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ABSTRACT  

Large-scale torsional actuation occurs in twisted fibres and yarns as a result of volume 

change induced electrochemically, thermally, photonically, and other means. When 

formed into spring-like coils, the torsional actuation within the fibre or yarn generates 

powerful tensile actuation per muscle weight. For further development of these coil 

actuators and for the practical application of torsional actuators, it is important to 

standardise methods for characterising both the torsional stroke (rotation) and torque 

generated. This thesis introduces such a method for use in the free rotation of a one-end-

tethered fibre, when operating against an externally applied torque (isotonic) and during 

actuation against a return spring fibre (variable torque). The torsion mechanics approach 

has been verified and allows the prediction of torsional stroke under any external 

loading condition based on the fundamental characteristics of the actuator: free stroke 

and stiffness. The second thesis aim was to develop a better understanding of the link 

between fibre / yarn volume change and the induced torsional actuation. The developed 

theoretical analysis was based on experimental investigation of the effects of fibre 

diameter and inserted twist on the torsional stroke and torque measured when heating 

and cooling nylon 6 fibres over a certain temperature range. The results show that the 

torsional stroke depends only on the amount of twist inserted into the fibre and is 

independent of fibre diameter. The torque generated is larger in fibres with more 

inserted twist and with larger diameters. These results are successfully modelled using a 

single-helix approximation of the twisted fibre structure. Apart from nylon 6 fibre, 

thermally-induced torsional actuation of twisted fibres made from polyethylene and 

polypropylene were also studied experimentally and theoretically. The single-helix 

model accurately predicts the torsional stroke based on the measured fibre length and 

diameter change during heating. The degree of actuation was found to be greater in the 
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order of nylon 6, polyethylene and polypropylene, respectively, due to their volume 

change occurred respective to the applied temperature chance. Generated blocked 

torques was also correctly predicted by the single-helix model when combined with the 

measured fibre torsional stiffness. However, it has been found that these actuators 

require multiple heat/cool cycles (referred to as ‘training’ cycles) prior to obtaining a 

fully reversible actuation response. The effect of annealing conditions applied to twisted 

nylon 6 fibre was investigated and it is shown that annealing at near-melting 

temperature eliminates the need for the training cycles. Furthermore, the effect of an 

applied external torque on the torsional actuation is also investigated and torsional creep 

is shown to be affected by the temperature and load. Finally, to show the applicability of 

torsional actuators, a new concept for contractile artificial muscles is introduced in 

which the torsional rotation of a twisted nylon 6 fibre drives a twist to writhe conversion 

in a serially attached elastomeric spandex yarn. The core idea originated from the 

torsional muscle with a return spring fibre connected in series. A spandex yarn is 

attached to the twisted fibre and thermally induced torsional rotation of the twisted fibre 

caused formation of coils in the spandex yarn and caused an overall muscle contraction. 

Torsional rotation of twisted fibre and resultant spandex coil geometry are utilized to 

theoretically predict the amount of muscle contraction by means of a modified single-

helix theory. Once again a theoretical model was developed and a good agreement was 

found between measured and calculated results. The thesis concludes with suggestions 

for further work that include both theoretical and practical areas. 
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1.1 Introduction  

New discoveries in smart materials fuel the continual advancement of artificial muscles 

that mimic the performance of skeletal muscles. One major advantage of artificial 

muscles over conventional actuators such as electric motors and combustion engines is 

their potential for miniaturisation without the sacrifice of power generated per mass. 

Artificial muscles have been developed that can reversibly simulate muscle-like motions 

such as contraction, expansion, bending, and rotation [1-4]. Many different materials 

have been developed for artificial muscles, including shape memory alloys (SMAs) [5-

15], electroactive polymers (EAPs) [4, 16-21] and piezoelectric and dielectric materials 

[22-26]. The performance of artificial muscles can be evaluated against a number of 

parameters, including force and displacement generated and speed of response. In many 

of these areas, artificial muscle performance surpasses that of natural skeletal muscle, 

making them significantly attractive to use in applications where a muscle-like response 

is required. Commercial development and use of these materials are at the primary 

stage, and only a few types are commercially exposed. However, there is need for 

continued improvement in artificial muscles systems since applications areas can be 

expanded by reducing overall system mass and volume, reducing driving voltages, 

increasing actuation rates, cycle-life and power density [1, 27, 28].  

Like natural skeletal muscle, artificial muscles are characterised by a reciprocating or 

oscillatory type of motion that may be evident as tensile, bending, torsional or a 

combination of these processes. Figure 1 summarises the general actuation types of 

artificial muscles. Simple volume change materials can generate tensile actuation 

strokes [Figure 1.1(a)] and the coupling of an active volume change material to a 

flexible support structure converts the volume change into a bending displacement 

[Figure 1.1(b)]. Examples include bimetallic strips and similar laminate structures. 
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Helically twisted fibres or yarns can generate torsional rotation depending on their 

volume changes once activated [Figure 1.1(c)].  Additionally, twist induced coiled 

fibres can generate contractile motion when the degree of inserted twists changes 

[Figure 1.1(d)]. This thesis specifically concentrates on these ‘torsional’ artificial 

muscles and aims to better understand the mechanism of torsional actuation occurring in 

heat-activated twisted polymer fibres. 

 

Figure 1.1. Actuation capabilities of differently structured materials; (a) linear 

actuation, (b) bending motion, (c) torsional rotation, and (d) torsion induced linear 

actuation.  

 

Torsional actuation of a material can be defined as in ‘torsion mechanics’ which 

describes the angular rotation of one part of a slender beam when a torque is applied and 

where the rotation occurs around the beam long axis. Torsional actuators show such 



4 

 

rotations in fibres, wires, films and strips in certain materials when exposed to various 

stimuli. Most recent interest has considered the torsional actuation in highly twisted 

fibres and yarns mainly because of the large torsional rotations generated, but earlier 

work has examined torsional actuation in tubes and ribbons or strips. Figure 1.2 charts 

the recent evolution of torsional actuators which shows an increase of published work 

over the past decade. 

 

Figure 1.2. Development progression of torsional actuators constructed of different 

materials.  

 

Torsional actuation can be used to develop useful oscillatory rotations, but the most 

significant application area is in tensile actuation of coil structures that is driven by 

torsion in the coil fibre or wire. The well-established spring mechanics shows that 

stretching a coiled fibre that is tethered to prevent end rotation produces a change in the 

fibre’s twist as given by:  

∆𝑇 =
𝑁∆𝐿

𝑙2
          (1.1) 
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Where ∆𝑇 is the change in twist (turns/m) of the fibre of length l that forms a coil of N 

turns and when the coil length changes by ∆𝐿. Coils made from torsionally actuating 

fibres generate large coil tensile actuations. Tensile strokes as high as ~50% were 

reported for twisted and coiled nylon 6,6 fibres, delivering power densities over 5.3 

kW/kg with 2.48 kJ/kg contractile work capacity and greatly exceeding that produced 

by natural skeletal muscle (39 J/kg) [29, 30].    

Applications that exploit the rotating action of torsional actuators have employed 

tethering at either one end or both ends. The latter requires some asymmetry in the 

actuator to allow rotation and most typically this has been achieved by connecting the 

actuating material in series to a non-actuating material. The non-actuating material also 

operates as a ‘return spring’ mechanism that can improve the reversibility of the 

actuation when the actuating stimulus is removed. The mechanics of torsional actuation 

is first described in terms of reversible rotation for an actuating fibre tethered at one end 

only. A vertically hanging fibre of length 𝑙 that is clamped at the top end and free to 

rotate at the opposite end can be treated as a torsional shaft. The rotation of the free end 

with regard to the clamped end is 𝜙(𝑙)  =  𝜏 /S, where 𝜏 is the torque applied to the free 

end and S is the torsional rigidity of the fibre. The actuating fibre generates an internal 

torque causing a rotation per yarn length of ∆𝜃 at the free end. The rotation at any 

distance x from the tethered end to the free fibre end is:     

𝜙(x) = x∆𝜃          (1.2)  

Torsional rotation of a fibre clamped at both ends and subjected to constant tensile load 

is measured using a paddle attached to the fibre at a distance x from the starting point. 

Clamping at both ends does not allow any rotation at either end hence rotation is only 

possible if the fibre is actuated along only part of its length. Here, rotation of the 
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actuating segment of the fibre mechanically introduces rotation to the non-actuating 

segment, thereby generating an increasing opposing torque in the non-actuating segment 

as the torsional rotation proceeds. Therefore, tethering the fibre at both ends restricts 

rotation at all points along the fibre compared to the free rotation by producing this 

equal and opposite residual torques in the actuating and non-actuating segments. The 

net rotation, 𝜙(x) occurring at any point x along the actuating segment is given by:  

𝜙(x) = x∆𝜃 (
𝛽

𝛽+𝛾
)         (1.3) 

where 𝛽 is the ratio of the torsional modulus of the actuating and non-actuating 

segments; 𝛾 is the ratio of the actuating segment length to non-actuating segment 

length; and x varies from zero to l, where l is the length of the actuating segment.  

These principles of torsional mechanics provide a framework for the comparison of 

various reported torsional actuators. The inherent torsional actuation properties are 

described by ∆𝜃, the torsional stiffness and the rates of response. Where available these 

parameters are described below for different torsional actuators and related to the 

different functional mechanisms of actuation. These principles then provide guidance 

for the design of actuator systems and provide knowledge about their current and 

potential applications.   

1.2 Shape Memory Alloy (SMA) Torsional Actuators  

Shape memory alloys (SMAs) are a group of metallic materials that offers the ability to 

recover a former length or shape when heated. Although a wide range of alloys exhibits 

the shape memory effect, only those that can recover from a large amount of plastic 

strain are of practical interest. Among several industrially developed SMAs (such as 

Cu–Zn–Al, Cu–Al–Ni, and Ni–Ti), the most common SMA is Ni–Ti (Nitinol) alloy 
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used for its high ductility and fatigue and corrosion resistance [13, 31-33]. In addition, 

Nitinol offers design flexibility in the form of rods [34, 35], tubes [11], sheets [9, 36], 

strips [37], wires [6, 12, 38-40], and coils [41, 42].  

Torsional actuation has been demonstrated in both thin SMA strips and wires. Tobushi 

et al. [43] have conducted torsion, recovery torque and torsion fatigue tests with a TiNi 

SMA thin strip to evaluate the basic torsion characteristics based on thermal recovery. 

When the strip was twisted, torque and recovery torque was found to be increased in 

proportion to the angle of twist and temperature. A rotation of 90
o
 was achieved through 

shape recovery in a 40 mm long strip operated in the one-end-tethered mode. Another 

work was conducted with similar TiNi tape, however, used a return spring mechanism 

for achieving two-way actuation [44].   Here the twisted strip was connected to a 

superelastic alloy strip that acted as a return spring in the two-end-tethered 

configuration. A linear relationship was observed between torque and angle of twist per 

unit length of the strip under a constant loading process. The alternating torsion, the 

initial and reverse twisting were found to be symmetric with respect to an origin.    

Gabriel et al. [45] demonstrated a micro-scale rotary actuator using SMA wire. The 

TiNi wire was twisted to various amounts and clamped at both ends. Torsional actuation 

was induced by electrical Joule heating.  Both ends of the wire were connected to one 

terminal of a current source with a third terminal connected to the centre of the wire 

[Figure 1.3(a)]. The current sources (i1 and i2) connected to the rod are pulse-width 

modulated, and differentially varying the durations of the pulses causes differential 

heating of the two SMA halves and hence causes an angular deflection about the 

longitudinal axis at the centre of the SMA wire. In one experiment, a 100 mm long, 100 

µm diameter piece of SMA wire was twisted to 320 turns per metre and heated by 
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passing a current of 200 mA. A maximum torsional stroke of ~0.65° per mm was 

achieved [Figure 1.3(b)] [45].  

Similar torsional actuation mechanisms have recently been reported [8, 46] where a 

twisting SMA rod was embedded in an elastomeric sheet. These composite actuator 

systems used the SMA rod as a one-end-tethered torsional actuator and the elastomer 

sheet as a ‘return spring’ mechanism to enable two-way actuation [Figure 1.3(c)]. Joule 

heating of the SMA wire generated twisting of the elastomer sheet to ~1° per mm of 3 

mm thick sample [Figure 1.3(d)] [8]. Increasing actuator thicknesses to 5 and 7 mm 

where the width and length of the actuator were fixed at 15 and 70 mm reduced the 

torsional stroke, but the blocked torque remained unchanged.  

 

Figure 1.3. Micro-rotary actuator; (a) schematic illustration showing clamping yoke, 

torsionally strained SMA wire and electronics for differential heating, (b) angular 

deformation vs. pre-clamped twist (turns/cm) for a 10 mm long, 100 µm diameter piece 
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of SMA wire being heated by a 200 mA current [45]. Soft twisting actuator; (c) 

fabrication method of a twisting actuator by clamping the SMA wire with torsional 

strain, then positioning the SMA wire onto the mold, and finally, lose the upper mold 

and inject siloxane elastomer, (d) twisting angle and twisting moment depending on the 

elastomer layer thickness [8].  

 

Despite having a significant number of advantages, control challenges exist in SMA 

actuators due to their undesired nonlinear characteristics. Conventional solutions using 

digital encoders remain unfeasible at this scale. Therefore, miniature and low-weight 

sensors need to be integrated for accurate measurement of torsional actuation. 

Moreover, power consumption is another concern with SMA actuators, that becomes 

more significant as the number of actuators grows [47]. Another major limitation is 

having low (maximum of ~4.5° per mm) rotational angle which makes the SMA 

torsional actuators less feasible for a real-life application.    

1.3 Piezoelectric Torsional Actuators  

Piezoelectric and electrostrictive materials are a natural choice for precision 

displacement transducers or actuators. They utilise the strain induced piezoelectric 

effect by an electric field to provide static structural deformation [48-50]. A number of 

materials show piezoelectricity such as piezoelectric ceramics (lead zirocondate titanate, 

PZT), piezoelectric polymers (polyvinylidene fluoride, PVDF), and piezoelectric 

ceramic/polymer composites. Actuators made of piezoelectric ceramic materials are 

now being widely used for numerous applications, such as precision positioning, noise 

and vibration sensing and cancellation, ultrasonic motors, and controlling hydraulic 

valves.  
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Due to their increasing demand, piezoelectric torsional actuators have been studied for 

many years. Morita et al. [51] developed a torsional actuator from multilayered and 

assembled piezo-ceramic cylinder which was able to harvest shear strain directly. 

However, the manufacturing process of the actuator was fairly complex and seems 

challenging to be used in mini or micro-sized torsional actuators. Therefore, Kim et al. 

[52] presented the design, test and improvement of a piezoelectric torsional actuator 

using piezoceramics and a torsion bar which was comparatively easy to construct. The 

proposed cylindrical actuator directly invokes the shear mode of the piezoelectric 

material; hence, no complicated additional mechanism is needed [Figure 1.4(a)]. 

However, a small angular displacement of 0.18° was achieved from a 25 mm long tube. 

Glazounov et al. [53] described a similar kind of actuator where the conversion of shear 

piezoelectric strain of a tubular structure were converted into angular displacement. The 

tube structure actuator consisted of an even number of piezoelectric ceramic segments 

which were poled in such a way that the remanent polarization, Pr, is directed along the 

length of each segment. The joints between the segments act as electrodes to apply 

electric driving field, E1. The segments were electrically connected in parallel and 

provide coherent shear strain, S5, by the applied electric field in all the segments. Due to 

the cylindrical structure of the actuator, the shear strain was directly transformed into 

the angular displacement, β [Figure 1.4(b)]. In another work, Pan et al. reported a 

torsional actuator with helical electrodes [54] that holds a very simple structure [Figure 

1.4(c)]. A tubular PZT was wrapped with a pair of parallel electrodes on its surface to 

transform into a torsional actuator. When this helically structured assembly is put into 

use, usually one end is fixed to a steady object and another end is kept freely movable. 

A small torsional angle of about 1.7° was observed from a 40 mm long tube when the 

driving voltage changes from −500 to +500 V [Figure 1.4(d)]. This helical structure is 
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very suitable for fabricating tiny torsional actuators using piezoelectric hollow or solid 

fibres, which can be produced by several conventional methods, for example, 

microfabrication by co-extrusion and viscous-suspension-spinning process [51, 55].   

 

Figure 1.4. Tubular piezoelectric torsional actuator. (a) Piezoceramic based torsion bar 

(front and op view) [52]. (b) Piezoelectric ceramic segments are bonded together to 

form a tube structured torsional actuator [53]. (c) Proposed helical electrode actuator 

model for controlled performance and (d) static torsional rotation [54].      

 

Apart from tubular piezoelectric torsional actuators, Finio et al. [56] have modelled a 

twisting sheet based piezoelectric actuator to achieve controlled performance that can be 

applicable in the micro-robotic field. Twisting motion was obtained with a single 

piezoelectric layer by laminating antisymmetric top and bottom fibre reinforced 

composite (FRC) layers [Figure 1.5(a)]. An actuator of specific dimension can attain a 

rotation angle of θ𝑡𝑤𝑖𝑠𝑡 [Figure 1.5(b)] by applying a voltage across the piezoelectric 
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layer, using the conductive FRC layers as electrodes. A theoretical model was 

developed which successfully predicts torsional rotation, torque and energy density of 

piezoelectric twisting actuator; and optimises these values by accounting actuator 

geometry such as reinforced fibre orientation angle γ [56].  

