification of Paperwork.

Purchase Order – A clarification of Paperwork.

Shipment Job Number

Shipping Database

Carrier

Transportation Method

Transportation Quote – A clarification of Paperwork.

Delivery Address

The Warehouse Worker listed the following artifacts:

Goods

Package

Post Label

Shipping Paperwork

Packing material

Packing tape

Cardboard Box

Address Label

Bar Code Label

RFID Tag

Fragile Stamp

Fragile Label

The Logistics Manager listed the following artifacts:

Insurance Account Number

Shipment Job Number

Shipment Form White

Shipment Form Yellow

CHAPTER 3. THE PROCESSSEER FRAMEWORK 79

Database

Transportation Method

Transportation Quote

Delivery Details

Expected Delivery Time

Note the artifact Paperwork has been highlighted because it is a generic term

that warrants further questioning. The Clerk has revealed that the Paperwork in-

cludes a Shipment Form and a Purchase Order. They have also revealed conceptual

artifacts that represent information contained in the Paperwork like the Shipment

Job Number and Delivery Details for example. This could be further expanded so

that Deliver Details are broken down into address entry fields etc. but we will stick

with the more generic description in this case.

These artifacts serve as a prompt for semantic effect annotation. The start

event indicates that there are goods to ship. The business analyst seeks to establish

the state of the artifacts in the list. There are three ways this can be done. A

process model sequentially preceding this model may contribute an Effect Scenario

that contains these states, or the business analyst may simply want to establish the

initial states as facts by annotating them as Immediate Effects of the start event,

or the business analyst may want to establish the initial states as Conditions of

execution by annotating them to the first sequence flow in the process. In the last

case, Effect Scenarios introduced by other process models are subject to satisfiability

requirements. Annotating conditional statements to the initial sequence flow also

requires establishing them as facts in the start event (Immediate Effects). When

introducing Effect Scenarios from other process models, they are introduced into the

Cumulative World List of the start event so they override the Immediate Effects. In

this example the simplest of the three methods is used, annotating the start event

with Immediate Effects to establish the initial states of the artifacts as assertions.

The following Effect Scenarios have been translated from entries in an OWL on-

tology into first order predicate logic. OWL provides a boolean data value for data

properties but this does not affect reasoning in the way you might expect. For exam-

ple, isFragile(goods,false) is not the negation of isFragile(goods,true).

Both these statements are true and can legitimately coexist in the same Effect Sce-

nario without causing an inconsistency. If we choose to use boolean values in Effects

then the negation of isFragile(goods,true) is ¬ isFragile(goods,true).

The start event has two Effect Scenarios annotated. To avoid repetition the first

contains all Effects while the second only contains Effects that are different from

the first.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 80

Step 2: Begin Annotating Effects

Start Event: Goods to ship

Immediate Effect Scenario 1:

isReceived(purchaseOrder,true)

isInPossessionOf(purchaseOrder,clerk)

isInStock(goods,true)

isEnteredInto(goodsRecord,shippingDatabase)

isPrintedOn(deliveryAddress,shipmentFormCopy1)

isPrintedOn(deliveryAddress,shipmentFormCopy2)

isEnteredInto(deliveryAddress,shippingDatabase)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy1)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy2)

isEnteredInto(expectedDeliveryTime,shippingDatabase)

isPartOf(shipmentFormCopy1,shippingPaperwork)

isPartOf(shipmentFormCopy2,shippingPaperwork)

isInPossessionOf(shipmentFormCopy1,clerk)

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

isFragile(goods,true)

isPrintedOn(fragileStamp,shipmentFormCopy1)

isPrintedOn(fragileStamp,shipmentFormCopy2)

Immediate Effect Scenario 2:

¬ isFragile(goods,true)
¬ isPrintedOn(fragileStamp,shipmentFormCopy1)
¬ isPrintedOn(fragileStamp,shipmentFormCopy2)

The step of identifying affected artifacts has proven invaluable to the quality of anno-

tated Effects. Artifacts like Fragile Stamps lead to predicates like isFragile and

isPrintedOn. These terms expand the vocabulary in the background ontology.

Note that the goods are assumed to be in stock and there is no check for this condi-

tion in the process. This alerts the business analyst to an unhandled exception. They

could deal with this by including some form of exception handling in this process

or annotate Conditions to the incoming sequence flow that prevent incoming Effect

Scenarios from executing if they include ¬ isInStock(goods,true). There is

also mention of an Expected Delivery Time. This may be a standard policy that is

controlled by an assertion in the background knowledge base or it could be establis-

hed directly in this Effect Scenario by adding the Effect,

hasValueInHoursLessThanOrEqualTo(expectedDeliveryTime, 24). As

a background assertion it becomes global to all process models so whenever policy

CHAPTER 3. THE PROCESSSEER FRAMEWORK 81

Figure 3.14: An example of how Effect Scenarios are replicated inside Ancestor
Sequences and World Lists are copied to all branches when accumulated through
a parallel gateway split. Ancestor sequences have been drawn vertically with the
beginning at the top.

is changed then the entire process model repository is updated. In this case it is

utilised as a local assertion that comes into effect when a decision needs to be made.

Each Immediate Effect Scenario of the start event is contained in an Ancestor

Sequence and both Ancestor Sequences are contained in an Immediate World List.

This structure can be assumed throughout this example whenever Effect Scenarios

are referred to. When accumulated, the Immediate World List is replicated as the

Cumulative World List of the start event which in turn becomes the previous Cu-

mulative World List to the following parallel gateway split. The parallel gateway

split has no Immediate World List so the previous Cumulative World List is replica-

ted as the Cumulative World List of the parallel gateway split, with one exception.

Each Effect Scenario is copied and added to the beginning of its Ancestor Sequence.

Figure 3.14 shows how each Effect Scenario is replicated. The Effect Scenario ES11
is identical to ES10 and the Cumulative World List becomes available to the next

activities on both branches. The Effect Scenario ES11 and ES21 are accumulated

along each branch while ES10 and ES20 remain unchanged.

Moving on to the task Decide if normal post or special shipment, the following

exclusive gateway split has two branches so this task has two Immediate Effect Sce-

narios.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 82

Annotation

Task: Decide if normal post or special shipment

Immediate Effect Scenario 1:

hasValueInHoursLessThanOrEqualTo(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,specialCarrier)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

Immediate Effect Scenario 2:

hasValueInHoursGreaterThan(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,normalPost)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

Accumulation of this task can be performed using Scenario Labels or by the real-

time processing method that ignores what is happening on other parallel branches

until the gateway join. Both methods are shown here because Effect Scenarios are

minimal but as accumulation progresses through the model, the latter will only be

shown for the sake of brevity. Shown first is the real-time accumulation of the task

Decide if normal post or special shipment followed by the Scenario Label version

of this task after describing the annotations of the Package goods task. With two

Cumulative Effect Scenarios preceding this task and two Immediate Effect Scenarios,

accumulation produces four Cumulative Effect Scenarios, shown complete. Each

Cumulative Effect Scenario is consistent so the accumulation is simply a conjunction

operation.

Accumulation in real-time

Task: Decide if normal post or special shipment

Cumulative Effect Scenario 1:

hasValueInHoursLessThanOrEqualTo(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,specialCarrier)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

isReceived(purchaseOrder,true)

isInPossessionOf(purchaseOrder,clerk)

isInStock(goods,true)

isEnteredInto(goodsRecord,shippingDatabase)

isPrintedOn(deliveryAddress,shipmentFormCopy1)

isPrintedOn(deliveryAddress,shipmentFormCopy2)

isEnteredInto(deliveryAddress,shippingDatabase)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy1)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy2)

isEnteredInto(expectedDeliveryTime,shippingDatabase)

CHAPTER 3. THE PROCESSSEER FRAMEWORK 83

isPartOf(shipmentFormCopy1,shippingPaperwork)

isPartOf(shipmentFormCopy2,shippingPaperwork)

isInPossessionOf(shipmentFormCopy1,clerk)

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

isFragile(goods,true)

isPrintedOn(fragileStamp,shipmentFormCopy1)

isPrintedOn(fragileStamp,shipmentFormCopy2)

Cumulative Effect Scenario 2:

hasValueInHoursGreaterThan(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,normalPost)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

isReceived(purchaseOrder,true)

isInPossessionOf(purchaseOrder,clerk)

isInStock(goods,true)

isEnteredInto(goodsRecord,shippingDatabase)

isPrintedOn(deliveryAddress,shipmentFormCopy1)

isPrintedOn(deliveryAddress,shipmentFormCopy2)

isEnteredInto(deliveryAddress,shippingDatabase)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy1)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy2)

isEnteredInto(expectedDeliveryTime,shippingDatabase)

isPartOf(shipmentFormCopy1,shippingPaperwork)

isPartOf(shipmentFormCopy2,shippingPaperwork)

isInPossessionOf(shipmentFormCopy1,clerk)

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

¬ isFragile(goods,true)
¬ isPrintedOn(fragileStamp,shipmentFormCopy1)
¬ isPrintedOn(fragileStamp,shipmentFormCopy2)

Cumulative Effect Scenario 3:

hasValueInHoursLessThanOrEqualTo(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,specialCarrier)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

isReceived(purchaseOrder,true)

isInPossessionOf(purchaseOrder,clerk)

isInStock(goods,true)

isEnteredInto(goodsRecord,shippingDatabase)

isPrintedOn(deliveryAddress,shipmentFormCopy1)

CHAPTER 3. THE PROCESSSEER FRAMEWORK 84

isPrintedOn(deliveryAddress,shipmentFormCopy2)

isEnteredInto(deliveryAddress,shippingDatabase)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy1)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy2)

isEnteredInto(expectedDeliveryTime,shippingDatabase)

isPartOf(shipmentFormCopy1,shippingPaperwork)

isPartOf(shipmentFormCopy2,shippingPaperwork)

isInPossessionOf(shipmentFormCopy1,clerk)

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

¬ isFragile(goods,true)
¬ isPrintedOn(fragileStamp,shipmentFormCopy1)
¬ isPrintedOn(fragileStamp,shipmentFormCopy2)

Cumulative Effect Scenario 4:

hasValueInHoursGreaterThan(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,normalPost)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

isReceived(purchaseOrder,true)

isInPossessionOf(purchaseOrder,clerk)

isInStock(goods,true)

isEnteredInto(goodsRecord,shippingDatabase)

isPrintedOn(deliveryAddress,shipmentFormCopy1)

isPrintedOn(deliveryAddress,shipmentFormCopy2)

isEnteredInto(deliveryAddress,shippingDatabase)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy1)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy2)

isEnteredInto(expectedDeliveryTime,shippingDatabase)

isPartOf(shipmentFormCopy1,shippingPaperwork)

isPartOf(shipmentFormCopy2,shippingPaperwork)

isInPossessionOf(shipmentFormCopy1,clerk)

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

isFragile(goods,true)

isPrintedOn(fragileStamp,shipmentFormCopy1)

isPrintedOn(fragileStamp,shipmentFormCopy2)

Annotating the task Package goods involves a lot of artifacts. The Effects that

are common to both Effect Scenarios are grouped to avoid repetition. When this

model was first annotated, the consulted experts had only reported that there was

a Shipment Form involved in the process. During annotation the business analyst

CHAPTER 3. THE PROCESSSEER FRAMEWORK 85

could see that the Warehouse Worker could not work in parallel without the Shipping

Form. Upon further questioning the experts explained that there were two copies

of the Shipment Form that they had overlooked in their explanation.

Task: Decide if normal post or special shipment

Immediate Effect Scenario Common to both:

isSealedWith(cardboardBox,packingTape)

isSealed(cardboardBox,true)

hasPackageType(package,cardboardBox)

hasContents(package,goods)

isPrintedOn(deliveryAddress,addressLabel)

isAffixedTo(addressLabel,package)

isPartOf(addressLabel,shippingPaperwork)

isPartOf(barcode,RFIDtag)

isAffixedTo(RFIDtag,package)

isEnteredInto(barcode,shippingDatabase)

isAffixedTo(barcodeSticker,shipmentFormCopy2)

Immediate Effect Scenario 1:

isFragile(goods,true)

isAffixedTo(fragileLabel,package)

hasContents(cardboardBox,packMaterial)

hasContents(packMaterial,goods)

Immediate Effect Scenario 2:

¬ isFragile(goods,true)
hasContents(cardboardBox,goods)

The obvious problem here is that the business analyst has specified two Im-

mediate Effect Scenarios based on whether the goods are fragile or not. There is

only one activity to package goods yet clearly two are needed, i.e., Package goods

and Package fragile goods. These two activities should be preceded by an exclusive

gateway. For the purpose of this example only the existing model will be conside-

red, disregarding the possibility that the goods may be fragile, with the common

Effects excluded to conserve space. Real-time processing will only accumulate the

Cumulative Effect Scenarios from the parallel gateway with the Immediate Effect

Scenarios from the Package goods task resulting in the following Cumulative Effect

Scenarios. Remember the fragile goods case has been disregarded.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 86

Task: Package goods

Cumulative Effect Scenario 2:

isReceived(purchaseOrder,true)

isInPossessionOf(purchaseOrder,clerk)

isInStock(goods,true)

isEnteredInto(goodsRecord,shippingDatabase)

isPrintedOn(deliveryAddress,shipmentFormCopy1)

isPrintedOn(deliveryAddress,shipmentFormCopy2)

isEnteredInto(deliveryAddress,shippingDatabase)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy1)

isPrintedOn(expectedDeliveryTime,shipmentFormCopy2)

isEnteredInto(expectedDeliveryTime,shippingDatabase)

isPartOf(shipmentFormCopy1,shippingPaperwork)

isPartOf(shipmentFormCopy2,shippingPaperwork)

isInPossessionOf(shipmentFormCopy1,clerk)

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

¬ isFragile(goods,true)
¬ isPrintedOn(fragileStamp,shipmentFormCopy1)
¬ isPrintedOn(fragileStamp,shipmentFormCopy2)
hasContents(cardboardBox,goods)

Working with Cumulative Effect Scenario 2 of the Package goods task a Scena-

rio Label accumulation of the Decide if normal post or special shipment task is now

considered. The Scenario Labels for this task are first computed. Let S be the start

event. Let P1 be the parallel gateway split. Let D be the decision task Decide if

normal post or special shipment task and let PG be the Package goods task.

〈S,P1,D〉
〈S,P1,{D,PG}〉

Note that there are only two Scenario Labels for task D. The Scenario Label

generation method used in [63] would have produced the following three paths:

〈S,P1,D〉
〈S,P1,D,PG〉
〈S,P1,PG,D〉

Using the new joining algorithms, the last two Scenario Labels result in exactly

the same outcome so there is no need to compute them separately. Let us now

look at how the first set of two Scenario Labels applies to the accumulation of

Effect Scenarios. There exists a set of four Cumulative Effect Scenarios for the first

CHAPTER 3. THE PROCESSSEER FRAMEWORK 87

Scenario Label accumulated from task D using the real-time method . The second

Scenario Label indicates a join between tasks D and PG.

The first step in joining involves Clustering (see chapter 3.8.11). Cumulative

Effect Scenarios on a single branch that share the same Effect Histories are col-

lected into Branch Clusters. In this case the Branch Cluster for task PG is identical

to its Cumulative World List because only a single Cumulative Effect Scenario is

being considered. Task D on the other hand has four Cumulative Effect Scenarios

that have originated from two. Clustering will produce the following Clusters. Note

the reference to the Ancestor Sequences containing the Cumulative Effect Scenarios

described earlier.

Task: Decide if normal post or special shipment

Cluster 1 includes:

D Ancestor Sequence 1

D Ancestor Sequence 4

Cluster 2 includes:

D Ancestor Sequence 2

D Ancestor Sequence 3

Task: Package goods

Cluster 1 includes:

PG Ancestor Sequence 2

The Clusters are then collected into the following Branch Groups (see chapter

3.8.12). Recall that each Branch Group for a parallel gateway join contains exactly

one Cluster from each branch and all Ancestor Sequences inside the Clusters of each

Branch Group share the same Effect Scenario History.

Group 1 includes:

D Cluster 1

PG Cluster 1

Group 2 includes:

D Cluster 2

PG Cluster 1

Ancestor Sequences in Branch Group 1 have a distinctly different Effect Scena-

rio History to those in Branch Group 2. The Ancestor Sequences in the Clusters are

then collected into Branch Combinations, one Ancestor Sequence from each Cluster

in a Branch Group.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 88

Branch Combination 1 includes:

D Cluster 1

D Ancestor Sequence 1

PG Cluster 1

PG Ancestor Sequence 2

Branch Combination 2 includes:

D Cluster 1

D Ancestor Sequence 4

PG Cluster 1

PG Ancestor Sequence 2

Branch Combination 3 includes:

D Cluster 2

D Ancestor Sequence 2

PG Cluster 1

PG Ancestor Sequence 2

Branch Combination 4 includes:

D Cluster 2

D Ancestor Sequence 3

PG Cluster 1

PG Ancestor Sequence 2

Once again the complexity has been reduced by showing only one Branch Com-

bination accumulation. Working with Branch Combination 3 there are two Ancestor

Sequences, D Ancestor Sequence 2 and PG Ancestor Sequence 2. The first Cumula-

tive Effect Scenario of each Ancestor sequence may contain propagated Effects from

the second Effect Scenario in the Ancestor Sequence, i.e., they have carried through

from the beginning of the parallel gateway split. These need to be removed from

the first Effect Scenarios in the Ancestor Sequences. The � is used to indicate a

propagated Effect from the second Effect Scenario in the Ancestor Sequence.

Task: Decide if normal post or special shipment

Cumulative Effect Scenario 2:

hasValueInHoursGreaterThan(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,normalPost)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

isReceived(purchaseOrder,true) �

CHAPTER 3. THE PROCESSSEER FRAMEWORK 89

isInPossessionOf(purchaseOrder,clerk) �

isInStock(goods,true) �

isEnteredInto(goodsRecord,shippingDatabase) �

isPrintedOn(deliveryAddress,shipmentFormCopy1) �

isPrintedOn(deliveryAddress,shipmentFormCopy2) �

isEnteredInto(deliveryAddress,shippingDatabase) �

isPrintedOn(expectedDeliveryTime,shipmentFormCopy1) �

isPrintedOn(expectedDeliveryTime,shipmentFormCopy2) �

isEnteredInto(expectedDeliveryTime,shippingDatabase) �

isPartOf(shipmentFormCopy1,shippingPaperwork) �

isPartOf(shipmentFormCopy2,shippingPaperwork) �

isInPossessionOf(shipmentFormCopy1,clerk) �

isInPossessionOf(shipmentFormCopy2,warehouseAttendant) �

¬ isFragile(goods,true) �

¬ isPrintedOn(fragileStamp,shipmentFormCopy1) �

¬ isPrintedOn(fragileStamp,shipmentFormCopy2) �

Task: Package goods

Cumulative Effect Scenario 2:

isReceived(purchaseOrder,true) �

isInPossessionOf(purchaseOrder,clerk) �

isInStock(goods,true) �

isEnteredInto(goodsRecord,shippingDatabase) �

isPrintedOn(deliveryAddress,shipmentFormCopy1) �

isPrintedOn(deliveryAddress,shipmentFormCopy2) �

isEnteredInto(deliveryAddress,shippingDatabase) �

isPrintedOn(expectedDeliveryTime,shipmentFormCopy1) �

isPrintedOn(expectedDeliveryTime,shipmentFormCopy2) �

isEnteredInto(expectedDeliveryTime,shippingDatabase) �

isPartOf(shipmentFormCopy1,shippingPaperwork) �

isPartOf(shipmentFormCopy2,shippingPaperwork) �

isInPossessionOf(shipmentFormCopy1,clerk) �

isInPossessionOf(shipmentFormCopy2,warehouseAttendant) �

¬ isFragile(goods,true) �

¬ isPrintedOn(fragileStamp,shipmentFormCopy1) �

¬ isPrintedOn(fragileStamp,shipmentFormCopy2) �

hasContents(cardboardBox,goods)

CHAPTER 3. THE PROCESSSEER FRAMEWORK 90

Removing the propagated Effects leaves only the Effects that have been introduced

by parallel activities.

Task: Decide if normal post or special shipment

Cumulative Effect Scenario 2:

hasValueInHoursGreaterThan(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,normalPost)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

Task: Package goods

Cumulative Effect Scenario 2:

hasContents(cardboardBox,goods)

As should be the case, the union of these two Cumulative Effect Scenarios is

consistent with the background knowledge base. Unions of Cumulative Effect Sce-

narios in Branch Combinations 1 and 2 will result in inconsistent Effect Scenarios,

indicating the erroneous design of this process model. The union of the above two

Cumulative Effect Scenarios produces the following Effect Scenario.

Immediate Effect Scenario of the Join:

hasValueInHoursGreaterThan(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,normalPost)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

hasContents(cardboardBox,goods)

The above unioned Effect Scenario becomes the Immediate Effect Scenario of

the join, indicating that the parallel activities will have caused these outcomes had

they both been executed in any order. This Immediate Effect Scenario is now

accumulated with the Effect Scenario that is second in the Ancestor Sequence, shown

again here for convenience.

Parallel Gateway Split:

Cumulative Effect Scenario 2:

isReceived(purchaseOrder,true) �

isInPossessionOf(purchaseOrder,clerk) �

isInStock(goods,true) �

isEnteredInto(goodsRecord,shippingDatabase) �

isPrintedOn(deliveryAddress,shipmentFormCopy1) �

isPrintedOn(deliveryAddress,shipmentFormCopy2) �

isEnteredInto(deliveryAddress,shippingDatabase) �

isPrintedOn(expectedDeliveryTime,shipmentFormCopy1) �

CHAPTER 3. THE PROCESSSEER FRAMEWORK 91

isPrintedOn(expectedDeliveryTime,shipmentFormCopy2) �

isEnteredInto(expectedDeliveryTime,shippingDatabase) �

isPartOf(shipmentFormCopy1,shippingPaperwork) �

isPartOf(shipmentFormCopy2,shippingPaperwork) �

isInPossessionOf(shipmentFormCopy1,clerk) �

isInPossessionOf(shipmentFormCopy2,warehouseAttendant) �

¬ isFragile(goods,true) �

¬ isPrintedOn(fragileStamp,shipmentFormCopy1) �

¬ isPrintedOn(fragileStamp,shipmentFormCopy2) �

Note that all these Effects were the propagated Effects removed from the first

Effect Scenarios in the Ancestor Sequences. When these Effects are added to the

Immediate Effect Scenario for the join, the resulting Cumulative Effect Scenario for

the join is consistent and no Immediate Effects over-ride any of the Effects in the

second Effect Scenario in the Ancestor Sequence. Accumulation in this case is a

simple union.

The Joining of {D,PG}:

Cumulative Effect Scenario from Branch Combination 3:

hasValueInHoursGreaterThan(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,normalPost)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

hasContents(cardboardBox,goods)

isReceived(purchaseOrder,true) �

isInPossessionOf(purchaseOrder,clerk) �

isInStock(goods,true) �

isEnteredInto(goodsRecord,shippingDatabase) �

isPrintedOn(deliveryAddress,shipmentFormCopy1) �

isPrintedOn(deliveryAddress,shipmentFormCopy2) �

isEnteredInto(deliveryAddress,shippingDatabase) �

isPrintedOn(expectedDeliveryTime,shipmentFormCopy1) �

isPrintedOn(expectedDeliveryTime,shipmentFormCopy2) �

isEnteredInto(expectedDeliveryTime,shippingDatabase) �

isPartOf(shipmentFormCopy1,shippingPaperwork) �

isPartOf(shipmentFormCopy2,shippingPaperwork) �

isInPossessionOf(shipmentFormCopy1,clerk) �

isInPossessionOf(shipmentFormCopy2,warehouseAttendant) �

¬ isFragile(goods,true) �

¬ isPrintedOn(fragileStamp,shipmentFormCopy1) �

¬ isPrintedOn(fragileStamp,shipmentFormCopy2) �

CHAPTER 3. THE PROCESSSEER FRAMEWORK 92

At this point it looks as though only {D,PG} of the second Scenario Label

〈S,P1,{D,PG}〉 has been accumulated but in fact the entire Scenario Label as been

accumulated because the preceding steps have already been completed to arrive at

the previous Cumulative Effect Scenario that was second in the Ancestor Sequence.

This Scenario Label technique computes all possible outcomes for any activity within

a parallel Gateway Structure.

If this technique is compared to the two sequential path Scenario Labels

〈S,P1,D,PG〉
〈S,P1,PG,D〉

it can be seen that PG is allowed to undo Effects that result from D or D is allowed to

undo Effects that result from PG. When there are no conflicting Effects on different

branches then these two sequences will yield the same Effect Scenario. The method

will require further algorithms to detect and remove duplicate Effect Scenarios.

However, this method will not detect conflicting Effects on different branches so

erroneously designed process models can go unchecked.

Now consider an accumulation that results in an inconsistent Effect Scenario

using the real-time method of accumulation. Let’s look at the situation where the

clerk receives both Shipment Forms at the beginning of the process then passes

the second copy onto the warehouse attendant. This task is not included in this

process so it was assumed that it had already been established prior to the process

commencing. Suppose that as a result of Package goods, the warehouse attendant is

in possession of shipmentFormCopy2. The previous Cumulative Effect Scenario

from the parallel gateway split has been limited to only two Effects.

isInPossessionOf(shipmentFormCopy1,clerk)

isInPossessionOf(shipmentFormCopy2,clerk)

An Immediate Effect Scenario of Package goods would contain the Effect :

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

Given these two Effect Scenarios the acc() function (see appendix A.4) would

first union them to produce:

isInPossessionOf(shipmentFormCopy1,clerk)

isInPossessionOf(shipmentFormCopy2,clerk)

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

This is then combined with the background knowledge base (KBR) and tested

for consistency and it fails because there exists a rule in KBR

∀x isInPossessionOf(x, y)→ ¬isInPossessionOf(x, z) where y 6= z

The acc() function would then pass the inconsistent Effect Scenario to the possible

CHAPTER 3. THE PROCESSSEER FRAMEWORK 93

worlds function (see appendix A.3) which in turn will pass it on to the combinatorial

function (see appendix A.2). This function will return the following possible worlds:

Possible World 1:

isInPossessionOf(shipmentFormCopy1,clerk)

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

Possible World 2:

isInPossessionOf(shipmentFormCopy2,clerk)

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

Note that the second Effect showing the Form in possession of the warehouse at-

tendant is present in both Effect Scenarios because it is an Immediate Effect which

takes priority over all previous Cumulative Effects. Previous Cumulative Effects are

added in all combinations but all Immediate Effects will exist in every possible world.

Possible World 2 is clearly inconsistent with the background rule. Possible World

1 is consistent so the pw() function will stop asking the combinatorial function for

subsets of this Effect Scenario. It will, however, pass back Possible World 2 to the

combinatorial function which will return the following subset:

Possible World 3:

isInPossessionOf(shipmentFormCopy2,warehouseAttendant)

The pw() function will first test if Possible World 3 is a subset of any existing

consistent Effect Scenarios, i.e., Possible World 1. It is a subset so consistency

checking can be dispensed with and Possible World 3 is rejected. Possible World 1

is returned as the only Cumulative Effect Scenario that results from the Package

Goods task.

Let’s now look at the exclusive gateway split preceding the task, Check if extra

insurance is necessary. Let C represent task Check if extra insurance is necessary.

First, consider the four Effect Scenarios generated by the task Decide if normal post

or special shipment. Only the key Effects have been included to save space.

Task: Decide if normal post or special shipment

Cumulative Effect Scenario 1:

hasValueInHoursLessThanOrEqualTo(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,specialCarrier)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

isFragile(goods,true)

isPrintedOn(fragileStamp,shipmentFormCopy1)

CHAPTER 3. THE PROCESSSEER FRAMEWORK 94

isPrintedOn(fragileStamp,shipmentFormCopy2)

Cumulative Effect Scenario 2:

hasValueInHoursGreaterThan(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,normalPost)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

¬ isFragile(goods,true)
¬ isPrintedOn(fragileStamp,shipmentFormCopy1)
¬ isPrintedOn(fragileStamp,shipmentFormCopy2)

Cumulative Effect Scenario 3:

hasValueInHoursLessThanOrEqualTo(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,specialCarrier)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

¬ isFragile(goods,true)
¬ isPrintedOn(fragileStamp,shipmentFormCopy1)
¬ isPrintedOn(fragileStamp,shipmentFormCopy2)

Cumulative Effect Scenario 4:

hasValueInHoursGreaterThan(expectedDeliveryTime,24)

hasModeOfTransport(deliveryMethod,normalPost)

isPrintedOn(deliveryMethod,shipmentFormCopy1)

isFragile(goods,true)

isPrintedOn(fragileStamp,shipmentFormCopy1)

isPrintedOn(fragileStamp,shipmentFormCopy2)

These four Cumulative Effect Scenarios are propagated as the Cumulative Effect

Scenarios of the exclusive gateway split. Before they can be utilised as a previous

Cumulative Effect Scenario for task C they are subjected to a Condition check. The

sequence flow between the exclusive gateway split and task C contains an annotated

Condition Scenario. The business analyst has identified which Conditions must be

in existence for task C to execute. The Condition Scenario contains only one Con-

dition:

hasModeOfTransport(deliveryMethod,normalPost)

Cumulative Effect Scenarios 2 and 4 satisfy the Condition because they contain

this Condition so they become the only two previous Cumulative Effect Scenarios

for task C. These are now accumulated with task C’s Immediate Effect Scenarios.

CHAPTER 3. THE PROCESSSEER FRAMEWORK 95

The same technique is used for the inclusive gateway except that Cumulative Effect

Scenarios can be propagated along more than one branch depending on whether

they satisfy the Condition Scenarios of more than one branch.

In this example it has been shown how the act of annotating Effects to a process

model can reveal design problems that may not have been implicitly obvious. This

shows how semantic effect annotation of business process models can enhance the

quality of process design. The practical application of the principal accumulation

algorithms has also been demonstrated.

3.10 Summary

This chapter presents the conceptual underpinnings of the ProcessSEER framework.

It explores the basic elements of a process, i.e., actions, conditions and effects, as

well as different approaches to represent them. Formal definitions of the elements

are provided that make up the ProcessSEER framework. Process model notations

include a wide variety of symbols. The focus is on the most commonly used process

elements and devised algorithms for accumulating effects over different combinations

of these elements. Each of these algorithms is discussed in reference to Appendix

A. This chapter is concluded with an example of the framework being utilised in a

logistical setting.

Chapter 4

Clinical Applications

4.1 Introduction

The notion of care flow management [115] has become the focus of considerable

research attention in the recent past. It builds on the premise that process mana-

gement principles and techniques can deliver value in clinical settings as much as

it delivers value in settings such as business process management. Clinical process

management can help encode clinical guidelines which can provide a reference ba-

seline for clinicians. These can leverage the coordination capabilities of Workflow

Management Systems (WfMS) in ensuring that treatment steps are executed cor-

rectly relative to reference guidelines. More generally, care flow management also

addresses the administrative aspects of health care, both from the perspective of

health care providers and patients [34].

Existing techniques/notations for modelling processes, such as the industry-

standard Business Process Modelling Notation (BPMN) [112], only model the coor-

dination semantics of processes, but offer no facility for describing the effects of

processes (or steps/activities within processes). Thus, we are able to clearly specify

the required sequencing of activities, for instance, but cannot specify the effects that

these activities would have on the domain/context in which the process would exe-

cute (beyond the minimal information that can be conveyed via the nomenclature of

tasks). However, these effect descriptions are critical in determining whether process

designs have been correctly formulated. Additionally, much of the analysis required

for process compliance management [51, 55], change management [80], enterprise

process architectures [82] and management of a business process life cycle [83] relies

on being able to refer to the effect semantics of business processes.

The detection of treatment conflicts between multiple treatment protocols that

are co-incident (on the same patient) is a difficult and open problem that is par-

ticularly exacerbated in the context of treatment of multiple medical conditions

96

CHAPTER 4. CLINICAL APPLICATIONS 97

co-occurring in aged patients. For example, a clinical protocol for prostate can-

cer treatment requires the administration of androgen-suppressing medication. This

could negatively interact with another, co-incident, protocol, if the same patient were

being treated for renal disease via haemodialysis, where androgen-enhancers are fre-

quently administered. Treatment conflicts such as these are subtle, and usually

difficult to detect using automated means. Traditional approaches to clinical deci-

sion support would require significant amounts of clinical knowledge to be acquired

and encoded, with the well-known difficulties associated with large-scale knowledge

acquisition.

In this chapter, the ProcessSEER framework and supporting tool [63] are levera-

ged to provide a practitioner-accessible means for providing semantic effect annota-

tions of process models to deliver value in clinical process management in a range

of different ways. The focus is primarily on the use of this machinery in detecting

treatment conflicts between co-incident treatment protocols, i.e., situations where

the application of a treatment protocol on a patient contra-indicates the applica-

tion of another treatment protocol on the same patient. These are often subtle,

and otherwise difficult to detect using automated means. It is also argued that

semantic effect annotations of treatment protocols can be leveraged for a variety

of other tasks, including identifying instances where different specialists arrive at

differing interpretations of the same protocol, as well as pedagogical applications.

The chapter also includes a case study of using the ProcessSEER tool in a clinical

environment that revealed some valuable insights into human computer interaction.

4.2 Detecting inter-process interactions

The ProcessSEER framework utilises two methods of accumulating Effect Scenarios.

The first method involves the use of Scenario Labels [52]. These effectively describe

the paths taken through a process model to obtain the corresponding Effect Scena-

rios (as a sequence of gateway and activity identifiers). This is important given that

it is possible to arrive at a given task in a process model via multiple alternative

paths. The method will generate all possible outcomes for any point in the process

answering the question, “what would have happened if the process had executed up

to this point?” (see chapter 3.6.1). Answering this question comes at a cost. Nested

parallel and exclusive Gateway Structures can cause an exponential increase in the

number of Scenario Labels generated by a process model. The second method walks

through the model like a group of individual agents and adopts the attitude that an

agent on one branch of a parallel Gateway Structure does not know what agents on

other parallel branches are doing until they meet at a parallel gateway join.

CHAPTER 4. CLINICAL APPLICATIONS 98

The second method minimises processing time without compromising the integrity

of the accumulated outcomes (see chapter 3.6).

The start event of a BPMN model is a doorway into the model. A patient’s

records will contain information about treatments they are currently receiving or

have received in the past. Using a repository of clinical process models a clinician can

access these processes without violating patient confidentiality because the process

models do not refer to a patient directly. The Effect Scenarios of the patient’s

existing treatment protocols can be plugged into the treatment protocol that the

clinician is intending to prescribe. When those Effect Scenarios are accumulated

into the intended treatment protocol, any conflicts that occur will be highlighted.

It is foreseeable that patient records sometime in the future could contain Effects

(written in a universal standard) that could be plugged into any intended treatment

protocol for an instant evaluation of potential side-effects or unexpected outcomes.

The ProcessSEER framework makes this type of evaluation possible.

Conflicts can be detected in two ways. First, when Effect Scenarios cannot be

propagated to protocol activities because they do not satisfy Condition Scenarios

annotated to the outgoing flows from each OR- or XOR-split gateway preceding

the activity. Second, when rules in the background knowledge base are violated

causing inconsistencies in the resulting Effect Scenarios. These interaction-checking

mechanisms help clinicians identify situations where certain treatment steps should

not logically co-occur in an instance of the same patient, because of contradictory

conditions (e.g., a treatment step that applies only to diabetics vs. one that applies

only to non-diabetics).

Plugging the Effect Scenarios from one treatment protocol into another involves

taking the Cumulative Effect Scenarios from the end event of one process model

and adding them to the start event of the intended treatment process model. It

may not be necessary to plug every Cumulative Effect Scenario into the intended

treatment model so if the clinician is aware of a particular outcome pertaining to the

patient then that can be chosen as the input state in isolation to any others. During

accumulation these plugged-in Effects will interact with the Effects in the intended

treatment process generating conflict flags if a potential conflict is detected between

the processes.

In many cases the start event can often have no Immediate World List annotated

to it so the previous process model’s end event Cumulative Effect Scenarios become

the Cumulative Effect Scenarios of the start event in the intended process model.

When Immediate Effects are annotated to a start event, they act like a security

guard for the entire process. They establish a state of the world that must be

in effect at the beginning of the process. In the case where the start event of an

intended procedure contains an Immediate World List then the Cumulative Effect

CHAPTER 4. CLINICAL APPLICATIONS 99

Scenarios from the existing patient treatment protocol are accumulated with the

Immediate Effect Scenarios of the start event. This first accumulation may reveal

conflicts through inconsistent outcomes or violation of some background rule thus

requiring no further computation.

The ProcessSEER framework was extended to address the problem of detecting

interactions between co-incident clinical protocols. A distinction between mandatory

effects and potential effects was introduced. Such a distinction is common in clinical

settings, for instance, between the (mandatory) intended effects of medication, and

(potential) side-effects/complications. It is assumed that a patient-specific knowledge

base (P − KB) exists as well as a background knowledge base (KBR), but the

techniques presented here can be of use even when these are empty (as the example

in the next section illustrates). The interaction-checking mechanism takes as input

a set of clinical process models of existing patient treatment protocols, a clinical

process model of an intended treatment protocol, and a P −KB. It returns a set of

conflict flags if a potential conflict is detected between the input processes. In the

following, a conflict refers to situations where {es1, . . . , esn} ∪ P −KB ∪KBR is

inconsistent, where each esi represents an Effect Scenario obtained from a distinct

process that is part of the input. Note that when conflict checking must be restricted

to mandatory (resp. potential) effects, these components can be directly extracted

from an Effect Scenario (since each assertion in an Effect Scenario is thus labelled).

Conflict flags can be of various kinds:

• Strong conflicts: These involve situations where all Effect Scenarios associated

with a task in one process conflict with all the Effect Scenarios associated with

a task in a distinct process.

• Weak conflicts: These involve situations where some (but not all) Effect Sce-

narios associated with a task in one process conflict with some (but not all)

Effect Scenarios associated with a task in a distinct process.

• Mandatory-Mandatory (MM) effect conflicts: These involve situations where

the mandatory effects within an Effect Scenario associated with a task in one

process conflict with the mandatory effects in an Effect Scenario associated

with a task in a distinct process.

• Mandatory-Potential (MP) effect conflicts: These involve situations where

the mandatory effects within an Effect Scenario associated with a task in one

process conflict with the potential effects in an Effect Scenario associated with

a task in a distinct process.

CHAPTER 4. CLINICAL APPLICATIONS 100

• Potential-Potential (PP) effect conflicts: These involve situations where the

potential effects within an Effect Scenario associated with a task in one process

conflict with the potential effects in an Effect Scenario associated with a task

in a distinct process.

These categories provide a rich vocabulary for describing conflicts and are not

mutually exclusive (it is possible to obtain a strong MP conflict or a weak PP

conflict).

The following section provides one substantive example of the detection of tre-

atment conflicts via semantically annotated process models. Even with this setting,

the size of the process models, and the effect annotations makes it impossible to

display the models in their entirety. The conflict flag obtained in this instance is a

strong MM conflict.

4.3 A Clinical Example

A large-scale exercise in process modelling (in the BPMN notation) of clinical pro-

tocols was initiated for this research program. A total of 55 cancer trial protocols

and 26 clinical pathway protocols for a breast cancer patient have been modelled in

BPMN. The resulting models are large, and after semantic effect annotation, larger

still. Fig:4.2 describes a small portion of a prostate cancer trial protocol modelled

in BPMN.

The effect annotation of the task “Adjust dosage/schedule” in Fig:4.2 proceeds

as follows (only the natural language version is provided and omits the formal ver-

sion obtained via ontological markup): If there was evidence of bowel toxicity then

administer constipating pain relief. This may contra-indicate medication having di-

arrhoea as a side effect. If there is increasing fatigue in the patient then a full blood

count should be requested.

As part of the treatment of prostate cancer it is common to prescribe anti-

androgen medication to reduce androgen levels in the patient’s blood. In (Fig:4.1)

the action of prescribing an anti-androgen (Flutamide) is represented by a tas-

k/action icon in a BPMN model. Effect Scenarios from the patient treatment

process model will contain Effects that register the prescribed Flutamide.

A common step in a renal haemodialysis protocol (full BPMN model omitted

here due to space restrictions) is the prescription of androgen-enhancing medication.

When the haemodialysis protocol Effect Scenarios are plugged into the prostate can-

cer protocol, this would clearly generate a conflict flag using the machinery described

in the previous section.

The most compelling motivation for semantic effect annotation of clinical process

models is the detection of treatment conflicts, but there are other useful applications

CHAPTER 4. CLINICAL APPLICATIONS 101

Figure 4.1: A section from a prostate treatment BPMN process model showing
the prescription of anti-androgen medication.

Figure 4.2: A section from a prostate treatment BPMN process model showing
a sub process for monitoring radiation treatment.

CHAPTER 4. CLINICAL APPLICATIONS 102

for this machinery as well. A BPMN model explains WHAT to do, but rarely HOW

to do it (in any significant detail) or WHY an action is being performed. Semantic

effect annotations added to a process model provide a mechanism for describing the

HOW in considerably greater detail. Based on preliminary experience, this can help

identify situations where specialists agree on (the broad picture of) a clinical pro-

tocol, but disagree on the detail of its implementation. Semantic effect annotations

can help in answering the WHY question, which has pedagogical applications. They

also have applications in the Workflow Management Systems (WfMS) space for con-

trolling task allocation. In the following case study clinicians expressed enthusiasm,

with a healthy amount of skepticism, for a WfMS that could dynamically respond

to the continual change in operational environments.

4.4 Clinical Case Study

This is a case study about process modelling in an oncology ward. The study

identified a number of specific roles in the knowledge elicitation process. It also

identified some fundamental problems with the format of semantic effect annotations

and prompted a change in the way questions were asked to elicit information. A

Care Flow project was undertaken for the Illawarra Cancer Care Clinic (ICCC) to

model the processes involved in the care of a patient with breast cancer. The models

were to cover all aspects of the patient’s journey through the medical system, from

diagnosis to treatment. The collection of data was performed manually and required

consultation with different clinicians including physicians, pharmacists, pathologists,

surgeons and oncologists as well as nursing and administrative staff. The clinical

processes were modelled using the Business Process Modelling Notation (BPMN).

The clinical pathway of a breast cancer patient was originally modelled at a

very high level. A sizeable wall in one of the corridors at the ICCC was devoted to

mapping this clinical pathway. The idea of using the wall as a canvas for the entire

patient journey has its origins in agile software development techniques [138]. Cli-

nicians and staff, who were directly involved in the care of a breast cancer patient,

were encouraged to stick Post-It notes to this wall describing the different stages and

their involvement in the patients treatment. Similar techniques have been adopted

in [38]. Gradually over time the entire clinical pathway took shape. The exercise

proved to be an invaluable tool in the collection of data from employees in a working

environment. Participants in this exercise commented on the effectiveness of map-

ping on the wall because it allowed them to see and understand how their efforts

contributed to overall patient care.

Previous attempts, in other working environments, to gather such information

from employees, through direct questioning, were met with suspicion. Individual

CHAPTER 4. CLINICAL APPLICATIONS 103

interviews tended to focus the interviewee’s attention on themselves leading to a

reported sense that “they were being scrutinised”. This hampered knowledge acqui-

sition because of their reluctance to divulge details about their working practices.

The shift in focus away from the employee onto the patient’s care removed the stigma

surrounding the direct questioning approach. Both clinical and administrative staff

were found to be enthusiastic about contributing their knowledge to this larger pic-

ture portrayed on the wall. Having this oversight of the entire process encouraged

participation. The one-on-one interview environment was still employed but only

after the wall map had been completed. Interviewees, by that time, had become

comfortable with the information gathering exercise. Perhaps the greatest benefit

of utilising the wall was that employees could see how their information was being

used. It also allowed them to visualise how their contribution fitted into the bigger

picture of patient care.

The focus of the wall was on the patient’s journey through the health care

system. The clinical pathway did not limit itself to the patient’s journey through

the ICCC. It covered all aspects of the journey, including a patient’s first consultation

with their general practitioner, pathology testing, various forms of treatment and

finally recovery. The data from the wall was entered into a spreadsheet which then

became the basis for inquiry when modelling the clinical processes. Employees were

further reassured during interviews that the information they were providing was not

only being used for the improvement of patient care but also for understanding and

recognition of the importance of each individual’s contribution as a care provider.

This simple acknowledgement greatly improved employee cooperation during the

data gathering process.

The role of the interviewer requires these interpersonal skills to maximise the

quality and quantity of information gathered. However, it was found to be an impe-

diment to communication if the interviewer had knowledge of the required format

of the information. For example, if the interviewer is asking the interviewee to

disambiguate their description of an activity or effect then the natural flow of com-

munication is interrupted. This became obvious when the interviewer was a process

analyst that understood the requirements of ontology development. The analyst

would constantly seek clarification causing the employee to lose focus while trying

to rephrase their description. The interviewee soon became disinterested and the

quality of information deteriorated. In contrast, an interviewer with no knowledge

of the semantic effect annotation format collected an abundance of information. It

was therefore concluded that the Interviewer should be a distinct role separate from

the business analyst.

CHAPTER 4. CLINICAL APPLICATIONS 104

4.5 Information Gathering

A direct correlation was found between the focus of attention on the role being

examined and the willingness of employees to divulge information about their jobs.

For example, if the process analyst focused on the role of the employee and the tasks

they performed, the employee reported feeling scrutinized and would be reluctant to

divulge task related details. However, if the process analyst focused on the role of the

patient/customer and the careflow provided, employees became enthusiastic about

explaining what they did. In the first case employees were asked what they did which

evoked suspicion. In the second case employees were asked what they contributed

to the wellbeing of another person (the patient/customer). This invoked a sense of

pride and focused on their positive contribution and most importantly, their worth

to the organisation.

Patient focused inquiry improved employee participation in the program but

interviews were still isolated. Police use isolated interviews to interrogate suspects in

a crime. Any association with interrogation was counterproductive to the interview

process. A more productive association was to expand each employees perception of

their individual contribution to the care of a patient. This was achieved by devoting

a sizable wall in the hospital to mapping the clinical pathway of a breast cancer

patient through the medical system.

It was found that if the interviewer had knowledge about how the task informa-

tion would be utilised then that would actually impede the elicitation process. Too

much emphasis was placed on the correct wording of a particular task by the in-

terviewer which interrupted the interviewee’s train of thought and greatly increased

the time per interview. Allowing the interviewee to elaborate in their own words

provided more information and required less time per interview. It was actually

found to be advantageous for the process analyst to have no understanding of kno-

wledge engineering practices. This freed them up to communicate on an equal level

with employees and supported the employee’s perception of genuine inquiry from

the interviewer.

4.6 Annotating Effects

Once the breast cancer life-cycle processes had been modelled, semantic effects were

annotated to the tasks and events. Annotation in practice revealed a number of

problems with the original approaches. When a business analyst was asked, “what

is the effect of doing this task”, they would generally reply with something like “the

task is done”. In fact many of the effects annotated in the first attempt were of

this quality. Business analysts reported finding it difficult to think how or what to

CHAPTER 4. CLINICAL APPLICATIONS 105

describe as an effect. A new line of questioning was developed. Instead of asking

the business analyst what was the effect of doing this task, they were asked what

things were involved in performing the process. For each process model, the business

analyst would list all the things they thought would be affected by the process. They

then viewed each task or event in the model and questioned how it would affect each

of those things. Naturally all things were not affected by every activity in the model

but this method changed the way they thought about the effects of activities. The

response to this change was positive and the quality of effect descriptions improved

dramatically.

The language in which these effects need to be specified should ideally be for-

mal, permitting sophisticated tool support for several of the analysis and reasoning

tasks mentioned above. Formal languages are typically not practitioner-accessible

while informal annotations make substantive tool support difficult to devise. The

use of controlled natural language (CNL) [132] was chosen as a compromise between

these two extremes, offering the analyst a repertoire of sentence schemas in which

to describe the effects - populating a sentence schema generates a correspondingly

instantiated formal annotation. To avoid placing an unduly heavy burden of anno-

tation on analysts, the approach described here only requires that analysts provide a

description of the Immediate Effects of each process task, i.e., a context-independent

specification of the functionality (together with relevant associated ramifications) of

each task. These are then accumulated into Cumulative Effect Scenario annotations

in a context-sensitive manner, such that the Cumulative Effect Scenario annotati-

ons associated with any task in a BPMN process model would describe the effects

achieved by the process were it to execute up to that point (see chapter 3). Note

that such a description will necessarily be non-deterministic, i.e., there might be

alternative Effect Scenarios that might transpire if a process has executed up to

a certain point in a process model. The non-determinism stems from two sources.

First, a process might have taken different paths through a process model to arrive

at a certain point. Second, the effects of certain process steps might “undo” the

effects of prior process steps. This is often described as the belief update or know-

ledge update problem - multiple alternative means of resolving the inconsistencies

generated by the “undoing” of Effects is another source of non-determinism.

The ProcessSEER modelling tool (named after the framework) was used to

model the clinical processes in BPMN. The tool also facilitates the annotation of

semantic effects to the activities and events in the model. The first version of the

ProcessSEER tool provided a single data entry field that accepted a sentence written

in Attempto Controlled English (ACE) [43, 44]. Annotated effect sentences became

more complex from business analysts trying to cram in the maximum amount of in-

formation. This prompted further research into the nature of an effect (see Chapter

CHAPTER 4. CLINICAL APPLICATIONS 106

3.2). The result was to limit effects to single sentences that described a single attri-

bute or relationship of an artifact employed in the process. However, it was found

that there was still a reluctance to learn ACE and thus a reluctance to annotate

semantic effects to their process models.

The tool was upgraded as a consequence of these insights to provide three data

entry fields, one for the artifact that was being affected, the second for the relations-

hip or attribute of the artifact that was being changed and the third for which the

artifact was related to or the value of the attribute of the artifact. This met with

acceptance because it mirrored the new approach about how to think about effects.

It also did not require knowledge of a CNL. Business analysts were free to enter any

terms they liked within the scope of each data entry field. Discussion about how

this was achieved can be found in chapter 6.

The original approach to manual semantic effect annotation placed the business

analyst in an untenable position, right in the middle of communicating between

experts in the field and knowledge engineers working with ontologies. In this position

the business analyst needed to know both roles in addition to their own. In practice

this proved to be unsuccessful. Separating the roles of Interviewer, Business Analyst

and Knowledge Engineer provided a workable arrangement. The interviewer would

elicit information from the expert and pass the information, written in a natural

language, to the business analyst. The business analyst would then translate the text

into the three field data entry of the ProcessSEER tool. If the text was difficult to

understand, the business analyst could approach the expert directly for clarification.

The new data entry fields meant the business analyst didn’t need to know specific

terminology or grammar. The knowledge engineer would make any changes that

were necessary to the terms used in the effect descriptions or they would integrate

new terms into the domain ontology. If the knowledge engineer had any questions

about the terminology used, they could also consult directly with the expert. In

this way the process model provides contextual information that prompts knowledge

engineers to ask appropriate questions thus improving knowledge acquisition.

Separating these four roles significantly improved acceptance of semantically

annotating effects to business process models. To recap, the four roles are:

• Expert

• Interviewer

• Business Analyst

• Knowledge Engineer

The expert is the person who performs a task in real life. They can be the person who

cleans the windows or an oncologist. The interviewer needs the interpersonal skills

CHAPTER 4. CLINICAL APPLICATIONS 107

so as not to incite suspicion when interviewing employees and the technical skills for

writing job specifications. The business analyst designs, models and analyses the

processes and annotates the semantic effects. The knowledge engineer integrates

the terms, used in semantic effect annotation, into a background ontology which is

used to reason about the outcome of process models. There are definite stages to

the knowledge elicitation process and disambiguation should only be employed after

data collection.

4.7 Task Labelling

Many process models provide an observational view of tasks being performed by

others. The observed behaviour of another is recorded as an activity or a sequence

of activities. The important thing to note here is that the observer is interpreting

what the other person is doing. The observer/instructor will typically use a label

to represent a task but the detail of performing that task is held in the experience

of the person performing it.

A label, for example, is something like “sharpen the pencil”. From the instruc-

tor’s perspective, the instruction is clear and unambiguous. From the instructed

person’s perspective, the instruction may also appear unambiguous but that is be-

cause they believe their interpretation of the instruction is correct. It is not until

they perform the task incorrectly that the error of their interpretation is revealed

along with the ambiguity of the instruction.

Take the example of sharpening a pencil; the person performing the task may

use a child’s pencil sharpener, an electric office pencil sharpener, a knife, a razor

blade, a scalpel or even a grinding wheel. Any of these tools could be used to sharpen

the pencil but there is no mention of any of them in the instruction/label, “sharpen

the pencil”. We could clarify the instruction by including the tool, e.g., sharpen

the pencil with a scalpel, but there still exists a risk of misinterpretation. Unless

the person performing the task has had experience in using a scalpel to sharpen a

pencil they could conceivably sharpen it with the blade pointing towards them, slip

and cause themselves a serious injury. The instruction could be further refined to,

“sharpen the pencil with a scalpel making sure that the blade is pointed away from

your body so you do not cut yourself”. Note the inclusion of the reason for pointing

the blade away from the body. Inclusion of the reason for doing something improves

acceptance of the task or raises questions about the validity of performing the task.

Recording why a task is performed provides a check point for process adaptability

in dynamic environments. The “why”, in this case, is a warning which could be

represented as a selectable icon on the task. Clicking on the icon would display the

warning.

CHAPTER 4. CLINICAL APPLICATIONS 108

In a working environment managers do not have the luxury of providing detailed

instruction for every task they assign. Task assignment is typically reduced to the

most efficient form of communication, in this case, sharpen the pencil. Mistakes

are left to the employee to navigate, and employee experience is expected. This

highlights a very important point, what is the purpose of process models? If pro-

cess models are to be used as a form of instruction, then are they to be used as a

method of efficiently issuing commands, or are they to be used as a repository of

knowledge that ensures consistent quality in performance? If the issuing of com-

mands was relegated to process models displayed on devices then employees would

have immediate instruction and managers would have more time to perform other

duties. However, it is conceivable that mistakes could increase due to the absence

of non-verbal communication between manager and employee. This emphasises the

importance of detailed instruction if process models are to be used in this manner.

An employee must be provided with adequate warnings and detailed instructions

about how to perform a task if compensation claims are to be minimised.

4.8 The Purpose of a Process Model

The different uses of process models mentioned in chapter 1 and reiterated here pro-

duce subtly different process models that deserve further investigation. In most cases

process models provide a managerial perspective of workflow within an organisation.

They communicate the flow of activities and the movement patterns of employees

in the workplace. Process models can be optimised for efficiency and quickly chec-

ked for compliance. From a business analyst perspective this is by far the most

common use of a business process model. A manager, on the other hand, will con-

sult a business process model and issue instructions to employees. An IT specialist

may translate a business process model into execution code such as WSBPEL [14]

to coordinate web services. An employee could conceivably use a business process

model as an instruction manual to explain the how-to of a particular job.

The study revealed that process models developed for the purpose of process

improvement represented actions at a much higher level of abstraction than process

models developed for process execution. Process improvement has an administrative

agenda whereas process execution has an instructional agenda. The first approach

focuses on what is to be done while the second approach focuses on how it is to

be done. An administrative process model, within this context, is defined as one

used to provide information about a process performed by others. An instructional

process model is thus defined as one used to provide direct instruction to a person

performing a task.

CHAPTER 4. CLINICAL APPLICATIONS 109

There is a clear distinction between process models used for instruction and those

used for administrative purposes. The administrative process model is typically used

for analysis and efficiency improvements. The model is interpreted by a manager

who in turn instructs employees to perform the tasks. The model was never designed

to be a set of instructions to be read by an employee. This underpins a fundamental

challenge in any organisation, when an employee is given a task to perform, how

much instructional information is required to ensure the task is performed to a

consistent standard?

Detailed instruction is often deemed unnecessary for a skilled employee because

they understand the detail involved in performing the more abstractly defined task.

It is important to note the use of the word “understand” as it refers to the relati-

onship between levels of detail in process models. A task in one process can often

be broken down into a sub-process containing more detailed instruction sets. In

this regard the instruction set contained in the sub-process under-stands or stands

under the original parent process. This parent/child relationship between processes

is referred to as “levels of abstraction” or “granularity” and can often lead to mis-

communication in the work place when unskilled employees misinterpret an abstract

level instruction given by a manager. This generalisation-specialisation relationship

between different levels of abstraction in process models is formally defined in [88].

Sub-processing provides a mechanism by which motivationally different process

models can be interconnected. As a generalisation it could be said that instructi-

onal process models can be represented as sub-processes of administrative process

models. However, what one person considers an administrative process model could

be considered an instructional process model by another person. In theory there

appears to be no reason for concern about how the purpose of a process model

will affect its development. In practice, though, the purpose of the process model

was found to play a significant role in its development. The two different purposes

for which process models are utilised, administrative and instructional, were often

reflected in the phraseology of task descriptions.

4.9 Sentence Structure of Task Labels

The type of sentence used as a task label in an administrative process model is ty-

pically declarative, written from an observational perspective. Instructional process

models are used to issue commands so an imperative sentence is required to repre-

sent a task. To illustrate this let’s take a simple example of a pharmacy technician

preparing a chemotherapy drug (see Fig:4.3). In this study the process analyst, af-

ter consulting with the technician, initially labelled the task, “Chemotherapy drug

is prepared” and included it in a separate swimlane representing the technician.

CHAPTER 4. CLINICAL APPLICATIONS 110

Figure 4.3: An administrative BPMN model for dispensing drugs in a hospital
pharmacy.

When shown the finished process model, the technician and all related staff agreed

that the process model accurately represented the actual process. However, if this

process model was to be used for instructional purposes, the task, “Chemotherapy

drug is prepared” could indicate to the technician that the drug had already been

prepared. This is because the task label is a declarative sentence that describes the

action rather than an imperative sentence that issues a command.

Hospital staff all agreed that the process model was an accurate representation

because they were viewing it from an observational perspective. The declarative

sentence agreed with that perspective. If we want to use this task in an instructional

process model (see Fig:4.4) then we would use the imperative version of this task

label, “Prepare chemotherapy drug”. This task label makes it clear to the technician

what they must do. The ambiguity of this command is acknowledged but it does

illustrate how the purpose of the process model affects the types of sentences used in

its development. The ambiguity is the result of process abstraction and can be easily

resolved using sub-processing techniques where the actual drug required would be

first established before preparation.

The revised version of this process model, using imperative sentences for task

labels, was shown to all hospital staff involved in the process and every one asked,

“what had been changed?” The process analyst found that the changes had no

significant effect on their ability to analyse and optimise the model. An obvious

conclusion is therefore that an instructional process model can be used for both

giving instruction and process analysis. However, the same cannot be said for an

administrative process model.