 

 

Figure 1.5. Multilayer piezoelectric torsional actuator. (a) The fibre directions of the 

two FRC layers oriented at angle ± γ to the longitudinal axis of the actuator, and (b) a 3-

D and end-on view of a twisting actuator with twist angle 𝛉𝐭𝐰𝐢𝐬𝐭 [56].    

 

Despite of significant number of works conducted and published there still remain 

several restrictions of piezoelectric materials which limit their usability in modern day 

torsional actuator systems [57, 58]. For example, piezoelectric ceramics are stiff and 

brittle, and cannot be coated onto non-uniform surfaces, which restricts the design 

flexibility in the transducer. Similar to SMA torsional actuators they also produce very 

small material deformation compared to charge input; hence they are not suitable in 

many of those applicable fields where large torsional movement is required, 

specifically, in impact rotating motors and robotics [50, 59, 60].  
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1.4 Multilayer Torsional Ribbons  

The mechanical principles of residual stress or strain-induced bending of multilayer 

structures have been exploited to manufacture micro- and macroscale torsional 

actuators. For instance, net shape helically structures made of bimorph strip were 

successfully developed by Pearce et al. [61], Mohammadi et al. [62] and Bell et al. [63]. 

The helical ribbons were produced by inducing a bending action within the bimorph 

structure where the bending direction did not coincide with the long axis of the bimorph 

ribbon. The bending angle can be controlled by manipulating the anisotropic properties 

of one of the bimorph layers. For example, epitaxial deposition of InAs/GaAs using 

AlAs as a sacrificial layer dictated that the 〈100〉 direction is the preferred roll-up 

direction when the patterned bilayers were released by wet etching. Helical ribbons with 

different pitches and helix angles form depending on the misorientation angle of the 

ribbon’s geometric axes and the bending direction [(Figure 1.6(a)]. The angle between 

the patterned stripe and the closest 〈100〉 direction determines the pitch between turns of 

the resulting helical structures. This is illustrated by the images in Figure 1.6(b).  

 

Figure 1.6. (a) Basic process sequence and schematic top view: initial planar bilayer, 

patterned through conventional microfabrication technique. (b) Digital microscope 
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image with released helical structures. The different orientations of the initial pattern 

result in helical structures with different pitches [63]. 

 

In another work, Liu et al. [64] built a micro-scale torsional muscle actuated by the 

phase transition of VO2, with a simple bimorph design. The rotational actuator was 

constructed by releasing a long “V”-shaped Cr/VO2 bimorph structure where VO2 thin 

films were initially grown by pulsed laser deposition on Si substrates with a thick 

thermal oxide. The exposed area of VO2 was etched away by reactive ion etching (RIE). 

Then the “V”-shaped Cr/VO2 area was shielded by photoresist with the same pattern, 

and the exposed SiO2 and the underneath Si were deep-etched by RIE. Upon removal of 

the photoresist and under-etching of the SiO2 layer beneath the Cr/ VO2, “V”-shaped Cr/ 

VO2 bimorph ribbon were released [Figure 1.7(a)]. The final structure is a suspended 

bimorph helix consisting of two symmetric coils naturally connected to the two Cr 

electrode pads. Figure 1.7(b) shows a single coil being actuated by global heating with 

the specific rotation amplitude of ∼1000° per mm of coil length which is reduced by 

half from that of a dual coil [Figure 1.7(c)]. This system includes all the functions 

including torsional actuator, memristor, and proximity sensor, showing great 

possibilities in applications that require a high level of functionality integration in a tiny 

space. The torsional muscles simulate active neuromuscular systems with all-inorganic 

materials by sensing a distanced remote substance and responding by rotating to a 

different configuration [64].   
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Figure 1.7. Fabrication of VO2 based bimorph coils. (a) Schematic of the 

microfabrication process of a dual coil. (b) Rotation of a single coil removed from as-

fabricated dual coil operated at various temperatures in a heating/cooling cycle. (c) 

Temperature dependence of specific rotation and spring constant in the heating half-

cycle [64]. 

 

Overall, multilayer bimorphs strips were able to provide significant torsional 

deformation; however, since the spring constant varies with the change in strip 

geometry additional tuning is necessary by optimizing the dimensions of the bimorphs 

as well as the spring length. Additionally, they must be constrained from translational 

movement perpendicular to the axial direction which adds to system complexity.   

1.5 Electroactive Polymer (EAP) Torsional Actuators  

Electroactive Polymers (EAPs) are functional materials that are often used as actuators 

in adaptive structures, in particular when large deformations are required. In EAPs, 

electric energy is directly converted into mechanical work and some EAPs can create 

large strains of more than 10%. Typical EAPs are described briefly below followed by 

examples of their application to generate torsional actuation. 
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Dielectric elastomer EAPs have been widely studied in recent years for developing 

electroactive actuators due to their excellent overall performance, including large 

elongation, high energy density, good energy conversion efficiency and fast response [4, 

65]. Application of an electric field by means of compliant electrodes on both sides of 

an elastomer film results in its deformation according to Maxwell’s pressure and the 

nearly incompressible properties of the material. Considerable strains can be achieved in 

comparison to other common actuators, such as piezoelectric devices [25]. Dielectric 

elastomers are frequently being used as actuators in many technological fields such as 

mobile mini- and micro-robots, micro-pumps, micro air vehicles, disk drive, prosthetic 

devices, flat panel loudspeakers and optical fibre positioning [65-67].  

Conducting polymers are another class of EAPs which structurally feature a conjugated 

backbone and are electronically conductive. Upon oxidation or reduction of the 

polymer, conductivity is increased and leads to a charge imbalance which results in a 

flow of ions into the material so as to balance charge. Conducting polymer actuators are 

generally designed by immersing the polymer in a bulk liquid electrolyte environment 

[68, 69]. The ions or dopants enter the polymer from a surrounding electrolyte medium 

which typically remains in the form of gel, solid, or liquid. Contraction or expansion of 

the polymer occurs due to the mass transfer of ions between the polymer and the 

electrolyte. Typical volume changes are about 10%, and length changes are hence on 

the order of 3% [70, 71]. Nevertheless, the dimensional changes of a single piece of 

conductive polymer during redox can directly be exploited to produce better linear 

motion [28]. On the other hand, a conjugated-polymer layer bonded to a non-swelling 

layer [72] or another conjugated-polymer layer, but with different swelling [73, 74] 

results in significant bending motion. These configurations have been explored in 
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various biomedical [72], biological [75], microfluidic [76, 77] and robotic [78, 79] 

applications. 

1.5.1 Developed EAP Torsional Actuators  

A dielectric elastomer actuating motors that continuously rotate a shaft have been 

described by Anderson et al. [80, 81] and Heim et al. [82]. A variation described 

recently by Wache et al. describes oscillatory torsional motion of dielectric elastomer 

actuators [83]. The governing principle behind this new rotational motion is the creation 

of asymmetric electrodes, which induce a twisting of the actuator centre (Figure 1.8). 

The two different kinds of samples were investigated and their working principle is 

shown in Figure 1.9(a). In the first kind, the rigid external frames supporting a free 

standing, pre-stretched film of VHB acrylic elastomer have a square shape with an inner 

side where four rectangular electrodes located at the corners of the frame. Left scheme 

on Figure 1.9(a) shows this first configuration and illustrates how the application of a 

voltage causes a change in the configuration and produces a rotation of the cross placed 

in the middle of the film. In the second assembly [right scheme of Figure 1.9(a)], the 

elastomer film is enclosed by circular frames instead of the square ones, with a fixed 

inner diameter. The samples were fixed in a dark chamber with continuous illumination 

applied by light emitting diodes (LEDs). A rotation of the cross is observed depending 

on the intensity of the field applied, and among the tested configurations, a maximum 

rotation of 10° was achieved [Figure 1.9(b)].  
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Figure 1.8. Dielectric elastomer actuators, (a) photographs and sketches of their 

working principle based on asymmetry for both configurations, left: square, right: circle. 

Dark grey represents the initial electrode and light grey represents the 

activated/expanded electrode and (b) evolution of the output angle with voltage for a 

circular device with rods and electrode angles equal to 55°[83].  

 

A few studies have reported the development of rotary actuators based on conductive 

polymers. Hunter et al. applied a polyaniline-based linear actuator to rotate a crank for 

rotary motion in one direction. Fang et al. proposed a novel conjugated-polymer-based 

reversible oscillatory torsional actuator by embedding helically wound fibres into a 

conjugated-polymer tube (Figure 1.10) [84]. In this configuration, the fibres are 

confined and have little room for extension. Therefore, they impose directional 

constraints for swelling of the material matrix, which causes complex deformation 

resulted by the fibre-matrix orientation. The torsion, elongation, and dilation of the tube 

are predicted by developing and utilising a nonlinear elasticity-based theoretical model. 

A prototype for the proposed torsional actuator was constructed by helically embedding 

platinum fibres into a polypyrrole (PPy) hollow tube during the PPy deposition. 

Application of a positive charge between the fibre-directed PPy tube and an electrolyte 

causes the movement of anions in the electrolyte toward the PPy/electrolyte interface. 
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This results in a double layer of charges on the interface and then, diffusion of highly 

concentrated ions in the double layer into the PPy [Figure 1.9(a)]. Application of a 

negative voltage causes the PPy to be reduced, and the previously absorbed ions will be 

returned back to the electrolyte. Mass transfer of ions in and out of the polymer causes 

swelling and deswelling of the tube, which subsequently leads to result in torsion 

[Figure 1.9(b)]. The measured maximum peak-to-peak torsion was about ~0.01° per mm 

of actuator length [Figure 1.9(c)]. 

 

Figure 1.9. Conjugated polymer torsional actuator; (a) Illustration of double-layer 

charging and diffusion for a polymer film in contact with an electrolyte, (b) Illustration 

of the actuator configuration in original and deformed configuration and (c) Torsion 

result under a 0.005-Hz sinusoidal voltage input [84].  

 

1.5.2 Limitations of EAP Actuators 

Despite having several advantages, EAPs have a number of issues yet to be addressed to 

use them as practical actuator systems [85]. In past two decades, some dielectric 

elastomer actuators have demonstrated extensions up to three times their initial lengths, 
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satisfactory efficiencies and specific energy densities. However, in most experiments 

actuator life was a serious concern. In some applications dielectric elastomers still lack 

several important properties such as low voltage operation [86]. Use of conductive 

polymers as actuators require significantly less voltage; however, the response time of 

these actuators is high, and a low actuation force is generated which limits the practical 

applications [87, 88]. Both the EAPs torsional actuators described here showed very 

small torsional rotation when operated as oscillatory torsional actuators.  

1.6 Fluidic Torsional Actuators 

Fluidic artificial muscles, also familiar as McKibben muscles, have been extensively 

studied in both analytical and experimental aspects [89-92]. Fluidic artificial muscles 

are constructed in a very simple way and consist of internal elastomer bladder 

surrounded by a helically braided outer sleeve. Commonly, one end of the muscle is 

connected to a fluid port through which pressurised working fluid flow in and out of the 

muscle, while the other end of the muscle is closed by a plug, crimp or another blocking 

device. These muscles work by using pressurised fluid to expand the internal elastic 

tube such that the outer braided sleeve of inextensible fibres causes linear contraction of 

the whole muscle unit.  

Pneumatic or air filled muscle is the most common type of fluidic artificial muscle and 

these systems have demonstrated many of the distinctive features found in a real muscle 

[89, 93-96]. Some researchers [91, 97-99] have also investigated hydraulic artificial 

muscles and shown that an antagonistic pair of the hydraulic actuator is able to deliver 

force to weight ratios more than six times higher than a traditional double-acting 

hydraulic cylinder while attaining similar tensile stroke and maximum force output [91]. 

These attractive features make fluidic artificial muscles a suitable actuation choice for 
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bioinspired robot designs [97, 100-102], powered prosthetics [103-106], or robots 

designed to interact closely with humans [96, 99, 107].   

While axial movement of fluidic artificial muscles has been studied and developed 

fairly comprehensively, much less research has been conducted to construct simple 

fluidic actuators that can provide rotary actuation [108, 109]. In one example, Sanan et 

al. [108] have assembled two differently shaped structures [two shapes S1 and S2 in 

Figure 1.10(a)] into a single configuration (having shape S) along a shared geometric 

centre to make pneumatic torsional actuators. The two helices in Figure 1.10(a) are 

joined along the central axis of the two shapes. The final merged structure is shown in 

Figure 1.10(b). The fabric used to make the muscle was inextensible; therefore, the 

common central axis length remained constant and accordingly the length of the whole 

actuator was held constant during the movement. Consequently, the motion between the 

ends of the torsion shape actuator moves toward pure rotating motion with negligible 

axial movement. One of the prototypes developed a torsional rotation of nearly 0.4° per 

mm of actuator length.  

Despite having novelty in this particular work, an issue was overlooked is the structural 

role of the actuator if it is to be used in a soft-bodied robot. In particular, the load 

bearing central axis structure needs to be sufficiently stiff to linear and bending forces 

but compliant to torsional loads, hence, the design requires a careful investigation and 

selection of the central axis material.  
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Figure 1.10. Pneumatic torsional actuator; (a) two oppositely oriented helix that make 

up the rotary shape actuator (each leaf of the helices is wrapped around the common 

central axis of the actuator of length l, as helix with a pitch circle radius r, and one leaf 

of the right helix has been shown transparent for illustrative purposes) and (b) physical 

realization of the torsion shape actuator (the relative arrangement of the two helices can 

be seen as labelled in the two pictures) [108].   

 

In another work, Connolly et al. [109] demonstrated that a wide range of motions, 

including linear extension, radial expansion, and rotational motion can be achieved from 

fibre-reinforced soft fluidic artificial muscles by simply controlling the fibre angle 

[109]. To illustrate the effect of fibre angles (ranged from 0° to 90°) on the response of 

the actuators, a numerical study was conducted by using finite element analysis. To 

verify the finite element results, numerical predictions and experimental data were 

compared for two actuators having fibre angles of -3° and 70° (Figure 1.11). 

Understating the effect of tailoring the fibre angle provides a quantitative prediction of 

motion of the soft actuators and exploration of the design space for this class of 

actuators. A small magnitude of torsional rotation of ~1.75° per mm of actuator length 

was reported in this work. Another limitation includes the requirement of the fluidic 
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pump to the actuator set-up which makes it unsuitable for macro- or microscopic 

operations.   

 

Figure 1.11.  Fluidic actuators with one set of fibres. (a) finite element results showing 

extension (λz), expansion (b/B), and twist per unit length (τ) as a function of the applied 

pressure for a range of different fibre angles. The positive fibre orientation was 

considered in the clockwise direction which induces twist in the counter-clockwise 

direction (negative twist), (b) photographs from experimental characterization (left) and 

snapshots from finite element simulation (right) for an actuator with fibre angle α = -3° 

(both front views and bottom views are shown), (c) photographs from experimental 

characterization (left) and snapshots from finite element simulation (right) for an 



24 

 

actuator with fibre angle α = 70° and (d) Comparison between finite element 

simulations and experiments for two actuators with fibre angle α = - 3° and α = 70° 

[109].  

1.7 Twisted Nano-Yarn Torsional Actuators 

High speed and large stroke torsional actuation have recently been realised by using 

twisted nano-yarn based actuators. Researchers have discovered electrochemical 

torsional actuation of the multi-walled carbon nanotube yarn [110] and then further 

functional improvements were achieved by utilising several actuation methods [111-

117]. Metallic nano-wire [118] and graphene oxide nano-yarn [119] was also used to 

fabricate high strength torsional actuator with fast actuation. The actuation mechanism 

was described in terms of volumetric changes of yarns once activated.  

1.7.1 Torsional Carbon Nanotube (CNT) Artificial Muscles  

Linear and bending modes of CNT actuators are well known by using different stimuli 

such as electricity, fuels, light, or heat [120]. Electrostatic attraction and repulsion 

between two nanotubes have been used for cantilever-based nano-tweezers [121] and 

mechanically functional switches and logic elements [122, 123]. On the macroscale, 

electrically powered [124-129] and fuel-powered [130, 131] electrochemical CNT 

actuators provide a small expansion stroke and over a hundred times higher stress 

generation than natural muscle. CNTs also have been used as additives that act in 

conjunction with organic polymers to provide photo-responsive [132], shape memory 

[133, 134], electrochemical [135] and electromechanical [136, 137] actuators. 

Fennimore et al. demonstrated electromechanically powered torsional and rotational 

motors by using a single multi-walled nanotube as a low-friction shaft with attached 

magnetic rotor where repeated rotation of 360° was achieved without having any wear 

or fatigue [138].  
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Foroughi et al. were first to demonstrate an electrolyte-filled twist-spun multi-walled 

CNT yarn acted as a torsional artificial muscle. They used a conventional three-

electrode electrochemical set-up, and produce a reversible 250° rotation per mm  of 

sample length and 590 revolutions per minute [110]. The muscles operated by 

electrochemical double-layer charge injection, as demonstrated in carbon nanotube 

supercapacitors based reports [111, 139-142]. Immersion of a twisted multi-walled CNT 

yarn and a counter electrode in an electrolyte and applying a voltage between these 

electrodes causes the yarn to rotate in the untwist direction. To improve reversibility, 

the yarn was tethered at both ends to prohibit end rotation and a paddle was attached 

near yarn centre with only one-half of the yarn immersed in the electrolyte and used as a 

torsional muscle. Despite having a smaller torsional rotation than the same length of 

CNT yarn that was tethered at only one end, the reversibility of the actuation was 

improved because the non-actuating section of the yarn functioned as a torsional return 

spring to rotate the paddle to its initial angle (Figure 1.12). 