CHAPTER 4. CLINICAL APPLICATIONS 111

Figure 4.4: An instructional BPMN model for dispensing drugs in a hospital
pharmacy.

No examples have been found of BPMN models being used in an instructional

capacity so it is understandable that no attention has been given to this inconsis-

tency in task descriptions. It is therefore not surprising to find these same variations

in task descriptions occurring within the BPMN Specification. In Figure 10.125 of

the BPMN 2.0.2 Specification (see Fig:4.5) the common inconsistency in activity

labelling practices can be seen. The following is a list of sentences from the mo-

del used to describe tasks. They have been labelled as being either imperative or

declarative sentences.

• “Accumulate Requirements” – Imperative

• “Develop Product” – Imperative

• “Sell to Customer” – Imperative

• “Verify Requirements” – Imperative

• “Consulting Required” – Declarative

• “Bugs Diagnosed” – Declarative

• “Develop Patch” – Imperative

CHAPTER 4. CLINICAL APPLICATIONS 112

Figure 4.5: A process model example from the BPMN 2.0.2 Specification [111]

Further inconsistency is demonstrated in Figure 11.4 in the BPMN 2.0.2 (see

Fig:4.6). The six choreography tasks appearing before the end event in this process

use the following types of sentences as labels:

• “Update PO and Delivery Schedule” – Imperative

• “PO and Delivery Schedule Mods” – Declarative

• “Confirmation of Delivery Schedule” – Declarative

• “Retailer Confirmation Received” – Declarative

• “Accept PO and Delivery Schedule” – Imperative

• “Finalised PO and Delivery Schedule” – Declarative

In all fairness, the BPMN 2.0.2 Specification primarily uses imperative state-

ments as labels in the examples provided but there is no specific rule that states,

all activity labels must be written as imperative sentences. A process model contai-

ning declarative activity labels has limited utility whereas models containing only

imperative activity labels can be utilised for both analysis and instruction.

Using imperative sentences to provide instruction is only the first step toward

instructional process models. The imperative sentence must be unambiguous if it

is to be effective. This became evident in the aerospace industry when writing

CHAPTER 4. CLINICAL APPLICATIONS 113

Figure 4.6: A Choreography Diagram example from the BPMN 2.0.2 Specifica-
tion [111]

maintenance manuals. To minimise the ambiguity of maintenance instructions a

controlled natural language (CNL) was developed by the Aerospace and Defence

Industries Association of Europe (ASD) called ASD Simplified Technical English

(ASD-STE100) [50]. This CNL prioritises the disambiguation of human interpreted

text because it is designed to communicate instructions to humans. Other CNLs

focus on the disambiguation of instructions from humans to machines. Still other

CNLs like Attempto [43, 46, 44] strive to bridge the gap between human readability

and machine interpretation. Writing in a CNL requires specialist training but most

can be read without any training. In fact, someone without any CNL training would

not recognise whether a sentence had been written in CNL.

4.10 Representing Urgency

During the study clinicians expressed a concern about BPMN’s ability to express

urgency. The concern was about whether an employee had to follow the instructions

of a process model to completion before undertaking any other task. Clearly this

would be impractical in a clinical environment. Life and death situations cannot be

put on hold until someone finishes what they are doing. If we think of a process mo-

CHAPTER 4. CLINICAL APPLICATIONS 114

del as an instruction manual, in the clinical situation clinicians understand a process

as an ordered list of patients moving from presentation to completion of treatment.

After entering the medical situation, patients undergo a triage process to obtain a

clinician assessment, and then, undergo a treatment process where they are assessed

for treatment, which results in prioritised appropriate therapy or therapies designed

to achieve the outcome desired within the treatment process (e.g., cure, palliation).

The prioritisation is the method by which the component therapy tasks are coordi-

nated and executed to complete the treatment process. Each of these therapy tasks

has its own internal process, on which the treatment prioritisation might impose

a change on the therapy prioritisation. Typically BPMN would represent therapy

tasks as sub-processes of treatment processes so the ordered sequence of therapy

tasks will impose prioritisation constraints on the component tasks within them.

As a result, task priority does reflect urgency, and this will usually be applied

from the initial assessment, although a priority may change from day to day or

minute to minute given a patient’s condition. For example, if an urgent case deteri-

orates and becomes futile, the priority is immediately updated; or if a routine case

is found to be deteriorating, its priority may be elevated and furthermore therapies

may be reordered or rejected. Each therapy task in the treatment process is refined

into therapy sub-processes which act as instructions for the care provider. A care

provider may be juggling many of these processes at the same time. At this level,

urgency is highly dynamic and it is impractical to consider modelling it. Care pro-

viders need to be notified of impending urgency and tasks reallocated when a care

provider is unable to complete the necessary task. If an automated management

system is to determine if a task is being performed within the allocated time frame

then it will require interaction with the care provider. The system must be able to

ask the care provider whether they have started the task and the care provider must

be able to notify the system that they have started the task. A care provider must

be able to cancel a task at which point the system will endeavour to locate another

care provider that can fulfil the task. The system should be aware of critical time

frames and be able to adjust for delays.

The concern about whether a BPMN model can adequately represent urgency

stems from a fundamental difference between design-time and run-time process mo-

dels. A design-time process model is a generalisation of a run-time instance. At de-

sign time we can experiment with different configurations to optimise performance

but there will always be extenuating circumstances that occur at run-time that will

force deviation from the original plan, i.e., the design-time process model. At run-

time the process model is utilised as an instruction set to a workflow management

system (WfMS). However, the WfMS needs to respond to dynamic changes in the

environment. To achieve this, a WfMS needs to assemble a process model on the fly

CHAPTER 4. CLINICAL APPLICATIONS 115

or compensate for deviant behaviour. To do that it needs to be able to assess the

situation and choose appropriate actions to achieve a desired goal. This involves AI

planning of the type discussed in chapter 2.12. It is therefore clear that the concern

about whether BPMN can model urgency is more of a question of whether a WfMS

can respond to urgency. Static process models can only offer a prescribed course of

action leaving the WfMS incapable of compensating for deviant behaviour by the

user. The approach in [107] allows a WfMS to compensate for deviant behaviour

based on activities but does not offer an ability to evaluate the environment. A

WfMS that can work with semantically annotated process models can intelligently

respond to dynamic situations.

4.11 Future Vision

Workflow Management Systems (WfMS) in health care is not a new idea. Many

languages [42, 136, 28, 22, 107] have been developed in a move towards dynamic

response WfMSs. In 2001, Dwivedi et al. [36] argued that WfMS, mobile and

internet technology would all become standard practice in the future of health care.

Already there are mobile apps assisting clinicians in the field [148] but this vision is

slightly more ambitious.

With established instructional process models it will be possible to integrate

them into a distributed management system where mobile devices can be used to

alert and coordinate clinical staff during emergency situations. Imagine a hospital

working environment where health care workers are coordinated by computers. Each

health care worker carries with them a mobile device that presents tasks that need

to be completed. The tasks are automatically prioritised and specifically target the

health care workers qualified to perform them. A health care worker commits to a

task by selecting it on their mobile device then follows the instructions provided.

They can check the context of the task and access more detailed instructions about

how the task is to be performed. The mobile device directs them to the location

where the task is to be performed and prioritises requests based on the proximity

of the health care worker to the task execution area. Patient details can be entered

into the mobile device which can plan an appropriate course of action.

Such a physical device is well within the capabilities of our current level of

technology. However, the information required for such a device to perform effecti-

vely does not yet exist. Semantic effect annotation of process models provides a

framework for collecting human experience and relating it to actions performed in

the workplace. That experience can then be utilised by machines to suggest appro-

priate actions in response to given situations.

CHAPTER 4. CLINICAL APPLICATIONS 116

Consider the following example. A nurse, working on a hospital ward, has

just taken the blood pressure of a patient and records the reading in a mobile

device hypothetically referred to as a Pocket Health Care Assistant (PHA). If the

blood pressure reading is too high or too low then the system would notify a doctor

within the immediate area otherwise the PHA recognises that the task has been

completed and presents the nurse with a list of tasks currently on offer in the working

environment. By selecting a task, the nurse commits to performing it. The displayed

tasks have been automatically prioritised and targeted specifically to health care

workers based on their skills and proximity to the location where the task is to be

performed. The PHA can be used to check the identity and medical records of a

patient and alert the appropriate clinicians of abnormal test results.

There may be other health care workers equally qualified within close proximity

and any one of them can accept that task. Once the task is accepted, it no longer

appears on any other PHAs. However, the health care worker can decline an accepted

task if another emergency occurs which would automatically reinstate the task on

all PHAs of health care workers suitably qualified.

The health care worker can view all information related to the task to understand

the context in which the task is to be performed or perhaps gain a more detailed

set of instructions for further clarification. Coordination is managed by a networked

back end WfMS whereas communication is the principal function of the PHA so it

is vitally important that all forms of instruction are presented unambiguously. This

may require multiple delivery strategies, e.g. text, diagrams, video and contextual

dictionaries.

Although fictional and not as sophisticated as a Star TrekTMTricorder [90], the

PHA concept provides a valuable research blueprint for health care improvement.

If such a device is to be created, it will require a framework for recording, storing,

analysing and delivering instructional information. However, let’s not get carried

away with the idea that a PHA can solve communication problems within the health

care industry. In a realistic working environment there may not be enough time for

health care workers to review all the clarification material available on the PHA

and thus they will be forced to rely on experience to interpret the immediate data

presented. Life and death situations require urgent responses, which means the

instructions presented on a PHA must be succinct and unambiguous.

4.12 Summary

This chapter discusses how the ProcessSEER framework can be utilised for detecting

treatment conflicts between co-incident treatment protocols. Also covered in this

chapter is the potential for the framework to support a dynamically reactive Work-

CHAPTER 4. CLINICAL APPLICATIONS 117

flow Management System and the criteria required for that implementation. One of

the principal criteria being task labels written as imperative sentences in a controlled

natural language. The case study revealed important insights into human-computer

interaction problems with the ProcessSEER tool that have directly influenced its de-

velopment. The Resource Description Framework was adopted as a standard Effect

input method for the ProcessSEER tool as a direct consequence of this case study.

A concern expressed by clinicians about representing urgency in a BPMN model

has also been addressed. Finally a future vision has been provided about how the

ProcessSEER framework can support hand-held medical assistant devices offering

real-time evaluation of patient conditions with appropriate decision support.

Chapter 5

CrowdSourcing Annotations

The following general principles have been employed in the development of a frame-

work for supporting crowdsourcing of process effects:

1. Inconsistencies serve as triggers for discussion, negotiation, deliberation and

reconsideration.

2. Inconsistencies can be detected (or surfaced) either directly (e.g., when expli-

citly specified effects contradict each other) or indirectly. The indirect manife-

station of effects is supported by computing the process-specific consequences

of a set of effects.

For instance, a set of immediate effects of a task might mutually be consistent,

but lead to inconsistencies that manifest downstream in a process when these effects

are accumulated with downstream effects, or when these effects do not lead to the

expected effects at some downstream milestone. The following techniques are offered

for supporting crowdsouring:

1. Belief merging techniques can be used to detect and resolve explicit inconsis-

tencies.

2. The proportion of a stakeholders effect specification that are retained in the

final set of effects can serve as a ”credibility indicator” of the kind that is used

in a variety of recently proposed crowdsourcing frameworks.

3. Techniques for surfacing indirect inconsistencies by using effect propagation

(two immediate effects for the same task, e1 and e2, are elicited from 2 sta-

keholders - these turn out to be mutually consistent and are combined into a

single immediate effect - but these lead to effect scenarios at a downstream

milestone which do not correspond to the expected effect scenarios). Here the

inconsistency is essentially between a stakeholder’s understanding of the ef-

fects of a task, and the same stakeholder’s understanding of how these effects

118

CHAPTER 5. CROWDSOURCING ANNOTATIONS 119

play out in the context of a process design, or between stakeholder1’s effects

and stakeholder2’s expectations.

Methods for optimising the quality and quantity of process model effect an-

notation acquired through consultation with domain experts have been previously

described. Those techniques can now be applied to acquiring effect information from

multiple domain experts. Recording effects, using a standardised domain ontology,

is effectively building a multi-perspective knowledge base from which outcomes can

be derived that may have otherwise remained hidden. A multi-perspective view

also includes observations from different levels of abstraction, e.g., an operations

manager will most likely give a more abstract account of the effects of a process

than those given by a trades person. Sub-processes in process models provide an

ideal means for recording and representing these different levels of abstraction. The

effects described within a sub-process give a more detailed account than the effects

associated with its parent process.

Crowdsourcing is often closely associated with social media. In this regard it

is primarily concerned with mining public opinion. Opinion is an easy thing to

offer and requires no qualification whereas knowledge needs to be validated. For

this reason the scientific community has a peer review system and Wikipedia is

policed by other members of the contributing public. While these methods may not

guarantee one hundred percent accuracy they minimise the introduction of erroneous

knowledge.

Crowdsourcing within the context of semantic effect annotation is concerned

with the assimilation of knowledge rather than opinion and thus requires validation.

Semantic effects are elicited from experts, i.e., people who are trained to perform the

activities under review. Crowdsourcing of semantic effects must therefore be confi-

ned to the contributions from experts with the appropriate skill sets. This occurs in

the process model repositories of organisations. Although somewhat limited when

compared to the data generated by social media, the same crowdsourcing objectives

can be applied to this limited data set. The goal of crowdsourcing process models

is to combine models of similar processes into the most efficient and comprehensive

model for all organisations involved.

Consider two separate hardware retailing outlets belonging to the same parent

company, Store A and Store B. They both use the same process for packaging and

shipping goods to their customers (see Fig.5.1). However, Store A has calculated its

price per item based on expected loss or damage during transportation whereas Store

B has factored an insurance cost into its pricing structure. Although the business

process models look identical, when the effects are compared it reveals a different

story. Both process models contain a task labelled “Check if extra insurance is

necessary”.

CHAPTER 5. CROWDSOURCING ANNOTATIONS 120

Figure 5.1: A warehousing process model.

The following two immediate effect scenarios, written as SPOTON tuples (see 6.1),

have been annotated to this task in the process model of Store A.

Store A EffectScenario1(Aes1):

Aes11: (goods, isFragile, true, a, b,−)

Aes12: (transportationInsuranceForm, isPartOf, shippingPaperwork, r, o,−)

Aes13: (insuranceRequest, isPrintedOn, transportationInsuranceForm, r, o,−)

Store A EffectScenario2(Aes2):

Aes21: (goods, isFragile, true, a, b,+)

Aes22: (transportationInsuranceForm, isPartOf, shippingPaperwork, r, o,+)

Aes23: (insuranceRequest, isPrintedOn, transportationInsuranceForm, r, o,+)

Aes24: (transportationInsuranceForm, isInPossessionOf, logisticsManager, r, o,+)

In Aes11, ’goods’ is the subject, ’isFragile’ is the predicate, ’true’ is the object,

’a’ represents that the effect is an attribute description, ’b’ represents that the object

is a value of type Boolean and the ’-’ symbol indicates the negation of this effect.

It can be interpreted as the goods are not fragile. EffectScenario1 explicitly states

that no insurance request is generated, indicated by the negation symbol ’-’ at the

end of each of the remaining Effects. Since there is no transportation insurance form

there is no need to track who is or is not in possession of it. Consequently there is

no effect that references this.

In Aes21, the ’+’ symbol at the end of the tuple indicates that this effect is a

positive assertion meaning the goods are fragile. Consequently an insurance request

is generated and the person in possession of the transportation insurance form is

recorded.

Store A has been in operation for considerably longer than Store B and has

therefore collected significant data to support its projected damage bills. Based

on this data Store A has negotiated a lucrative agreement in which the logistics

CHAPTER 5. CROWDSOURCING ANNOTATIONS 121

company covers all damages of non-fragile goods. That means that Store A can

offer transportation costs marginally less than Store B.

Now let’s look at the same task modelled in the Store B’s process. The following

two immediate effect scenarios, written as SPOTON tuples, have been annotated to

this task in the process model of Store B.

Store B EffectScenario1(Bes1):

Bes11: (goods, isFragile, true, a, b,−)

Bes12: (transportationInsuranceForm, isPartOf, shippingPaperwork, r, o,+)

Bes13: (transportationInsuranceForm, isInPossessionOf, clerk, r, o,+)

Bes14: (standardInsuranceRequest, isPrintedOn, transportationInsuranceForm, r, o,+)

Store B EffectScenario2(Bes2):

Bes21: (goods, isFragile, true, a, b,+)

Bes22: (transportationInsuranceForm, isPartOf, shippingPaperwork, r, o,+)

Bes23: (premiumInsuranceRequest, isPrintedOn, transportationInsuranceForm, r, o,+)

Bes24: (transportationInsuranceForm, isInPossessionOf, logisticsManager, r, o,+)

There are two scenarios that contain similar effects as those from Store A. Ho-

wever, Store B issues an insurance request form for every item it ships. Semantic

effect annotation performed at each location allows these types of discrepancies to

be detected whereas the process models alone would indicate that both Stores are

following the same procedure.

Semantically annotated business process models capture the unique perspecti-

ves of many different contributors, the business analysts, the domain experts and

the knowledge engineers. Each process model can contain the views of more than

one domain expert. Once a standard process model (i.e. contains no semantic effect

annotations) has been designed it is etched in stone so to speak. Its purpose is re-

peatability and predictability for maintaining quality control. It may be altered to

improve efficiency but essentially it represents a rule, “this is how we do this”. The

activities in the process model have been selected and ordered based on personal

observations by a domain expert. Human beings typically filter their sensory input

based upon what captures their interest. Two people experiencing the same situ-

ation will notice different things about their environment based on what they are

interested in or what captures their attention. In a medical setting, what presents

as a significant symptom to one doctor may be overlooked by another. The obser-

vations of a single individual are limited so by combining individual observations of

the same event it is possible to arrive at a more complete description of the situation

upon which to decide appropriate actions. The parable of the elephant and the blind

men emphasises the need for combining perspectives to arrive at a more complete

truth.

CHAPTER 5. CROWDSOURCING ANNOTATIONS 122

Combining different perspectives is inherently difficult because of the limitati-

ons of communication. In this sense communication is defined as the transferral of

information from one conscious entity to another. If we consider a piece of infor-

mation being passed from a transmitter to a receiver then no problem exists if the

transmitter’s encoder uses the same cipher as the receiver’s decoder. The informa-

tion is communicated without loss of semantics. However, communication among

humans is flawed because the encoder of one person often does not match the deco-

der of another person. People can impart their experience (encode) to one another

but each person will interpret (decode) the communicated information through their

own filter of experiential knowledge thus the meaning of what is said or written can

often become distorted by the receiver.

Professionals from different fields of expertise often use the same word to re-

present different things. Take for example the word, ‘ontology’, according to the

Oxford Dictionary, ‘ontology’ is “The branch of metaphysics dealing with the na-

ture of being”. In this case the word, ‘ontology’, is a noun denoting an action, i.e.,

the study of the nature of being. The Oxford Dictionary also gives an alternate

meaning commonly held among computer scientists that an ontology is “A set of

concepts and categories in a subject area or domain that shows their properties and

the relations between them”. In this second definition the word, ‘ontology’, is a noun

denoting an object, i.e., a structured set of concepts. A philosopher’s interpretation

of the word, ‘ontology’ will therefore be different to the interpretation of a computer

scientist. It is ironical that the science of ontology, that seeks to categorise concepts

into a standardised semantic representation, is itself semantically contested.

Despite the controversy surrounding the word, ‘ontology’, the idea of using an

ontology to standardise semantics provides a platform for recording multi-perspective

experiential knowledge that is semantically consistent. In the case of process models,

the experiential knowledge will be limited to an observational perspective, obviously

lacking other sensory data that would normally be processed by the human brain.

However, observational data underpins many of our greatest scientific discoveries

therefore capturing and recording that data in a semantically consistent form allows

us to combine these observations and avoid misinterpretation.

As previously stated, communication is one of the biggest challenges when elici-

ting knowledge from other people. A business analyst will typically not understand

the nuances of ontology construction but they will be the conduit through which the

experience of an expert is transferred to a knowledge engineer. As such, they run the

risk of distorting the knowledge with their own understanding thus creating a world

according to the business analyst. For this reason it is imperative that the know-

ledge engineer engage directly with the expert. However, the knowledge engineer,

without context, will typically lack the understanding required to ask the expert

CHAPTER 5. CROWDSOURCING ANNOTATIONS 123

the necessary questions for acquiring the knowledge. Enter the process model. The

model provides the context. Knowledge acquisition therefore becomes a three way

operation in which the domain expert describes the process to the business analyst,

the business analyst develops the process model and annotates the effects then ge-

nerates a prototypical ontology which the knowledge engineer uses to integrate the

terminology into a domain ontology in consultation with the domain expert. It may

also be the case that process model discrepancies are revealed when the knowledge

engineer consults with the domain expert. This combined approach helps minimise

interpretation bias from skewing the data provided by a single individual but an

effect scenario still represents the observed state of the world from an individual

perspective. When multiple experts perform the same activity and report their in-

dividual observations the objective is to expand upon these individually observed

states by combining them.

Before combining the effect scenarios of two identical activities it is necessary

to consider the following questions:

1. Do both activities originate from process models designed to achieve the same

purpose?

2. Do both activities contain the same effect scenarios?

3. Do all effect scenarios remain disjoint or can some be merged?

Question 1 is concerned with how context affects the reported state of the world.

As a general rule identical tasks from process models created to achieve different

purposes are not considered. For example, a task, “Send Email”, could be used

in many different process models each providing unique but unrelated contextual

information. However, an event is initiated outside the process yet effects chan-

ges in the artifacts associated with the process. Combining the effect scenarios of

identical events from different process models can reveal important collaborative

details discussed later in the section on event merging. Also explored in this section

is the possibility of context independent tasks by removing contextual effects from

immediate effect scenarios.

Question 2 is concerned with identifying the differences between unique obser-

vations. Different effects or different numbers of effect scenarios are triggers for

discussion, negotiation, deliberation and reconsideration. Techniques are offered to

assist in isolating these differences in preparation for the review process. Effect

scenarios may contain erroneous effects, the effects may have been miscommunica-

ted, additional effect scenarios may have been observed or effects may have been

described at a different level of abstraction. Understanding the reasons behind the

differences will determine which methods are used to combine the effect scenarios.

CHAPTER 5. CROWDSOURCING ANNOTATIONS 124

Question 3 is concerned with how the reported observations are combined. Some

effects may be common among all alternate effect scenarios while some effects are

disjoint. Some effect scenarios when merged may be consistent but does that mean

they should be merged or should they remain separate? Some effect scenarios when

merged may be inconsistent but does that mean they should just remain separate?

Common effects may need to be copied into disjoint effect scenarios because they are

missing. The following section explores techniques for combining the effect scenarios

of identical activities.

5.1 Techniques for Combining Effect Scenarios

Semantic effect pair-wise accumulation is a belief revision function [48]. The se-

quencing of activities in a process model implicitly assigns time indices to the effect

scenarios associated with them. This method of time stamping was first proposed

by Katsuno and Mendelzon in 1992 [78]. It prioritises the immediate effect scenario

(the current state of the world) over the previous cumulative effect scenario (the

previous state of the world) because the immediate effect scenario is a more recent

account. Individual effects in the immediate effect scenario are considered to be true

while effects from the previous cumulative effect scenario are discarded if they cause

an inconsistency. The immediate effect scenario always has a higher priority than

the previous cumulative effect scenario because it is the most recent observation.

Merging knowledge bases requires some method of prioritisation to determine

which assertions hold and which do not. Paolo Liberatore [91] gives examples of

prioritisation methods used when merging multiple knowledge bases. However, cro-

wdsourced effect scenarios cannot be prioritised based on time because there is no

time line differentiation. When combining multiple accounts of the same activity,

there is a need to combine multiple immediate effect scenarios that theoretically

occurred at the same time, i.e., immediately following the activity under considera-

tion.

One possible prioritisation method could be based on the experience of the

expert providing the account. However, experience measured in time does not always

make one expert more knowledgeable than another so this may prove unreliable.

Another possible effect prioritisation method could be based on whether the task

was actually currently being performed by the expert or whether the expert had

simply observed or recalled the performance, the former having more credibility

than the latter. The problem with this method is that it cannot prioritise experts

with equivalent credibility which will often be the case. While inconsistent accounts

may raise questions regarding the credibility of some experts it would be unwise to

apply those credibility findings to a prioritisation algorithm. Each case should be

CHAPTER 5. CROWDSOURCING ANNOTATIONS 125

evaluated on its own merits. In this case effect scenario merging is not based on

an algorithm but rather an unanimous agreement as to the outcome of a particular

activity.

One effect scenario may contain effects not included in the other effect scenario.

If the two merged effect scenarios are consistent then they qualify to be merged into

a single effect scenario. In some cases this will lead to an expansion of the effect sce-

nario in other cases the two merged effect scenarios may be identical. If the two effect

scenarios are inconsistent when merged then this indicates either erroneous effect

annotations or that the two effect scenarios identify completely different outcomes

witnessed by the different experts. In this case disjoint outcomes are acceptable

and no prioritisation of individual effects is necessary. Inconsistent merged effect

scenarios act as triggers for discussion among experts, the result being that any

errors are corrected and effect scenarios are merged or that the two effect scenarios

do in fact identify different possible outcomes. If the number of outcomes increases

as a result then the process model may need to be redesigned to accommodate these

differences.

There are therefore two options when combining effect scenarios, either merge

using arbitration or majority rules. Arbitration aims to retain all effects from all

combined effect scenarios which inevitably results in a disjunction of effect scena-

rios when inconsistencies are encountered. The resulting alternate effect scenarios

represent possible worlds that may exist immediately following the execution of the

process activity. Merging based on majority prioritises effects that appear in the

greatest number of effect scenarios, e.g., if an effect p appears in 2 out of 3 effect

scenarios and the 3rd effect scenario contains ¬p then the merged effect scenario will

contain p rather than ¬p. The majority methods aims to combine all effect scenarios

into a single consistent effect scenario that represents the most likely outcome based

on the majority of observations.

These methods of merging effect scenarios will determine the final outcome of the

merged process models and will ultimately be decided by the experts who provided

the original effect annotations. Each semantic effect annotation contains details of

the expert who provided it. A business analyst will employ merging techniques

to analyse the possible outcomes of effect scenario merging prior to consulting the

contributing experts. The analysis data is used as argumentation for deciding which

of the merging techniques most accurately represents the observations of all experts.

While there may be the occasion where crowdsourcing produces a large number

of models for the same process it is expected that the majority of comparisons will

occur between only two models. This section is not concerned with model design

although design features may be discussed. Its primary goal is to explore techniques

that will assist a business analyst to expand and refine effect knowledge from multiple

CHAPTER 5. CROWDSOURCING ANNOTATIONS 126

sources. The techniques described in this section refer only to combining immediate

effect scenarios that belong to identical activities occurring in different models of

the same process. The identical activities may contain more than one immediate

effect scenario and each activity may contain different numbers of immediate effect

scenarios. It then becomes a challenge for the business analyst to identify which

immediate effect scenario from one activity corresponds with which immediate effect

scenario from the other activity. Before approaching the contributing experts for an

adjudication, a business analyst can prepare the following argumentation:

1. The most likely corresponding effect scenarios between two identical activities.

2. The effects from each immediate effect scenario that conflict with the other

immediate effect scenario.

3. The effects from each immediate effect scenario that qualify as expansions of

the other immediate effect scenario.

4. The possible solutions of merging the immediate effect scenarios of identical

activities.

The following sections identify five techniques for comparing and evaluating

semantic effect annotations and explore how these techniques can be used to im-

prove process model design. The first technique examines identical activities each

containing a single annotated immediate effect scenario. The second technique exa-

mines identical activities with more than one immediate effect scenario. The third

technique examines substitution and accumulation of immediate effect scenarios to

explore indirect inconsistencies. The fourth technique explores the possibility of de-

veloping a context independent activity repository and the fifth technique examines

how event effects can be used to improve collaboration.

5.1.1 Single Immediate Effect Scenario Merging

When merging immediate effect scenarios of identical tasks it can be expected that

the majority of effects will be identical. This helps narrow down any effects that may

cause the merged effect scenario to be inconsistent with the background knowledge

base. Identifying conflicting effects forms part of the agenda for discussion between

contributing experts. Let us consider a case where two organisations are performing

the same process. The process models have been designed by two separate business

analysts in consultation with domain experts. The domain experts are unique to the

organisations. At first glance the process models appear to be identical but these

models have been annotated with semantic effects. This allows us to compare the

observations that have guided the process designs.

CHAPTER 5. CROWDSOURCING ANNOTATIONS 127

In this example two identical activities from models describing the same process

are compared. Each activity has a single immediate effect scenario. Let A and

B be two identical activities from two different models describing the same pro-

cess. Let Aes be the immediate effect scenario of A, i.e., Aes is the set of effects

{Ae1, Ae2, . . . , Aen}|Aei ∈ Aes. Let Bes be the immediate effect scenario of B, i.e.,

Bes is the set of effects {Be1, Be2, . . . , Ben}|Bei ∈ Bes. Let Mes be the result of

merging Aes and Bes. Let KBR be a background knowledge base and set of rules

common to Aes, Bes and Mes. It is assumed that Aes∧KBR and Bes∧KBR are

both consistent. Mes is first instantiated as an empty set {∅} into which all effects

from Aes are copied. Effects from Bes are only added to Mes iff Bei 6∈Mes. When

every effect from Bes has either been added or discarded then Mes is checked for

consistency.

If Mes is consistent then removing the original Aes effects from Mes will re-

veal additional information introduced by activity B and its corresponding experts.

Removing the original Bes effects from Mes will reveal additional information in-

troduced by activity A and its corresponding experts. If no additional effects are

detected then Aes and Bes are equivalent thus reinforcing the validity of the obser-

ved effects by both experts. It should be noted that consistency is no indication of

accuracy therefore the business analyst should never be the adjudicating authority

over effect scenario merging. A business analyst upon discovering additional effects

through merging will contact the experts involved and alert them to the differences

between their observations. This opens a point of discussion between experts and

facilitates knowledge expansion. The outcome may be that the additional effects

are deemed inaccurate or insignificant to process execution or they may lead to a

significant productivity increase or perhaps even a medical breakthrough.

Merging immediate effect scenarios can also result in Mes being inconsistent.

One method of identifying conflicting effects involves testing the consistency of Mes

for each merged effect. Bei is identified as conflicting when Aes ≡Mes and Mes∧
Bei∧KBR is inconsistent. The operation is repeated for each Bei merged with Mes

until all conflicting effects from Bes are identified. It is equally important to identify

the effects from Aes that conflict with Bes. The process is repeated for Mes ≡ Bes

each Aei is identified as conflicting when Mes ∧ Aei ∧KBR is inconsistent.

It may not be a single effect that is responsible for Mes being inconsistent. Some

effects may only cause inconsistency if merged in combination, i.e., Aes∧Be1∧KBR

is consistent and Aes ∧ Be2 ∧ KBR is consistent but Aes ∧ Be1 ∧ Be2 ∧ KBR is

inconsistent. This is referred to as a co-existent inconsistency. These types of

inconsistent effects can be identified using Ginsberg’s [54] method of generating

maximal consistent subsets from the merging of Aes and Bes. Effects from Aes

and Bes not included in the maximal consistent subsets qualify as conflicting. The

CHAPTER 5. CROWDSOURCING ANNOTATIONS 128

maximal consistent subset method can also generate alternate outcomes that can

be included in the list of possible solutions.

This type of analysis provides a detailed report of the specific effects in conflict

from each expert’s unique perspective. It may be that the conflicting effects indicate

alternate immediate effect scenarios are required with appropriate decision gateways

to process them. The conflicts could also reveal miscommunication within the kno-

wledge acquisition chain or an expert’s misinterpretation of events. Whatever the

outcome, both organisations benefit from the resolution with improved knowledge

about the common process.

5.1.2 Merging Multiple Immediate Effect Scenarios

Activities in processes can generate multiple alternate outcomes in which case the

activity in the process model will have more than one annotated immediate effect

scenario. This is generally the case with activities that precede decision gateways.

It is often the case that alternate immediate effect scenarios will be almost identical,

in some cases containing only one effect that differentiates them from each other.

Definition of Alternate Effect Scenarios

Alternate immediate effect scenarios from a single activity when merged will always

be inconsistent with the background knowledge base.

Let A be a task annotated with a set of immediate effect scenarios AES such that

AES = {Aes1, . . . , Aesn}|Aesi ∈ AES. Let AES−i be the set of immediate effect

scenarios remaining in AES after Aesi is removed. Let Aei,j be an immediate effect

such that Aei,j ∈ Aesi.

∀Aesi∃Aei,j|Aei,j ∪ Aesj ∪KBR is inconsistent.

Given two identical activities from two different models describing the same

process, the immediate effect scenarios annotated to each of the activities are re-

presentative of the outcome of the activity as witnessed by different experts. When

alternate effect scenarios are present, the consulting expert has reported different

possible outcomes generated by the activity. The challenge for the business analyst

is to identify which of the alternate effect scenarios from an activity in one model

corresponds with which of the alternate effect scenarios from the activity in the

other model. Corresponding effect scenarios are identical world state descriptions

witnessed from two different perspectives. They may contain different effects or

they may be identical. Only the consulting experts will be qualified to declare if two

effect scenarios are corresponding. It should never be the role of the business ana-

lyst to make this decision. However, the business analyst can perform a preliminary

analysis of the alternate immediate effect scenarios from both process activities to

identify possible candidates for corresponding effect scenarios.

CHAPTER 5. CROWDSOURCING ANNOTATIONS 129

Figure 5.2: Abstract process model.

Two methods are offered for identifying candidates for corresponding effect sce-

narios. The first method involves comparing immediate effect scenarios with gateway

conditions. If the two identical activities from each process model precede a deci-

sion gateway then the gateway conditions can be used to match immediate effect

scenarios, i.e. immediate effect scenarios from identical activities that satisfy the

same conditions qualify as candidates. Standard condition testing is employed. If

all the conditions annotated to an outgoing branch of a decision gateway exist in an

immediate effect scenario then it satisfies the conditions.

However, some identical activities with alternate effect scenarios do not precede

a decision gateway. The process model in Fig.5.2 is an example where alternate effect

scenarios are generated by the first task but no decision gateway follows. The process

is represented at a high level of abstraction and involves a single actor, the person

or group receiving the application and making the decision. Having no decision

gateways means there are no conditions against which the effect scenarios can be

compared. However, the notification activity implies additional actors that initiate

appropriate response actions for each possible decision. This involves a decision

gateway even if that gateway is not present within the current process model. It

may be possible to utilise the conditions from a gateway in a separate process model

that connects with this model but if no such model exists then a second method can

be employed.

A Cartesian product style merging technique can be employed to test the consis-

tency of all possible merged pairs. Each effect scenario from one activity is merged

with every effect scenario from the other activity and tested for consistency. Consis-

tent merged effect scenarios qualify as candidates for corresponding effect scenarios.

This method cannot guarantee the identification of all corresponding immediate

effect scenarios but it can reduce the effort required by the business analyst. It

provides a starting point for analysis.

The goal of the Cartesian product merging is to identify which immediate effect

scenario from one activity corresponds with which immediate effect scenario from

CHAPTER 5. CROWDSOURCING ANNOTATIONS 130

the other activity. In this case each effect scenario from one activity is merged

with each of the effect scenarios from the other activity. Let A and B be two

identical tasks from different models describing the same process. Each task has

two alternate immediate effect scenarios annotated. Let task A be annotated with

immediate effect scenarios Aes1 and Aes2. Let task B be annotated with immediate

effect scenarios Bes1 and Bes2. Cartesian product merging involves merging the

following pairs:

• Aes1 + Bes1

• Aes1 + Bes2

• Aes2 + Bes1

• Aes2 + Bes2

There are three possible outcomes for each effect scenario. The outcomes for

Aes1 are:

1. Aes1 is consistent with only one of the other effect scenarios, e.g. Aes1 +Bes1

is consistent OR Aes1 + Bes2 is consistent.

2. Aes1 is consistent with more than one of the other effect scenarios, e.g. Aes1+

Bes1 is consistent AND Aes1 + Bes2 is consistent.

3. Aes1 is inconsistent with all the other effect scenarios, e.g. Aes1 + Bes1 is

inconsistent AND Aes1 + Bes2 is inconsistent.

The ideal result is outcome number one which eliminates all other immediate

effect scenarios leaving only one. In this case the business analyst can be reasonably

assured that the consistent pair are the corresponding effect scenarios from each

of the identical activities. Single effect scenario merging techniques can then be

employed for further insights.

In the case of outcomes 2 and 3, further analysis is required by the business

analyst to determine the corresponding effect scenarios. Additional alternate effect

scenarios may be discovered or it may reveal erroneous observations. If an immediate

effect scenario is consistent with more than one other immediate effect scenario then

it could indicate that it is a subset meaning it may be missing important effect

declarations that distinguish it from other effect scenarios. If an immediate effect

scenario is inconsistent with every immediate effect scenario of the other activity

it could indicate that it is a completely different possible world. These outcomes

stimulate further inquiry into the design and expected results of process execution

which can only lead to better process design.

CHAPTER 5. CROWDSOURCING ANNOTATIONS 131

5.1.3 Indirect Inconsistency Detection

Consistency checking of merged effect scenarios can reveal valuable insights into

process design and expand an organisation’s pool of knowledge. Another technique

available to the business analyst is to substitute the immediate effect scenarios from

one task in an identical model into its corresponding task in the current model then

run the accumulation function across the process model. This reveals the impact

that different effects have on other tasks within the process. The accumulation

function provides immediate feedback about whether the process will execute with

the substituted effect annotations. The generated cumulative effect scenarios can

be compared to identify changes to the expected outcomes.

The technique is simple. Just copy and paste the immediate effect scenarios

from a single activity in one process model into its corresponding activity in the

other process model and run the accumulation function. When using substitution

it is always better to work backwards through a process model. In this way the

changes to accumulated effects are minimised and therefore more manageable.

Substitution will always be used after effect scenario merging but it can also

be used prior to merging especially in the case where activities have multiple effect

scenarios. Simple substitution of multiple effect scenarios allows the accumulation

function to apply conditions on the outgoing edges of downstream decision gateways.

This can identify individual effects in the substituted effect scenarios that cause

problems which can then be used to identify corresponding effect scenarios. For

example, a substituted effect scenario that satisfies the conditions on an outgoing

edge of a decision gateway will correspond with the existing effect scenario that

satisfies those conditions.

Looking back at the previous multiple effect scenario merging example where

task A has two immediate effect scenarios Aes1 and Aes2, and task B has two im-

mediate effect scenarios Bes1 and Bes2, substitution then accumulation are applied.

If a decision gateway immediately follows task A with conditions C1 and C2 on the

respective outgoing edges the accumulation reveals that Bes1 is propagated along

the outgoing edge containing C1 and Bes2 is propagated along the outgoing edge

containing Bes2. Before substitution Aes1 was associated with C1 and Aes2 with

C2. The substitution and accumulation allows us to conclude that Aes1 and Bes1

are corresponding effect scenarios and should be merged, likewise for Aes2 and Bes2.

5.1.4 Context Identification

Further insights can be gained from comparing activities annotated in context with

the same activities annotated in isolation, i.e., the activity is presented to the expert

without any indication of the process in which it is involved. Effect annotation is a

CHAPTER 5. CROWDSOURCING ANNOTATIONS 132

process whose first step is to identify artifacts that will be affected by the process

under consideration. The effects upon those artifacts by individual activities are

then annotated to those activities. Without any contextual information from a

complete process model an expert must identify the artifacts that will be affected by

the isolated activity then think about the pre and post conditions of those artifacts.

Activities considered in isolation therefore elicit both before and after effect scenarios

because effects are concerned with change.

The information acquired from a single domain expert may still contain errone-

ous data or fail to include important data. These types of discrepancies can often

be detected by comparing an annotated process activity, which was presented to

the domain expert in isolation, to an identical process activity presented within the

context of a process model. Presented in isolation, a process task may be insuffi-

cient for a domain expert to identify all the important effects. It may equally focus

the domain expert’s attention on what may otherwise be overlooked in a contextual

situation. Analysis of the task in a contextual environment can similarly reveal or

conceal important effects. The business analyst needs to allow up to a week before

requestioning the domain expert about either the task in isolation or the task in con-

text. Alternatively, if there are multiple processes with which the domain expert is

familiar then interviews can be conducted about different tasks over successive days.

This helps minimise the regurgitation of memorised effects from previous interviews.

Using this approach, the potential exists for identifying context independent

activities, i.e., activities that have minimal immediate effect annotations that can be

dropped into any process model. Additional context dependent effects could then be

added to the base immediate effect scenarios. A repository of such activities would

improve efficiency in process design and effect elicitation.

5.1.5 Event Merging

Events are of particular importance because they are process independent. An event

is initiated outside the process but effects change in the artifacts associated with

the process. What is interesting about events is that the same event can occur in

many different process models but its effects are isolated to the artifacts identified

in the particular process model in which it occurs. If identical events from different

processes are compared, previously ignored artifacts may be identified. These ad-

ditional artifacts, when introduced into a process design, can reveal opportunities

for collaborative support. An event may impact a number of different departments

within an organisation. Knowing the effects that the event has on the processes in

each department can assist in the development of more collaborative process designs.

CHAPTER 5. CROWDSOURCING ANNOTATIONS 133

The same effect scenario merging techniques can also be applied to the im-

mediate effect scenarios of events. Contradictory effects require examination and

resolution while additional effects identify opportunities for collaboration. Accumu-

lating these merged effect scenarios can identify where additional activities can be

introduced to assist other processes within the organisation.

5.2 Summary

This chapter looks at some of the problems encountered with crowdsourced informa-

tion and offer techniques for combining conflicting effect scenarios. Also described

is how such conflicting information can be of benefit to an organisation by revealing

inconsistencies. Context identification is shown to contribute to a richer under-

standing about the effects of activities while event merging can contribute to more

collaborative exchange between internal departments.

Chapter 6

Implementation

This chapter describes how the conceptual components from chapter 3, the algo-

rithms from appendix A and the practical application insights from chapter 4 have

been implemented. The implemented tool has been named after the framework,

“ProcessSEER” which stands for “Process Semantic Effect Evaluation and Reaso-

ning”. The “SEER” acronym was considered applicable because the tool provides

an insight into future scenarios based on current situations. The ProcessSEER tool

is implemented using the Eclipse environment [41], as a plug-in to the STP BPMN

modelling tool [37]. The modelling tool provides a graphical representation of pro-

cess models that comply with the BPMN 1.1 specification [112], i.e, they have an

underlying XML format that is platform independent. The BPMN 1.1 specification

was current at the time when the ProcessSEER tool was first developed. Not all

BPMN elements are recognised by the ProcessSEER plug-in but it does cover the

most commonly used. Other BPMN modelling tools, that are more up-to-date with

the current standards, are currently under review.

The original version of ProcessSEER provided the user with a single data entry

field for annotating Effect sentences using the ACE-CNL controlled natural lan-

guage toolkit [132]. The variety of process models that could be accumulated was

extremely limited and plotting Scenario Labels was mandatory before accumulation

could occur. Accumulated Effect Scenarios were output manually and fed into a

Prover9 theorem prover [100] for consistency checking. The primary role of this

alpha version software was to demonstrate the capability of reasoning with semantic

effect annotations.

The tool is still in an alpha stage of development, currently at version 4.0 with

development about to commence on version 5.0. The graphic user interface has

been significantly altered to accommodate the insights gained from clinical trials

(see 4.4). Effect annotations are now constrained to binary predicate input using

three distinct fields that do not require knowledge of a CNL. The tool now has direct

access to a background ontology and reasoning engine, and can compute process-

134

CHAPTER 6. IMPLEMENTATION 135

wide accumulation in real-time. An additional feature has also been included that

allows the business analyst to output a rudimentary ontology to be passed on to a

knowledge engineer. The rudimentary ontology is used to assimilate any new terms,

introduced by the business analyst, into the background ontology. This feature

precedes an ability to flag process models as being integrated with the background

ontology. An integrated process model will return accurate accumulation results

but until such time as the model becomes integrated the business analyst can still

continue work with appreciable functionality.

The background ontology has been implemented in the Web Ontology Lan-

guage or Ontology Web Language (OWL) (see chapter 2.10). OWL is based on

the Resource Description Framework (RDF) (see chapter 2.9) and has become an

accepted internet standard by the W3C for the Semantic Web (see chapter 2.11).

RDF’s structure replicates the structure of a sentence by separating its component

parts into the Subject , the Predicate and the Object. Constraining input to these

three fields has proven to be more effective for data entry than allowing the user

the freedom to construct the entire sentence in CNL. The structure maintains an

internationally standardised format and focuses the user’s attention on the things

that are affected by an activity rather than what the effect of the activity is. This

simple distinction between how the question is asked has greatly improved the Effect

data gathered. Using OWL for knowledge representation has further extended the

implementation of an Effect. Effects have changed from single CNL sentences to

what is referred to as a SPOTON.

6.1 A SPOTON State Description

A SPOTON is a six tuple consisting of a Subject, Predicate, Object, Type, ObjectType

and Negation (S, P,O, T,O,N). The first three elements S, P,O represent the com-

ponent parts of a sentence which correspond to an RDF triple. An Effect, written in

natural language, is a declarative sentence describing the consequent state of a pro-

cess artifact being the result of some activity. The sentence describing the Effect can

be broken down into a triple (Subject, Predicate, Object). Using this structure the

Subject always becomes any artifact that is affected by an action. The triple can be

represented in two ways, as either an Attribute Triple (artifact, Attribute, V alue)

or a Relationship Triple (artifact, Relationship, artifact). The fourth element, T ,

refers to the Type of state description and specifies whether the predicate P refers

to an Attribute or a Relationship. The Object of a semantic effect statement can

be either a Value or another artifact depending on which Type of triple is used. An

artifact will always be represented as a string data type whereas a Value could be

one of five data types: integer, float, double, boolean or string. The fifth element

CHAPTER 6. IMPLEMENTATION 136

in a SPOTON, O, is used to specify the ObjectType so that machines can process

the Value correctly. The ObjectType integrates with OWL’s Object Properties and

Datatype Properties and allows the SPOTON to be stored in an OWL ontology.

When the notion of negated Effects is introduced then each of these formats

has a different way of expressing negation. A formal binary predicate statement

generally takes the form Predicate(Subject, Object). When a binary predicate sta-

tement refers to a relationship, e.g., Inside(Ball, Box) then it is intuitive to append

the negation to the predicate, i.e. NotInside(Ball, Box). However, when a binary

predicate statement refers to an attribute, e.g., hasPosition(LightSwitch,On), it

is sometimes intuitive to say, ”The light switch is not on”, leading to the negation

of the Object in the sentence rather than the Predicate,

e.g., hasPosition(LightSwitch,NotOn). The syntax is incorrect for a formal nota-

tion and can complicate the task of manual semantic effect annotation for someone

who is unfamiliar with such notations. The syntactic placement of the negation

symbol should not hamper the construction nor interpretation of a semantic effect

annotation. The Effect data entry form therefore isolates it from the binary pre-

dicate statement to avoid confusion. All semantic effect annotations are positive

binary predicate statements. The entire statement is either negated or not by a

flag and should not depend on the positioning of that flag within the statement

itself. The flag has therefore been included as a separate element N within the

SPOTON framework. The acronym SPOTON also refers to the spots (tokens) used

in a petri-net. The tokens, generated by transitions, are similar to the Effects ge-

nerated by activities in a BPMN model. Conditions can be specified in the same

SPOTON format which can then be used to evaluate Effect Scenarios much the

same as a transition in a petri-net evaluates the number of tokens contained in a

place. See chapter 2.2 for more information. In the next section it can be seen how

the SPOTON structure influences the user interface design.

6.2 Graphic User Interface (GUI) Design and Data

Entry

The ProcessSEER plug-in utilises the STP BPMN modeller interface with a file

navigator on the left, the main process model in the centre at the top, a list of

BPMN icons on the right and a Property Section at the bottom. The ProcessSEER

plug-in generates three Property Section Tabs that appear whenever an appropriate

BPMN element is selected in the main process model window. Selecting a task or

event will display both the IEffect and the CEffect Tabs in the Property Section.

Selecting an outgoing sequence flow from an exclusive or inclusive gateway split or

CHAPTER 6. IMPLEMENTATION 137

Figure 6.1: The ProcessSEER GUI showing the Immediate Effect data entry
tab.

a start event will display the Conditions Tab in the Property Section. Figure 6.1

shows the ProcessSEER tool GUI with a task in the process model window selected.

The IEffect Tab is active showing data entry on the left and a display of Immediate

Effect Scenarios on the right. The CEffect Tab is also visible but not active while

the Conditions Tab is not visible at all because a sequence flow is not selected.

6.2.1 Immediate Effect Tab

New empty Effect Scenarios can be added or existing Effect Scenarios can be deleted

from the right-hand panel in the IEffect Tab. These are only Immediate Effect

Scenarios in this section and each one is a tree display that can be expanded to

reveal the Effects inside or contracted to show only the Immediate Effect Scenario.

The panel on the left of the IEffect Tab is for entering individual Effects. When

a business analyst wants to manually annotate an Immediate Effect to a BPMN

activity they must first either create a new, or select an existing, Immediate Effect

Scenario in the right-hand panel. Selecting an Effect in the right-hand panel will

display its contents for editing in the left-hand panel. Figure 6.2 shows the two

panels in the IEffect Tab.

CHAPTER 6. IMPLEMENTATION 138

Figure 6.2: The ProcessSEER IEffect Tab showing data entry on the left and
Immediate Effect Scenario display on the right.

Figure 6.3: Effect data input fields in the ProcessSEER tool.

6.2.2 Immediate Effect Data Entry

Individual Immediate Effects are entered in the left-hand panel of the IEffect Tab.

Figure 6.3 shows the panel consisting of the following data entry elements:

• Three text fields for the Subject, Predicate and Object

• Two radio buttons for the Type of effect statement (Attribute or Relationship)

• A drop down list of ObjectTypes

• A checkbox for Negation.

The data entry panel has been designed around the SPOTON method of repre-

senting state descriptions. The business analyst has only to consider the artifact

that is being affected and write its name in the Subject text field. They then need

to consider whether they are describing an Attribute of the artifact or a Relations-

hip between the artifact and another artifact and select the appropriate radio but-

ton. In the case of the Effect describing an Attribute, the business analyst would

enter an appropriate predicate into the Predicate text field, e.g., hasColour or

hasLengthInCentimetres (Camel case is used to combine multiple words). These

CHAPTER 6. IMPLEMENTATION 139

multi-words become separate entries in an OWL ontology. In the first example,

hasColour, the Value entered into the Object field might be Blue in which case

Concept would be selected from the drop down list as the ObjectType. In the se-

cond example, hasLengthInCentimetres, the Value could be a float, an integer or

a double. In the case of an Effect describing a Relationship, the business analyst

would enter the second artifact into the Object text field and write an appropriate

relationship predicate, e.g. isPartOf , in the Predicate text field. Note that the

OWL recommended guidelines for naming Predicates are used. Attributes take the

form hasAttribute and Relationships take the form of isRelatedTo.

The business analyst’s task of manually annotating Effects is significantly sim-

plified. The syntax of a formal notation has been removed and the need to establish

the existence of every artifact using CNL is no longer necessary. CNL also allows

too much flexibility in the way an effect is written because of its sentence-like struc-

ture. A SPOTON constrains the data input yet still maintains a readable format.

Formatting of the effect statement into formal notation is performed in the back-

ground. The interface does not allow the business analyst to enter Effects in a

natural language but it does provide a reasonable facsimile.

When combined with an ontology the ProcessSEER tool has the potential to

suggest terms to the business analyst, in the data entry fields, and a dialog box pro-

vides a convenient method for submitting knowledge for inclusion into an ontology.

New Effects are like requests to knowledge engineers for inclusion into the ontology.

A BPMN model is not fully functional until all the terms used in its Effect annotati-

ons have been integrated into the background ontology. Once integrated, additional

Cumulative Effects can be revealed that the business analyst or even the expert may

not have considered. Manual Effect annotation is a method of knowledge acquisition

that contributes to ontology development and provides an immediate return on in-

vestment because the models can be immediately utilised. These domain ontologies

are conceived as providing significant competitive advantage to an organisation.

6.2.3 Conditions Tab

The Condition Tab is almost identical to the IEffect Tab. That is because Conditi-

ons are syntactically identical to Effects (see chapter 3.4.2). The right-hand panel

displays the Condition Scenario. Note that only one Condition Scenario can ever be

created for each sequence flow. The sequence flow must be an outgoing edge from an

exclusive or inclusive gateway split or an outgoing edge from a start event otherwise

the Conditions Tab will not display. The Condition Scenario in the right-hand panel

has a tree display like the IEffect Tab. Conditions can be selected individually and

edited or deleted.

CHAPTER 6. IMPLEMENTATION 140

Figure 6.4: The ProcessSEER Conditions Tab showing data entry on the left
and Condition Scenario display on the right.

Figure 6.5: Condition data input fields in the ProcessSEER tool.

6.2.4 Condition Data Entry

Condition data entry is identical to Effect data entry. The business analyst is des-

cribing a state, not one that is in effect but one that should be in effect. A Condition

must exist in an Effect Scenario otherwise the Effect Scenario will not be propa-

gated along the annotated sequence flow. All Conditions in a Condition Scenario

must exist in an Effect Scenario before it can be passed on to the next activity

for accumulation. Once again the artifact under consideration is entered into the

Subject field. Whether the Condition is describing an Attribute or a Relationship is

selected. An appropriate Predicate and Object are entered into the other two fields

respectively. If the business analyst wishes to express that the Condition should

not be the case in any Effect Scenario then they will check the Negation checkbox.

Entering the Condition includes it in the Condition Scenario. Figure 6.5 shows the

data entry fields of the Conditions Tab.

6.2.5 Cumulative Effect Tab

Whenever an activity is selected in a process model the IEffect and CEffect Property

Tabs become visible in the property section at the bottom of the screen. Selecting

CHAPTER 6. IMPLEMENTATION 141

Figure 6.6: The ProcessSEER GUI showing the CEffect Tab for Cumulative
Effects.

Figure 6.7: Data Displayed in the CEffect Tab. Example taken from a test
process model with only dummy data used.

the CEffect Tab displays the accumulation interface shown in Fig:6.6. The business

analyst can inspect all the Effects contained within the Immediate Effect Scenarios

annotated to the selected activity or the Cumulative Effect Scenarios derived from

accumulation.

Immediate Effect Scenarios annotated to the selected activity are displayed in

the left-hand panel and Cumulative Effect Scenarios are displayed in the right-hand

panel as shown in Fig:6.7. Each Effect Scenario is a tree display allowing the user to

expand them to view the Effects inside. Clicking on the “Accumulate” button will

accumulate all nodes in the model no matter which activity is selected. A progress

bar, shown in Fig:6.8, displays which activities are being accumulated.

CHAPTER 6. IMPLEMENTATION 142

Figure 6.8: The ProcessSEER GUI showing accumulation progress bar.

6.3 Back-end Implementation

This section describes the different classes used to implement the conceptual frame-

work described in chapter 3. The Effect class, previously explained, is a SPOTON as

is the Condition class. These classes contain methods for translating their data into

XML format that is stored in the .bpmn_diagram file. Each process model in the

STP modeller is a combination of two files, a .bpmn_diagram file and a related

.bpmn file. Immediate Effects and Conditions are stored in the .bpmn_diagram

file. Effects and Conditions are two of the three foundational classes used in the

ProcessSEER tool. The third foundational class is the ProcessNode.

6.3.1 Process Node Class

The ProcessSEER tool is a plug-in to the Eclipse STP BPMN modelling tool. BPMN

model elements are generated from an Activity class in the modelling program. The

Activity class extends the Eclipse EModelElement class which contains an EAnno-

tationList by default. Every BPMN element can therefore accept annotations. A

BPMN model has a corresponding XML Metadata Interchange (XMI) file associated

with it. Effect annotations are represented as text. It can be seen in the following

snippet, taken from a ProcessSEER annotated model, how Immediate Effect Sce-

narios (imeffect) are stored in the XMI format. Note there is no Cumulative Effect

Scenario in this snippet as the cueffect value is empty.

CHAPTER 6. IMPLEMENTATION 143

Snippet of a BPMN model in XMI format

<v e r t i c e s xmi : type=”bpmn : Act i v i ty ”

xmi : id=” 57GnQR7hEeGgLZueCUYOzw”

iD=” 57GnQB7hEeGgLZueCUYOzw”

outgoingEdges=” BFd8MR7iEeGgLZueCUYOzw”

incomingEdges=” 9XAtcR7hEeGgLZueCUYOzw”

name=” F i l l in a Post l a b e l ”

l ane s=” Ig−g8B7hEeGgLZueCUYOzw”

act iv i tyType=”Task”>

<eAnnotat ions

xmi : type=”ecore : EAnnotation”

xmi : id=” xCJtoMVZEeWcN4gf6mfBqw”

source=” e f f e c t ”>

<d e t a i l s

xmi : type=”ecore : EStringToStringMapEntry”

xmi : id=” xCJtocVZEeWcN4gf6mfBqw”

key=”i m e f f e c t ”

va lue =”(package , hasTransportat ionInsurance , true , a , b,−)

(de l iveryAddress , isPrintedOn , postLabel , r , o ,+)

(postLabel , i sPartOf , shippingPaperwork , r , o ,+)”/>

<d e t a i l s

xmi : type=”ecore : EStringToStringMapEntry”

xmi : id=” xCK7wMVZEeWcN4gf6mfBqw”

key=”c u e f f e c t ”

va lue=””/>

</eAnnotations>

</v e r t i c e s >

Contained within the <eAnnotations> tags are three Effects in SPOTON

format.

(package , hasTransportat ionInsurance , true , a , b,−)

(de l iveryAddress , isPrintedOn , postLabel , r , o ,+)

(postLabel , i sPartOf , shippingPaperwork , r , o ,+)

In the first Effect the Subject is package, the Predicate is hasTransportationInsu-

rance and the Object is true. The three symbol code at the end of each Effect refers

to the type of Effect, the ObjectType and whether or not the Effect is negated.

The first Effect is an Attribute with a boolean ObjectType and it is negated. These

SPOTON Effects are easily translated into OWL assertions or first-order predicate

logic. A translation of each Effect into first-order predicate logic is provided below.

CHAPTER 6. IMPLEMENTATION 144

¬hasTransportationInsurance(package, true)
isPrintedOn(deliveryAddress, postLabel)

isPartOf(postLabel, shippingPaperwork)

Lists of complex objects like Effects, Effect Scenarios and World Lists cannot

be stored in the core modelling program’s EAnnotations. The ProcessSEER plug-in

therefore uses a ProcessNode adapter class acting as an interface between the STP

Activity class and the ProcessSEER tool. A ProcessNode instance stores the com-

plex data types necessary for accumulation and populates the XMI EAnnotations

with textual representations of the Effects.