 

Figure 1.12. Torsional CNT artificial muscle; (a) Scanning electron micrograph of a 

carbon nanotube yarn that was symmetrically twist-spun (twist angle, α) from a multi-
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walled CNT forest, (b) Illustration of electrochemical cell configurations used for 

characterizing torsional actuation or the combination of torsional and tensile actuation, 

where the Ag/Ag
+
 reference electrode, actuating yarn electrode, and Pt mesh counter-

electrode are shown from left to right, (c) both end tethered yarn configuration with 

actuating yarn length, LA and non-actuating yarn length, LN, and (d) ) Torsional rotation 

(black) and axial length actuation (blue) versus time for a yarn (length = 120 mm, 

diameter = 12 mm, α  = 40°) [110].  

 

Electrochemical actuation of CNT yarn relies on the use of electrolytes; hence, the 

actuating system is restricted to a wet environment or the use of gel-based electrolytes. 

Electrolytes also put a narrow boundary on operating temperature, application of 

voltage, and rate of actuation. Furthermore, special packaging is needed which adds 

extra weight and volume, and reduces the work density of the actuator system. To 

overcome these limitations, Lima et al. have designed guest-filled, electrolyte-free, 

twisted CNT yarn muscles that provide high speed torsional and tensile stroke, in which 

a muscle spins a rotor at an average 11,500 revolutions per minute or provides ~3% 

tensile actuation at 1200 cycles per minute [117]. Electrically, chemically, or 

photonically induced volume change of guest material generates torsional rotation and 

tensile contraction of the CNT yarn host. However, these wax-infiltrated, electro-

thermally powered artificial muscles are torsionally underdamped, thereby experiencing 

dynamic oscillations that complicate positional control.  

Chun et al. developed an ultrafast hybrid CNT yarn muscle that produced a torsional 

rotation of 9,800 revolutions per minute without noticeable oscillation by using a similar 

mechanism in spider silk to reduce uncontrolled spinning of the spider at the end of 

dragline silk [112]. A viscoelastic material, containing paraffin wax and polystyrene-

poly(ethylene–butylene)-polystyrene copolymer (SEBS), was used as the yarn guest 
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material to produce an overdamped dynamic oscillating response. The thermally-

induced volume increase of the wax/polymer composite within the CNT yarn causes the 

yarn length to contract and the yarn to partially untwist to generate torsional rotation.  

In another article, Lee at al. demonstrated electrochemically induced, all-solid-state 

torsional and tensile artificial yarn muscles using a spinnable CNT sheet and received 

large torsional rotation (53°/mm) without using the relatively complicated three-

electrode electrochemical system, a liquid electrolyte, or heavy packaging [116]. Anode 

and cathode yarns were fabricated by infiltrating the solid electrolyte (poly(vinylidene 

fluoride-co-hexa- fluoropropylene), PVdF-co-HFP, containing tetraethylammonium 

tetrafluoroborate (TEABF4) with propylene carbonate (PC) to obtain an electrical 

insulation electrolyte layer on the yarn surface. These two yarns were then plied 

together using an opposite twist direction of yarn plying than for the initially introduced 

yarn twist. Penetration of ions and solvating species from exterior electrolytes into the 

anode and cathode yarns causes the increase in hybrid yarn volume and produces yarn 

untwist and yarn contraction. Torsional actuation study of CNT yarn has also been 

conducted by utilising environmental temperature variation [143]. In the example 

studied, twisted CNT yarn was employed as the backbone for torsional actuation driven 

by the volume change of infiltrated a phase change material (PCM). When the specific 

volume of CNT yarn varies drastically at the phase-transition temperature, torsional 

actuation has occurred. A maximum of 8°/mm rotation was observed when the 

temperature varies from 27 to 40°C.  

More recently, solvent or vapour driven torsional multi-walled CNT yarn muscles have 

been reported by a few researchers. Chen et al. [144] showed that a compact coil of 

multiple twisted multi-walled CNT yarns consisting of nanoscale gaps between the 
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nanotubes and micrometre-scale gaps among the twisted fibres contribute to the rapid 

response and large actuation stroke of the actuating fibres. Upon exposure to ethanol 

vapour, a coil of 20 multi-walled CNT yarn reversibly rotated a 570 times heavier 

paddle by 380° per mm of muscle length with a maximum rotational speed of ~6361 

rpm (Figure 1.13). A maximum tensile contraction of ~10% was also generated during 

the rotation.  

 

Figure 1.13. Actuation performances of helical coiled multi-walled CNT yarn; (a) 

Schematic illustration of the contractive and rotary actuators. A copper paddle with a 

mass of 75 mg was fixed at the end of the sample. Contractive (Fc) and rotary (Fr) 

forces were generated simultaneously on coming into contact with a solvent. To 

measure the contractive force, the two ends were clamped. (b) Rotary speeds generated 

by the coiled sample upon the absorption of ethanol. The coiled sample was made from 

20 twisted yarns [144].  

 

In another work, Di et al. [113] demonstrated an incandescent tension annealing process 

(ITAP) for stabilising both twisted and coiled multi-walled CNT yarns with respect to 

unwanted irreversible untwist, thereby avoiding the need to tether torsional artificial 

muscles, and increasing the mechanical loads that can be driven by these muscles. This 

ITAP involves thermally annealing twisted CNT yarns at a temperature of about 

2000°C while these yarns are under tensile loads (Figure 1.14). When exposed to 
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acetone vapour, a 24-mm-long, 100-μm-thick coiled ITAP yarn reversibly rotated a 

6100 times heavier rotor by 630° (corresponding to a rotation of 26° per mm of muscle 

length). The maximum rotational speed of the rotor was 44 rpm, and the muscle lifted a 

weight corresponding to a 2.9 MPa load by about 0.7% of the yarn length [Figure 

1.15(d)].   

 

 

Figure 1.14. Acetone vapour induced torsional CNT artificial muscle; (a) Setup for 

applying ITAP to multi-walled CNT yarns. SEM images of the effects of an applied 

freely rotating load on b) a nontethered, non-ITAP coiled yarn and c) a nontethered, 

coiled ITAP yarn, showing that the ITAP stabilises the coiled yarn with respect to 

untwisting. a) Weight rotation in degrees (normalised to yarn length) versus time for a 

one-end-tethered, coiled ITAP yarn (inset, with 24 mm length and 100 μm yarn 

diameter) when driven by acetone vapour absorption/desorption [113].  

 

Multi-walled CNT twisted yarns have been the most extensively studied for torsional 

actuator showing high performance in terms of large torsional strokes and high speed 
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actuation. A summary of works on torsional CNT yarn artificial muscles is provided in 

Table 1.1.  

Table 1.1. Torsional CNT yarn artificial muscles and corresponding performances.  

Materials  Tethering 

system  

Actuation 

principle 

Maximum reversible 

torsional rotation  

Tensile 

contracti

on (%) Stroke 

(degree/

mm) 

(Speed) 

rpm 

Multi-walled 

CNT yarn [110] 

Two-end Electrochemical 

double-layer 

charge injection 

~250 ~590 ~1 

Host: Multi-

walled CNT yarn 

Guest: Paraffin 

wax [117] 

Two-end Thermal, 

electro-thermal, 

or photo-thermal 

~180 ~11,500 ~3 

Host: Multi-

walled CNT yarn 

Guest: Paraffin 

wax + SEBS 

copolymer [112] 

Two-end Electro-thermal  ~85 ~9,800 Not 

reported 

Electrolyte 

(PVdF-co-HFP + 

TEABF4 + PC) 

infiltrated twisted 

CNT yarn [116] 

One-end Electrochemical  ~53 Not 

reported  

~0.7 

PCM (icosane) 

infiltrated CNT 

yarn [143] 

Two-end Thermal  ~8 ~0.1  Not 

reported  

Incandescent 

tension annealed 

coiled multi-

walled CNT yarn 

[113] 

One-end Chemical 

(acetone vapour) 

~26 ~44 0.7 

Multi-walled 

CNT fibre [114] 

Two-end Electromechanic

al 

Not 

reported 

~2700 ~2 

Hierarchically 

made multi-

walled CNT yarn 

coil [144] 

One-end Chemical 

(ethanol vapour) 

~380 ~6361 ~10 
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Compared with other torsionally actuating materials, CNT yarn demonstrate several 

advantages such as actuation under low voltages, ultra-high speed response, and 

millions of cycle-life which mainly originates from unique electronic properties, large 

surface area, and excellent chemical and thermal stability of CNT yarns. Torsional CNT 

artificial muscles have potential application in microfluidic mixing [110], torsional 

motors [117], torsional pumps [112], and micro-electromechanical systems [110, 116, 

145].  

1.7.2 Metallic Nanowire Torsional Actuator 

CNT yarns have been promising as torsional or tensile actuators; however, they usually 

exhibit low mechanical strength and electrical or thermal conductivity. Mirvakili et al. 

[118] demonstrated a torsional actuator based on twisted metal nanowires yarns that are 

strong, pliable, and more conductive than CNT yarns. Niobium nanowire fibres were 

extracted by etching a copper-niobium nano-composite material made by severe plastic 

deformation [118, 146]. When impregnated with paraffin wax, the niobium nanowire 

yarns produce fast rotational actuation as the wax is heated. Similar to wax impregnated 

CNT yarns, heated and expanded wax untwists the yarn, which then re-twists upon 

cooling. Normalised to yarn length, 12° per mm of torsional rotation was achieved 

along with twist rates in excess of 1800 revolutions per minute when 23 times larger 

paddle is used for measurement (Figure 1.15). The tensile modulus of 19 ± 5 GPa was 

measured for the niobium nanowire yarns, which is very similar to that of multi-walled 

CNTs. 
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Figure 1.15. Niobium nanowire yarn torsional actuator. (a) As spun yarn with twist 

angle α of 13°. (b) Torsional actuation configuration, with the right half of the yarn 

infiltrated with wax and melting induced by current pulses. The central paddle is used to 

determine rotation. (c) The angle of rotation versus time upon pulse voltage actuation of 

the niobium nanowire yarn [118]. 

 

Niobium nano-yarns are promising candidates for being used in small, tightly wound 

magnetic coils and for flexible metal contacts, where conventional commercial wires are 

not adequately acquiescent. In thermally induced torsional actuation, the higher 

conductivity of niobium nanowire yarns allows heating to be attained with lower 

voltages than are required in CNT yarns, making them of possible importance in 

portable devices such as implantable drug delivery systems, guided catheters, and 

miniature valves [118].  

1.7.3 Graphene-Fibre Torsional Actuator   

The significant potential of graphene fibres stems from the characteristic they combine 

the high mechanical strength and flexibility of fibres with the extraordinary electronic 

and thermal properties of graphene [147-149]. These fibres with in-line oriented 

graphene sheets offer the great capability to develop unconventional fibre-based 

devices. Recently, a spinning technique for constructing graphene fibres directly from 

graphene oxide has stimulated research in this field, as this delivers a large-scale and 
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inexpensive route to fibres with a variety of different functionalities that could be useful 

in textiles for wearable electronics [150, 151]. Expanding the scope of graphene fibres 

and exploring the unconventional potential of graphene fibres, Cheng et al. reassembled 

the intrinsic configuration of graphenes within the fibre body and achieved a novel 

moisture-driven rotational motor by twisting the as-spun graphene oxide fibre hydrogel 

[119, 152]. This twisted configuration with rearranged graphene sheets within the fibres 

offers excellent performance as a reversible rotary actuator showing a rotary speed of up 

to ~5190 revolutions per minute under relative humidity fluctuation (Figure 1.16).  

 

Figure 1.16. Torsional twisted graphene fibre actuator; (a) Schematic rotation of a 

twisted graphene oxide fibre with a paddle at the low (left) and high (right) humidity. 

When the moisture increases (right), the twisted graphene oxide fibre can drive the 

paddle rotating fast; then the paddle can reverse to the initial state when the moisture 

decreases (left), (b) SEM images of the initially twisted graphene oxide fibre at relative 

humidity = 20% (1), after exposure to high humidity of 85% (2), and the final state of 

twisted graphene oxide fibre as the humidity goes back to the initial relative humidity = 
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20% (3); scale bar: 100 μm, and (c) The durability test of twisted graphene oxide fibre 

(>5000 turns per meter) undergoing repeated relative humidity changes, showing 

forward (the environment humidity changed from relative humidity = 20% to 85%) and 

backward (relative humidity = 85% to 20%) rotation speed versus cycle numbers [119].   

 

Torsional rotation of ~588° per mm was observed by using a 200 mm long twisted 

sample. Although the amount of measured rotation is more than twice CNT yarn 

torsional actuator (~250° per mm) [110], this one-end-tethered system may have limited 

practical usability due to the uncontrolled mobility to any direction. 

1.8 Polymer Fibre/Yarn Based Torsional Muscle   

Stimuli-responsive fibres and yarns are of great interest in the field of artificial muscles. 

These fibres can experience a volume and/or shape change when externally stimulated 

resulting in a tensile expansion/contraction [153-158], bending [158-160] or torsional 

rotation [88, 155, 158, 161]. Potential applications for these fibres are many and include 

microfluidic mixing, micro-scale robots and massage-sleeve exoskeletons for 

relaxation-clothing.  

1.8.1 Twisted Fibre Muscles  

Recently, Haines et al. demonstrated that low-cost, high-strength oriented polymer 

fibres can be transformed into tensile and torsional muscles by inserting twist in the 

fibre [155]. As reported, commercially produced fibres including polyethylene and 

nylon fishing line, and polyester sewing thread were used as the precursors. As with 

CNT yarn muscles [110, 117], the twist was inserted into these polymer fibres to make 

them chiral, which enables them to function as torsional muscles. Tensile stroke was 

greatly amplified by inserting such a large amount of twist that some twist converted to 

fibre coiling [162, 163]. A thermally-induced tensile contraction of the overtwisted coils 
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was found to surpass the maximum in vivo stroke of human skeletal muscles (~20%) [1] 

[Figure 1.17(a)]. A similar kind of actuation was also obtained by introducing heat to 

the fibres by using different ways such as Joule heating by means of electrically 

conductive filaments [154] [164] or coatings [155, 157], air heating [153, 155, 165], 

photo-thermal stimulation [155] or electrochemical stimulation [155].  

There are several advantages of using heat-activated polymer fibre muscles compared to 

other stimulus. For example, electrochemically charged fibres of conducting polymers 

can generate large strokes but have low cyclability and need a multi-electrode 

electrochemical system, which adds to system weight and cost [28, 72]. Electric field 

induced electrostrictive polymer rubbers [25, 166] are attractive because of their large 

strokes and high performances but is difficult to use as an artificial muscle because of 

the required high electric fields. In contrast, thermally-induced twisted polymer fibres or 

yarns are able to deliver large amounts of mechanical work as torsional actuators with 

high cyclability and cycle rate. These single piece systems do not require any special 

assembly and are suitable for manufacturing light weight and low cost actuator. 

Specifically, a constant torque torsional actuation experiment was conducted by using 

an 0.86 mm diameter, 55 mm long, twisted nylon 6 fibre. Under a temperature 

fluctuation from 20° to 160°C, this torsional actuator rotated a 2.8 mm diameter axle by 

286° and lifted a 1 kg weight by 7 mm. The mechanical work done by the actuator was 

calculated to be 2.1 kJ/kg [Figure 1.17(b)] based on the mass of the nylon fiber and this 

work ouput is similar to the 2.48 kJ/kg generated during tensile actuation of a coiled 

nylon 6,6 fibre. It was found that thermal contraction of coiled polymer fibre muscles 

principally arises from thermally-induced fibre untwist, which generates a torque that 

decreases inter-coil separation. This thermally-induced fibre untwist (∆𝑇, measured in 

turns per initial fibre length) produces the torsional actuation of twisted fibres and 
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amplifies the length change of coiled fibres by changing coil bias angle from 𝛼𝑐 to 𝛼𝑐
′ , 

as described by the spring mechanics equation [167],  

∆𝑻 =
𝐬𝐢𝐧(𝜶𝒄

′ )𝐜𝐨𝐬 (𝜶𝒄
′ )

𝝅𝑫′ −
𝐬𝐢𝐧(𝜶𝒄)𝐜𝐨𝐬 (𝜶𝒄)

𝝅𝑫
       (1.4) 

Here, 𝐷 and 𝐷′ are the diameters of coils, taken through the fibre centreline before and 

after heating, and the coil bias angle 𝛼𝑐 is the angle between the fibre and the coil’s 

cross-section. For a coil having 𝑁 turns and length 𝐿 fabricated from a precursor fibre of 

length 𝑙: sin(𝛼𝑐) = 𝐿 𝑙⁄  and cos(𝛼𝑐) = 𝜋𝑁𝐷 𝑙⁄ . The expression suggest that when the 

change in fibre length 𝑙 is negligible, stretching a coiled fibre which is tethered to 

prevent end rotation produces a change in the fibre twist of,  

∆𝑻 =
𝑵∆𝑳

𝒍𝟐           (1.5) 

This expression predicts that the large contractions and expansions in coil length in 

twisted and coiled polymer fibres originate from fibre untwist during heating. This 

twist-driven coil contraction/expansion mechanism is best understood by using 

mandrel-made coils. Heating of a homochiral coiled fibre (twisted and coiled in the 

same direction), delivers an untwisting torque that pulls coils together, providing work 

by linear contraction. On the contrary, the length of a heterochiral muscle (twisted and 

coiled in the opposite direction) increases due to the fibre untwist during heating that 

pushes the coils apart [Figure 1.17(c)].  However, a comprehensive study on muscle 

stroke and specific work capacity based on fibre diameter and muscle fabrication 

parameters is yet to be performed which is critically important for the diverse family of 

targeted applications including humanoid robotics, powered prosthetic limbs, 

microfluidic actuators, giant-force-capacity exoskeletons, and smart textiles [154-156, 

164, 168, 169].  