6.3.2 Effect Scenario Implementation

Effect Scenarios are lists of Effects but the implemented class contains a rudimentary

OWL ontology (ESO) that is used for reasoning. It is referred to as rudimentary

because it may contain terms that are not included in the background ontology. This

approach allows a business analyst to use any term they want to describe an Effect.

New terms are linked directly to the root classes of the ontology having no other

links to any other terms. The OWL framework still provides enough flexibility for a

rudimentary ontology to be reasoned with as part of the accumulation process. The

outcomes may not be absolutely accurate but they are sufficient to allow a business

analyst to continue working on the design of a process. During accumulation it is

the ESO that is compared with a background ontology to check for consistency.

Adding Effects to an Effect Scenario

Each Effect is a SPOTON containing textual representations of the Subject, Pre-

dicate and Object of the Effect sentence. When an Effect is added to an Effect

Scenario it is stored in both its textual form and its ontological form. In an onto-

logy an Effect is an assertion that is constructed from the terms used in the Subject,

Predicate and Object of the Effect. These terms must also be entered into the ESO.

The Subject of an Effect will always be an OWL Named Individual (an instance

of an OWL class). If the Effect is of type Relationship then the Object of the Ef-

fect will also be an OWL Named Individual. These OWL Named Individuals are

instantiated in the ESO as members of the root class OWL Thing. This is updated

once a knowledge engineer integrates these terms into their appropriate classes in

the background ontology.

CHAPTER 6. IMPLEMENTATION 145

Consider an Effect : isAffixedTo(postLabel, package) where Subject = postLabel,

Predicate = isAffixedTo and Object = package. The following examples show

how the Effect is recorded in an ESO. Declarations and class assertions establish

the terms in the ontology.

Example 1: Snippet of an OWL Effect Scenario Ontology showing instan-

tiations of Classes and Individuals

<Declaration>

<NamedIndividual IRI="#postLabel"/>

</Declaration>

<Declaration>

<NamedIndividual IRI="#package"/>

</Declaration>

<ClassAssertion>

<Class abbreviatedIRI=":Thing"/>

<NamedIndividual IRI="#postLabel"/>

</ClassAssertion>

<ClassAssertion>

<Class abbreviatedIRI=":Thing"/>

<NamedIndividual IRI="#package"/>

</ClassAssertion>

A package is not a postLabel and this needs to be explicitly stated in the ESO.

Individuals are declared as being different things in the following example.

Example 2: Snippet of an OWL Effect Scenario Ontology showing decla-

ration of different Individuals

<DifferentIndividuals>

<NamedIndividual IRI="#package"/>

<NamedIndividual IRI="#postLabel"/>

</DifferentIndividuals>

The Predicate of a relationship Effect is also entered into the ESO as an OWL

Object Property being a member of the root OWL Top Object Property. All Pre-

dicates newly introduced by a business analyst will be entered into the ESO as

Functional Properties. A Functional Property can only have one value so when the

Object of an Effect changes during accumulation, an inconsistency will occur bet-

ween the new state and the previous state. The new state will replace the old. This

provides a modicum of reasoning functionality with which the business analyst can

perform accumulation on a process model that has not yet been integrated with

the background ontology. The business analyst does not have to wait for ontology

integration to carry on with their work. Once a new term has been integrated with

the background ontology, the tool will use that term rather than create a new one.

CHAPTER 6. IMPLEMENTATION 146

Continuing the example reveals the two Predicate entries in the ESO.

Example 3: Snippet of an OWL Effect Scenario Ontology showing an

Object Property

<Declaration>

<ObjectProperty IRI="#isAffixedTo"/>

</Declaration>

<FunctionalObjectProperty>

<ObjectProperty IRI="#isAffixedTo"/>

</FunctionalObjectProperty>

Finally with all the terms established in the ESO the Effect assertion is entered.

Example 4: Snippet of an OWL Effect Scenario Ontology showing an

Object Property Assertion

<ObjectPropertyAssertion>

<ObjectProperty IRI="#isAffixedTo"/>

<NamedIndividual IRI="#postLabel"/>

<NamedIndividual IRI="#package"/>

</ObjectPropertyAssertion>

If the Effect is of type Attribute then the Subject is again an OWL Named

Individual but the Predicate is entered into the ESO as an OWL Data Property

being a member of the root OWL Top Data Property. Once again, this will change

when the process model is fully integrated with the background knowledge base.

The Object of an Attribute type Effect can be either a value or another thing. If

the latter then the Object is entered as an OWL Named Individual otherwise the

ObjectType data entry field in the ProcessSEER GUI determines the type of Object,

i.e., integer, float, double or boolean. An Object value is entered into the ESO as

an OWL Literal. The Predicate in the following example indicates the weight of

the previous package. Note that the Predicate contains an explicit reference to

the weight scale (Kilograms). When dealing with measurements it is necessary

to include the measurement scale in the Predicate or else it becomes meaningless.

When entering the Effect hasWeightInKilograms(package, 2.7) we can dispense

with the OWL Named Individual declaration and OWL Class Assertion for package

because they already exist. Continuing with the example the following is entered

for the OWL Data Property and OWL Data Property Assertion.

Example 5: Snippet of an OWL Effect Scenario Ontology showing a Data

Property Declaration and Assertion

<Declaration>

<DataProperty IRI="#hasWeightInKilograms"/>

</Declaration>

<FunctionalDataProperty>

CHAPTER 6. IMPLEMENTATION 147

<DataProperty IRI="#hasWeightInKilograms"/>

</FunctionalDataProperty>

<DataPropertyAssertion>

<DataProperty IRI="#hasWeightInKilograms"/>

<NamedIndividual IRI="#postLabel"/>

<Literal datatypeIRI="&xsd;double">2.7</Literal>

</DataPropertyAssertion>

Finally one additional feature that was found to be particularly useful was OWL

Annotations. The details of each expert consulted about a process can be included

in the ontology. This only needs to be entered once for the entire process model.

If more than one expert has contributed to a model then the business analyst can

select the appropriate expert for each Effect annotation. When integrating a process

model with the background ontology, a knowledge engineer can consult directly with

the expert on matters of disambiguation. The following example includes dummy

data. Note that the term to which the OWL Annotation applies is encased with

NEW[] to highlight the term as a new entry that must be integrated into the

background ontology.

Example 6: Snippet of an OWL Effect Scenario Ontology showing an

Annotation Assertion

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>#postLabel</IRI>

<Literal xml:lang="en" datatypeIRI="&rdf;PlainLiteral">

NEW[postLabel]</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:comment"/>

<IRI>#premium</IRI>

<Literal xml:lang="en" datatypeIRI="&rdf;PlainLiteral">

Analyst: Bob Jones

Analyst Email: bj@organisation.com

Analyst Phone: 5555 4293

Expert: Mary Davis

Expert Email: md@organisation.com

Expert Phone: 5555 7652

Date of Entry: 15/9/2013

</Literal>

</AnnotationAssertion>

CHAPTER 6. IMPLEMENTATION 148

The details of the business analyst and experts could easily be linked to an

online or local database that would provide automatic updating capabilities thus

coordinating the process repository with staff records.

As each Effect is added to an Effect Scenario a copy of its ESO is populated with

the OWL entries shown above and then checked for consistency. If consistent then

the Effect is added and the copied ESO replaces the existing ESO. If it is inconsistent

then Effects need to be removed. This occurs regularly during accumulation and

a possible worlds algorithm is used to determine the resulting Cumulative Effect

Scenarios.

Removing Effects from an Effect Scenario

Removing Effects from Effect Scenarios is not as easy as adding them. The text

version of the Effect is easy to remove but it is still registered in the ESO. Removing

it from the ESO can be very difficult because all the links in the ontology that

relate to a particular entry also need to be carefully removed. If the wrong links are

removed it will render the ESO useless. The easiest way of removing an Effect from

an ESO is to first remove the text version of the Effect then rebuild the ESO from

the remaining Effects in the Effect Scenario.

6.3.3 Condition Scenario Implementation

Condition Scenarios are lists of Conditions but the implemented class also contains

a rudimentary OWL ontology (CSO) that is used to check the Condition Scenario

for consistency. Condition Scenarios are only ever used to check for the existence

of Conditions in Effect Scenarios. They only interact with the background ontology

when new Conditions are added or removed. Adding a new Condition to a Condition

Scenario involves all the same steps as those employed by Effect Scenarios. Removal

of Conditions also employs the same steps as those used to remove Effects from Effect

Scenarios.

6.3.4 KB Manager Class

The ProcessSEER KB Manager class utilises the OWL API to assemble OWL on-

tologies. It also acts as an interface between the ontologies it creates and an OWL

reasoning engine for consistency checking. The tool is currently using the HermiT

OWL Reasoner [139] and will eventually include additional reasoners as a user se-

lectable option in future versions of ProcessSEER.

Effect Scenario ontologies are updated during accumulation by passing the SPO-

TONs to a KB Manager. A new ontology is created from the set of SPOTONs and

CHAPTER 6. IMPLEMENTATION 149

returned to an Effect Scenario if it is consistent. In the case of adding a new Imme-

diate Effect to an Immediate Effect Scenario, inconsistency will reject the addition

of the new Effect (see chapter 3.4.3). In the case of accumulation, an inconsistent

Effect Scenario is passed to a possible worlds function (see appendix A.3) that gene-

rates a set of maximal consistent subsets of the original inconsistent Effect Scenario.

Each subset becomes a new Effect Scenario.

The KB Manager also assembles a rudimentary ontology of the entire process

model and outputs it to a file. All Effects in the model are collected into a single

ontology that contains all OWL Named Individuals, OWL Classes, OWL Object

Properties, OWL Data Properties and OWL Assertions. This ontology will naturally

be inconsistent but it is a valuable resource for the knowledge engineers maintaining

the background knowledge base. The ontology contains information about which

expert to contact, the business analyst that designed the process and the process

model from which the ontology was generated. A knowledge engineer can view the

process model from the online repository to get a contextual overview of how terms

are used. They can directly contact the expert or business analyst with questions

about the semantics of the terms used and the terms are already in the correct format

for inclusion into the background knowledge base. These rudimentary ontologies can

be directly opened in Protege [108].

6.3.5 Accumulator Class

The Accumulator class contains all the methods used in accumulation. See chapter

3.6.2 for further details about the functions or appendix A for the actual algorithms.

The class also contains a method for walking through a process model accumulating

Effect Scenarios as it goes. This is the standard method of accumulation that offers

real-time processing. See chapter 3.6.1 for more information about the difference

between accumulation procedures. The more complex and thorough accumulation

procedure requests a Scenario Label from the Scenario Label class and will accumu-

late up to the selected activity in the process model. The Scenario Label method

will generate all possible Cumulative Effect Scenarios for the selected activity no

matter where it occurs in the process.

6.3.6 Scenario Label Class

The Scenario Label class assembles a Scenario Label (see chapter 3.6.1) for each

ProcessNode in the process model. The class contains all the methods for walking

through a process model and mapping model elements into partially ordered sets

(posets). A Scenario Label is a poset that resembles an execution path through the

process model from the start event to a specific ProcessNode. However, it is not

CHAPTER 6. IMPLEMENTATION 150

Figure 6.9: A basic BPMN model showing a parallel gateway structure.

simply a path. The nature of the poset offers instructions to the Accumulator class

about whether to use a set of accumulation algorithms or a set of joining algorithms

to derive a Cumulative Effect Scenario.

Scenario Label processing can take considerably longer than standard accumu-

lation so it is offered to the user as an option. The standard mode of accumulation

will correctly compute all possible worlds in existence at any ProcessNode outside a

parallel or inclusive Gateway Structure but it will only compute the possible worlds

for ProcessNodes inside the Gateway Structure as if from the perspective of an indi-

vidual agent executing a task on a single parallel branch. The agent is unaware of

what happens on other parallel branches. This is not a serious impediment thanks

to conflict catching techniques described in chapter 3.6.1.

A Scenario Label for the entire process model in Figure 6.9 is

〈S, T1, {T2, T3}, T4, E〉.
However, when calculating the Cumulative Effect Scenarios at T2, two Scenario

Labels would be used:

〈S, T1, T2〉
〈S, T1, {T2, T3}〉

Either of these two paths could have executed but in the second instance T2 and T3

are joined/merged before accumulating with T1. The braces { } indicate a merging

operation rather than an accumulation operation.

6.4 ProcessSEER Accumulation Implementation

This section describes the components involved in accumulation and the interactions

between them. Two key components in the implementation that are not mentioned

in chapter 3 are the Process Node Queue and the Process Node List. They control

the order in which ProcessNodes are accumulated.

CHAPTER 6. IMPLEMENTATION 151

6.4.1 Process Node Queue

Each BPMN element in a process model is contained in a node, an instance of a

ProcessNode class. A queue is used to schedule the accumulation of nodes. Pair-

wise accumulation always processes two nodes, the current node and the previous

node. The current node contributes an Immediate World List and the previous

node contributes a Cumulative World List (see chapter 3.5). Nodes are added to

the queue as they are discovered during model traversal. Each node is popped off

the beginning of the queue and its previous node is tested to determine whether it

has a Cumulative World List. If the previous node contains a Cumulative World

List then it has already been accumulated and the current node, that was popped

off the queue, can now be accumulated. Accumulated nodes are added to a Process

Node List to indicate they have already been accumulated. If the previous node

does not contain a Cumulative World List then it has not been accumulated yet so

the current node is returned to the end of the queue. Accumulation of the entire

process model is complete when the queue is empty.

6.4.2 Process Node List

The Process Node List is used primarily to prevent unhandled looping. The Pro-

cessSEER tool has a limited capability for processing loops. The tool therefore

detects when a loop occurs by checking whether it has already processed a Proces-

sNode. When a ProcessNode has been accumulated it is moved from the Process

Node Queue to the Process Node List. If the Accumulator walk-through method

encounters a ProcessNode that is in the Process Node List then it processes the

accumulation as if the previous ProcessNode was an exclusive gateway split (see

chapter A.9). Condition Scenarios are annotated to the looping sequence flow en-

tering the activity. If any one of the alternate Cumulative Effect Scenarios entering

from the loop does not satisfy the Condition Scenario then the loop stops. In some

cases looping will produce identical Effect Scenarios every time the loop executes

because of the nature of the state descriptions. In such cases accumulation can

be stopped manually if the business analyst has neglected to include some type of

incremental Effect. Other times may require quantitative data to be updated or,

as is usual, a looping sequence of activities changes the world description in such

a way that it affects the outcome of the first activity in the loop. BPMN has a

number of different looping structures that include events and subprocesses that

are not supported by the ProcessSEER tool. In its current version the tool only

supports sequence flow looping like the example shown in Fig:6.10. The sequence

flow between T3 and T1 will contain a Condition Scenario annotation.

CHAPTER 6. IMPLEMENTATION 152

Figure 6.10: A BPMN looping structure supported by the ProcessSEER tool.

6.4.3 Components Involved in Accumulation

There are 18 components involved in semantic effect accumulation:

• Process Nodes (see Ch 6.3.1)

• Effects (see Ch 6.1)

• Effect Scenarios (see Ch 6.3.2)

• Ancestor Sequences (see Ch 6.6)

• Conditions (see Ch 6.1)

• Condition Scenarios (see Ch 6.3.3)

• Immediate World Lists (see Ch 6.5)

• Cumulative World Lists (see Ch 6.5)

• A Process Node Queue (see Ch 6.4.1)

• A Processed Node List (see Ch 6.4.2)

• Gateway Splits (see Ch 6.8)

• Gateway Joins (see Ch 6.8)

• Branch Clusters (see Ch 3.8.10)

• Branch Groups (see Ch 3.8.12)

• Branch Combinations (see Ch 6.7)

• Effect Scenario Ontologies (see Ch 6.3.2)

• Background Knowledge Base (see Ch 6.3.4)

• A Reasoning Engine (see Ch 6.3.4)

CHAPTER 6. IMPLEMENTATION 153

The current version of ProcessSEER has only limited functionality and will only

accumulate process models that contain a single start event. The ProcessSEER tool

currently only supports accumulation of the following BPMN elements:

• Tasks

• Empty Start, Intermediate and End Events

• Inclusive, Exclusive and Parallel Gateways

An instance of a ProcessNode class (see 6.3.1) is created for each of the above

BPMN elements. An instance of a ProcessNode is referred to simply as a node.

ProcessSEER must first locate the start event. It does this by walking backward

through the process model until it reaches the start event. The start event is then

added to the Process Node Queue (see 6.4.1) also referred to simply as a queue. A

queue is used to hold nodes that have not been accumulated.

The first step in accumulation is to load all the nodes into the queue. During

accumulation a Cumulative World List is created for each node (see chapter 3.5).

Each node is selected from the beginning of the queue and its previous nodes (previ-

ous within the model not the queue) are checked to see if they contain a Cumulative

World List. If all previous nodes contain a Cumulative World List then the selected

node is accumulated otherwise it is returned to the end of the queue to be processed

later. Once accumulated the node is removed from the queue and added to the

Process Node List. This process continues until all nodes have been accumulated.

There are three cases to consider when checking whether a node is ready to

accumulate, no preceding nodes, one preceding node or many preceding nodes. To

be considered ready to be accumulated, all preceding nodes must contain a Cumu-

lative World List. If the node is ready to be accumulated then it is passed to an

Accumulator class (see 6.3.5). This class contains all the different accumulation

functions and determines which function is required. The Accumulator algorithms

can be found in appendix A. Accumulation is dependent on three things:

1. The number of preceding nodes.

2. The type of the current node.

3. The type of preceding node/s.

If the current node has no preceding nodes then it is considered to be a start

event. Node types are checked and if they are supported then they are accumulated

otherwise the user is issued with a warning dialog. If the current node has only one

preceding node then the current node can be anything but a gateway join. If the

current node has more than one preceding node then it is considered to be a gateway

CHAPTER 6. IMPLEMENTATION 154

Figure 6.11: A BPMN fragment with the start event highlighted. A start event
has no preceding nodes.

join. The tool will also process informal joins. The following subsections refer to

processing the current node depending on the number of preceding nodes. Highligh-

ted BPMN elements within the figures indicate the current node being accumulated.

6.4.4 Processing Zero Preceding Nodes

In the case of a start event (Fig: 6.11) there is no previous Cumulative World List

to accumulate. The Immediate World List of a start event may also be empty. In

this case an empty Cumulative World List is added to the start event node so that

the next activity can be accumulated. The start event is a doorway into the process

model through which external world descriptions can be added. The Cumulative

World List of another process model can be added as the Cumulative World List

of a start event to see how the process will operate under those conditions. It

is, however, more common to add individual Cumulative Effect Scenarios to the

start event Cumulative World List as these represent a single outcome of a previous

process model.

Sometimes business analysts will establish starting Effects by annotating them

to the start event. In this case the Immediate World List of the start event is

duplicated and becomes the Cumulative World List. Once the Cumulative World

List has been computed it is stored in the node. The node is then removed from

the queue and stored in the Process Node List. The next node in the queue is then

assessed. This may not be the next node in the process which is why its previous

nodes are checked for whether they contain a Cumulative World List.

6.4.5 Processing a Single Preceding Node

A current node with only one preceding node is the most common form of accumu-

lation. Within this scope there are still a number of different accumulation methods

CHAPTER 6. IMPLEMENTATION 155

node S A X P I XJ PJ IJ L
S→ n/a pci pc pc pc n/a n/a n/a pci
A→ n/a pi p p p p b b pci
X→ n/a pci pc pc pc pc n/a n/a pci
P→ n/a pi p p p n/a n/a n/a pci
I→ n/a pci pc pc pc n/a n/a pc pci
XJ→ n/a pi p p p p b b pci
PJ→ n/a pi p p p p b b pci
IJ→ n/a pi p p p p b b pci
L→ n/a pci p p p n/a n/a n/a pci

Table 6.1: Required elements for accumulation.

used to accommodate the different BPMN elements. Table 6.1 shows the required

elements for accumulation to occur. The four main elements needed are the previ-

ous Cumulative World List, the Immediate World List, a Condition Scenario and a

Branch Combination. Cumulative and Immediate World Lists consist of Ancestor

Sequences which contain different versions of the same Effect Scenario. Condition

Scenarios consist of Conditions (syntactically identical the an Effect) and Branch

Combinations consist of Ancestor Sequences that share the same Effect Scenario

History. The nodes heading each column in Table 6.1 indicate the current node

that is being accumulated whereas the nodes in each row represent the node im-

mediately preceding the current node. For example, an activity preceded by an

exclusive gateway split will require a previous Cumulative World List from the ga-

teway, a Condition Scenario from the sequence flow between the gateway and the

activity, and the Immediate World List from the activity.

There are 17 different algorithms involved in accumulating the limited number

of BPMN elements supported by the ProcessSEER tool (see appendix A). Different

pairings of BPMN elements require different algorithms. The acc() function referred

to in [63] is far more complex in practice than in theory. The following Table

6.1 identifies the different pairings of ProcessNodes and the elements required to

accumulate them. Each pairing of a current and previous node will require either

a previous Cumulative Effect Scenario, an Immediate Effect Scenario, a Condition

Scenario or a Branch Combination or combinations of these elements.

From Table 6.1 it can be seen that there are five different element combinations

p, pi, pc, pci, b each warranting a unique style of accumulation.

p-type Accumulations

Pairings that require only the previous Cumulative Effect Scenario occur most com-

monly when the ProcessNode being accumulated is a gateway split. Note that any

CHAPTER 6. IMPLEMENTATION 156

Table 6.2: Table 6.1 Legend

S Start Event
A Activity
X Exclusive Gateway Split
P Parallel Gateway Split
I Inclusive Gateway Split
XJ Exclusive Gateway Join
PJ Parallel Gateway Join
IJ Inclusive Gateway Join
L Looping Activity
→ A previous node
p previous Cumulative World List
c Condition Scenario
i Immediate World List
b Branch Combinations
n/a Not Applicable

Figure 6.12: A pairing showing an exclusive gateway split being accumulated
with a previous task.

reference to a Cumulative Effect Scenario implies that it exists inside an Ancestor

Sequence which in turn exists inside a Cumulative World List. If all that is needed

is a previous Cumulative Effect Scenario then the ProcessNode being accumulated

does not contain an Immediate World List. In the case of an exclusive gateway split

(see Fig:6.12) the previous Cumulative World List is simply copied as the current

Cumulative World List of the XOR split. However, in the case of a parallel or in-

clusive gateway split (see Figures 6.13 and 6.14) the top Cumulative Effect Scenario

of each Ancestor Sequence in the previous Cumulative World List is duplicated and

added back to the top of each Stack. The Cumulative World List is copied but all

Ancestor Sequences within contain a copy of the top Cumulative Effect Scenario

(see Fig:6.15).

CHAPTER 6. IMPLEMENTATION 157

Figure 6.13: A pairing showing a parallel gateway split being accumulated with
a previous task.

Figure 6.14: A pairing showing an inclusive gateway split being accumulated
with a previous task.

Figure 6.15: A parallel gateway split showing how the top Cumulative Effect
Scenario is duplicated in an Ancestor Sequence and how the Cumulative World
List is duplicated for each branch.

CHAPTER 6. IMPLEMENTATION 158

pi-type Accumulations

Pairings that require both a previous Cumulative World List and an Immediate

World List are the most common. This particular pairing requirement satisfies the

criteria for accumulation as presented in [63, 64]. A previous Cumulative Effect

Scenario from the top of an Ancestor Sequence Stack inside a previous Cumulative

World List is accumulated with an Immediate Effect Scenario from inside an An-

cestor Sequence Stack inside an Immediate World List (the verbose description). All

this manipulation of Ancestor Sequences and World Lists only confuses the expla-

nation so let us focus only on the accumulation of Effect Scenarios. The pair-wise

accumulation is typically cCES = acc(pCES, IES) where pCES is the previous

Cumulative Effect Scenario, cCES is the current or resulting Cumulative Effect

Scenario and IES is the Immediate Effect Scenario.

The Immediate Effect Scenario is a statement of fact, i.e., every Effect is known

to be a direct post-condition of an action being executed. All Immediate Effects

therefore take priority over any previous Cumulative Effects. Inconsistencies are

resolved by passing the union of the two Effect Scenarios to the Possible Worlds

function (see appendix A.3). The potential exists for this function to increase the

number of Effect Scenarios generated but in practice it was found that it rarely

returns more than one Effect Scenario as a result. The maximal subset criteria

applied by the function minimises the number of returned results.

The accumulation implementation utilises the fields from the individual Effects

and the Effect Scenario Ontology (ESO). When the previous Cumulative Effect Sce-

nario and the Immediate Effect Scenario are unioned the Effects are merged into a

single Effect Scenario. A new ESO is then generated from the Effects. The Possible

Worlds function does not add or remove single previous Cumulative Effects. It tests

complete subsets of the original inconsistent union. The outcome of sequentially

adding or removing previous Cumulative Effects to the Immediate Effect Scenario

can be influenced by the sequential order in which the Effects are added or removed.

The Effect Scenarios returned from the Possible Worlds function are the result of

this type of accumulation.

pc-type Accumulations

Pairings that require only the previous Cumulative World List and a Condition

Scenario occur when the ProcessNode being accumulated has no Immediate World

List. This is most common when the node being accumulated is a gateway and the

previous node is an exclusive or inclusive gateway split. However, it is possible that

an activity will have no annotations. Ancestor Sequences in the previous Cumulative

World List simply become Ancestor Sequences in the resulting Cumulative World

CHAPTER 6. IMPLEMENTATION 159

Figure 6.16: A pairing showing a parallel gateway split being accumulated with
a previous exclusive gateway split.

List iff they satisfy the Conditions in the Condition Scenario. This type of accu-

mulation only utilises the Decision Function (see chapter 3.6.3 or A.1 to view the

algorithm). Figure 6.16 shows a nested parallel gateway split immediately following

and exclusive gateway split. The parallel gateway split has no Immediate World

List but the previous Cumulative World List from the exclusive gateway split must

be filtered with the Condition Scenario annotated to the sequence flow.

pci-type Accumulations

Pairings that require the previous Cumulative World List, a Condition Scenario and

an Immediate World List most commonly occur when the previous ProcessNode is

an exclusive or inclusive gateway split (see Fig:6.17). They also occur when the

previous node is the last node in a looping structure or the previous node is a start

event. Only Ancestor Sequences whose top Cumulative Effect Scenario satisfies the

Condition Scenario qualify for inclusion into a subset of the previous Cumulative

World List. This subset becomes the previous Cumulative World List for the node

being accumulated. In this case the original previous Cumulative World List is

passed to the Decision Function whose output is then passed along with the Imme-

diate World List to the Pair-wise Accumulation Function which in turn utilises the

Possible Worlds Function (see appendix A.9).

6.4.6 Processing Multiple Preceding Nodes

Multiple preceding nodes always occur at gateway joins. Exclusive gateway joins

only require the previous Cumulative World Lists from each preceding node (see

Fig:6.18). The Ancestor Sequences from each branch Cumulative World List are

simply combined into a single resulting Cumulative World List. Each Ancestor

Sequence is representative of a unique possible world. However, parallel and inclusive

gateway joins require Branch Combinations to be accumulated.

CHAPTER 6. IMPLEMENTATION 160

Figure 6.17: A pairing showing a task being accumulated with a previous ex-
clusive gateway split.

Figure 6.18: A pairing showing an exclusive gateway join being accumulated
with two previous tasks.

Figure 6.19: A pairing showing a parallel gateway join being accumulated with
two previous tasks.

CHAPTER 6. IMPLEMENTATION 161

Figure 6.20: A pairing showing an inclusive gateway join being accumulated
with two previous tasks.

b-type Accumulations

Pairings that require Branch Combinations occur when the ProcessNode being accu-

mulated is a parallel or inclusive gateway join. Figures 6.19 and 6.20 show the

typical accumulation pairs. The Ancestor Sequences in each previous Cumulative

World List must be assembled into multiple Branch Combinations. This is a com-

plex procedure involving multiple functions (see chapter 3.8.9). Ancestor Sequences

and Branch Combinations play an integral part in join accumulation. The imple-

mentation of these components is described in the following sections.

6.5 World List Implementation

World Lists do not require a specialised class. They are implemented as standard

Java List objects because they are only containers for Ancestor Sequences imple-

mented as Stacks. Each ProcessNode contains at most one Immediate World List

and one Cumulative World List. The Ancestor Sequences in an Immediate World

List contain the annotated Effect Scenarios entered by the business analyst while

the Ancestor Sequences in a Cumulative World List contain accumulated Effect Sce-

narios. A World List is representative of all the possible worlds that can be derived

from a single action. Figure 6.21 shows the structure of a World List. Every world

(top Effect Scenario in each Ancestor Sequence) is accumulated separately.

CHAPTER 6. IMPLEMENTATION 162

Figure 6.21: Structure of a World List containing branch Stacks of Effect Sce-
narios (Ancestor Sequences).

6.6 Ancestor Sequence Implementation

An Ancestor Sequence is implemented as a Stack, i.e., the last Effect Scenario added

to the Stack is always the first Effect Scenario popped off the Stack. A Stack is used

to store versions of an Effect Scenario (see chapter 3.7.2). The top version on the

Stack is acted upon during accumulation. All versions underneath the top Effect

Scenario are referred to as the Effect Scenario History. It is used to track an Effect

Scenario when it is copied and propagated along different branches of a Gateway

Structure. Consider a Stack containing a single Effect Scenario. When it enters

a parallel Gateway Structure the Effect Scenario in the Stack is duplicated and

placed on top of the Stack. The Stack now contains two identical Effect Scenarios

(see Fig:6.15). The Stack is copied and propagated along each branch. The top

version will be accumulated along each branch while the versions underneath remain

unchanged. The version immediately underneath represents the Cumulative Effect

Scenario as it was when it entered the Gateway Structure and can be used to identify

each Ancestor Sequence’s origin after the top version has been altered by different

parallel activities. Ancestor Sequences from different branches that have the same

Effect Scenario Histories are collected into Branch Combinations before merging

can occur. Branch Combinations contain only one matching Ancestor Sequence

from each branch.

6.7 Branch Combination Implementation

A Branch Combination is a grouping of Ancestor Sequences from different branches

in a Gateway Structure. Branch Combinations are generated at the end of the

Gateway Structure as part of the gateway join accumulation. Branch Combinations

contain Stacks of Cumulative Effect Scenarios, i.e.,Ancestor Sequences. Each Stack

CHAPTER 6. IMPLEMENTATION 163

Figure 6.22: Diagram showing how Branch Combinations are generated before
a parallel gateway join.

in a Branch Combination has originated from the same pre-Gateway Structure Stack,

i.e., each Ancestor Sequence has the same Effect Scenario History. In Fig.6.22

it can be seen how Branch Combinations are generated at the end of a parallel

Gateway Structure. The Stack containing the Effect Scenario (ES0) enters the

parallel gateway split and is copied for each branch. ES0 is also duplicated and

added to the top of each Stack. The top Effect Scenarios are altered by accumulation

with the Immediate Effect Scenarios of T1 and T2 to produce ES1, ES2 and ES3.

ES0 is still present underneath each of these new Effect Scenarios indicating that

they all originated from the same Effect Scenario. At the parallel gateway join, one

Stack from each branch is matched according to its originating Effect Scenario and

grouped into a Branch Combination.

Branch Combinations are only generated at a gateway join and are treated dif-

ferently for each type of gateway. Exclusive gateway joins do not generate Branch

Combinations because Effect Scenarios are never split across branches. They the-

refore do not need to be reassembled at a gateway join. A Branch Combination

of a parallel gateway join will contain exactly the same number of Stacks as there

are incoming branches. A Branch Combination of an inclusive gateway join will

contain a maximum of one Stack for each incoming branch. Whether an Effect Sce-

nario is propagated along any particular branch of an inclusive Gateway Structure

is determined by the Condition Scenarios for each branch.

CHAPTER 6. IMPLEMENTATION 164

6.8 Processing Gateway Structures

A Gateway Structure encompasses all activities and gateways that occur between a

gateway split and a gateway join. Gateway Structures are treated as if they were a

subprocess (see chapter 3.7). Effect Scenarios can become split into multiple copies

of themselves when passing through a Gateway Structure. It therefore becomes

necessary to track the progress of each Effect Scenario as it travels through the

Gateway Structure. Tracking is achieved through the use of Ancestor Sequences

(see chapter 3.7.2). For convenience the following paragraphs summarise what is

described in more detail in chapter 3.7.1. Let us consider each Gateway Structure

separately.

A Cumulative World List entering a parallel gateway split will be directed along

all branches so it is copied. Each copy contains Ancestor Sequences whose Effect

Scenario Histories link them across branches. Effect Scenario Histories capture the

state of an Effect Scenario before it was split across different parallel branches. Pa-

rallel Gateway Structures are the reason possible worlds need to be tracked because

when the possible worlds reach a parallel gateway join, they need to be matched

with their copies from other branches. Possible worlds from each branch that have

the same origin are grouped into what is referred to as a Branch Combination. In

this way a single possible world can be acted upon by different activities at the

same time then reassembled to reveal the complete outcome. Possible worlds are

matched at the parallel gateway join and collected into Branch Combinations. A

Branch Combination for a parallel gateway join contains exactly one matching pos-

sible world from each branch. Reassembling takes the top Effect Scenario (possible

world) off each Stack (Ancestor Sequence) and merges them together into a single

Effect Scenario. This union of top Effect Scenarios is used as the Immediate Effect

Scenario for the Gateway Structure. The Effect Scenario Histories of all Ancestor

Sequences in the Branch Combination will be identical. The Effect Scenario di-

rectly underneath the top represents the previous Cumulative Effect Scenario prior

to the Gateway Structure. The union of top Effect Scenarios is therefore accumula-

ted with this previous Cumulative Effect Scenario to determine the outcome of the

entire Gateway Structure on the previous Cumulative Effect Scenario.

In contrast a possible world entering an exclusive gateway split will be directed

along only one branch so it will only ever be sequentially accumulated. When it

reaches the exclusive gateway join, it will have no correspondence to any possible

world on any other branch. Therefore, possible worlds from every branch of an

exclusive Gateway Structure are all disjunctive. An exclusive gateway join therefore

collects all possible worlds from every branch into a single Cumulative World List.

There is no need for Branch Combinations because each Branch Combination will

CHAPTER 6. IMPLEMENTATION 165

only contain a single possible world because each possible world was never split so

no merging is required.

A possible world entering an inclusive gateway split will be directed along zero

or more branches depending on whether it satisfies one or more sets of Conditions.

Within an inclusive gateway structure, activities can either be executed in isolation

or in parallel depending on the current state of the world. Whenever a possible

world satisfies multiple Condition Scenarios it is copied to each satisfied conditional

branch. In this way it is divided and must be reassembled at the gateway join. The

difference here is that a possible world can travel along any number of branches

depending on whether it satisfies the Conditions of the branch. When it comes to

reassembling a possible world, not all branches will contain an accumulated version

of an original possible world. Once again, tracking is necessary to identify which

possible worlds from each branch should be merged. Branch Combinations from an

inclusive Gateway Structure will contain only one possible world from each branch

but not all branches may be represented. The Conditions will determine which

possible world is copied over multiple branches and which is propagated over only

one branch. Some may not satisfy any conditions although this would be unusual

and should prompt the business analyst to investigate the anomaly.

6.9 Future Implementations

This section discusses intended features for the ProcessSEER tool. BPMN applies

an XML structure to all process models that can be easily transformed from one

XML Schema to another. The use case diagram in Fig:6.23 shows a number of

collaborative use cases that involve the exchange of information between different

professionals in an organisation. Greyed out use cases indicate that the feature is not

yet fully functional. Currently, the exchange of information involves requirements

engineering to translate between the different vocabularies used by these profes-

sionals. The ProcessSEER framework is being designed to alleviate many of the

problems associated with translating between business and technical jargon. The

tool is being designed to generate skeleton code for semantic web services based on

the artifacts that are input into and output from an activity. The states descri-

bed in Effect annotations can be used as pre- and post-conditions in SAWSDL files

providing a richer description of the web service that automated online agents can

reason with. Automated generation of skeleton code can include input parameters

and expected outputs. The automated ontology generation has already significantly

improved knowledge acquisition efforts for knowledge engineers and it is hoped that

semantic web service support will be equally well received.

CHAPTER 6. IMPLEMENTATION 166

Figure 6.23: A use case diagram showing existing and intended features to
support collaboration.

Unfortunately at the time of writing this document the SAWSDL standard had

not fully implemented preconditions and effects [85] even though they had featured

in the first semantic web service proposals like OWL-S [96], WSMO [27] and WSDL-

S [5]. However, SAWSDL does offer some basic support for describing conditions.

The following snippet from the SAWSDL User Guide [129] shows how conditions

can be applied to both input and output. One inputRule and three outputRules are

applied as modelReferences.

<wsdl:description...>

<wsdl:interface name="CheckAvailabilityRequestService">

<wsdl:operation name="CheckAvailabilityRequestOperation"

pattern="http://www.w3.org/ns/wsdl/in-out">

<wsdl:input element="

CheckAvailabilityRequestServiceRequest"

sawsdl:modelReference="http://org1.example.com/rules#

inputRule"/>

<wsdl:output element="

CheckAvailabilityRequestServiceResponse"

sawsdl:modelReference="http://org1.example.com/rules#

CHAPTER 6. IMPLEMENTATION 167

outputRule1

http://org1.example.com/rules#outputRule2

http://org1.example.com/rules#outputRule3"/>

</wsdl:operation>

</wsdl:interface>

</wsdl:description>

\caption{\textbf{Snippet from a SAWSDL file showing operational

conditions associated with a web service’s input and output

.}}\label{SAWSDL}

The outputRules referred to in the above SAWSDL snippet are:

outputRule1 If more than 50lbs was ordered, order is taken only for 50lbs

outputRule2 ItemConfirmation # can be tracked only for 30 days after the order

was placed

outputRule3 If the order does not arrive at the shipping location within the re-

quired date, no charge will be made to the account

Note that the conditions referred to in [129] do not refer to the Conditions de-

fined in this document. Conditions in SAWSDL refer, in this case, to rules which

in our framework are contained within an external rules base or within an external

artifact repository. The rules to which the modelReferences refer include Conditi-

ons but a rule is structurally different from a Condition within the ProcessSEER

framework. The following example shows how outputRule1 is expressed within the

ProcessSEER framework:

hasWeightInPoundsGreaterThan(requestedOrder, 50)→
hasWeightInPounds(acceptedOrder, 50)

Rules are expressed as inferences that are constructed from Conditions/Effects

which are constructed from concepts and predicates in the background ontology.

This ensures a common vocabulary is being used across an organisation. However,

interoperability between organisations will require mapping between ontologies.

6.10 Summary

This chapter describes how Effects have been transformed from sentences in Con-

trolled Natural Language (CNL) to SPOTONS that comply with international stan-

dards like OWL and RDF. The ProcessSEER tool is described including the deve-

lopment platform and the open source modelling tool on which it is based. Examples

CHAPTER 6. IMPLEMENTATION 168

are given of the graphic user interface that describe its functionality. The implemen-

tation of the conceptual components described in chapter 3 have also been detailed

along with some components unique to the implementation. This includes how the

Web Ontology Language (OWL) has been utilised for knowledge representation.

The types of accumulations of BPMN elements has also been explained and the

future direction of the application has been outlined. Within its limited scope the

ProcessSEER application has demonstrated the efficacy of the framework underpin-

ning it. A complete listing of the ProcessSEER source code can be found at

http://www.dsl.uow.edu.au/projects/processSEER

http://www.dsl.uow.edu.au/projects/processSEER

Chapter 7

Conclusion

7.1 Research Questions

7.1.1 RQ1

Is it possible to provide richer semantics for business process models via

effect annotations?

Business process models provide little by way of semantic description of the effects

of a process beyond what can be conveyed via the nomenclature of tasks and the

decision conditions associated with gateways. A framework for annotating semantic

effects to business process models has been described in chapter 3 and shown by

example that it is possible to provide richer semantics to a process model via effect

annotations. Annotated models have been shown to reveal previously unrecognised

consequences providing new insights and improved model design.

7.1.2 RQ2

Is it possible to determine, at design time, for any point in a process

design, the effects that a process would achieve if it were to execute up

to that point?

The framework supports automated reasoning allowing it to determine what would

happen if a process model were to execute up to a particular point. Two methods

of effect accumulation offer a choice between real-time accumulation or, computing

a complete answer to this question. The use of Scenario Labels offers the complete

answer to the question, “What would have happened if the process had executed up

to this point?”, but the computational cost can be excessive in some circumstances.

169

CHAPTER 7. CONCLUSION 170

7.1.3 RQ3

Is it possible to build a robust tool to support business analysts in deve-

loping such annotated process models?

The ProcessSEER tool described in chapter 6 provides support to business analysts

for manually annotating effects to process models. The tool includes a user friendly

interface requiring no formal language skills to operate it. The design of the tool

has been influenced by reviews from business analysts so as to appeal to the skill

set of its users.

7.1.4 RQ4

Is it possible to support analysis tasks such as goal satisfaction, compli-

ance checking, semantic conformance checking and semantic simulation?

The ProcessSEER tool allows annotated effects to be accumulated through a mo-

del providing a semantic simulation environment. Goal satisfaction and compliance

checking can be achieved by specifying goals or compliance criteria in the vocabu-

lary prescribed by the domain ontology and comparing them with the outcomes of

process activities. Although the tool allows freedom of data entry, it contributes to

a background ontology which ultimately controls semantic conformance. The tool

can be instrumental in developing a standardised domain ontology.

7.1.5 RQ5

Is it possible to crowd source these annotations?

Effect annotations supplied by a single business analyst only offer a limited per-

spective on reality whereas multiple perspectives provide a much richer body of kno-

wledge. Crowdsourcing techniques that can be utilised to provide multi-perspective

views of process activities are described in chapter 5. Techniques for assimilating

and analysing crowdsourced information are also provided.

7.1.6 RQ6

Do compelling use cases for this technology exist in use cases such as

medicine?

Chapter 4 explores use cases in the clinical domain and found significant benefit from

the use of semantically annotated process models. The most compelling case invol-

ves the detection of conflicts between co-incident treatment protocols (in the same

patient). Comparing semantically annotated process models of treatment protocols

can reveal these conflicts thus avoiding potentially damaging consequences.

CHAPTER 7. CONCLUSION 171

7.2 Contributions to the Research Community

The academic contribution of this research is a framework for the specification of

semantic effects that supports automated reasoning of the outcomes of activities in

business process models. The conceptual framework has been proven to be effective

by way of an implemented tool that facilitates the annotation of semantic effects to

business process models and performs real-time accumulation reasoning of complex

activity structures.

7.3 Contributions to the Practitioner Community

It is my hope that the ProcessSEER tool can be utilised by practitioners to provide

richer semantics to process models allowing those models to be utilised in new and

exciting ways. The tool’s ability to output rudimentary ontologies makes it an

important contributor in the area of knowledge acquisition. Ultimately it is my hope

that the tool will provide enough incentive to motivate the business community to

become more active in the development of the semantic web.

Bibliography

[1] Wil M. P. van der Aalst. “The Application of Petri Nets to Workflow Ma-

nagement”. In: Journal of Circuits, Systems and Computers 08.01 (1998),

pp. 21–66. url: http://www.worldscientific.com/doi/abs/10.

1142/S0218126698000043.

[2] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske. “Bu-

siness Process Management: A Survey”. In: Business Process Management:

International Conference, BPM 2003 Eindhoven, The Netherlands, June 26–

27, 2003 Proceedings. Ed. by Wil M. P. van der Aalst and Mathias Weske.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 1–12. isbn: 978-3-

540-44895-2. url: http://dx.doi.org/10.1007/3-540-44895-

0_1.

[3] W.M.P. van der Aalst. “Pi calculus versus Petri nets: Let us eat humble pie

rather than further inflate the Pi hype”. In: BPTrends 3.5 (May 2004), pp. 1–

11. url: http://is.tm.tue.nl/research/patterns/download/

bptrendsPiHype.pdf.

[4] C.J. Acuna and E. Marcos. “Modeling semantic web services: a case study”.

In: Proceedings of the 6th international conference on Web engineering (ICWE

06). Vol. 263. New York, NY USA: ACM, July 2006, pp. 32–39. isbn: 1-59593-

352-2.

[5] Rama Akkiraju et al. Web Service Semantics - WSDL-S. Tech. rep. IBM,

Jan. 2006. url: http://domino.research.ibm.com/library/

cyberdig.nsf/papers/EF9FE52551FB21DC8525710D005A8480/

$File/rc23854.pdf.

[6] R. Akkiraju et al. Web Service Semantics - WSDL-S. World Wide Web Con-

sortium. 2005. url: http://www.w3.org/Submission/WSDL-S/.

[7] R. Altwarg. “Controlled Languages - An Introduction”. MA thesis. Sydney:

Macquarie University, 2000.

172

http://www.worldscientific.com/doi/abs/10.1142/S0218126698000043
http://www.worldscientific.com/doi/abs/10.1142/S0218126698000043
http://dx.doi.org/10.1007/3-540-44895-0_1
http://dx.doi.org/10.1007/3-540-44895-0_1
http://is.tm.tue.nl/research/patterns/download/bptrendsPiHype.pdf
http://is.tm.tue.nl/research/patterns/download/bptrendsPiHype.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/EF9FE52551FB21DC8525710D005A8480/$File/rc23854.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/EF9FE52551FB21DC8525710D005A8480/$File/rc23854.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/EF9FE52551FB21DC8525710D005A8480/$File/rc23854.pdf
http://www.w3.org/Submission/WSDL-S/

BIBLIOGRAPHY 173

[8] Grigoris Antoniou and Frank van Harmelen. “Web Ontology Language: OWL”.

In: Handbook on Ontologies. Ed. by Steffen Staab and Rudi Studer. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2004, pp. 67–92. isbn: 978-3-540-

24750-0. url: http://dx.doi.org/10.1007/978-3-540-24750-

0_4.

[9] Rainer Anzbock and Schahram Dustdar. “Modeling Medical E-services”. In:

Business Process Management. Vol. 3080/2004. Heidelberg, Berlin: Sprin-

ger, June 2004, pp. 49–65. isbn: 978-3-540-22235-4. url: http://www.

infosys.tuwien.ac.at/Staff/sd/papers/ModelingMedicale-

services_final.pdf.

[10] Franz Baader and Bernhard Hollunder. “A terminological knowledge repre-

sentation system with complete inference algorithms”. In: Processing Declara-

tive Knowledge: International Workshop PDK ’91 Kaiserslautern, Germany,

July 1–3, 1991 Proceedings. Ed. by Harold Boley and Michael M. Richter.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 67–86. isbn: 978-3-

540-46667-3. url: http://dx.doi.org/10.1007/BFb0013522.

[11] Franz Baader, Ian Horrocks, and Ulrike Sattler. “Chapter 3 Description

Logics”. In: Handbook of Knowledge Representation. Ed. by Vladimir Lif-

schitz Frank van Harmelen and Bruce Porter. Vol. 3. Foundations of Ar-

tificial Intelligence. Elsevier, May 2008, pp. 135–179. url: http://www.

sciencedirect.com/science/article/pii/S1574652607030039.

[12] Franz Baader and Werner Nutt. “Basic Description Logics”. In: The Descrip-

tion Logic Handbook. Ed. by Franz Baader et al. New York, NY, USA: Cam-

bridge University Press, 2003, pp. 43–95. isbn: 0-521-78176-0. url: http:

//dl.acm.org/citation.cfm?id=885746.885749.

[13] Jie Bao et al. OWL 2 Web Ontology Language Quick Reference Guide (Second

Edition). Tech. rep. W3C, Dec. 2012. url: http://www.w3.org/TR/

2012/REC-owl2-quick-reference-20121211/.

[14] Charlton Barreto et al. Web Services Business Process Execution Language

Version 2.0 Primer. Tech. rep. Oasis, May 2007. url: http://docs.

oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.

pdf.

[15] Dave Beckett. RDF/XML Syntax Specification (Revised). W3C Recommen-

dation. W3C, Feb. 2004. url: http://www.w3.org/TR/2004/REC-

rdf-syntax-grammar-20040210/.

http://dx.doi.org/10.1007/978-3-540-24750-0_4
http://dx.doi.org/10.1007/978-3-540-24750-0_4
http://www.infosys.tuwien.ac.at/Staff/sd/papers/ModelingMedicale-services_final.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/ModelingMedicale-services_final.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/ModelingMedicale-services_final.pdf
http://dx.doi.org/10.1007/BFb0013522
http://www.sciencedirect.com/science/article/pii/S1574652607030039
http://www.sciencedirect.com/science/article/pii/S1574652607030039
http://dl.acm.org/citation.cfm?id=885746.885749
http://dl.acm.org/citation.cfm?id=885746.885749
http://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/
http://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/
http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf
http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf
http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

BIBLIOGRAPHY 174

[16] D.A. Bensaber and M. Malki. “Development of semantic web services: Model

Driven Approach”. In: Proceedings of the 8th international conference on New

technologies in distributed systems (NOTERE 08). 40. Lyon, France: ACM,

2008. isbn: 978-1-59593-937-1.

[17] T. Berners-Lee, J. Hendler, and O. Lassila. “The Semantic Web”. In: Scien-

tific American Magazine (May 2001). url: http://www.sciam.com/

article.cfm?id=00048144- 10D2- 1C70- 84A9809EC588EF21&

page=1.

[18] Tim Berners-Lee. HTML Tags. Web Page. Nov. 1992. url: https://

www.w3.org/History/19921103-hypertext/hypertext/WWW/

MarkUp/Tags.html.

[19] Tim Berners-Lee. Re: status. Re: X11 BROWSER for WWW. Internet Cor-

respondence. Oct. 1991. url: http://lists.w3.org/Archives/

Public/www-talk/1991SepOct/0003.html.

[20] Harold Boley. “Relationships between Logic Programming and RDF”. In:

Advances in Artificial Intelligence. PRICAI 2000 Workshop Reader: Four-

Workshops held at PRICAI 2000 Melbourne,Australia,August 28 - September

1, 2000 Revised Papers. Ed. by Ryszard Kowalczyk et al. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2001, pp. 201–218. isbn: 978-3-540-45408-3. url:

http://dx.doi.org/10.1007/3-540-45408-X_21.

[21] Alex Borgida. “On the relative expressiveness of description logics and predi-

cate logics”. In: Artificial Intelligence 82.01 (1996), pp. 353–367. issn: 0004-

3702. url: http://www.sciencedirect.com/science/article/

pii/0004370296000045.

[22] Aziz A Boxwala et al. “GLIF3: a representation format for sharable computer-

interpretable clinical practice guidelines”. In: Journal of Biomedical Infor-

matics 37.3 (2004), pp. 147–161. issn: 1532-0464. url: http://www.

sciencedirect.com/science/article/pii/S1532046404000334.

[23] R. Brachman. “A Structural Paradigm for Representing Knowledge”. PhD

thesis. USA: Harvard University, 1977.

[24] Ronald J. Brachman and James G. Schmolze. “An overview of the KL-

ONE Knowledge Representation System”. In: Cognitive Science 09.02 (1985),

pp. 171–216. issn: 0364-0213. url: http://www.sciencedirect.com/

science/article/pii/S0364021385800148.

[25] M. Brambilla et al. “Model-Driven Design and Development of Semantic

Web Service Applications”. In: ACM Transactions on Internet Technology

8.1 (Nov. 2007).

http://www.sciam.com/article.cfm?id=00048144-10D2-1C70-84A9809EC588EF21&page=1
http://www.sciam.com/article.cfm?id=00048144-10D2-1C70-84A9809EC588EF21&page=1
http://www.sciam.com/article.cfm?id=00048144-10D2-1C70-84A9809EC588EF21&page=1
https://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
https://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
https://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://lists.w3.org/Archives/Public/www-talk/1991SepOct/0003.html
http://lists.w3.org/Archives/Public/www-talk/1991SepOct/0003.html
http://dx.doi.org/10.1007/3-540-45408-X_21
http://www.sciencedirect.com/science/article/pii/0004370296000045
http://www.sciencedirect.com/science/article/pii/0004370296000045
http://www.sciencedirect.com/science/article/pii/S1532046404000334
http://www.sciencedirect.com/science/article/pii/S1532046404000334
http://www.sciencedirect.com/science/article/pii/S0364021385800148
http://www.sciencedirect.com/science/article/pii/S0364021385800148

BIBLIOGRAPHY 175

[26] Jeen Broekstra et al. “Enabling knowledge representation on the web by

extending RDF schema”. In: Computer networks 39.5 (2002), pp. 609–634.

[27] Jos de Bruijn et al. Web Service Modeling Ontology (WSMO). W3C Sub-

mission. W3C, June 2005. url: https://www.w3.org/Submission/

WSMO/.

[28] Avik Chaudhuri et al. “EON: Modeling and analyzing dynamic access control

systems with logic programs”. In: Proceedings of the 15th ACM conference

on Computer and communications security. ACM, 2008, pp. 381–390.

[29] Peter P. Chen. “Entity-Relationship Diagrams and English Sentence Struc-

ture”. In: Proceedings of the 1st International Conference on the Entity-

Relationship Approach to Systems Analysis and Design. Amsterdam, The

Netherlands, The Netherlands: North-Holland Publishing Co., 1980, pp. 13–

14. isbn: 0-444-85487-8. url: http://dl.acm.org/citation.cfm?

id=647508.726196.

[30] Peter Pin-Shan Chen. “The Entity-relationship Model&Mdash;Toward a Uni-

fied View of Data”. In: ACM Trans. Database Syst. 1.1 (Mar. 1976), pp. 9–

36. issn: 0362-5915. url: http://doi.acm.org/10.1145/320434.

320440.

[31] David Cohn and Richard Hull. “Business artifacts: A data-centric approach

to modeling business operations and processes”. In: Bulletin of the IEEE

Computer Society Technical Committee on Data Engineering 32.3 (2009),

pp. 3–9. url: http://researcher.watson.ibm.com/researcher/

files/us-hull/2009-09-cohn-hull-on-artifact-centric-

research-IEEE-Data-Eng-Bull-preprint.pdf.

[32] E. Coiera. “Clinical Decision Support Systems”. In: The Guide to Health In-

formatics. 2nd. London, UK: Arnold, Oct. 2003. Chap. 25. isbn: 0340 764252.

url: http://www.coiera.com/aimd.htm.

[33] R. Curia, L. Gallucci, and M. Ruffolo. “Knowledge Management in Health

Care: an Architectural Framework for Clinical Process Management Sys-

tems”. In: Proceedings of the Sixteenth International Workshop on Database

and Expert Systems Applications. Copenhagen, Denmark: IEEE, Aug. 2005,

pp. 393–397. isbn: 0-7695-2424-9.

[34] J. Curry, C. McGregor, and S. Tracey. “A Communication Tool to Improve

the Patient Journey Modeling Process”. In: Proceedings of the 28th IEEE

EMBS Annual International Conference. New York City, USA, Aug. 2006.

https://www.w3.org/Submission/WSMO/
https://www.w3.org/Submission/WSMO/
http://dl.acm.org/citation.cfm?id=647508.726196
http://dl.acm.org/citation.cfm?id=647508.726196
http://doi.acm.org/10.1145/320434.320440
http://doi.acm.org/10.1145/320434.320440
http://researcher.watson.ibm.com/researcher/files/us-hull/2009-09-cohn-hull-on-artifact-centric-research-IEEE-Data-Eng-Bull-preprint.pdf
http://researcher.watson.ibm.com/researcher/files/us-hull/2009-09-cohn-hull-on-artifact-centric-research-IEEE-Data-Eng-Bull-preprint.pdf
http://researcher.watson.ibm.com/researcher/files/us-hull/2009-09-cohn-hull-on-artifact-centric-research-IEEE-Data-Eng-Bull-preprint.pdf
http://www.coiera.com/aimd.htm

BIBLIOGRAPHY 176

[35] Randall Davis, Howard Shrobe, and Peter Szolovits. “What Is a Knowledge

Representation?” In: AI Magazine 14.1 (1993), pp. 17–33. url: http://

www.aaai.org/ojs/index.php/aimagazine/article/view/

1029/947.

[36] A Dwivedi et al. “Workflow management systems: the healthcare technology

of the future?” In: Engineering in Medicine and Biology Society, 2001. Pro-

ceedings of the 23rd Annual International Conference of the IEEE. IEEE,

2001, pp. 3887–3890. isbn: 0-7803-7211-5.

[37] Eclipse SOA Tools Platform, BPMN Modeller. 2009. url: http://www.

eclipse.org/bpmn/.

[38] J. Edelman et al. “Tangible Business Process Modelling: A New Approach”.

In: Proceedings of ICED 09, the 17th International Conference on Engineer-

ing Design, Vol. 6, Design Methods and Tools (pt. 2). Ed. by M. Norell

Bergendahl et al. Vol. 6. Stanford University, Palo Alto, California: Design

Society, Aug. 2009, p. 485. isbn: 978-1-904670-10-0. url: https://www.

designsociety.org/publication/28763/tangible_business_

process_modeling.

[39] D. Fensel et al. “OIL: an ontology infrastructure for the Semantic Web”. In:

IEEE Intelligent Systems 16.2 (Mar. 2001), pp. 38–45. issn: 1541-1672.

[40] Richard E. Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the Ap-

plication of Theorem Proving to Problem Solving”. In: Proceedings of the 2Nd

International Joint Conference on Artificial Intelligence. London, England:

Morgan Kaufmann Publishers Inc., Aug. 1971, pp. 608–620.

[41] H. Foster et al. “Leveraging Eclipse for integrated model-based engineering

of web service compositions”. In: Proceedings of the 2005 OOPSLA workshop

on Eclipse technology eXchange. New York, NY, USA: ACM, 2005, pp. 95–

99.

[42] John Fox, Nicky Johns, and Ali Rahmanzadeh. “Disseminating medical kno-

wledge: the PROforma approach”. In: Artificial intelligence in medicine 14.1

(1998), pp. 157–182.

[43] N.E. Fuchs, U. Schwertel, and R. Schwitter. “Attempto Controlled English:

Not Just Another Logic Specification Language”. In: LOPSTR’98, LNCS

1559. Berlin Heidelberg: Springer-Verlag, 1999, pp. 1–20.

[44] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. “Attempto Control-

led English for Knowledge Representation”. In: Reasoning Web: 4th Inter-

national Summer School 2008, Venice, Italy, September 7-11, 2008, Tuto-

rial Lectures. Ed. by Cristina Baroglio et al. Berlin, Heidelberg: Springer

http://www.aaai.org/ojs/index.php/aimagazine/article/view/1029/947
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1029/947
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1029/947
http://www.eclipse.org/bpmn/
http://www.eclipse.org/bpmn/
https://www.designsociety.org/publication/28763/tangible_business_process_modeling
https://www.designsociety.org/publication/28763/tangible_business_process_modeling
https://www.designsociety.org/publication/28763/tangible_business_process_modeling

BIBLIOGRAPHY 177

Berlin Heidelberg, 2008, pp. 104–124. isbn: 978-3-540-85658-0. url: http:

//dx.doi.org/10.1007/978-3-540-85658-0_3.