37 

 

 

Figure 1.17. Actuation of oriented polymer fibre; (a) Comparison of the tensile 

actuation of braided polyethylene, nylon 6 monofilament, nylon 6,6 monofilament, and 

silver-coated nylon 6,6 multifilament fibres before twisting (inset) and after coiling by 

twist insertion, (b) the optically measured fibre bias angle induced by an applied torque 

and the torsional stroke and work during thermal actuation (between 20° and 160°C) as 

a function of this applied torque for a non-coiled torsional muscle made from 860 mm 

diameter nylon 6 fishing line (inset photograph was used to optically determine the fibre 

bias angle by measuring the displacement of a black line from its initial orientation 

parallel to the fibre axis) and (c) schematic illustration of the mechanism by which 

torsional fibre actuation drives large-stroke tensile actuation for heterochiral (left) and 

homochiral (right) coiled fibres [155]. 

 

1.8.2 Characterization Method of Torsional Fibre/Yarn Muscles  

Real-world application of torsional artificial muscles necessitates an accurate and 

continuous characterization method that allows the torsional stroke and torque to be 

calculated for any externally applied environmental and mechanical condition. Previous 
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work has focused mainly on measuring torsional stroke, for example by securing the 

sample at one end and measuring the rotation of the free end. Occasionally a return 

spring mechanism has been used to improve reversibility of torsional actuation. Haines 

et al. demonstrated a test apparatus for measuring isotonic torsional stroke and the work 

output from a twisted polymer fibre [155]. Torque was applied to a nylon 6 

monofilament fibre by attachment to a constant diameter axle (supported by two metal 

bearings), around which a polymer fibre holding the load ‘c’ (Figure 1.18) was 

wrapped. The constant torque caused by load ‘c’ was first used to increase fibre twist, 

compared with that for earlier measurements in a sequence, and then to enable 

thermally-induced actuation measurements under this torque. The same size load 

(labelled ‘d’ in Figure 1.20) was applied to keep the fibre under tension, thereby 

preventing coil formation. 

 

Figure 1.18.  Schematic illustration of an apparatus for measuring torsional stroke and 

torsional work capacity as a function of applied torque during the torsional actuation of 

twisted polymer fibre muscles. Components are: polymer muscle (a), controlled 

temperature furnace (b), load (c) providing torque, tensile load (d) for muscle, pulley (e) 

to support this load, bearing-supported rod (f) connecting polymer muscle to axle (g) for 

applying torque, and a wheel-supported attachment (h) for the muscle, which enables 

horizontal movement of the muscle end [155].  
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1.8.3 Mechanism of Torsional Rotation  

Torsional actuation of helically twisted oriented polymer fibres is associated with the 

thermal expansion coefficients of the non-twisted fibre to both radial and lengthwise 

direction. These synthetic polymer fibres exhibit anisotropic thermal expansion 

behaviour, i.e. their responses are different in different directions [170]. A large thermal 

contraction in the fibre axis direction has been reported for several semicrystalline 

polymers above their glass transition temperature (Tg) and this has been attributed to the 

rubber-elastic behaviour of the intercrystalline tie-molecules (TM) [171]. Highly 

oriented semicrystalline polymers are made up of crystalline lamellae embedded in an 

amorphous matrix, each lamella consisting of mosaic crystalline blocks connected by 

occasional ‘tie molecules’. Upon drawing, the chain axes of the crystalline blocks 

become increasingly aligned along the draw direction. Simultaneously, the crystalline 

blocks are pulled out of the lamellae, and on further deformation, these blocks will align 

along the draw direction forming a periodic structure. The intercrystalline material may 

be thought of as consisting of the three components as shown in Figure 1.19. 

 

Figure 1.19. Schematic diagram showing the structure of a highly oriented 

semicrystalline polymer (A) amorphous region: this includes floating chains, cilia which 

are attached to a block at one end, and loops which start and end on the same block; (B) 

intercrystalline bridges: it has been proposed that tie-molecules may coalesce to form 
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bridges of a crystalline nature; (C) Chain-folded crystal blocks; (TM) tie-molecules, 

joining one crystalline block to another: these increases in both number and tautness 

with increasing amorphous content (redrawn from [171]).   

 

According to Choi et al. [171], the axial thermal contraction of the highly oriented 

semicrystalline polymer fibres such as polyethylene and nylon originate from both 

crystalline and non-crystalline regions. Aligned crystal blocks and the crystalline 

bridges are formed between these regions with the polymer chain direction similar to 

the fibre drawing direction [172]. The main contribution to the negative thermal 

expansion in the draw direction comes from the rubber-elastic effect of the pre-stretched 

amorphous tie-molecules in the inter-crystalline regions. These polymer chains remain 

as highly extended after drawing due to the formation of the crystalline bridges. The 

inter-crystalline space is significantly sensitive to the moduli of the extended tie-

molecules and the crystalline bridges and the volume fraction of each phase. According 

to the thermodynamics of rubber elasticity, the modulus of the amorphous tie-molecules 

increases due to the application of heat [173] and results in the contraction of crystalline 

bridges since the modulus of this region remains almost unchanged on heating. These 

mechanics are operated only at temperatures above the Tg of the polymer. Choi et al. 

have reported a thermal contraction coefficient up to -40 x 10
-5

 K
-1

 in the draw direction 

of highly oriented polymer fibre  [171] that is much higher than the change in 

dimensions of the crystal lattice.  

The untwisting phenomenon of oriented twisted polymer fibres can be explained based 

on these anisotropic thermal properties of highly oriented semicrystalline polymer 

fibres. Twisting of these fibres results in helically oriented chains. Thermally-induced 

length contraction of the oriented polymer chains now happens along the helical path 
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presented during twist insertion. The contraction of length in the direction of helically 

wrapped polymer chains can be accommodated within the twisted fibre by combinations 

of changes in axial fibre length (∆𝑙), diameter (∆𝑑), and number of twist (∆𝑛). The 

relationship between twisted fibre length (𝑙), diameter (𝑑), precursor fibre axial chain 

length (λ) and the helical chain angle to the fibre axis (𝛼𝑓) is modelled by a single helix 

[155]:  

∆𝑛

𝑛
=

∆λ

λ

1

𝑐𝑜𝑠2𝛼𝑓
−

∆𝑑

𝑑
−

∆𝑙

𝑙
𝑡𝑎𝑛2𝛼𝑓       (1.6) 

This equation predicts the untwisting of fibre when helically oriented polymer chain 

contracts (negative ∆λ) and fibre diameter expands (positive ∆𝑑); therefore agreeing the 

anisotropic thermal behaviour of highly oriented polymer fibres.  

Foroughi et al. have reported that the important characteristics related to the 

deformations of an electrochemically charged twisted CNT yarn can be approached by 

using this single helix-model [110]. Figure 1.20 illustrates a twisted single fibre having 

n rotations at a helix bias angle 𝛼𝑓 to form a cylindrical shape of length 𝑙 and radius r. 

The helical path length of fibre is 𝑙𝑠 and the end rotation of fibre with respect to its 

starting point at the top is ϕ. The cylindrical radius (r) and volume (V) enclosed by the 

helically wound fibre can be expressed in terms of fibre length as [110]:    

𝑟2 = (𝑙𝑠
2 − 𝑙2)/4𝜋2𝑛2        (1.7) 

𝑉 = 𝑙(𝑙𝑠
2 − 𝑙2)/4𝜋𝑛2         (1.8) 
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Figure 1.20. Single-helix model for a twist-spun CNT yarn, where helically wound 

fibre of constant length 𝒍𝒔 forms a cylindrical volume of radius ro and length 𝒍𝒐 before 

actuation and r and 𝒍 after actuation (left and middle illustrations). The fibre makes no 

turns along the cylinder length before actuation and n after actuation, and the rotation of 

the spring bottom end with respect to spring top is 𝛟𝒐 before actuation and 𝛟 after 

actuation (modified from [110]).   

 

Rotation due to a change in the cylinder volume is indicated by a change in the number 

of twists, with a decrease in 𝑛 indicating untwisting of the helix and an increase in 𝑛 

corresponding to an increase in twist. The ratio of the number of turns after a volume 

change to the initial number of turns is given by:   

𝒏

𝒏𝒐
= (

𝑽𝒐

𝑽

𝛌𝒍𝒐𝒍𝒔
𝟐−𝛌𝟑𝒍𝒐

𝟑

𝒍𝒐𝒍𝒔
𝟐−𝒍𝒐

𝟑 )
𝟏

𝟐⁄

         (1.9) 

where 𝑉𝑜 and 𝑙𝑜 are for the initial state, 𝑉 and 𝑙 are for the actuated state, and λ is the 

length ratio (𝑙 𝑙𝑜⁄ ).  Equation (1.9) is for a single helix that can approximate the outer 

shell of a twisted yarn, and may not quantitative predict the real fibre untwist during 

heating because of different axial and radial dimensional changes occurring internally in 

the twisted fibre. At the least, this equation provides a general explanation as to why the 
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twisted polymer fibre untwists when heated and the importance of the anisotropy of 

thermal expansion on this untwist.  

The helix model approximates the mechanism of torsional actuation obtained from 

almost all kinds of helically twisted structures such as CNT yarns, metallic nanowire 

yarns, graphene oxide yarns and polymer fibres. For any stimuli applied to the actuators 

(i.e. thermal, chemical, moisture, electrochemical, electro-thermal, or photo-thermal) 

there results an overall volume change, which then drives the torsional actuation. 

However, Guo at al. [114] proposed a possible different actuation mechanism of 

electromechanical actuation of twisted CNT fibres. By quoting the Ampere’s Law, it 

was attributed that these CNTs in a parallel arrangement produce electromagnetic forces 

as the current flows along the length of the CNTs. Although the electromagnetic force 

of a single CNT is very small, the combined effect of millions of CNTs in the cross-

sectional area of a fibre can generate a force high enough to induce significant 

electromechanical lengthwise contraction and torsional rotation. By analogy of tensile 

actuators, the electromagnetic attractions are perpendicular to the CNTs, and the 

contraction stress attributes to the component force along the axial direction of the CNT 

fibre. Upon Joule heating, the produced tensile stress of CNT fibres of same cross-

sectional CNT density was expected to be increased with the increasing twist bias angle. 

Unexpectedly, it was found that the stress first increased and then decreased with the 

increasing bias angle. This unwanted property was explained from the point of three-

dimensional hopping conduction mechanism of the CNT fibre [174-176]. Haines et al. 

[154], on the other hand, have elaborately explained the torsional actuation mechanism 

of twisted fibres (polymers or CNTs) by using their thermal expansion anisotropy and 

the helical orientation. It was found that the twisted polymer fibres produce similar 

torsional actuation when either Joule heated or air heated. Since there is no 
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electromagnetic effect present in air heating process, the torsional response was solely 

seen as a result of the thermal expansion parameters. Twisting fibres of anisotropically 

expanding materials exposed a new phenomenon i.e. the thermal torsion effect. Any 

oriented fibre that expands radially more than it expands in length (before twisting) can 

produce untwist simply by inserting twist into the fibre. Although pure CNT yarns also 

provide anisotropic thermal expansion, by causing nanotube length contraction and yarn 

diameter expansion during heating, like for the in-plane and interplane expansions in 

graphite [177], this dimensional change is small and only able to produce useful 

actuation when the yarn is heated under very high temperature. By infiltrating a volume 

expanding guest within the confines of a twisted CNT yarn, a large, initially isotropic 

guest expansion can be transformed into an anisotropic yarn expansion by the helically 

aligned, high stiffness CNTs, thereby producing torsional actuation. A number of 

researchers have supported this mechanism, therefore, validates the acceptability of 

thermal expansion phenomenon of torsionally actuated fibres/yarns [110, 112, 113, 116, 

117, 119, 144, 155].  

1.9 Summary on Torsional Artificial Muscles   

As-discussed, torsional actuators made of different materials and structures have 

different actuating mechanism and efficiencies. Table 1.2 summarises the maximum 

performances obtained from the torsional actuators of different material groups and 

structures.   
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Table 1.2. Summary table of torsional artificial muscles made of different materials and 

structures.  

Kind of torsional 

actuator  

Developed structures Stimulus  Maximum stroke 

(degree / mm) 

Shape memory 

alloy 

Rod, tube, sheet, 

strip, wire, or coil  

Joule heating ~4.5 [45] 

Piezoelectric 

material 

Bar, tube, twisted 

sheet, or fibre  

Piezoelectric effect ~0.04 [54] 

Multilayer 

torsional ribbon 

Twisted or coiled 

bimorph strip 

Global heating  ~1000 [64] 

Electroactive 

polymer 

Films, or tube Electrical energy ~0.01 [84] 

Fluidic torsional 

actuator 

Tubular elastomer 

with outer helical 

braided sleeve   

Air, or water ~1.75 [109] 

Carbon nanotube Twisted or coiled 

yarn  

Electrochemical, 

chemical, 

electromechanical, 

thermal, electro-

thermal, or photo-

thermal  

~380 [144] 

Metallic nanowire Twisted yarn Thermal  ~12 [118] 

Graphene fibre Twisted fibre Chemical (moisture 

activated) 

~588 [119] 

Polymer fibre Twisted, or coiled 

fibre 

Air heating, Joule 

heating, photo-

thermal, or 

electrochemical  

~300 [161] 

 

A number functional prototype has been developed by using torsional artificial muscles. 

Tobushi et al. [43] have used the thermal recovery of a twisted thin strip of TiNi SMA 

to develop several prototype devices. A rotation of 90
o
 was achieved through shape 
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recovery in a 40 mm long strip operated in the one-end-tethered mode. This example 

was a one-way actuation and was used as a door opening mechanism [Figure 1.21(a)]. 

Another device used a return spring mechanism for two-way actuation to open and close 

window blinds in sunlight and darkness, respectively [44]. Here the twisted strip was 

connected to a superelastic alloy strip that acted as a return spring in the two-end-

tethered configuration [Figure 1.21(b)]. Foroughi et al. [110] demonstrated a fluidic 

mixer by using a electrochemically actuated CNT yarn torsional artificial muscle to mix 

two laminar flowing liquids (dyed yellow and blue) that were joined at a T-junction in a 

fluidic circuit [Figure 1.21(c)]. A reversible paddle rotation of up to 180° was attained 

with a 65 mm long actuating yarn of 15 µm in diameter. The yarn rotated a 100 times 

wider paddle than the diameter of the yarn, and 80 times its mass, in the flowing liquids 

at a maximum rotation rate of 360° per second.  Cheng et al. [119] constructed a 

humidity switch and an electric generator in which the application of vapour leads to a 

twisted graphene oxide fibre switching the magnetisation of a small magnet, which 

sequentially drives a small electric field in copper coils surrounding it [Figure 1.21(d)]. 

In the switch (1), twisted fibre in response to moisture (e.g., relative humidity = 85%) 

can rotate a paddle to press on the metal plate, as pointed out by the arrow, so that the 

electric circle powered by the battery will turn on the LED, as shown in the inset photo. 

The generator (2) contains four copper coils around the twisted fibre with a magnet. 