[45] Norbert E. Fuchs and Rolf Schwitter. “Web-Annotations for Humans and

Machines”. In: Proceedings of the 4th European Semantic Web Conference

(ESWC 2007). Lecture Notes in Computer Science. Springer, 2007.

[46] Norbert E. Fuchs et al. “Attempto Controlled English: A Knowledge Re-

presentation Language Readable by Humans and Machines”. In: Reasoning

Web: First International Summer School 2005, Msida, Malta, July 25-29,

2005, Revised Lectures. Ed. by Norbert Eisinger and Jan Maluszynski. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 213–250. isbn: 978-3-540-

31675-6. url: http://dx.doi.org/10.1007/11526988_6.

[47] Henry L. Gantt. “A Graphical Daily Balance in Manufacture”. In: Transacti-

ons of the American Society of Mechanical Engineers. Vol. 24. New York

City: The American Society of Mechanical Engineers, 1903, pp. 1322–1336.

url: https://hdl.handle.net/2027/mdp.39015023119541?

urlappend=%3Bseq=1358.

[48] Peter Gardenfors. Belief Revision. Vol. 29. Cambridge University Press, 2003.

[49] Michael Gelfond and Vladimir Lifschitz. “Action Languages”. In: Electronic

Transactions on AI 2 (1998), pp. 193–210. url: http://www.ep.liu.

se/ej/etai/1998/007/.

[50] Guiseppe Getto. ASD-STE100 Simplified Technical English. Tech. rep. Bel-

gium, Jan. 2013. url: http://guiseppegetto.com/pwr393/wp-

content/uploads/2013/02/ASD-STE100-ISSUE-6.pdf.

[51] A.K. Ghose and G. Koliadis. “Business Process Compliance: Techniques for

Design-Time Auditing and Resolution”. In: Proceedings of the First Interna-

tional Workshop on Juris-informatics (JURISIN07). 2007.

[52] A.K. Ghose and G. Koliadis. “PCTk: A ToolKit for Managing Business Pro-

cess Compliance”. In: Proceedings of the Second International Workshop on

Juris-informatics (JURISIN’08). 2008.

[53] Frank Bunker Gilbreth and Lillian Moller Gilbreth. “Process charts-first steps

in finding the one best way”. In: American Society of Mechanical Engineers

(ASME) (1921).

[54] Matthew L. Ginsberg and David E. Smith. “Reasoning about Action I - A

Possible Worlds Approach”. In: Artificial Intelligence 35.2 (1988), pp. 165–

195. issn: 0004-3702. url: http://www.sciencedirect.com/science/

article/pii/0004370288900112.

http://dx.doi.org/10.1007/978-3-540-85658-0_3
http://dx.doi.org/10.1007/978-3-540-85658-0_3
http://dx.doi.org/10.1007/11526988_6
https://hdl.handle.net/2027/mdp.39015023119541?urlappend=%3Bseq=1358
https://hdl.handle.net/2027/mdp.39015023119541?urlappend=%3Bseq=1358
http://www.ep.liu.se/ej/etai/1998/007/
http://www.ep.liu.se/ej/etai/1998/007/
http://guiseppegetto.com/pwr393/wp-content/uploads/2013/02/ASD-STE100-ISSUE-6.pdf
http://guiseppegetto.com/pwr393/wp-content/uploads/2013/02/ASD-STE100-ISSUE-6.pdf
http://www.sciencedirect.com/science/article/pii/0004370288900112
http://www.sciencedirect.com/science/article/pii/0004370288900112

BIBLIOGRAPHY 178

[55] Guido Governatori et al. “Detecting Regulatory Compliance of Business Pro-

cess Models through Semantic Annotations”. In: Proceedings of the 4th In-

ternational Workshop on Business Process Design. 2008.

[56] F.B. Green. “Managing the unmanagable: Integrating the supply chain with

new developments in software”. In: Supply Chain Management: An Interna-

tional Journal 6.5 (2001), pp. 208–211.

[57] P. Green, M. Rosemann, and M. Weske. “Integrated Process Modeling: An

Ontological Evaluation”. In: vol. 25. 2. Jan. 2000, pp. 73–87.

[58] Nicola Guarino, Daniel Oberle, and Steffen Staab. “What Is an Ontology?”

In: Handbook on Ontologies. Ed. by Steffen Staab and Rudi Studer. Ber-

lin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–17. isbn: 978-3-540-

92673-3. url: http://dx.doi.org/10.1007/978-3-540-92673-

3_0.

[59] Ramanathan Guha and Dan Brickley. RDF Vocabulary Description Language

1.0: RDF Schema. W3C Recommendation. W3C, Feb. 2004. url: http:

//www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[60] C. Gutierrez, C. A. Hurtado, and A. Vaisman. “Introducing Time into RDF”.

In: IEEE Transactions on Knowledge and Data Engineering 19.2 (Feb. 2007),

pp. 207–218. issn: 1041-4347. url: http://www.cs.rpi.edu/˜willig4/

temp/time.pdf.

[61] C. Hall and P. Harmon. The 2005 Enterprise Architecture, Process Modeling

& Simulation Tools Report. Tech. rep. 2005. url: http://www.bptends.

com.

[62] Alan Hevner and Samir Chatterjee. Design Research in Information Systems

- Theory and Practice. Springer US, 2010, pp. 9–22. isbn: 978-1-4419-5652-1.

url: http://www.springer.com/cda/content/document/cda_

downloaddocument/9781441956521-c1.pdf.

[63] K. Hinge, A. Ghose, and G. Koliadis. “Process SEER: A Tool for Semantic

Effect Annotation of Business Process Models”. In: Proceedings of the Thir-

teenth IEEE International EDOC Conference. Auckland, NZ: IEEE, Sept.

2009.

[64] Kerry Hinge, Aditya Ghose, and Andrew Miller. “A Framework for Detecting

Interactions Between Co-Incident Clinical Processes”. In: International Jour-

nal of E-Health and Medical Communications 1.2 (2010), pp. 24–35.

http://dx.doi.org/10.1007/978-3-540-92673-3_0
http://dx.doi.org/10.1007/978-3-540-92673-3_0
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.cs.rpi.edu/~willig4/temp/time.pdf
http://www.cs.rpi.edu/~willig4/temp/time.pdf
http://www.bptends.com
http://www.bptends.com
http://www.springer.com/cda/content/document/cda_downloaddocument/9781441956521-c1.pdf
http://www.springer.com/cda/content/document/cda_downloaddocument/9781441956521-c1.pdf

BIBLIOGRAPHY 179

[65] K. Hoesch-Klohe and A. K. Ghose. “Business Process Improvement in Ab-

noba”. In: SEE 2010. Proceedings of the 1st International Workshop on Ser-

vices, Energy and Ecosystem. Dec. 2010. url: http://greenprocess.

org/articles/.

[66] Joerg Hoffmann, Ingo Weber, and Frank Kraft. SAP Speaks PDDL: Exploi-

ting a Software-Engineering Model for Planning in Business Process Mana-

gement. 2014. url: https://www.jair.org/media/3636/live-

3636-6417-jair.pdf.

[67] D. Hollingsworth. The Workflow Reference Model. Tech. rep. Hampshire,

UK, Jan. 1995. url: http://www.wfmc.org/standards/docs/

tc003v11.pdf.

[68] Matthew Horridge and Sean Bechhofer. “The OWL API: A Java API for

OWL Ontologies”. In: Semantic Web 2.1 (2011), pp. 11–21. issn: 1570-0844.

url: http://dl.acm.org/citation.cfm?id=2019470.2019471.

[69] I. Horrocks. “Semantic Web: The Story So Far”. In: Proceedings of the 2007

international cross-disciplinary conference on Web accessibility (W4A). Vol. 225.

Banff, Canada: ACM, 2007, pp. 120–125. isbn: 1-59593-590-8. url: http:

//doi.acm.org/10.1145/1243441.1243469.

[70] Ian Horrocks and Peter Patel-Schneider. “Reducing OWL entailment to des-

cription logic satisfiability”. In: Web Semantics: Science, Services and Agents

on the World Wide Web 1.4 (2004). International Semantic Web Conference

2003, pp. 345–357. issn: 1570-8268. url: http://www.sciencedirect.

com/science/article/pii/S1570826804000095.

[71] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. “From

SHIQ and RDF to OWL: the making of a Web Ontology Language”. In:

Web Semantics: Science, Services and Agents on the World Wide Web 1.1

(2003), pp. 7–26. issn: 1570-8268. url: http://www.sciencedirect.

com/science/article/pii/S1570826803000027.

[72] I. Horrocks et al. The Ontology Inference Layer OIL. Tech. rep. Vrije Uni-

versiteit Amsterdam, NL., Aug. 2000. url: http://www.cs.ox.ac.uk/

ian.horrocks/Publications/download/2000/oil.pdf.

[73] Richard Hull. “Artifact-Centric Business Process Models: Brief Survey of

Research Results and Challenges”. In: On the Move to Meaningful Internet

Systems: OTM 2008: OTM 2008 Confederated International Conferences,

CoopIS, DOA, GADA, IS, and ODBASE 2008, Monterrey, Mexico, Novem-

ber 9-14, 2008, Proceedings, Part II. Ed. by Robert Meersman and Zahir

Tari. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1152–1163.

http://greenprocess.org/articles/
http://greenprocess.org/articles/
https://www.jair.org/media/3636/live-3636-6417-jair.pdf
https://www.jair.org/media/3636/live-3636-6417-jair.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://dl.acm.org/citation.cfm?id=2019470.2019471
http://doi.acm.org/10.1145/1243441.1243469
http://doi.acm.org/10.1145/1243441.1243469
http://www.sciencedirect.com/science/article/pii/S1570826804000095
http://www.sciencedirect.com/science/article/pii/S1570826804000095
http://www.sciencedirect.com/science/article/pii/S1570826803000027
http://www.sciencedirect.com/science/article/pii/S1570826803000027
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2000/oil.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2000/oil.pdf

BIBLIOGRAPHY 180

isbn: 978-3-540-88873-4. url: http://dx.doi.org/10.1007/978-3-

540-88873-4_17.

[74] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and

Reasoning about Systems. Cambridge University Press, 2004.

[75] Kaoru Ishikawa. What is total quality control? The Japanese way. Prentice

Hall, 1985.

[76] Daniel Jackson and Janette Wing. “Lightweight Formal Methods”. In: IEEE

Computer (1996), pp. 21–22.

[77] Kaarel Kaljurand. “Attempto Controlled English as a Semantic Web Lan-

guage”. PhD thesis. Faculty of Mathematics and Computer Science, Univer-

sity of Tartu, 2007.

[78] H. Katsuno and A. O. Mendelzon. “On the Difference Between Updating a

Knowledge Base and Revising It”. In: Belief Revision. Cambridge University

Press, 1992, pp. 183–203.

[79] Graham Klyne and Jeremy Carroll. Resource Description Framework (RDF):

Concepts and Abstract Syntax. W3C Recommendation. W3C, Feb. 2004. url:

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[80] G. Koliadis and A. Ghose. “Correlating Business Process and Organizatio-

nal Models to Manage Change”. In: Australasian Conference on Information

Systems. Adelaide, SA, Australia, Dec. 2006.

[81] G. Koliadis and A. Ghose. “Verifying Semantic Business Process Models in

Inter-operation”. In: SCC 2007. IEEE International Conference on Services

Computing, 2007. Auckland, NZ: IEEE, July 2007, pp. 731–738.

[82] G. Koliadis, A. K. Ghose, and S. Padmanabhuni. “Towards an Enterprise

Business Process Architecture Standard”. In: Proceedings of the IEEE Ser-

vices Congress Symposium on SOA Standards 2008. Hawaii, US: IEEE, July

2008.

[83] G. Koliadis et al. “A Combined Approach for Supporting the Business Pro-

cess Model Lifecycle”. In: Proc. of the 10th Pacific Asia Conference on In-

formation Systems (PACIS’06). 2006.

[84] J. Kopecky. Aligning WSMO and WSDL-S. 2005. url: http://www.

wsmo.org/TR/d30/v0.1/20050805/d30v01_20050805.pdf.

[85] Jacek Kopecky. Re: Preconditions and Effects in SAWSDL? 2007. url: https:

//lists.w3.org/Archives/Public/public-sws-ig/2007Mar/

0012.html.

http://dx.doi.org/10.1007/978-3-540-88873-4_17
http://dx.doi.org/10.1007/978-3-540-88873-4_17
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.wsmo.org/TR/d30/v0.1/20050805/d30v01_20050805.pdf
http://www.wsmo.org/TR/d30/v0.1/20050805/d30v01_20050805.pdf
https://lists.w3.org/Archives/Public/public-sws-ig/2007Mar/0012.html
https://lists.w3.org/Archives/Public/public-sws-ig/2007Mar/0012.html
https://lists.w3.org/Archives/Public/public-sws-ig/2007Mar/0012.html

BIBLIOGRAPHY 181

[86] J. Krogstie, C. Veres, and G. Sindre. “Integrating Semantic Web Technology,

Web Services, and Workflow Modeling: Achieving System and Business In-

teroperability”. In: International Journal of Enterprise Information Systems

8.1 (Jan. 2007), pp. 22–41.

[87] Markus Krotzsch, Frantisek Simancik, and Ian Horrocks. “A Description Lo-

gic Primer”. In: CoRR abs/1201.4089 (2012). url: http://arxiv.org/

abs/1201.4089.

[88] Tri A. Kurniawan et al. “On Formalizing Inter-process Relationships”. In: Bu-

siness Process Management Workshops. Ed. by Florian Daniel et al. Vol. 100.

Lecture Notes in Business Information Processing. Springer Berlin Heidel-

berg, Dec. 2012, pp. 75–86. isbn: 978-3-642-28115-0. url: http://dx.

doi.org/10.1007/978-3-642-28115-0_8.

[89] Ora Lassila. Resource Description Framework (RDF) Model and Syntax Spe-

cification. (W3C) Recommendation. W3C, Feb. 1999. url: http://www.

w3.org/TR/1999/REC-rdf-syntax-19990222.

[90] Lance Laytner. Star Trek Tech. Web Page. 2009. url: https://web.

archive.org/web/20111028200606/http://www.editinternational.

com/read.php?id=4810edf3a83f8.

[91] Paolo Liberatore. “Belief Merging by Examples”. In: ACM Trans. Comput.

Logic 17.2 (Dec. 2015), 9:1–9:38. issn: 1529-3785. url: http://doi.acm.

org/10.1145/2818645.

[92] Y. Lin. “Semantic Annotation for Process Models: Facilitating Process Kno-

wledge Management via Semantic Interoperability”. PhD thesis. Trondheim,

Norway: Norwegian University of Science and Technology, Mar. 2008.

[93] A. T. Manes. Web Services: A Manager’s Guide. Boston, MA: Addison Wes-

ley, June 2003. isbn: 0-321-18577-3.

[94] Frank Manola and Eric Miller. RDF Primer. W3C Recommendation. W3C,

Feb. 2004. url: http://www.w3.org/TR/2004/REC-rdf-primer-

20040210/.

[95] David Martin and John Domingue. “Semantic Web Services, Part 2”. In:

IEEE Intelligent Systems November/December (2007), pp. 8–15.

[96] D. Martin et al. OWL-S: Semantic Markup for Web Services. Tech. rep. Nov.

2004. url: http://www.w3.org/Submission/OWL-S/.

[97] D. Martin et al. “Semantic Web Services, Part 2”. In: IEEE Intelligent Sys-

tems 22.6 (Nov. 2007), p. 8.

http://arxiv.org/abs/1201.4089
http://arxiv.org/abs/1201.4089
http://dx.doi.org/10.1007/978-3-642-28115-0_8
http://dx.doi.org/10.1007/978-3-642-28115-0_8
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
https://web.archive.org/web/20111028200606/http://www.editinternational.com/read.php?id=4810edf3a83f8
https://web.archive.org/web/20111028200606/http://www.editinternational.com/read.php?id=4810edf3a83f8
https://web.archive.org/web/20111028200606/http://www.editinternational.com/read.php?id=4810edf3a83f8
http://doi.acm.org/10.1145/2818645
http://doi.acm.org/10.1145/2818645
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/Submission/OWL-S/

BIBLIOGRAPHY 182

[98] Philippe Andre Martin. “Knowledge representation in RDF/XML, KIF, Frame-

CG and Formalized-English”. In: Proceedings of the 1st International Seman-

tic Web Conference ISWC 2002. Sardinia, Italy, July 2002. url: http://

www.phmartin.info/webKB/doc/papers/iccs02/iswc02.pdf.

[99] K. Maximini and M. Schaaf. “The PROGEMM Approach For Managing Cli-

nical Processes”. In: Proceedings of the Twelfth IEEE International Works-

hops on Enabling Technologies: Infrastructure for Collaborative Enterprises.

Copenhagen, Denmark: IEEE, June 2003, pp. 332–337. isbn: 0-7695-1963-6.

[100] W. McCune. Prover9. 2009. url: http://www.cs.unm.edu/˜mccune/

prover9/.

[101] D. Mcdermott et al. PDDL - The Planning Domain Definition Language.

Tech. rep. TR-98-003. Yale Center for Computational Vision and Control,

1998. url: http://homepages.inf.ed.ac.uk/mfourman/tools/

propplan/pddl.pdf.

[102] Deborah McGuinness. “Description Logics Emerge from Ivory Towers”. In:

The First Semantic Web Working Symposium (SWWS2001). 2001. url:

http://data.semanticweb.org/conference/iswc/2001/position-

proceedings/paper-31.

[103] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Lan-

guage Overview. World Wide Web Consortium, Recommendation REC-owl-

features-20040210. Feb. 2004. url: http://www.w3.org/TR/2004/

REC-owl-features-20040210.

[104] Shelia A. McIlraith, Tran Cao Son, and Honglei Zen. “Semantic Web Servi-

ces”. In: IEEE Intelligent Systems March/April (2001), pp. 46–53.

[105] Marvin Minsky. A Framework for Representing Knowledge. Tech. rep. Cam-

bridge, MA, USA, 1974. url: http://web.media.mit.edu/˜minsky/

papers/Frames/frames.html.

[106] E. D. Morrison et al. “Strategic Alignment of Business Processes”. In: WE-

SOA’11. Proceedings of the 7th International Workshop on Engineering Ser-

vice Oriented Applications. Paphos, Cyprus, Dec. 2011. url: http://www.

fnord.be/research/publications.

[107] Nataliya Mulyar et al. “Declarative and procedural approaches for modelling

clinical guidelines: Addressing flexibility issues”. In: Business Process Mana-

gement Workshops: BPM 2007 International Workshops, BPI, BPD, CBP,

ProHealth, RefMod, semantics4ws, Brisbane, Australia, September 24, 2007,

Revised Selected Papers. Ed. by Arthur ter Hofstede, Boualem Benatallah,

and Hye-Young Paik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,

http://www.phmartin.info/webKB/doc/papers/iccs02/iswc02.pdf
http://www.phmartin.info/webKB/doc/papers/iccs02/iswc02.pdf
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
http://homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf
http://homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf
http://data.semanticweb.org/conference/iswc/2001/position-proceedings/paper-31
http://data.semanticweb.org/conference/iswc/2001/position-proceedings/paper-31
http://www.w3.org/TR/2004/REC-owl-features-20040210
http://www.w3.org/TR/2004/REC-owl-features-20040210
http://web.media.mit.edu/~minsky/papers/Frames/frames.html
http://web.media.mit.edu/~minsky/papers/Frames/frames.html
http://www.fnord.be/research/publications
http://www.fnord.be/research/publications

BIBLIOGRAPHY 183

pp. 335–346. isbn: 978-3-540-78238-4. url: http://dx.doi.org/10.

1007/978-3-540-78238-4_35.

[108] Natalya F Noy et al. “Protege-2000: an open-source ontology-development

and knowledge-acquisition environment”. In: AMIA Annu Symp Proc. Vol. 953.

2003, p. 953. url: http://ejournal.narotama.ac.id/files/an%

5C%20open-source%5C%20ontology-development%5C%20and%

5C%20knowledge-acquisition%5C%20environment.pdf.

[109] D. Oberle et al. “Supporting Application Development in the Semantic Web”.

In: ACM Transactions on Internet Technology 5.2 (May 2005), pp. 328–358.

[110] OMG. BPMN 2.0 by Example. Object Management Group. June 2010. url:

http://http://www.omg.org/spec/BPMN/20100601/10-06-

02.pdf.

[111] OMG. Business Process Model and Notation (BPMN) Specification 2.0.2.

Object Management Group. Feb. 2013. url: http://www.omg.org/

spec/BPMN.

[112] OMG. Business Process Modeling Notation (BPMN) 1.1 Specification. Object

Management Group. Feb. 2006. url: http://www.omg.org/spec/

BPMN.

[113] OMG. Object Constraint Language (OCL) Specification 2.4. Object Manage-

ment Group. Feb. 2014. url: http://www.omg.org/spec/OCL/.

[114] OMG. OMG Unified Modeling Language (OMG UML), Infrastructure. Ob-

ject Management Group. Feb. 2009. url: http://www.omg.org/spec/

UML/2.2/.

[115] Silvia Panzarasa et al. “Evidence-based careflow management systems: the

case of post-stroke rehabilitation”. In: Journal of Biomedical Informatics 35.2

(Apr. 2002), pp. 123–139.

[116] Jean Paoli, Tim Bray, and Michael Sperberg-McQueen. (XML) 1.0 Recom-

mendation. (W3C) Recommendation. W3C, Feb. 1998. url: http://www.

w3.org/TR/1998/REC-xml-19980210.

[117] Bijan Parsia et al. OWL 2 Web Ontology Language Primer (Second Edition).

Tech. rep. W3C, Dec. 2012. url: http://www.w3.org/TR/2012/REC-

owl2-primer-20121211/.

[118] Peter Patel-Schneider and Boris Motik. OWL 2 Web Ontology Language Map-

ping to RDF Graphs (Second Edition). W3C Recommendation. W3C, Dec.

2012. url: http://www.w3.org/TR/2012/REC-owl2-mapping-to-

rdf-20121211/.

http://dx.doi.org/10.1007/978-3-540-78238-4_35
http://dx.doi.org/10.1007/978-3-540-78238-4_35
http://ejournal.narotama.ac.id/files/an%5C%20open-source%5C%20ontology-development%5C%20and%5C%20knowledge-acquisition%5C%20environment.pdf
http://ejournal.narotama.ac.id/files/an%5C%20open-source%5C%20ontology-development%5C%20and%5C%20knowledge-acquisition%5C%20environment.pdf
http://ejournal.narotama.ac.id/files/an%5C%20open-source%5C%20ontology-development%5C%20and%5C%20knowledge-acquisition%5C%20environment.pdf
http://http://www.omg.org/spec/BPMN/20100601/10-06-02.pdf
http://http://www.omg.org/spec/BPMN/20100601/10-06-02.pdf
http://www.omg.org/spec/BPMN
http://www.omg.org/spec/BPMN
http://www.omg.org/spec/BPMN
http://www.omg.org/spec/BPMN
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/UML/2.2/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/
http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/

BIBLIOGRAPHY 184

[119] Edwin P. D. Pednault. “ADL: Exploring the Middle Ground Between STRIPS

and the Situation Calculus”. In: Proceedings of the First International Con-

ference on Principles of Knowledge Representation and Reasoning. Toronto,

Canada: Morgan Kaufmann Publishers Inc., Aug. 1989, pp. 324–332. isbn:

1-55860-032-9.

[120] M.K. Raut and A. Singh. “Prime Implicates of First Order Formulas”. In:

International Journal of Computer Science and Applications 1 (2004).

[121] Jan C. Recker et al. “Do Process Modelling Techniques Get Better? A Com-

parative Ontological Analysis of BPMN”. In: 16th Australasian Conference

on Information Systems. Ed. by Bruce Campbell, Jim Underwood, and De-

borah Bunker. Sydney, Australia: Australasian Chapter of the Association

for Information Systems, 2005. url: http://eprints.qut.edu.au/

2879/.

[122] Jan C. Recker et al. “How Good is BPMN Really? Insights from Theory

and Practice”. In: 14th European Conference on Information Systems. Ed.

by Jan Ljungberg and Magnus Andersson. Goeteborg, Sweden: Australasian

Chapter of the Association for Information Systems, 2006. url: http://

eprints.qut.edu.au/4636/.

[123] Hajo A. Reijers. Design and Control of Workflow Processes: Business Process

Management for the Service Industry. Berlin, Heidelberg: Springer-Verlag,

2003. isbn: 3-540-01186-2.

[124] Wolfgang Reisig. Petri Nets: An Introduction. New York, NY, USA: Springer-

Verlag New York, Inc., 1985. isbn: 0-387-13723-8.

[125] Raymond Reiter. “The Frame Problem in Situation the Calculus: A Sim-

ple Solution (Sometimes) and a Completeness Result for Goal Regression”.

In: Artificial Intelligence and Mathematical Theory of Computation. Ed. by

Vladimir Lifschitz. San Diego, CA, USA: Academic Press Professional, Inc.,

1991, pp. 359–380. isbn: 0-12-450010-2. url: http://dl.acm.org/

citation.cfm?id=132218.132239.

[126] D. Roman et al. “Web Service Modeling Ontology”. In: Applied Ontology 1.1

(2005), pp. 77–106.

[127] Michael Rosemann. “The Service Portfolio of a BPM Center of Excellence”.

In: Handbook on Business Process Management 2: Strategic Alignment, Go-

vernance, People and Culture. Ed. by Jan vom Brocke and Michael Rose-

mann. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 267–284.

isbn: 978-3-642-01982-1. url: http://dx.doi.org/10.1007/978-3-

642-01982-1_13.

http://eprints.qut.edu.au/2879/
http://eprints.qut.edu.au/2879/
http://eprints.qut.edu.au/4636/
http://eprints.qut.edu.au/4636/
http://dl.acm.org/citation.cfm?id=132218.132239
http://dl.acm.org/citation.cfm?id=132218.132239
http://dx.doi.org/10.1007/978-3-642-01982-1_13
http://dx.doi.org/10.1007/978-3-642-01982-1_13

BIBLIOGRAPHY 185

[128] M. Ruffolo et al. “Semantic Clinical Process Management”. In: Proceedings of

the Twentieth IEEE International Symposium on Computer-Based Medical

Systems. Washington DC, USA: IEEE, 2007, pp. 518–523. isbn: 0-7695-2905-

4.

[129] Brahmananda Sapkota and Rama Akkiraju. Semantic Annotations for WSDL

and XML Schema - Usage Guide. W3C Note. W3C, Aug. 2007. url: http:

//www.w3.org/TR/2007/NOTE-sawsdl-guide-20070828/.

[130] J. Schulz-Hofen and S. Golega. “Generating web applications from process

models”. In: Workshop proceedings of the sixth international conference on

Web engineering (ICWE 06). Vol. 155. 6. Palo Alto, CA, USA: ACM, 2006,

p. 6. isbn: 1-59593-435-9.

[131] R. Schwitter. Home (Controlled Natural Languages). 2009. url: http://

sites.google.com/site/controllednaturallanguage/.

[132] R. Schwitter and N.E. Fuchs. “Attempto - From Specifications in Control-

led Natural Language towards Executable Specifications”. In: CoRR cmp-

lg/9603004 (May 1996).

[133] Rolf Schwitter. “Controlled Natural Languages for Knowledge Representa-

tion”. In: Proceedings of the 23rd International Conference on Computational

Linguistics: Posters. COLING ’10. Beijing, China: Association for Compu-

tational Linguistics, 2010, pp. 1113–1121. url: http://dl.acm.org/

citation.cfm?id=1944566.1944694.

[134] Rolf Schwitter. “Working for Two: A Bidirectional Grammar for a Control-

led Natural Language”. In: AI 2008: Advances in Artificial Intelligence: 21st

Australasian Joint Conference on Artificial Intelligence Auckland, New Zea-

land, December 1-5, 2008. Proceedings. Ed. by Wayne Wobcke and Mengjie

Zhang. Berlin Heidelberg: Springer-Verlag, 2008, pp. 168–179. isbn: 978-3-

540-89378-3. url: http://dx.doi.org/10.1007/978-3-540-

89378-3_17.

[135] J. Scott and G. Marshall. A Dictionary of Sociology. New York, NY: Oxford

University Press, Apr. 2005. url: http://www.oxfordreference.

com/views/ENTRY.html?subview=Main%5C&entry=t88.e1610.