When the humidity changes, twisted fibre can reversibly rotate the magnet within the 

surrounding copper coils to generate electricity. Recently, Haines et al. [155] utilized 

twisted coiled nylon fibres to fabricate smart textile fabric, braided structure and 

window shutter. When heated, torsional actuation of twisted fibres drive linear 

movement of the coils and regulates textile porosity (1), braid lifting (2) and opening / 

closing of the window shutter (3), respectively.  
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Figure 1.21.  Functional prototypes made of torsional artificial muscles. (a) Joule 

heated SMA thin strip showing one-way rotary movement of a door (𝝓 denotes the 

angle of twist) [43]. (b) Solar-powered active blind model constructed of two-way 

rotary actuation of a SMA tape [44]. (c) Fluidic mixer operated by a multi-walled CNT 

yarn torsional actuator; 1. photograph of the prototype, 2. unmixed fluid, and 3. mixed 

fluid [110].  (d) The scheme of the designed humidity switch (1) and the alternating 

current generator (2) based on the humidity-responsive twisted graphene oxide fibres 

(TGF) [119]. (e) Prototypes made by using twist induced coiled nylon 6,6 fibres where 

thermally induced torsional rotation of the twisted structures causes linear movement of 

a; 1. textile fabric, 2. braided structure, and 3. window shutter [155].   
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1.10 Thesis Aims 

To aid material development for torsional muscle and for coiled tensile muscles, the 

present work aims to study the fundamental understandings of torsional actuation in 

twisted highly oriented polymer fibres. Thermally-driven tensile actuation of twist-

induced coiled polymer fibres has been investigated recently and found to be dependent 

on their untwisting/retwisting (torsional actuation) phenomenon due to the surrounding 

temperature change. These readily available and low cost materials make the actuators 

easily accessible and act as high performance artificial muscle. However, the actuation 

mechanism is not fully understood in terms of the anisotropic thermal responses on 

these twist drawn oriented fibres and their fabrication parameters such as sample 

diameter, twist density/bias angle, sample annealing temperature, moisture content and 

crystal content. The following chapters of this thesis document the early development of 

torsional actuators and their characterization techniques, the underlying mechanism of 

their responses and their use to develop a novel integrated torsion / tensile actuator 

system.  

The first aim of the research described in this thesis was to develop a test method for 

assessing torsional actuation. The developed method included procedures to 

characterize torsional stroke and torque as well as provide an assessment of speed, 

reversibility and cycle life. 

The second aim of this research project was to investigate the scale dependency of 

torsional stroke and generated torque in twisted polymer fibres. The single-helix 

approximation of the twisted fibre structure will be evaluated in terms of the 

quantitative prediction of the torsional stroke during fibre heating. The model was 

applied initially to twisted nylon 6 fibers of different diameters and different inserted 
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twist. Secondly, the model was applied to twisted polyethylene and polypropylene 

fibres to investigate the effects of different volume change anisotropies. 

The third aim of this research project was to investigate methods used to thermally set 

the helical chain structure of twisted highly oriented semicrystalline nylon 6 fibre. 

Currently, the twisted polymer fibre torsional and tensile actuators require several 

unwanted ‘training cycles’ of heating and cooling prior to achieving fully reversible 

actuation. The specific aim was to employ several annealing techniques to modify the 

structure of twisted polymer fibres and investigate the effects on the reversibility of 

torsional actuation behaviour under different mechanical conditions. 

The fourth and final aim of this research project was to develop an integrated artificial 

muscle which shows contractile behaviour of highly elastic yarn by coiling itself 

originated from thermally-induced torsional actuation of a twisted polymer fibre. The 

specific interest was to evaluate single-helix approximation of coiled yarn in terms of 

coil geometry, and combined with torsional actuation of twisted fibre to predict the 

overall muscle contraction. 
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CHAPTER 2 Characterisation of Torsional Actuation in Highly 

Twisted Yarns and Fibres 

 

 

 

 

 

 

This chapter has been adapted from the article “S. Aziz, S. Naficy, J. Foroughi, H. R. 

Brown and G.M. Spinks, Polymer Testing 46:88-97 (2015)”.  

The introduction section in this chapter is a shortened version compared with the 

published article to avoid duplication with the comprehensive literature review of 

Chapter 1. 
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2.1 Introduction 

As described in chapter one, practical application of torsional artificial muscles require 

a precise and continuous characterization technique that allows the torsional stroke and 

torque to be calculated for any externally applied environmental and mechanical 

condition. To aid material development for torsional muscle, the present work aims to 

develop a test method for assessing torsional actuation. Of interest is a procedure to 

characterize torsional stroke and torque as well as an assessment of speed, reversibility 

and cycle life. Previous work has focussed mainly on measuring torsional stroke, for 

example by tethering the sample at one end and measuring the rotation of the free end. 

Sometimes a return spring mechanism has been used to improve reversibility of 

torsional actuation. In these cases, the actuating yarn or fibre was attached to another 

non-actuating fibre, both ends were tethered and torsional rotation measured at the 

junction. An advantage of the two-end-tethered system is the ability to fix the location 

of the rotating element. In contrast, the free end of the one-end-tethered system can 

move in any direction and has limited practical utility. 

What is needed is a measurement technique and analysis procedure that allows the 

torsional stroke and torque to be calculated for any imposed external loads. By analogy 

with tensile actuators, the characterisation method should provide the stroke-torque 

curve defining the free stroke (zero external torque), blocked torque (zero torsional 

rotation) and all combinations of non-zero stroke and torque. Such information has not 

yet been reported for any of the twisted fibre torsional muscles. Herein is described a 

method for measuring the rotation of a shaft attached to a near frictionless bearing and 

driven by a torsional actuator, i.e. the twisted fibre. The measurement system can 

measure both torsional stroke and torque, and the sample can either be operated with or 

without a return spring fibre. 
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The theoretical treatment of torsional actuation assumes that a given stimulus induces a 

free rotation that increases linearly with fibre length, and is here denoted θ and reported 

as degrees per mm of actuating fibre length. The actual rotation angle ϕ(x) varies 

linearly with distance x taken from the clamped end of a fibre so that the torsional stroke 

at the free end of a one-end-tethered fibre of length 𝐿𝐴 is:  

𝜙(𝐿𝐴)𝑓ree = 𝐿𝐴. 𝜃         (2.1) 

If the fibre behaves as a linear elastic rod in torsion, then the blocked torque will be: 

𝜏𝑏𝑙𝑜𝑐𝑘𝑒𝑑 = ϕ(𝐿𝐴)free × 𝑆𝐴        (2.2) 

Here, SA is the torsional stiffness of the actuating fibre, or the resistance to rotation. The 

torsional stiffness is more fundamentally related to the fibre diameter (d), length (L) and 

the fibre material’s shear modulus (G) in the circumferential direction: 

𝑆 =
𝑘

𝐿
=

𝐽𝐺

𝐿
          (2.3) 

Here, k is termed the ‘torsional modulus’ in standard torsion mechanics and should not 

be confused with other moduli, such as the shear modulus and Young's modulus that are 

true material properties. The torsional modulus depends both on material properties 

(shear modulus G) and the fibre dimensions. 𝐽 is the polar moment of inertia of fibre 

and formulated in terms of sample diameter for a fibre of circular cross-section is:  

𝐽 =  
𝑑4

32
           (2.4) 

The stimulus used to initiate torsional actuation, for example heat, is likely to affect the 

material’s torsional stiffness due to dimensional changes and modulus shift. 

Consequently, the blocked torque represented by Equation (2.2) uses the torsional 

stiffness of the fibre in the final actuated state after the stimulus has been applied 
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(hereafter denoted 𝑆ˊ𝐴). A change in torsional stiffness will also contribute to the 

torsional stroke measured under isotonic (constant external torque) conditions. For a 

one-end-tethered fibre acting against an external torque 𝜏𝑒𝑥𝑡 the torsional stroke will be 

given by:  

𝜙(𝐿𝐴)isotonic = 𝐿𝐴. 𝜃 + 𝜏ext (
1

𝑆ˊ𝐴
−

1

𝑆𝐴
)      (2.5) 

The second term in Equation (2.5) relates to the free end rotation resulting from a 

change in sample torsional stiffness from 𝑆𝐴 to 𝑆ˊ𝐴 in the starting and final states, 

respectively.  

When operated against a return spring, the external torque acting against the actuating 

fibre increases after the stimulus has been applied. The return spring is twisted as the 

actuating fibre torsionally actuates generating a restoring torque within the return spring 

fibre. The rotation at the end of the actuating fibre, corresponding to the junction 

between the actuating and non-actuating fibres, will be smaller than in free rotation so a 

residual torque remains in the actuating fibre. At equilibrium, the residual torque in the 

actuating fibre is exactly cancelled by the restoring torque generated in the return 

spring, non-actuating fibre. For the general case where the actuating fibre is subjected to 

a constant external torque and connected to a return spring fibre of torsional stiffness SN, 

the torsional stroke (𝜙) at the junction between actuating and non-actuating fibres can 

be determined from the torque balance Equation:   

𝑆ˊ𝐴 [{𝐿𝐴. 𝜃 + 𝜏ext (
1

𝑆ˊ𝐴
−

1

𝑆𝐴
)} − 𝜙] = 𝑆𝑁 . 𝜙      (2.6) 

Re-arranging Equation (2.6) gives an expression for the expected torsional stroke at the 

junction between the actuating and non-actuating fibres:   
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𝜙(𝐿𝐴)𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑝𝑟𝑖𝑛𝑔 = [𝐿𝐴. 𝜃 + 𝜏𝑒𝑥𝑡 (
1

𝑆ˊ𝐴
−

1

𝑆𝐴
)] (

𝑆ˊ𝐴

𝑆ˊ𝐴+𝑆𝑁
)    (2.7) 

In the case where the external torque is zero, the stroke is given by: 

𝜙(𝐿𝐴)𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑝𝑟𝑖𝑛𝑔 = 𝐿𝐴. 𝜃 (
𝑆ˊ𝐴

𝑆ˊ𝐴+𝑆𝑁
)        (2.8) 

Equation (2.8) reduces to Equation (2.1) in the absence of a return spring (𝑆𝑁=0) and 

when the actuating fibre is tethered at only one end. Figure 2.1 illustrates the theoretical 

torsional stroke expected for the case of free rotation, isotonic torsional actuation and 

torsional actuation with a return spring. The torsional strokes are expressed as a fraction 

of the free rotation to emphasise the importance of the inherent torsional actuation 

parameter, 𝜃, in determining the torsional stroke in all cases.   

 

Figure 2.1. a) Illustration of different torsional actuation methods where the actuating 

element is optionally subjected to an external torque (presented as force applied by a 

hanging weight) and/or a return spring fibre; b) theoretical estimates of torsional stroke 

at each point along the length of an actuating fibre and return spring (non-actuating) 

fibre, if used, and operated in free rotation or isotonic rotation modes. 
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2.2 Experimental Methods  

2.2.1 Muscle Fabrication  

The fibre was attached to the motor at its upper end and supported by a fixed weight 

(~200 gm) hanging on the other end providing 10 MPa stress to the fibre. The 

incorporated weight was tethered contrary to the motor rotation, and hence each turn 

from the motor shaft caused the formation of one turn in the fibre. The muscle fibre 

taken for the actuation test was twisted until the onset of coiling. The supported weight 

on the fibre was crucial to have straight and uniformly twisted fibres, without permitting 

snarl formation prior to coiling. The non-coiled section of twisted fibre was then taken 

to an isothermal heating oven and annealed at 120°C, or ~70
o
C above glass transition 

(Tg) [178, 179], for 30 minutes with both ends clamped to prevent loss of twist. Heating 

at a temperature over Tg helps the newly introduced twisted shape to be permanently set. 

After removal from the oven, the fibre was relaxed at room temperature for 2 hours 

while still clamped. Figure 2.2 shows a schematic diagram of twist insertion and the 

preparation of fishing line muscle to be used for actuation tests. 

 

Figure 2.2. Schematic illustration of twist insertion in nylon 6 (graphics are not to 

scale). 



56 

 

Twist insertion per length of precursor fibre was determined by using a rotation counter. 

Fibre bias angle (𝛼𝑓, relative to fibre axis) due to the twist insertion was calculated from 

the number of turns/meter using Equation (2.9) [110].    

 

𝛼𝑓 = 𝑡𝑎𝑛−1(𝑑𝑇)          (2.9) 

 

Here, d is the fibre diameter and T is the amount of turns inserted per initial fibre length. 

 

Additionally, the fibre bias angle was observed directly using an optical microscope 

(LEICA M205 A). The observed bias angle was in close agreement with the value 

calculated using Equation (2.9) from the measured number of turns/meter inserted into 

the twisted fibre.    

2.2.2 Thermally-Powered Torsional Actuation Test 

Experiments were conducted using an in-house-produced torsional actuation test 

apparatus with a heating chamber (Figure 2.3). The heating process was operated 

through Nichrome 80/20 heating wire and driven by an electrical current source. 

Twisted nylon fibre was positioned in the heating zone to evaluate the torsional 

actuation performance during heating and cooling cycles. A thermocouple was 

positioned close to the sample to estimate sample temperature.  
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Figure 2.3. CAD model of torsional actuation test apparatus; (1) heating zone, (2) ultra-

low friction air bearings, (3) lever arm force/distance transducer, (4) movable fibre 

gripping clamp, (5) support for air bearings, (6) connecting fibre between lever arm 

force/distance transducer and bearing shaft, (7) actuating muscle fibre, and (8) fibre 

acting as return spring keeping the actuating muscle straight and well positioned. 

 

A slow heating process (3.5°C/min) was maintained by using a programmable 

controller (Electro Chemical Engineering Pty Ltd, Australia) to increase temperature at 

a uniform rate from 25°C to 60°C. Figure 2.4 shows the integrated experimental set-up 

consisting of test apparatus, programmable power supply and dual-mode lever arm 

system (Aurora Scientific, Canada). In all cases, it was found that a small number of 

heating and cooling cycles were needed before the torsional actuation became fully 

reversible. Data measurements were conducted after the completion of these ‘training 

cycles’. Samples were equilibrated in ambient laboratory conditions before testing and 

separate studies between carefully dried and water-saturated samples showed negligible 

difference in actuation behaviour.    
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Figure 2.4. Torsional actuation testing set-up; (1) test apparatus, (2) lever arm 

force/distance transducer, (3) lever arm controller, (4) DC power supply, (5) 

programmable temperature controller. 

 

Initial interest was to quantify the amount of torsional stroke generated by the twisted 

fibre in a certain range of temperature. The fibre was tethered to a rigid support at one 

end and the other end was clamped to an aluminium shaft (radius, rs) passing through a 

pair of aligned air bearings (OAVRL13MM supplied by CGB Precision Products Pty 

Ltd, USA) mounted on aluminium supports. These compressed air assisted bearings are 

able to provide almost frictionless rotation, so that torsional motion can freely occur 

with negligible external disturbance to the actuated fibre. The amount of thermally 

powered free torsional stroke generated by the twisted fishing line was observed 

optically by using a microscopic camera system (ISSCO-OPTEK). The camera was 

positioned and focused axially to the air bearing and videography of bearing rotation 

was exported to a geometric tool (GeoGebra mathematics software) to quantify the 

amount of fibre rotation.    

The optical method for determining torsional stroke could not provide real-time data, so 

the test apparatus was modified by introducing a dual-mode lever arm force/distance 

transducer (Aurora 305B). The air bearing shaft was partially wrapped with a high 



59 

 

stiffness thin polyethylene fibre (DYNEEMA 180 µm diameter) and connected to the 

lever arm operated in isotonic mode (constant force) and positioned so that the 

connecting fibre was perpendicular to the shaft. Torsional actuation of the twisted fibre 

rotated the connecting shaft which caused proportional displacement of the lever arm 

that was then expressed as the torsional stroke (degree). Calibration of lever arm 

displacement to shaft rotation was performed in terms of shaft circumference and 

angular movement that caused the linear motion of vertically placed lever arm. The 

lever arm applied a small and constant normal force (FN) to the shaft resulting in a 

constant torque (τS=FN.rs). Unless otherwise stated, the external force opposed the 

rotation of the twisted fibre when the latter was heated.  

The same apparatus was also used to evaluate the torque generated during 

heating/cooling of the twisted nylon fibre. In this case the lever arm was operated in the 

isometric mode (constant length) to prevent shaft rotation and provide a measure of the 

blocked torque. Torque/stroke curves could also be obtained by first measuring the 

blocked torque and then allowing the shaft to rotate by gradually reducing the applied 

force to zero while measuring the amount of shaft rotation.  

Of further interest was to assess the amount of torsion when the actuating fibre was 

attached to a ‘return spring’, as has been typically used in previous studies. As shown in 

Figure 2.2, a return spring fibre can be included by attachment to the air bearing shaft 

and a second end tethering point. Tension is sometimes also applied using the return 

spring fibre. 

2.2.3 Fibre characterization 

The torsional rigidity (S) [180], torsional modulus (k=JG) [110] and shear modulus (G) 

[181] of both the twisted (actuated) fibre and return spring fibre were determined by 



60 

 

measuring the shaft rotation resulting from mechanical increase of torque applied by the 

lever arm. Torsional rotation (𝜙) versus torque () curves from multiple samples of 

different lengths was used to determine torsional rigidity of fibre, as in Equation (2.2). 

2.3 Results 

2.3.1 Characteristic Properties of Twisted Fibre 

A nylon 6 fibre of 550 µm diameter (d) was used for twist insertion. Figure 2.5 shows 

optical micrographs at different stages of the twisting process. Figure 2.5(a) represents 

the precursor fibre and Figures 2.5(b) and (c) show, respectively, the coiled and non-

coiled portions of fibre after insertion of 450±5 turns per metre of initial fibre length. 

The highly twisted, but non-coiled section of muscle fibre was extracted for further 

analysis. Fibre diameter was found to have increased during twisting by ~10% from 

~551 µm to ~597 µm. The bias angle of inserted twist was calculated from Equation 

(2.9) and found to be 35.3°. Figure 2.5(d) shows optical measurements of the fibre bias 

angle showing 36.0° from the fibre axis, which is in close agreement with the calculated 

value.            