[136] Andreas Seyfang, Robert Kosara, and Silvia Miksch. Asbru’s Reference Ma-

nual, Asbru Version 7.3. Tech. rep. Asgaard-TR-2002-1. Vienna University of

Technology, Institute of SoftwareTechnology, Vienna, Jan. 2002. url: https:

//www.researchgate.net/publication/277291122_Asbru’s_

Reference_Manual_Asbru_Version_73.

http://www.w3.org/TR/2007/NOTE-sawsdl-guide-20070828/
http://www.w3.org/TR/2007/NOTE-sawsdl-guide-20070828/
http://sites.google.com/site/controllednaturallanguage/
http://sites.google.com/site/controllednaturallanguage/
http://dl.acm.org/citation.cfm?id=1944566.1944694
http://dl.acm.org/citation.cfm?id=1944566.1944694
http://dx.doi.org/10.1007/978-3-540-89378-3_17
http://dx.doi.org/10.1007/978-3-540-89378-3_17
http://www.oxfordreference.com/views/ENTRY.html?subview=Main%5C&entry=t88.e1610
http://www.oxfordreference.com/views/ENTRY.html?subview=Main%5C&entry=t88.e1610
https://www.researchgate.net/publication/277291122_Asbru's_Reference_Manual_Asbru_Version_73
https://www.researchgate.net/publication/277291122_Asbru's_Reference_Manual_Asbru_Version_73
https://www.researchgate.net/publication/277291122_Asbru's_Reference_Manual_Asbru_Version_73

BIBLIOGRAPHY 186

[137] Murray Shanahan. Solving the Frame Problem - A Mathematical Investiga-

tion of the Common Sense Law of Inertia. MIT Press, 1997.

[138] H. Sharp et al. “The role of story cards and the wall in XP teams: a distribu-

ted cognition perspective”. In: AGILE 2006 (AGILE’06). IEEE, July 2006,

pp. 11–75.

[139] Rob Shearer, Boris Motik, and Ian Horrocks. “HermiT: A Highly-Efficient

OWL Reasoner”. In: OWLED 2008, Fifth International Workshop. Vol. 432.

Karlsruhe, Germany, Oct. 2008, p. 91. url: http : / / webont . org /

owled/2008/papers/owled2008eu_submission_12.pdf.

[140] Herbert Alexander Simon. The Sciences of the Artificial. MIT Press, 1996.

isbn: 978-0-2621-9374-0. url: http://www.amazon.com/exec/obidos/

redirect?tag=citeulike07-20%5C&path=ASIN/0201379406.

[141] Pnina Soffer. “Scope analysis: identifying the impact of changes in business

process models”. In: Software Process: Improvement and Practice 10.4 (2005),

pp. 393–402.

[142] Pnina Soffer and Yair Wand. “Goal-Driven Analysis of Process Model Va-

lidity”. In: Lecture Notes in Computer Science 3084 (June 2004), pp. 521–

535.

[143] John F Sowa. “Semantic Networks”. In: Encyclopedia of Cognitive Science.

John Wiley & Sons, Ltd, 2006. isbn: 9780470018866. url: http://dx.

doi.org/10.1002/0470018860.s00065.

[144] M. Stefanelli. Careflow Management Systems. Commissioned Briefing Paper,

Online. 2002. url: http://www.openclinical.org/briefingpaperStefanelli.

html.

[145] Frederick W. Taylor. The Principles of Scientific Management. New York

and London: Harper & Brothers, 1911. url: https://archive.org/

stream/principlesofscie00taylrich#page/n0/mode/2up.

[146] J.T.E. Timm and G.C. Gannod. “A Model-Driven Approach for Specifying

Semantic Web Services”. In: Proceedings of the 3rd IEEE International Con-

ference on Web Services (ICWS 2005). IEEE, July 2005, pp. 313–320.

[147] Dmitry Tsarkov and Ian Horrocks. “DL Reasoner vs. First-Order Prover”. In:

Proceedings of the 2003 Description Logic Workshop. Vol. 81. 2003, pp. 152–

159. url: http://ceur-ws.org/Vol-81/tsarkov.pdf.

[148] C. Lee Ventola. “Mobile Devices and Apps for Health Care Professionals:

Uses and Benefits”. In: Pharmacy and Therapeutics 39.5 (2014), pp. 356–

364. issn: 1052-1372.

http://webont.org/owled/2008/papers/owled2008eu_submission_12.pdf
http://webont.org/owled/2008/papers/owled2008eu_submission_12.pdf
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=ASIN/0201379406
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=ASIN/0201379406
http://dx.doi.org/10.1002/0470018860.s00065
http://dx.doi.org/10.1002/0470018860.s00065
http://www.openclinical.org/briefingpaperStefanelli.html
http://www.openclinical.org/briefingpaperStefanelli.html
https://archive.org/stream/principlesofscie00taylrich#page/n0/mode/2up
https://archive.org/stream/principlesofscie00taylrich#page/n0/mode/2up
http://ceur-ws.org/Vol-81/tsarkov.pdf

BIBLIOGRAPHY 187

[149] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language: Pre-

cise Modeling With Uml (Addison-Wesley Object Technology Series). Addison-

Wesley Professional, Oct. 1998. isbn: 0201379406. url: http://www.

amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&

path=ASIN/0201379406.

[150] Ingo Weber, Jorg Hoffman, and Jan Mendling. “Semantic Business Process

Validation”. In: Proceedings of the 3rd International Workshop on Semantic

Business Process Management. 2008.

[151] I. Weber et al. “Towards a Methodology for Semantic Business Process Mo-

deling and Configuration”. 2004. url: http://www.sti-innsbruck.

at/fileadmin/documents/papers/joerg_hoffmann/semsoc07.

pdf.

[152] S. Weerawarana et al. Web Services Platform Architecture. New Jersey, NJ:

Pearson Education, Inc., Sept. 2005.

[153] S. A. White and D. Miers. BPMN Modeling and Reference Guide. Lighthouse

Pt, FL: Future Strategies Inc., Sept. 2008. url: http://www.futstrat.

com/books/BPMN-Guide.php.

[154] S.A. White. Using BPMN to Model a BPEL Process. BPTrends. Mar. 2005.

url: http : / / homepages . borland . com / jkaster / callisto /

reference/%20MappingBPELtoBPMN.pdf.

[155] James M. Wilson. “Gantt charts: A centenary appreciation”. In: European

Journal of Operational Research 149.2 (2003), pp. 430–437. issn: 0377-2217.

url: http://www.sciencedirect.com/science/article/pii/

S0377221702007695.

[156] Sira Yongchareon and Chengfei Liu. “A process view framework for artifact-

centric business processes”. In: OTM Confederated International Conferences

“On the Move to Meaningful Internet Systems”. Springer, 2010, pp. 26–43.

url: http://www.ict.swin.edu.au/personal/syongchareon/

papers/A%5C%20Process%5C%20View%5C%20Framework%5C%

20%5C%20for%5C%20Artifact-Centric%5C%20Business%5C%

20Processes.pdf.

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=ASIN/0201379406
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=ASIN/0201379406
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=ASIN/0201379406
http://www.sti-innsbruck.at/fileadmin/documents/papers/joerg_hoffmann/semsoc07.pdf
http://www.sti-innsbruck.at/fileadmin/documents/papers/joerg_hoffmann/semsoc07.pdf
http://www.sti-innsbruck.at/fileadmin/documents/papers/joerg_hoffmann/semsoc07.pdf
http://www.futstrat.com/books/BPMN-Guide.php
http://www.futstrat.com/books/BPMN-Guide.php
http://homepages.borland.com/jkaster/callisto/reference/%20MappingBPELtoBPMN.pdf
http://homepages.borland.com/jkaster/callisto/reference/%20MappingBPELtoBPMN.pdf
http://www.sciencedirect.com/science/article/pii/S0377221702007695
http://www.sciencedirect.com/science/article/pii/S0377221702007695
http://www.ict.swin.edu.au/personal/syongchareon/papers/A%5C%20Process%5C%20View%5C%20Framework%5C%20%5C%20for%5C%20Artifact-Centric%5C%20Business%5C%20Processes.pdf
http://www.ict.swin.edu.au/personal/syongchareon/papers/A%5C%20Process%5C%20View%5C%20Framework%5C%20%5C%20for%5C%20Artifact-Centric%5C%20Business%5C%20Processes.pdf
http://www.ict.swin.edu.au/personal/syongchareon/papers/A%5C%20Process%5C%20View%5C%20Framework%5C%20%5C%20for%5C%20Artifact-Centric%5C%20Business%5C%20Processes.pdf
http://www.ict.swin.edu.au/personal/syongchareon/papers/A%5C%20Process%5C%20View%5C%20Framework%5C%20%5C%20for%5C%20Artifact-Centric%5C%20Business%5C%20Processes.pdf

Appendix A

Algorithms

Algorithm A.1 Decision Function

Let KBR be a consistent background knowledge base and set of rules.
Let pCES be a previous Cumulative Effect Scenario.
Let pWL be a previous World List of previous Cumulative Effect Scenarios.
Let cCES be a current Cumulative Effect Scenario.
Let cWL be a current World List of current Cumulative Effect Scenarios.
Let CS be a Condition Scenario.
function dec(pWL,CS)

cWL = ∅
cCES = ∅
for all (pCES ∈ pWL) do

if (CS ⊆ pCES) then
cCES = pCES
cWL . add(cCES)

end if
end for
return cWL

end function

188

APPENDIX A. ALGORITHMS 189

Algorithm A.2 Combinatorial Function

Let IES be an Immediate Effect Scenario.
Let iWL be an immediate World List of Immediate Effect Scenarios.
Let pCES be a previous Cumulative Effect Scenario.
Let pWL be a previous World List of previous Cumulative Effect Scenarios.
Let cCES be a current Cumulative Effect Scenario.
Let cWL be a current World List of current Cumulative Effect Scenarios.
Let Pair be a sequence of exactly two Effect Scenarios 〈pCES, IES〉
Let PS be a set of Pairs.

function combo(pWL, iWL)
PS = ∅
for all (pCES ∈ pWL) do

Pair = ∅
for all (IES ∈ iWL) do

Pair = 〈pCES, IES〉
PS . add(Pair)

end for
end for
return PS

end function

APPENDIX A. ALGORITHMS 190

Algorithm A.3 Possible Worlds Function

Let KBR be a consistent background knowledge base and set of rules.
Let IES be an Immediate Effect Scenario.
Let iWL be an immediate World List of Immediate Effect Scenarios.
Let pCES be a previous Cumulative Effect Scenario.
Let pWL be a previous World List of previous Cumulative Effect Scenarios.
Let cCES be a current Cumulative Effect Scenario.
Let cWL be a current World List of current Cumulative Effect Scenarios.
Let Pair be a sequence of exactly two Effect Scenarios 〈pCES, IES〉.
Let PS be a set of Pairs.
Let pe be an Effect in a previous Cumulative Effect Scenario.
Let sub be an Effect Scenario such that sub ⊂ cCES.
Let es be an Effect Scenario such that es ∈ cWL and es ⊂ cCES and
es ∪KBR |= >.
Let subWorlds be a set of Effect Scenarios.
Let s be an Effect Scenario such that s ∈ subWorlds and s ⊂ cCES and
s ∪KBR |= >.
function pw(cCES, pCES)

cWL = ∅
for all (pe ∈ pCES) do

sub = cCES − pe
flag = False
for all (es ∈ cWL) do

if sub ⊆ es then
flag = True

end if
end for
if (flag = False) then

if (sub ∪KBR |= >) then
cWL . add(sub)

else
subWorlds = pw(sub)
for all (s ∈ subWorlds) do

cWL . add(s)
end for

end if
end if

end for
return cWL

end function

APPENDIX A. ALGORITHMS 191

Algorithm A.4 Pair-wise Accumulation Function

Let KBR be a consistent background knowledge base and set of rules.
Let IES be an Immediate Effect Scenario.
Let pCES be a previous Cumulative Effect Scenario.
Let cCES be a current Cumulative Effect Scenario.
Let cWL be a current World List of current Cumulative Effect Scenarios.
function acc(pCES, IES)

cWL = ∅
cCES = pCES ∪ IES with duplicate assertions removed
if (cCES ∪KBR |= >) then

cWL = {cCES}
else

cWL = pw(cCES, pCES)
end if
return cWL

end function

APPENDIX A. ALGORITHMS 192

Algorithm A.5 Pair-wise Accumulation Function Extended

Let KBR be a consistent background knowledge base and set of rules.
Let iWL be an Immediate World List.
Let IES be an Immediate Effect Scenario such that IES ∈ iWL.
Let pWL be a previous Cumulative World List
Let pAS be an Ancestor Sequence such that pAS ∈ pWL.
Let pCESn be a previous Cumulative Effect Scenario such that pCESn ∈ pAS
and pCESn is the last element in pAS.

Let pH be an Effect Scenario History of pCESn such that pH = pAS − pCESn

Let cWL be a current Cumulative World List.
Let cAS be an Ancestor Sequence such that cAS ∈ cWL or cAS ∈ PW .
Let cCESn be a previous Cumulative Effect Scenario such that cCESn ∈ cAS
and cCESn is the last element in cAS.

Let PW be a set of Cumulative Effect Scenarios or Possible Worlds or different
cCESn’s

function acc(pAS, IES)
cWL = ∅
cAS = pH
cCESn = pCESn ∪ IES with duplicate assertions removed
if (cCES ∪KBR |= >) then

cAS = add(cCESn)
cWL . add(cAS)

else
PW = pw(cCESn, pCESn)
for all (cCESn ∈ PW) do . cAS is equivalent to pH, a base to which

cCESn can be added.
Copy of cAS . add(cCESn)
cWL . add(Copy of cAS)

end for
end if
return cWL

end function

APPENDIX A. ALGORITHMS 193

Algorithm A.6 Accumulation of 〈T, T 〉, 〈P, T 〉, 〈XJ, T 〉, 〈PJ, T 〉, 〈IJ, T 〉
Let 〈T1, T2〉 be a pair of BPMN activities in sequence.
Let KBR be a consistent background knowledge base and set of rules.
Let iWL be the Immediate World List of T2.
Let IES be an Immediate Effect Scenario such that IES ∈ iWL.
Let pWL be the Cumulative World List of T1. Therefore pWL is the previous
Cumulative World List of T2

Let pAS be an Ancestor Sequence such that pAS ∈ pWL.
Let pCESn be a previous Cumulative Effect Scenario such that pCESn ∈ pAS
and pCESn is the last element in pAS.

Let cWL be a current Cumulative World List of T2.
Let PW be a set of Ancestor Sequences or Possible Worlds of T2
Let cAS be an Ancestor Sequence such that cAS ∈ cWL.
Let cCESn be a previous Cumulative Effect Scenario such that cCESn ∈ cAS
and cCESn is the last element in cAS.

Let Pair be a sequence 〈pAS, IES〉
Let PS be a set of Pairs.

function Accumulate Sequenced Activities(pWL, iWL)
cWL = ∅
PS = combo(pWL, iWL)
for all (Pair ∈ PS) do

PW = acc(pAS, IES)
for all (cAS ∈ PW) do

cWL . add(cAS)
end for

end for
return cWL

end function

APPENDIX A. ALGORITHMS 194

Algorithm A.7 Accumulation of 〈T, P 〉 or 〈T, I〉
Let 〈T1, P1〉 be a sequence of an activity and a parallel/inclusive gateway split.
Let pWL be the Cumulative World List of T1. Therefore pWL is the previous
Cumulative World List of P1

Let pAS be an Ancestor Sequence such that pAS ∈ pWL.
Let pCESn be a previous Cumulative Effect Scenario such that pCESn ∈ pAS
and pCESn is the last element in pAS.

Let cWL be a current Cumulative World List of P1.
Let cAS be an Ancestor Sequence such that cAS ∈ cWL.

function Accumulate 〈T, P 〉(pWL)
cWL = ∅
for all (pAS ∈ pWL) do

cAS = pAS . add(pCESn)
cWL . add(cAS)

end for
return cWL

end function

Algorithm A.8 Accumulation of 〈T,X〉, 〈XJ,X〉, 〈PJ,X〉, 〈IJ,X〉, 〈P,X〉
Let 〈T1, X1〉 be a sequence of an activity and an exclusive gateway split.
Let pWL be the Cumulative World List of T1. Therefore pWL is the previous
Cumulative World List of X1

Let pAS be an Ancestor Sequence such that pAS ∈ pWL.
Let cWL be a current Cumulative World List of X1.

function Accumulate 〈T,X〉(pWL)
cWL = ∅
for all (pAS ∈ pWL) do

cWL . add(pAS)
end for
return cWL

end function

APPENDIX A. ALGORITHMS 195

Algorithm A.9 Accumulation of 〈X,T 〉 or 〈I, T 〉
Let 〈X1, T1〉 be a sequence of an exclusive gateway split and an activity.
Let KBR be a consistent background knowledge base and set of rules.
Let CS be a Condition Scenario annotated to the sequence flow between X1 and
T1
Let iWL be the Immediate World List of T1.
Let IES be an Immediate Effect Scenario such that IES ∈ iWL.
Let xWL be the Cumulative World List of X1. Therefore xWL is the previous
Cumulative World List prior to being filtered with CS

Let xAS be an Ancestor Sequence such that xAS ∈ xWL.
Let xCESn be a previous Cumulative Effect Scenario such that xCESn ∈ xAS
and xCESn is the last element in xAS.

Let pWL be the previous Cumulative World List of T1 such that pWL ⊂ xWL

Let pAS be an Ancestor Sequence such that pAS ∈ pWL.
Let pCESn be a previous Cumulative Effect Scenario such that pCESn ∈ pAS
and pCESn is the last element in pAS.

Let cWL be a current Cumulative World List of T1.
Let PW be a set of Ancestor Sequences or Possible Worlds of T1
Let cAS be an Ancestor Sequence such that cAS ∈ cWL.
Let cCESn be a previous Cumulative Effect Scenario such that cCESn ∈ cAS
and cCESn is the last element in cAS.

Let Pair be a sequence 〈pAS, IES〉
Let PS be a set of Pairs.

function Accumulate 〈X,T 〉(xWL, iWL)
cWL = ∅
pWL = dec(xWL,CS)
PS = combo(pWL, iWL)
for all (Pair ∈ PS) do

PW = acc(pAS, IES)
for all (cAS ∈ PW) do

cWL . add(cAS) . Copy each cAS into cWL.
end for

end for
return cWL

end function

APPENDIX A. ALGORITHMS 196

Algorithm A.10 Accumulation of 〈X,X〉 or 〈I,X〉
Let 〈X1, X2〉 be a sequence of two exclusive gateway splits.
Let CS be a Condition Scenario annotated to the sequence flow between X1 and
X2
Let xWL be the Cumulative World List of X1. Therefore xWL is the previous
Cumulative World List prior to being filtered with CS

Let pWL be the previous Cumulative World List of T1 such that pWL ⊂ xWL

Let pAS be an Ancestor Sequence such that pAS ∈ pWL.
Let cWL be a current Cumulative World List of X2.

function Accumulate 〈X,X〉(xWL)
cWL = ∅
pWL = dec(xWL,CS)
for all (pAS ∈ pWL) do

cWL . add(pAS) . Copy each pAS into cWL.
end for
return cWL

end function

Algorithm A.11 Accumulation of 〈X,P 〉 or 〈X, I〉
Let 〈X1, P1〉 be a sequence of an exclusive gateway split and a parallel gateway
split.
Let CS be a Condition Scenario annotated to the sequence flow between
X1 and P1
Let xWL be the Cumulative World List of X1. Therefore xWL is the previous
Cumulative World List prior to being filtered with CS

Let pWL be the previous Cumulative World List of P1 such that pWL ⊂ xWL

Let pAS be an Ancestor Sequence such that pAS ∈ pWL.
Let pCESn be a previous Cumulative Effect Scenario such that pCESn ∈ pAS
and pCESn is the last element in pAS.

Let cWL be a current Cumulative World List of P1.
Let cAS be an Ancestor Sequence such that cAS ∈ cWL.

function Accumulate 〈X,P 〉(xWL)
cWL = ∅
pWL = dec(xWL,CS)
for all (pAS ∈ pWL) do

cAS = pAS . add(pCESn) . Duplicate pCESn in each pAS.
cWL . add(cAS) . Copy each cAS into cWL.

end for
return cWL

end function

APPENDIX A. ALGORITHMS 197

Algorithm A.12 Accumulation of 〈B,XJ〉
Let 〈B,XJ1〉 be a sequence of a set of incoming branches and an exclusive gateway
join.
Let BWL be a set of World Lists from the incoming branches to XJ1.
Let pWL be a previous Cumulative World List of XJ1 such that pWL ∈ BWL.
Let pAS be an Ancestor Sequence such that pAS ∈ pWL.
Let cWL be a current Cumulative World List of XJ1.

function Accumulate 〈B,XJ〉(BWL)
cWL = ∅
for all (pWL ∈ BWL) do

for all (pAS ∈ pWL) do
cWL . add(pAS)

end for
end for
return cWL

end function

APPENDIX A. ALGORITHMS 198

Algorithm A.13 Accumulation of 〈B,PJ〉, 〈B, IJ〉
Let 〈B,PJ1〉 be a sequence of a set of incoming branches and a parallel gateway
join.

Let KBR be a consistent background knowledge base and set of rules.
Let BWL be a set of World Lists from the incoming branches to PJ1.
Let pWL be a previous Cumulative World List of PJ1 such that pWL ∈ BWL.
Let SC be a set of Branch Clusters.
Let BSC be a set of SC
Let BG be a Branch Group
Let SBG be a set of Branch Groups
Let BC be a Branch Combination
Let SBC be a set of Branch Combinations
Let WL be a Cumulative World List.
Let cWL be a current Cumulative World List of P1.
function Accumulate 〈B,PJ〉(BWL)

cWL = ∅
for all (pWL ∈ BWL) do

SC = cluster(pWL) . (See AlgA.14)
BSC . add(SC)

end for
SBG = ∅
SBG = group(BSC) . (See AlgA.15)
SBC = ∅
for all (BG ∈ SBG) do

sbc = ∅
sbc = branchCombo(BG) . (See AlgA.17)
for all (BC ∈ sbc) do

SBC . add(BC)
end for

end for
for all (BC ∈ SBC) do

WL = ∅
WL = joinAcc(BC) . (See AlgA.16)
cWL = add(WL)

end for
return cWL

end function

APPENDIX A. ALGORITHMS 199

Algorithm A.14 Cluster Function

Let 〈B,PJ1〉 be a sequence of a set of incoming branches and a parallel gateway
join.
Let BWL be a set of World Lists from the incoming branches to PJ1.
Let pWL be a previous Cumulative World List of PJ1 such that pWL ∈ BWL.
Let pAS be an Ancestor Sequence such that pAS ∈ pWL.
Let pCESn be a previous Cumulative Effect Scenario such that pCESn ∈ pAS
and pCESn is the last element in pAS.

Let pASh be an Effect Scenario History such that pASh = pAS − pCESn.
Let C be a Cluster such that C ⊆ pWL
Let cAS be an Ancestor Sequence such that cAS ∈ C
Let cCESn be a previous Cumulative Effect Scenario such that cCESn ∈ cAS
and cCESn is the last element in cAS.

Let cASh be an Effect Scenario History such that cASh = cAS − cCESn.

Let SC be a set of Clusters such that ∀Ci ∈ SC(
n∑

i=1

|Ci| = |pWL|)

function cluster(pWL)
SC = ∅
while (|pWL| > 0) do

C = ∅
for all (pAS ∈ pWL) do

if (C = ∅) then
C . add(pAS)
pWL = pWL− pAS

else
if (pASh = cASh) then . Only needs to check one cAS in C

C . add(pAS)
pWL = pWL− pAS

end if
end if

end for
if (C 6= ∅) then

SC . add(C)
end if

end while
return SC

end function

APPENDIX A. ALGORITHMS 200

Algorithm A.15 Branch Group Function

Let B be a set of incoming branches to a gateway join.
Let |B| be the number of incoming branches to a gateway join.
Let C be a Cluster of Ancestor Sequences, with the same origin, from a single
branch.
Let AS be an Ancestor Sequence such that AS ∈ C.
Let CESn be a Cumulative Effect Scenario such that CESn ∈ AS and CESn is
the last element in AS.
Let ASh be an Effect Scenario History such that ASh = AS − CESn.
Let SC be a set of C.
Let tempSC be a temporary set of C.
Let BSC be a set of SC such that |BSC| = |B|.
Let tempBSC be a temporary set of SC.
Let G be a Branch Group such that |G| ≤ |B|.
Let BG be a set of G.

function branchGroup(BSC)
BG = ∅
tempBSC = copy(BSC)
while (|BSC| > 0) do

G = ∅
tempBSC = ∅
for all (SC ∈ BSC) do

if (G = ∅) then
G . add(C)
SC = SC − C

else
tempSC = ∅
matchFound = False
for all (C ∈ SC) do

if (C.ASh = G.C.ASh) then . Compare Histories
G . add(C)
matchFound = True

else
tempSC . add(C)

end if
end for
if (matchFound = True) then

SC = tempSC . SC with matched C removed.
end if

end if
if (SC 6= ∅) then

tempBSC = add(SC)
end if

end for
BSC = tempBSC
BG . add(G)

end while
return BG

end function

APPENDIX A. ALGORITHMS 201

Algorithm A.16 Join Accumulation Function

Let 〈B,PJ1〉 be a sequence of a set of incoming branches and a parallel gateway
join.
Let KBR be a consistent background knowledge base and set of rules.
Let SBCS be a set of Branch Combinations.
Let BC be a Branch Combination such that BC ∈ SBC.
Let AS be an Ancestor Sequence such that AS ∈ BC or AS ∈ cWL
Let cWL be a current Cumulative World List of PJ1.
Let CESn be a Cumulative Effect Scenario such that CESn ∈ AS and CESn is
the last element in AS.

Let CESn−1 be a Cumulative Effect Scenario such that CESn−1 is the second last
element in AS.

Let uSet be a set of Cumulative Effect Scenarios such that ∀CESn ∈ AS ∈
BC(CESn ∈ uSet).

Let uCES be a Cumulative Effect Scenario that is the union of all Effects in all
Cumulative Effect Scenarios in uSet.

function joinAcc(SBC)
for all (BC ∈ SBC) do

uSet = ∅
for all (AS ∈ BC) do

uSet = add(CESn)
end for
uCES = ∅
for all (CESn ∈ unionSet) do

for all (e ∈ CESn) do
uCES . add(e)

end for
end for
uCES = uCES − CESn−1 . CESn−1 will be identical for all AS ∈ BC
if (uCES ∪KBR |= ⊥) then

Alert User of erroneous BPMN design
else

cCES = acc(CESn−1, union)
AS = AS − CESn−1 − CESn

AS . add(cCES)
cWL . add(AS)

end if
end for
return cWL

end function

APPENDIX A. ALGORITHMS 202

Algorithm A.17 Branch Combinatorial Function

Let BG be a Branch Group.
Let C be a Cluster such that C ∈ BG.
Let temp be a temporary set of Branch Combinations
Let BC be a Branch Combination.
Let AS be an Ancestor Sequence such that AS ∈ C or AS ∈ BC
Let SBC be a set of Branch Combinations such that BC ∈ SBC.

function branchCombo(BG)
SBC = ∅
for all (C ∈ BG) do

if (SBC = ∅) then
for all (AS ∈ C) do

CreateNewBC
BC . add(AS)
SBC . add(BC)

end for
else

temp = ∅
for all (BC ∈ SBC) do

for all (AS ∈ C) do
BCcopy = copy(BC)
BCcopy . add(AS)
temp . add(BCcopy)

end for
end for
for all (BC ∈ temp) do

SBC . add(BC)
end for

end if
end for
return SBC

end function

Appendix B

Standards and Specifications

Business Process Model and Notation (BPMN)

http://www.omg.org/spec/BPMN/2.0.2/

http://www.omg.org/spec/BPMN/1.2/

Resource Description Framework (RDF)

https://www.w3.org/TR/REC-rdf-syntax/

Web Ontology Language (OWL)

https://www.w3.org/TR/owl-features/

Extensible Markup Language (XML)

https://www.w3.org/TR/2006/REC-xml11-20060816/

XML Metadata Interchange (XMI)

http://www.omg.org/spec/XMI/

Web Service Definition Language (WSDL)

https://www.w3.org/TR/wsdl

Semantic Annotations for Web Service Definition Language (SAWSDL)

https://www.w3.org/2002/ws/sawsdl/

Web Service Semantics (WSDL-S)

https://www.w3.org/Submission/WSDL-S/

Web Services Modelling Ontology (WSMO)

https://www.w3.org/Submission/WSMO/

203

http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/1.2/
https://www.w3.org/TR/REC-rdf-syntax/
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.omg.org/spec/XMI/
https://www.w3.org/TR/wsdl
https://www.w3.org/2002/ws/sawsdl/
https://www.w3.org/Submission/WSDL-S/
https://www.w3.org/Submission/WSMO/

Appendix C

Governing Organisations

Object Management Group (OMG)

http://www.omg.org/

World Wide Web Consortium (W3C)

https://www.w3.org/

Web Services Modelling Ontology (WSMO)

http://www.wsmo.org/

204

http://www.omg.org/
https://www.w3.org/
http://www.wsmo.org/

Appendix D

Applications

Eclipse

http://www.eclipse.org

Eclipse Galileo

http://www.eclipse.org/galileo/projects.php

Eclipse STP modeler

https://java.net/projects/bpmn-modeler/sources/source-code-repository/

content/org.eclipse.stp.bpmn.feature/trunk/feature.xml?rev=14

205

http://www.eclipse.org
http://www.eclipse.org/galileo/projects.php
https://java.net/projects/bpmn-modeler/sources/source-code-repository/content/org.eclipse.stp.bpmn.feature/trunk/feature.xml?rev=14
https://java.net/projects/bpmn-modeler/sources/source-code-repository/content/org.eclipse.stp.bpmn.feature/trunk/feature.xml?rev=14

	A Framework for Semantic Effect Annotation of Business Process Models
	Recommended Citation