 

Figure 2 5. Optical micrographs of (a) precursor nylon 6 fibre, (b) twisted fibre with 

twist-induced coil section, (c) extracted twisted section, and (d) observed bias angle 

from higher magnification micrograph of twisted section. The diagonal markings 
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observed in (c) and (d) arise from extrusion marks originally oriented along the axis of 

the untwisted fibre. 

 

The torsional stiffness and moduli of the twisted nylon 6 fibres were evaluated from 

inverse gradient of stroke/torque plots (Equation 2.2) and gradient of corresponding 

stiffness/inverse length plot (Equation 2.3). Figure 2.6(a) shows that shaft rotation 

linearly progresses as the amount of mechanically applied torque increases. Three 

different sample lengths (10, 35, and 70 mm) of identical twisted fibre were considered 

and showed a linear relationship between torsional stiffness and length [Figure 2.6(b)]. 

The resulting length independent torsional modulus was found to be 3.56×10
-6

 N·m2
 at 

room temperature. 

 

Figure 2.6. Torsional properties of twisted fibre prepared from 550 mm diameter nylon 

6 and tested at room temperature: (a) shaft rotation against mechanical torque, and (b) 

torsional stiffness of different lengths of fibre with the slope giving the torsional 

modulus. 

 

Torsional properties of nylon 6 fibre were also evaluated in terms of fibre diameter. 

Figure 2.7(a) shows the angular rotation of two fibres under increasing external torque: 

a twisted nylon 6 fibre of original length of 10 mm long and 550 µm diameter (𝑑2) and 
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an untwisted fishing line 10 mm long and 330 µm diameter (𝑑1) that was used as a 

return spring in some actuation experiments. The torsional moduli were 3.56×10
-6

 N·m2
 

for the twisted fibre and 4.7×10
-7

 N·m2
 for the return spring.     

𝑘1

𝑘2
= (

𝑑1

𝑑2
)

4

          (2.10) 

Here, 𝑘1 and 𝑘2 are the torsional moduli of the twisted fibre and the return spring fibre, 

respectively. Experimental results [Figure 2.7(b)] show the torsional modulus ratio to be 

7.57, in reasonable agreement with the fourth power of the diameter ratio (7.72), as 

predicted by theory.  The shear moduli of twisted nylon 6 fibre and untwisted return 

spring were very similar (0.40 GPa and 0.41 GPa, respectively) as is expected for fibres 

with the same composition and structure.  

 

Figure 2.7. Torsional properties of nylon 6 fibres (a) shaft rotation against mechanical 

torque of different diameter fibre, and (b) torsional stiffness with resultant modulus.  

 

Torsional properties of the 550 μm twisted fibre were also evaluated at the maximum 

temperature reported for actuation tests in this study. Figure 2.8 shows the angular 

movement of twisted fibres at 60ºC under increasing external torque. The torsional 

modulus was 3.19×10
-6

 N·m2
. Shear modulus of the twisted fibre at this particular 

temperature were calculated by considering the change in fibre diameter resulted from 
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applied heat and found to be ~0.24 GPa, which is significantly lower than the value 

obtained at room temperature, as expected [182].   

 

Figure 2.8. Fibre rotation at 60°C against applied mechanical torque. The inverse slope 

of the rotation/torque curve defines the torsional stiffness. 

 

2.3.2 Torsional Actuation Test Results  

2.3.2.1 Free Fibre Rotation  

In free rotation tests, the twisted nylon 6 fibre was attached at one end to the air bearing 

shaft and the other end clamped. Heating allowed the non-clamped fibre end to rotate 

freely with negligible external resistance. Figure 2.9 shows optically measured torsional 

rotation of the air bearings. The fibre was observed to rotate in the untwist direction 

during heating and to retwist on cooling in the range 28-62ºC. The rate of rotation was 

higher above ~50ºC, which corresponds approximately to the Tg of nylon 6. A small 

hysteresis between heating and cooling was observed, especially above Tg. The final 

rotation angle after heating to 62
o
C reached an approximately constant value of -171º, 

or -2.45º/mm based on fibre length, after several heating and cooling cycles. 



64 

 

 

Figure 2.9. Optically measured torsional actuation of twisted nylon 6 during slow 

heating and cooling. The 70 mm long, 550 mm diameter fibre was attached to air 

bearings that allowed one end of the fibre to rotate freely with negligible friction. 

Negative values of torsional stroke represent untwisting. Arrows indicate the heating 

and cooling directions. 

2.3.2.2 Constant Torque Torsional Actuation 

The torsional actuation of the twisted fibre was also tested isotonically under constant 

torque. Figure 2.10 shows the thermally driven torsional stroke of twisted fibre acting 

against a constant opposing torque of ~68 µN·m applied to the bearing shaft surface 

when the sample was subjected to heat/cool cycles in the range of 28-62ºC. The 

torsional stroke was calculated from the lever arm deflection and was validated by 

optical measurements of the bearing rotation that demonstrated 99.5% accuracy. Hence, 

it was concluded that the lever arm provides immediate, convenient and continuous 

measurement of the fibre rotation without the need for off-line image analysis.  

The thermally-induced isotonic torsional stroke of the nylon 6 was similar to that 

observed during free rotation. The 70 mm long and 550 µm diameter twisted nylon 6 

generated a maximum -2.32°/mm fully reversible torsional rotation when heated slowly 

from 28
 
ºC to 62

 
ºC (Figure 2.10). The maximum rotation angle from cycle to cycle was 

more consistent than in free rotation tests. The original shape was regained after the 
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cooling cycle by retwisting the fibre with almost 100% reversibility. Again, a higher 

rate of rotation was observed above Tg of ~50ºC. A small hysteresis between heating 

and cooling cycles of unknown origin occurred at lower temperatures between 30 and 

40ºC.  

 

Figure 2.10.  Isotonic constant torque (68 mN m) actuation stroke of twisted nylon 6 

over 6 consecutive heat/cool cycles. 

 

Similar tests were also conducted using several different constant applied torque values. 

In all cases, the torque was applied so as to oppose the fibre untwisting that occurred 

during heating. Figure 2.11 shows the torsional stroke during heating and cooling with 

increase of torque occurring in successive actuation cycles. The torque adjustment 

occurred isothermally at 26ºC and torsional stroke in each actuation cycle is reported 

after training the sample by several heating/cooling cycles at each new torque level. As 

shown, the actuation stroke after heating from 26-62ºC decreased as the opposing 

torque increased. The torque was increased by a factor of ~16 times resulting in a 

decrease in the torsional stroke of ~32%. A final heat/cool cycle was performed after 

resetting the torque to its initial value, and the results show that the torsional stroke 

followed the original curve very closely. It can be concluded that the higher torque 
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isotonic tests caused no degradation or other permanent effects on the torsional 

actuation behaviour of the twisted nylon 6 fibre. 

 

Figure 2.11. Cycle based constant torque actuation profile of twisted nylon 6. 

Mechanical torque at the levels indicated was increased step-by-step corresponding to 

successive actuation cycles. A final heat/cool cycle was also performed at the original 

torque value (denoted RE for repeat). 

 

2.3.2.3 Torque generation and torque-stroke curves      

The torque generated during heating and cooling of the twisted fibres was determined 

by isometric testing where the fibre rotation was completely blocked by the lever arm 

and the blocking force measured. The samples were first conditioned using the normal 

training cycles where the fibre was allowed to freely rotate until the untwist and retwist 

on heating and cooling became fully reversible. At this point, the blocked rotation test 

was performed and a 70 mm long and 550 µm diameter twisted fibre was able to 

produce ~225 µN·m torque when the sample was heated from 28 to 62ºC (Figure 2.12). 

On cooling, the torque returned to the starting value, demonstrating the reversibility of 

the torsional actuation. A noteworthy hysteresis was observed between the torque 

generated in the heating and cooling cycles. The hysteresis was mostly due to a small 
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force decay that occurred during the isothermal hold period at the maximum 

temperature and prior to cooling. 

 

Figure 2.12. Thermally-induced torque generation by twisted nylon 6 after free rotating 

training cycles. 

 

Torque-stroke curves were also generated by first measuring the blocked force during 

heating and then allowing the fibre to untwist isothermally until the torque was fully 

relaxed. The fibre was next retwisted isothermally to restore the measured blocked force 

and the sample cooled under isometric conditions. Figure 2.13(a) shows the testing 

sequence and Figure 2.13(b) shows the torque-stroke curves obtained during the 

isothermal period at 60ºC. The fibre was allowed to untwist as the torque was relaxed 

and the free rotation stroke could be estimated from the zero torque point on the curve. 

Here, the free torsional stroke was -204º or -2.91º/mm [Figure 2.13(b)]. Interestingly, 

this free stroke value was significantly higher than measured during the free rotation 

experiments (-2.45 º/mm). The slope of the torque-stroke curve also provides a measure 

of the fibre torsional modulus at 60ºC giving a value of 4.26×10
-6

 N·m2
 for the 70 mm 

long twisted fibre. Again, this value is higher than the torsional modulus reported above. 

Possible explanations for these differences are considered in the Discussion section.     
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Figure 2.13. Torque stroke curves of nylon 6 fibre; (a) isometric force generation 

followed by free rotation on torque relaxation/regeneration, and (b) torque vs torsional 

stroke; trend extracted from isothermal section. 

 

2.3.2.4 Variable torque torsional actuation using a return spring  

This experiment was conducted by thermally actuating the twisted fibre against a return 

spring, as has been commonly used in previous studies [110]. The test system included 

a second nylon 6 fibre connected to the opposite end of the air bearing shaft and then 

tethered to the supporting frame. Here, rotation of the shaft resulted from torsional 

actuation of the actuating fibre twists the return spring fibre, thereby generating an 

increasing opposing torque as the sample rotation proceeds. In addition to the return 

spring torque, the lever arm was operated in isotonic mode and applied a small constant 

torque of 68 µN·m that also opposed the sample rotation. This small torque was 

necessary for accurate measurement of the shaft rotation using the lever arm 

displacement transducer. Figure 2.14 shows the thermally induced torsional stroke of a 

70 mm long, 550 µm diameter twisted nylon 6 fibre acting against the variable torque 

applied by a 70 mm long and 330 µm diameter nylon 6 return spring. Fully reversible 

torsional actuation was observed during heating and cooling in the range of 28-62ºC 

with very little hysteresis. The maximum rotation angle decreased slightly during 
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successive cycles to a value of -2.04º/mm, which was considerably smaller than 

rotations observed in free rotation tests due to the restrictions imposed by the return 

spring. The quantitative evaluation of the return spring effects is considered in Section 

2.4.  

 

Figure 2.14. Variable torque actuation profile of nylon 6 with multi-cycle test 

validation. 

 

The effect of spring stiffness on torsional stroke was also investigated by using different 

lengths of return spring fibres. Starting from 70 mm, the spring length was decreased by 

~14 times in five stages (Figure 2.15). The corresponding torsional stroke of the same 

actuating fibre was decreased by ~61% when comparing the shortest return spring with 

the longest return spring fibre and using a constant 26-62ºC temperature range. A final 

heat/cool cycle was performed using the initial spring length and the actuation 

behaviour was almost identical to the first heat/cool cycle.    
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Figure 2.15.  (a) Actuation profile of twisted Nylon 6 fibre during heating and cooling 

and operated with different return spring lengths. A small constant torque of 68 mN m 

was also applied by the lever arm measurement system. Tests were performed with 

progressively shorter return spring lengths and a final repeat test using the original 

return spring length (denoted RE for repeat). (b) Final torsional stroke at 60°C 

(untwisting) and when cooled to 26  C (retwisting) at different return spring lengths.  

 

2.4. Discussion  

The main aim of the present work was to establish a method for analysing torsional 

actuation obtained from different test methods. The analysis starts with the ‘free’ 

torsional stroke per fibre length of θ (deg/mm) obtained experimentally from actuating 

fibres tethered at only one end [110]. The effect of a return spring and/or an externally 

applied torque on the torsional stroke is theoretically shown in Equation (2.7). Finally, 

the expected torque generated is given by the product of torsional stroke and final 

torsional stiffness with the maximum torque predicted from Equation 2.2 (blocked 

torque). These analyses suggest that all torsional actuation parameters can be 

determined from knowledge of the free stroke (θ), actuating fibre stiffnesses (SA and SˊA 

for initial and final temperatures, respectively), return spring stiffness (SN) and actuating 

fibre length (LA). A comparison of the experimentally obtained torsional stroke 
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parameters with the theoretical estimates are provided in Figure 2.16. The parameters 

used for calculating the theoretical values are given in Table 2.1.   

Table 2.1. Measured parameters used in theoretical calculations of actuation stroke and 

torque for twisted nylon 6 fibre.  

Temperature range 26 - 62ºC 

Actuating fibre length (LA) 70 mm 

Free stroke per length () -2.45
 
º/mm 

Initial torsional modulus of actuating fibre (kA) 3.56×10
-6 

N·m2
 

Final torsional modulus of actuating fibre (kˊA) 3.19×10
-6 

N·m2
 

Torsional modulus of return spring fibre (kN) 4.7×10
-7

 N·m2
 

 

 

Figure 2.16. Comparison of experimentally measured and theoretically calculated 

torsional strokes [Equation (2.7)] for 70 mm long twisted nylon 6 fibre: (a) isotonic 

torsional stroke when operated against a constant external torque; (b) torsional stroke 

when using return springs of different lengths. 

 

As seen for both the isotonic actuation tests [Figure 2.16(a)] and actuation tests against 

a return spring [Figure 2.16(b)], the agreement between measured and calculated values 

is very good. The close agreement indicates that the theoretical treatment based on 
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torsion mechanics is a suitable method for evaluating torsional actuation in twisted 

fibres. In some cases, however, discrepancies were found between the measured and 

calculated values. The expected blocked torque determined from the parameters given 

in Table 2.1 of 136 N·m was significantly less than the measured value of 225 µN·m. 

Similarly, the free stroke and torsional stiffness determined from the torque-stroke curve 

measured following the blocked torque measurement were higher than obtained directly 

from free stroke tests. The reasons for these discrepancies are not yet known, however, 

changes in the internal structure of the twisted fibre during the training cycles may be 

involved. Further studies are underway to investigate the effect of training on the 

structure and properties of the twisted fibres.  

2.5 Summary  

This paper has investigated test methods for characterising torsional actuators using a 

twisted oriented semicrystalline polymer fibre as the test subject and temperature 

change to induce actuation. An experimental method was designed and developed 

which was able to continuously measure thermally-induced torsional actuation of 

fibrous materials. Various different testing modes were studied that replicate possible 

application conditions: free stroke in a one-end-tethered fibre, torsional actuation 

against an externally applied torque (isotonic), blocked rotation to determine torque 

generated, and torsional actuation against a return spring fibre when operated in the 

two-end-tethered state. Theoretical prediction of torsional stroke generation of twisted 

fibre was developed using torsion mechanics that gave good agreement between 

experimental measurement and calculated values for the isotonic and return-spring 

experiments. The analysis allows the prediction of torsional stroke based on the 

fundamental characteristics of the actuator: free stroke and stiffness. Some discrepancy 

was noted in the estimation of the blocked torque. Further studies are underway to 
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investigate whether ‘training’ cycles result in structural changes within the twisted 

fibres that may affect the torsional behaviour. 
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CHAPTER 3 Controlled and Scalable Torsional Actuation of 

Twisted Nylon 6 Fibre 

 

 

 

 

 

 

This chapter has been adapted from the article “S. Aziz, S. Naficy, J. Foroughi, H. R. 

Brown and G.M. Spinks, Journal of Polymer Science Part B: Polymer Physics 54:1278-

1286 (2016)”. 

The introduction and experimental sections in this chapter are shortened versions 

compared with the published article to avoid duplication with the previous chapters. 
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3.1 Introduction  

Scalability of torsional actuation is an important practical issue that remains mostly 

unexplored. Important insights are provided by the study of Haines et al. [155] in which 

coils made by twisting nylon 6,6 monofilaments with diameters ranging from 0.15 mm 

to 2.45 mm and heated and cooled to induce tensile actuation showed tensile strokes and 

gravimetric work capacities that were essentially scale independent. The authors 

suggested that the scale invariance of the tensile stroke was due to the similar twisted 

structures produced in all fibres and was interpreted through the known direct link 

between fibre torsional stroke (ΔT in turns per fibre length) and fractional coil stroke 

(ΔL / L), which is the change in coiled fibre length (ΔL) normalized to its length at room 

temperature (L). A modified version from Equation 1.2 can now expressed as:  

∆𝐿

𝐿
=

𝑙2.∆𝑇

𝑁.𝐿
          (3.1)  

with l representing the twisted fibre length and N the number of turns in the coil. 

Observations of the coils made from the different diameter fibres showed all to have the 

same fibre twist bias angle (𝛼𝑓) and identical coil bias angles (𝛼𝑐) so that the 

reorganised Equation (3.1) is the product of three scale invariant terms:  

∆𝐿

𝐿
= (

𝑙

𝐿
) (

𝑙

𝑑.𝑁
) (𝑑. ∆𝑇)        (3.2) 

The first term is simply the inverse of cos αc (= L/l) and the second term is proportional 

to sin αc (=ND/l), since the coil diameter (D) is approximately double the fibre 

diameter (d). The final term is also scale invariant if it assumed that the degree of fibre 

untwist during actuation is proportional to the twist inserted per untwisted fibre length 

(T) during coil fabrication, since tan 𝛼𝑓 = 𝑑𝑇. The untested assumption in this 
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analysis is that the fibre untwist during actuation depends only on the amount of 

inserted twist and is otherwise independent of fibre diameter. 

Treating the twisted fibre as a simple single helix of equivalent diameter and bias angle 

provides some basis for the torsional stroke being dependent on the inserted twist. 

Partial untwist of the fibre or yarn is known to result from a volume expansion (Figure 

3.1), as has been experimentally demonstrated thermally, electrochemically, 

photonically, and chemically [110, 117, 155].  

 

Figure 3.1. Schematic illustration of the thermally induced torsional actuation in a 

twisted fibre. Radial expansion results in untwist and rotation of the paddle attached to 

the fibre free end. The helically oriented polymer chains are assumed to be inextensible 

and are illustrated by a single helix at the fibre surface. 

 

The volume (v) of the cylinder enclosed by a single helically wound string depends on 

the string length (ls); the length  (l) and diameter (d) of the cylinder; and the number of 

turns the string makes in forming the helix (n). A change in volume of the cylinder can 

be accommodated by changes in any of the above parameters so that the ratio of final to 

initial volume is described by the following expression, in which zero subscripts 

represent the initial values: 
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𝑣

𝑣𝑜
= (

𝑛𝑜

𝑛
)

2

(
𝑙

𝑙𝑜
)

2

(
𝑙𝑠

2−𝑙2

𝑙𝑠,𝑜
2−𝑙𝑜

2)
2

         (3.3) 

Rearranging Equation (3.3) gives an expression representing the torsional actuation in 

terms of the ratio of final turns to initial turns: 

𝑛

𝑛𝑜
= (

𝑣𝑜

𝑣
)

1
2⁄

(
𝑙

𝑙𝑜
.

𝑙𝑠
2−𝑙2

𝑙𝑠,𝑜
2−𝑙𝑜

2)         (3.4) 

Observations made by Haines et al.[155] of their twisted nylon 6,6 fibres indicated that 

the volumetric thermal expansion was mainly in the diameter direction with small axial 

contraction occurring upon heating. This asymmetry in thermal expansion has been long 

established in oriented, semi-crystalline polymer fibres [171]. Assuming that the 

cylinder length change is negligible and that the string length is constant, Equation (3.4) 

simplifies to: 

𝑛

𝑛𝑜
≈ (

𝑣𝑜

𝑣
)

1
2⁄

= 
𝑑𝑜

𝑑
         (3.5) 

Represented as the change in twist per cylinder length gives: 

∆𝑇 =
𝑛

𝑙
−

𝑛𝑜

𝑙𝑜
≈

𝑛𝑜

𝑙𝑜
(

𝑑𝑜

𝑑
− 1)        (3.6) 

The above expression suggests that the torsional stroke (∆𝑇) indeed depends on the 

inserted twist (To = no/lo) and the diameter change from volume expansion, such as 

occurs during heating. If fibre twist has negligible effect on the asymmetric volume 

expansion of the fibre, then the above analysis suggests that the torsional stroke depends 

only on inserted twist and is independent of fibre diameter.  

We here report further investigations of the scale dependency of torsional stroke and 

generated torque in twisted nylon 6 monofilaments. Twisted fibres were prepared from 
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fibres with a two-fold difference in diameter and with different inserted twist. The key 

assumption that torsional stroke depends only on inserted twist is experimentally tested. 

Further, the single helix approximation of the twisted fibre structure is evaluated in 

terms of the quantitative prediction of the torsional stroke during fibre heating.  

3.2 Experimental  

3.2.1 Twist Insertion in Nylon 6 Fibre 

Twist insertion into commercially available nylon 6 fibre (Sport Fisher monofilament 

fishing line) was conducted by an electrical DC motor (Figure 2.2) as described in 

Chapter two. Neat samples of different diameters, 𝑑 (400, 500, 780, and 1000 µm) were 

chosen to be twisted under constant axial stress of 10 MPa (based on the cross-sectional 

area of the untwisted fibre). Initially, all the twisted samples were fabricated having 

similar twist directed bias angle (𝛼𝑓, ~30°) by calculating the amount of needed twist 

(T) using Equation 2.9.   

Next interest was the insertion of the same amount of twist (170 T.m
-1

) in the different 

diameter fibres to give a range of different bias angles. Finally, different amounts of 

twist were inserted into a fibre of fixed diameter (780 µm). Overall fabrication variables 

are graphically illustrated in Figure 3.2.  
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Figure 3.2. Accounted fabrication variables during twist insertion into nylon 6 fibre. 

 

3.2.2 Thermo-Physical Change in Fibre Dimensions 

Thermally induced dimensional changes of twisted nylon 6 fibre were investigated by 

heating the sample in a silicone oil filled capillary tube. Silicone oil has high thermal 

stability and is particularly suitable as a high temperature heat-transfer liquid [183]. 

Fibre samples twisted in all experimental conditions were used, hence provided the 

detailed   understanding of thermal expansion or contraction. Figure 3.3 shows the 

illustration of tests used to measure changes in length, diameter and volume of twisted 

fibre before and after heating. An optical microscope (ISSCO-OPTEK) was used to 

accurately measure the change in liquid level and fibre length.  

Starting with the same initial volume of oil, the volume changes for the oil-only (ΔV1) 

and fibre-in-oil cases (ΔV) can be written as: 

∆𝑉1 =  𝜋. 𝑅2. (𝐿1
′ − 𝐿1)         (3.7) 

∆𝑉 =  𝜋. 𝑅2(𝐿′ − 𝐿)          (3.8) 
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The negligible change in capillary diameter over the temperature range used is ignored. 

Subtracting Equation (3.7) from (3.8), gives the volume change of the twisted fibre 

(∆𝑣):  

∆𝑣 =  𝜋. 𝑅2[(𝐿′ − 𝐿) − (𝐿1
′ − 𝐿1)]        (3.9)  

 

Figure 3.3. Experimental illustration of dimension change in twisted fibre operated in a 

silicone oil filled glass capillary (radius 𝑹); (a) calibration of oil thermal expansion 

having liquid height 𝑳𝟏 at 26°C, and 𝑳𝟏
′at 62°C, (b) Combined thermal expansion of oil 

with immersed fibre from initial liquid level 𝑳 raised to 𝑳′ at 62°C. Fibre length (l) 

remained almost constant while radius changed from 𝒓 to 𝒓′when heated.  

 

Experimentally, it was observed that the fibre length change was negligible over the 

temperature range from 26°C to 62°C for all fibres, regardless of diameter and amount 

of inserted twist. The fibre volume change can be expressed solely as a change in radius 

(r):   

∆𝑣 =  𝜋. 𝑙[𝑟′2
− 𝑟2]         (3.10) 

Combining Equations (3.9) and (3.10) gives a general expression of change in radius of 

twisted fibre which was used to calculate the thermal expansion/contraction coefficients 

for further theoretical analysis:    
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𝑟′ = √𝑅2[(𝐿′−𝐿)−(𝐿1
′−𝐿1)]

𝑙
+ 𝑟2       (3.11) 

3.2.3 Thermally-Induced Torsional Actuation Test 

Torsional actuation tests were conducted in an in-house-built testing apparatus (Figure 

2.3 and Figure 2.4) described in Chapter two. All the isotonic tests (constant torque) 

reported herein were conducted under a constant small external torque (68 µN·m) 

applied by the lever arm and opposing the fibre untwisting. The same apparatus was 

also used to evaluate the torque generated during heating/cooling of the twisted nylon 

fibre. In this case, the lever arm was operated in the isometric (constant length) mode to 

prevent fibre rotation and provided a measure of the blocked torque. Unless otherwise 

stated, a constant twisted sample length (70 mm) and a constant temperature range (26-

62°C) at average heating and cooling rates of 3.6°C/min and 1.8°C/min, respectively, 

were programmed and used for all the actuation tests.    

3.2.4 Torsional Stiffness Measurements 

Fibre torsional stiffness was measured using the same apparatus. Controlled rotation of 

the shaft attached to the free end of the fibre using the lever arm generated the torque – 

rotation relation. Previous studies of the same nylon 6 fibres have established that their 

torsional behavior is linear elastic over the range of rotations used here [184]. The 

torsional stiffness (S) were obtained from the slopes of these lines, as described 

previously [184]. 

3.3 Results       

3.3.1 Characterisation of Twisted Fibres   

Several fabrication parameters were considered while preparing twisted nylon 6 fibres 

for actuation testing. Firstly, fibres from four different diameters (400, 500, 780, and 



82 

 

1000 µm) were twisted to 428, 340, 221, and 170 T.m
-1

, respectively, producing the 

same surface bias angle of ~30° (Figure 3). In a second set of samples, the four different 

diameter fibres were twisted to a constant twist (170 T.m
-1

). Finally, a third set of 

samples was prepared by twisting fibres of constant diameter (780 µm) to 145, 170, 

221, and 290 T.m
-1

. The prepared fibres were examined using optical microscopy after 

fabrication to measure the surface bias angle and final fibre diameter. When twisted to a 

constant bias angle of 30°, the diameter of each fibre was increased by approximately 

8% compared to their initial diameters (Figure 3.4). Fibre bias angle measurements 

show good agreement to the diameter/twist/bias angle relationship of Equation (2.9).  

 

Figure 3.4. Photographs of different diameter fibres twisted to a constant bias angle by 

inserting twist of 428, 340, 221, and 170 T.m
-1 

for fibres of starting diameters of 400, 

500, 780, and 1000 µm and with a constant axial stress of 10 MPa applied during twist 

insertion. The obtained surface fibre twist bias angle and fibre diameter are as indicated.  

  

3.3.2 Asymmetric Thermal Volume Expansion of Twisted Fibres  

The twisted fibres were heated slowly in an oil-filled capillary to experimentally 

measure the length and volume change as described in Figure 3.3.  In all cases, the fibre 

length change was negligible when heated from 26°C to 62°C and this observation is 

consistent with previously published results for the axial thermal expansion of oriented 

nylon 6 fibres over this temperature range [171].  In contrast, the thermal strain in the 
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radial direction was considerably larger and almost identical for all of the twisted fibres 

prepared with different fabrication parameters (Figure 3.5).  

 

Figure 3.5. Thermally induced radial expansion of twisted nylon 6 fibres normalised to 

the diameter at 26
o
C: (a) different diameter fibres twisted to the same bias angle (30°); 

(b) different diameter fibres with the same amount of inserted twist (170 T.m
-1

); and (c) 

different inserted twist in constant diameter fibres (780 µm). 

 

3.3.3 Effect of Fibre Diameter and Inserted Twist on Torsional Actuation  

3.3.3.1 Constant Bias Angle Fibres 

The torsional stroke and torque generated from custom fabricated twisted fibres were 

found to be strongly influenced by the starting fibre diameter and amount of inserted 

twist. Figure 3.6(a) shows the thermally induced torsional stroke of different diameter 

nylon 6 fibres prepared with the same bias angle (~30°) achieved by inserting different 

amounts of twist.  
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Figure 3.6. Torsional actuation test results of twisted nylon 6 fibres of different 

diameters and having the same bias angle (30
o
): (a) isotonic torsional stroke; and (b) 

isometric torque generation. 

 

The fibre rotation during both heating and cooling is shown to be fully reversible with a 

small hysteresis, which is at least partially related to the thermal lag between the 

recorded temperature of the furnace and the true fibre temperature. Slow heating and 

cooling rates minimized the magnitude of the observed hysteresis. It can be seen that the 

smallest considered diameter fibre has produced the largest stroke and the stroke at any 

given temperature decreased monotonically with increasing fibre diameter. 

Figure 3.6(b) shows the isometric torque generation by these same different diameter 

fibres with constant bias angle. A steady increase of generated torque at any given 

temperature was noticed as fibre diameter increased. The torque generated during 

heating was fully relaxed during cooling with some hysteresis. In addition to the thermal 

lag, the hysteresis in torque was also increased by some stress relaxation that occurred 

during the short isothermal holding period between heating and cooling.   
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3.3.3.2 Constant Twist Insertion  

Figure 3.7(a) shows the thermally induced torsional stroke of different diameter nylon 6 

fibres prepared with the same amount of twist inserted per length of as-received fibre 

(~170 T.m
-1

). All fibres generated remarkably similar torsional stroke-temperature 

curves during both heating and cooling. The results show that torsional stroke was 

clearly independent of the 2.5 fold difference in fibre diameter when fibres were 

prepared with the same inserted twist.  

In contrast, the generated blocked torque of these same fibres increased significantly 

when larger diameter fibres were used [Figure 3.7(b)]. As described in more detail 

below, the generated torque is determined by the product of the torsional stroke and the 

fibre stiffness and the latter is strongly dependent on fibre diameter. 

 

Figure 3.7. Torsional actuation test results of twisted nylon 6 fibre with different 

diameters and having the same twist inserted per initial fibre length (~170 T.m
-1

): (a) 

isotonic torsional stroke; and (b) isometric torque generation.   

 

3.3.3.3 Constant Fibre Diameter 

The final experiment investigated the effect of inserted twist in fibres of constant 

diameter (780 µm). Figure 3.8(a) shows the torsional stroke increased monotonically 
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with the amount of twist inserted.  Similarly, Figure 3.8(b) shows blocked torque and 

the torque generation during heating was also seen to be dependent on the amount of 

twist inserted and increased with increasing amount of twist. 

 

Figure 3.8. Torsional actuation test results of twisted nylon 6 fibre with a constant 

diameter and having variable twist inserted per initial fibre length: (a) isotonic torsional 

stroke; and (b) isometric torque generation.  

 

3.4 Discussion 

3.4.1 Theoretical Estimation of Torsional Rotation   

Previous investigations of torsional actuation in twisted fibres and yarns have suggested 

that a single helix approximation can provide some insight into the actuation mechanism 

[110, 155]. Figure 3.9 illustrates two states of a helical string encompassing a cylinder 

of different volumes. The geometric analysis is facilitated by “opening up” the cylinder 

so that the string can be visualized as forming the hypotenuse of a right triangle. 

Derivation of Equation (3.3) then follows. The expression has previously been applied 

to explain the possibility of fibre untwist during a volume expansion, [110, 155] but has 

not been used to quantitatively predict the amount of untwist. 
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Figure 3.9. Illustration of a single helix fibre geometry, (a) before actuation, and (b) 

after actuation. l denotes fibre length, ls is length of the helically wrapped string, d is 

fibre diameter, and 𝒏 is the amount of twist, 𝜶𝒇 denotes the helix bias angle. Zero 

subscripts represent the initial state. 

 

Combined torsional actuation measurements and volume expansion data allows the 

application of the single helix model to quantitatively predict the amount of torsional 

stroke. The starting assumption is that the “string length” in the single helix remains 

constant during the volume change. For the twisted nylon fibres the “string” can be 

thought of as the oriented polymer chains on the surface of the fibre. These molecules 

are likely highly extended and firmly connected through crystalline blocks. This 

topology exhibits a high axial stiffness and can be considered mechanically 

inextensible. However, previous work has shown a negative thermal expansion of 

oriented nylon fibres in the fibre direction[171]. In the present study, the temperature 

range for actuation tests has been chosen to minimise the axial length change and 

experiments confirm negligible changes in length of twisted fibre. This observation and 

the assumption that the string length is constant  greatly simplifies Equation (3.4) to 

Equation (3.5) where the torsional actuation, in theory, depends only on the change in 

fibre diameter and the amount of twist inserted. 
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The torsional strokes have been calculated using Equation (3.6) and from the measured 

diameter change. The results are shown in Figure 3.10 for each of the 3 series of 

prepared fibres.  

 

Figure 3.10. Comparison of experimentally measured and theoretically calculated 

torsional strokes for 70 mm long twisted nylon 6 fibre prepared with (a) similar bias 

angle (30
o
 to the fibre axis); (b) similar amount of twist (170 T.m

-1
); (c) similar fibre 

diameter (780 µm).  All calculated and measured torsional strokes are compared in part 

(d). 

 

The measured torsional strokes are included for comparison and in all cases there is a 

very good agreement between the measured and calculated values. The single helix 

theory correctly predicts the dependence of torsional stroke on the diameter change and 

the amount of inserted twist. The theory also predicts the quantitative torsional strokes 

with high accuracy, giving support to the underlying assumption that the string length 
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remains unchanged during heating. It is noted that the theory is slightly less accurate in 

quantitatively predicting torsional stroke for the most highly twisted fibres, for reasons 

that are not yet known. The overall degree of agreement between calculated and 

measured torsional strokes is especially good considering that the twisted fibres are not 

single helices encompassing a hollow cylindrical core as assumed in the model. A closer 

approximation to the actual fibre structure is described by a series of nested helices of 

different diameter and the same number of turns per length (and, hence, different bias 

angles). If all these helices displayed the same diameter expansion ratio and no change 

in length, then they would all produce equivalent torsional stroke.   

The real fibre structure, however, likely involves entangled helices of oriented polymer 

chains joined by the crystalline blocks. The structure of the fibre, including crystal 

block size, defects and chain orientation, may be altered by the twist insertion and with 

possible variations in structure occurring along the radial direction. These molecular 

differences may affect the degree of “co-operation” between inner and outer layers in 

generating the torsional actuation. The data of the present study suggest that at smaller 

amounts of twist insertion the “co-operation” is good and all layers generate the 

predicted torsional stroke. However, at higher twist insertion some process slightly 

impedes the untwisting mechanism and further studies are needed to identify the 

cause(s). 

3.4.2 Theoretical Estimation of Torque Generated   

A quantitative analysis of torque generation from differently twisted fibres was also 

conducted. It has been shown previously that the maximum torque generated when the 

twisted fibres are heated occurs when the fibres ends are securely clamped [184]. This 
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“blocked torque” (𝜏𝑏𝑙𝑜𝑐𝑘𝑒𝑑) can be calculated using standard torsion mechanics and as 

verified previously [184]: 

𝜏𝑏𝑙𝑜𝑐𝑘𝑒𝑑 = ∆𝑛.
𝐽𝐺

𝑙
         (3.12) 

Here, Δn represents the free rotation (in radians) of a fibre of length l that is clamped at 

one end and whose other end is free to rotate. 𝐺 is the fibre shear modulus in the final 

state and 𝐽 is the polar moment of inertia of fibre and formulated in terms of sample 

diameter (d) for a fibre of circular cross-section: 

𝐽 =  
𝑑4

32
          (3.13) 

Therefore, the general quantitative expression when combined with equation (3.5) can 

be written as:  

𝜏𝑏𝑙𝑜𝑐𝑘𝑒𝑑 = ∆𝑛.
.𝑑4.𝐺

32.𝑙
=

.𝑑4.𝐺.𝑛𝑜

32.𝑙
(

𝑑𝑜

𝑑
− 1)             (3.14)  

Fibre shear moduli were determined from torsion tests at both the starting and finishing 

temperatures used in the actuation tests. The torsional stiffness (𝑆 =
𝐽𝐺

𝑙
) of a 500 µm 

diameter nylon 6 fibre was experimentally evaluated and the stiffness of the other 

diameter fibres were calculated theoretically from equation (3.15) and verified 

previously [184]:  

𝑆1.𝑙

𝑆2.𝑙
= (

𝑑1

𝑑2
)

4

          (3.15) 

Here, 𝑆1 and 𝑆2 are torsional stiffness of two different diameter fibres 𝑑1 and 𝑑2 of 

length 𝑙. Table 3.1 shows the torsional stiffness of different diameter fibres at two 

experimental conditions of 26°C and 62°C. The shear moduli are also included in Table 
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3.1 and it is seen that all fibres have nearly equivalent moduli of ~0.43 GPa and ~0.39 

GPa at 26°C and 62°C, respectively. 

Table 3.1. Torsional properties of twisted nylon 6 fibres having different diameter.  

Fibre diameter 

(µm) 

Torsional stiffness (N·m)  Shear modulus (GPa)  

26°C 62°C 26°C 62°C 

400 1.46×10
-4

 1.31×10
-4

   0.43 

 

    0.39 

 

500 3.56×10
-4

 3.19×10
-4

 0.42 0.38 

780 2.11×10
-3

 1.89×10
-3

 0.44 0.41 

1000 5.70×10
-3

 5.10×10
-3

 0.43 0.38 

 

 

Figure 3.11. Comparison of experimentally measured and theoretically calculated 

blocked torque generated from 70 mm long twisted nylon 6 fibre of different fabrication 
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parameters: (a) similar bias angle (30
o
 to the fibre axis); (b) similar amount of twist (170 

T.m
-1

); (c) similar fibre diameter (780 µm). All calculated and measured torsional 

strokes are compared in part (d).  

 

Figure 3.11 shows the calculated blocked torques obtained from equation (3.14) and 

includes the measured torques for comparison. In all cases, there is an excellent 

agreement between the measured and calculated values, further supporting the 

analytical approach based on a single helix. Unlike the results of torsional stroke, the 

torque generation from the twisted fibres is strongly dependent on fibre diameter as 

indicated by the fourth power dependency of torque on fibre diameter in equation 

(3.14). Thus, for fibres having a constant amount of inserted twist [Figure 3.11(b)], the 

torque generated increases by a factor of 40 times for a 2.5 times increase in diameter. 

The generated torque also depends linearly on the amount of inserted twist, as shown in 

Figure 3.11(c) for fibres of constant diameter.  

3.5 Summary          

The aim of this study was to further investigate the scalability of torsional actuation in 

twisted monofilament fibres and to evaluate the single helix model for quantitatively 

predicting torsional stroke and torque. Nylon 6 monofilaments were prepared with 

different fibre diameters, amount of inserted twist and twist bias angle. Heating and 

cooling the samples over a ~30
o
C range provided a measure of both torsional stroke and 

generated torque. The torsional stroke was dependent only on the amount of twist 

inserted into the fibre and was independent of fibre diameter and fibre bias angle. The 

single helix model accurately predicted the torsional stroke based on the measured fibre 

diameter change during heating. Generated torques were also accurately predicted by 

the single helix model when combined with the measured fibre torsional stiffness. 



93 

 

Torque was strongly dependent on fibre diameter, along with the amount of inserted 

twist. A summary of the dependencies of stroke and torque on diameter for each of the 

three types of fibres prepared is given in Table 3.2. 

Table 3.2. Prediction of torque generation from induced twisted fibre. 

Parameters Theoretical prediction of 

blocked torque (𝝉𝒃𝒍𝒐𝒄𝒌𝒆𝒅) 

Bias angle Number of twist Fibre diameter  

Constant Variable Variable 𝜏𝑏𝑙𝑜𝑐𝑘𝑒𝑑~ 𝐷3 

Variable Constant Variable 𝜏𝑏𝑙𝑜𝑐𝑘𝑒𝑑~ 𝐷4 

Variable Variable Constant 𝜏𝑏𝑙𝑜𝑐𝑘𝑒𝑑~ tan 𝛼 or, 𝜏𝑏𝑙𝑜𝑐𝑘𝑒𝑑~𝑇 

 

The degree of agreement between the measured torsional actuation parameters and 

those calculated from the single helix model was impressive. There were some small 

discrepancies between the calculated and measured torsional strokes obtained from the 

most highly twisted fibres, and possible causes for these differences are the subject of 

future work. The success of the single helix model indicates that the solid twisted fibre 

behaves co-operatively, with the mechanism of fibre untwist operating consistently 

throughout the fibre thickness. In the example studied, it was found that the fibre length 

change was negligible and this observation greatly simplified the application of the 

single helix model. Further work will consider fibres in which significant fibre length 

changes occur during heating and then evaluate whether the single helix approximation 

remains valid.    

 



94 

 

 

 

 

 

 

 

 

 

CHAPTER 4 Comparison of Torsional Actuation in Twisted 

Polymer Fibres: Polyethylene, Polypropylene and Polyamide-6 

 

 

 

 

 

 

This chapter has been submitted for publication as “S. Aziz, S. Naficy, J. Foroughi, H. 

R. Brown and G.M. Spinks, Polymer, Awaiting Revision (2017)”. 
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The introduction and experimental sections in this chapter are shortened versions 

compared with the submitted article to avoid duplication with the previous chapters. 

4.1 Introduction 

Torsional actuation occurs during volume change of systems that contain a helically 

oriented and mechanically stiff element in their structure. Macroscopic examples 

include elastomeric bladders wrapped with reinforcing fibres. Pneumatic inflation of the 

bladder causes rotation of the unclamped end, however, reported torsional strokes are 

small (0.002 turns/mm) [109] since the number of turns made by the reinforcing fibre is 

limited. For a given wrap angle (α𝑓), the number of turns (N) the reinforcing fibre 

makes per length of bladder (𝐿) is inversely related to the bladder diameter (D): 

tan 𝛼𝑓 =
𝜋𝑁𝐷

𝐿
          (4.1) 

This same relation describes the helix angle at the surface of a twisted fibre or yarn with 

a diameter of 𝐷, length of 𝐿, and 𝑁 number of twist. As described in Chapter 3, the 

torsional stroke is proportional to the amount of twist inserted into the fibre [119, 185], 

therefore high stroke torsional actuators are favoured by small diameter fibres as 

maximum 𝑁 that can be inserted into a fibre before destabilization is controlled by fibre 

diameter.   

Further insight into the torsional actuation behaviour has been provided by treating the 

twisted fibre or yarn as a single helix [185].  The ratios of final to initial turns (λ𝑛), fibre 

length (λ𝑙), fibre diameter (d) and string length (s) are geometrically related by:    

λ𝑛 = [
1

tan2α𝑓
(

λ𝑠
2−λ𝑙

2

λ𝑑
2 ) +

λ𝑠
2

λ𝑑
2]

1/2

        (4.2) 
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where α𝑓is the initial wrap angle at the fibre surface, relative to the long axis of the 

fibre. This simple approximation provided remarkably accurate predictions of the 

measured torsional stroke occurring in polyamide-6 fibres (commercial nylon 6 fibre) of 

different diameters and prepared with different number of twists [185]. The fibres were 

torsionally actuated by heating and the dimensional changes measured over the same 

temperature range. Experimentally, it was observed that the length change in all tested 

fibres was negligible (i.e. 𝜆𝑙~1). Also the assumption was made that the string length, 

corresponding to the helically oriented extended polymer chains and crystal blocks, was 

unchanged by heating (i.e. 𝜆𝑠~1). Under these circumstances, equation (4.2) simplified 

to:   

λ𝑛 =
1

λ𝑑
          (4.3) 

The aim of the present study was to extend this analysis to explore twisted fibre systems 

where both length and diameter changes occurred on heating. Oriented fibres of 

polyethylene and polypropylene were chosen to compare with polyamide-6. Choy et al. 

[171] have shown that these three polymers show different thermal expansion 

anisotropies over the temperature range of interest.  Comparison of torsional strokes 

from these different fibres is reported and the differences are explained in terms of 

thermo-physical properties of fibre materials. Torque generated during heating of 

similarly fabricated actuators is also measured and theoretically validated by using 

torsion mechanics.  
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4.2 Experimental 

4.2.1 Twist Insertion and Sample Characterization 

Commercially received ultra-high molecular weight oriented polyethylene braided fibre 

(DYNEEMA  braided fishing line) and polypropylene monofilament (textile thread - 

Tengzhou Tuoliduo Industrial & Trade Co. Ltd.) were twisted by attaching their top end 

to a rotating motor and the bottom end to a suspended mass that retains the fibre 

tensioned at constant stress (10 MPa). The bottom end of the fibre is restricted from 

rotation around the vertical axis, thus every turn of the motor produces one turn of twist 

in the fibre. After a certain amount of twist was inserted, the fibres started to buckle and 

formed a coiled loop. The motor was stopped at the onset of coiling and the twisted 

section of fibre was utilized in further experiments. This fabrication method produces a 

temporary twisted configuration on the fibre surface and requires an additional 

annealing process to set the newly formed helical structure. Previous studies on twisted 

polyamide fibres have shown that annealing at temperatures approaching the melting 

point are most effective. Differential scanning calorimetry (DSC) was used to determine 

melting points and suitable heat-setting temperature of twisted fibres for both 

polyethylene and polypropylene samples. The twisted samples were held at the 

predetermined temperatures for 30 minutes with ends firmly clamped to prevent them 

from untwisting during heat setting. Then, the samples were cooled to ambient 

temperature over 2 hours while still kept tethered at both ends to prevent twist loss 

during cooling.  

Surface morphology of fabricated samples was evaluated by using an optical 

microscope (Leica Z-16). The number of twists per initial fibre length was calculated 
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from equation (1) by using the observed twist bias angle and twisted fibre diameter 

[110, 184]. 

4.2.2 Thermally-Induced Physical Characterization 

The test set-up shown in Figure 4.1 was used to observe the axial and radial thermal 

expansion of twisted polyethylene and polypropylene fibres. One end of the twisted 

sample was attached to a lever arm force / distance transducer with micrometre length 

resolution (Aurora Scientific 305B). A metal hook was used to attach the fibre to the 

lever arm which allowed horizontal movement of the fibre at the tethering point but 

fully restricted the torsional movement. The other end of the fibre was connected to a 

rigid support through an ultra-low stiffness commercial thread (30 µm diameter 

polyamide-6 monofilament). This thread applied negligible opposing torque to the 

twisted fibre and allowed free rotation of the actuated fibre during heating. A thermal 

imaging camera was used to measure the temperature on the fibre surface, and in-

parallel, an optical microscope was placed radially to the fibre to observe the change in 

diameter. Length changes in the sample were recorded from the lever arm signal as a 

function of temperature increase when exposed to an infrared heating source (IXL 

275W infrared heat lamp held at ~10 mm from sample).  
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Figure 4.1. Schematic illustration of thermally induced test for measuring dimensional 

changes in twisted fibre (inset shows the example of radial thermal expansion of twisted 

polyethylene fibre heated in between 26 – 62°C).   

 

The radial expansion measurement of polypropylene was found difficult because of 

small dimensional changes that occurred during heating and cooling. Therefore, our 

previously developed oil bath method to evaluate thermal expansion of an immersed 

filament was used [185]. Initially, thermal volume expansion of silicon oil in a glass 

tube was measured over the 26 – 62°C temperature range. Afterwards, seven units of 

identical twisted polypropylene fibre were immersed in the oil filled glass tube and the 

thermal volume expansion of the whole unit was then determined. The following 

equation describes how both radial and axial length changes occurring in the fibres upon 

heating are related with each other:    

𝑟′ = √𝑅2[(𝐿′−𝐿)−(𝐿1
′−𝐿1)]

𝑙′−𝑙
+ 𝑟2       (4.4) 

Here, silicon oil height poured in glass tube is 𝐿1 at 26°C, combined oil with immersed 

fibre liquid level is 𝐿 at 26°C, fibre length is 𝑙  at 26°C and fibre radius is 𝑟 at 26°C. The 

notation (′) denotes the same parameters at 62°C.    
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4.2.3 Torsional Actuation Tests and Torsional Property Evaluation 

Thermally induced torsional actuation tests were performed in a torsion testing 

apparatus developed in-house [184]. The apparatus includes an electrically heated 

chamber, a DC power supply, programmable temperature controller (Electro Chemical 

Engineering Pty Ltd) and the lever arm force/distance transducer system (Aurora 

Scientific 305B). One end of the fibre end was firmly clamped and the other end 

attached to a shaft supported by two near frictionless air bearings. A high modulus fibre 

wrapped around the bearing was connected to the lever arm transducer. Isotonic 

torsional stroke (𝜙isotonic) was determined from the lever arm displacement under an 

opposing and constant normal force (𝐹𝑁) applied to the surface of the shaft to give a 

constant torque (𝜏ext) acting on the twisted fibre. The same torsion tester was also used 

to measure the torque generated during heating/cooling of the twisted fibre. In this case, 

the lever arm was operated in the isometric mode (constant length) to prevent fibre 

rotation and provide a measure of the blocked torque (𝜏blocked).   

The torsional stiffness [180] of the twisted fibres was evaluated at the two temperature 

extremes representing the actuated (high temperature) and non-actuated (low-

temperature) states.  The lever arm system was used to rotate the shaft, twist the fibre, 

and measure the applied force. As in previous studies [185], the fibres were found to be 

linearly elastic in torsion and the torsional stiffness was calculated from the slope of the 

torque vs degree of rotation. The free rotation (𝜙free) expected during the heating of the 

twisted fibre could be then be predicted from the measured isotonic torsional stroke 

using:   

𝜙isotonic = 𝜙free + 𝜏ext (
1

𝑆ˊ𝐴
−

1

𝑆𝐴
)       (4.5) 
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by inserting the measured torsional stiffnesses in the non-actuated (𝑆𝐴) and actuated (𝑆𝐴
′ ) 

states. 

4.3 Results 

4.3.1 Surface Morphology and Thermo-Physical Properties  

Twisting a single ply polyethylene braided structure (606 µm diameter) produced a 

complex and non-uniform helical structure [Figure 4.2(a)]. The phenomenon happens 

due to the frustration of inter-filament spacing which leads to identical shapes of self-

twisting bundles that break the symmetries of packing and of the inter-filament forces, 

paralleling a morphological instability throughout the fibre [186]. In contrast, when two 

plies of the same structure were twisted together the result was a compact fibre of 

uniform diameter [Figure 4.2(b)] since the identical helical instabilities twisted and 

wrapped over each other. The reduced diameter of 1050 µm (instead of 1212 µm) after 

twisting highlights the considerable compaction in the twisted fibre made of individual 

micro-filaments that form the braided fibres. From equation (4.1), the number of twists 

was calculated as ~680 turns per meter which closely compares with manually counted 

~648 turns per meter during twist insertion.  
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Figure 4.2. Polyethylene braided structures. (a) Single ply braid (a1) as-received and 

(a2) after twisting. (b) Two ply of same structure (b1) as-received and (b2) after twists 

were inserted.     

 

A polypropylene fibre of ~350 µm diameter was also twisted to the point of coil 

formation. Figure 3 shows optical micrographs at different stages of the twisting 

process. Figure 4.3(a) represents the precursor fibre and Figure 4.3(b) shows the fibre 

after maximum twist insertion. However, significant ‘necking’ or plastic deformation 

was observed after twist insertion. The average fibre diameter was found to have 

increased during twisting by ~10% from ~350 µm to ~384 µm. The bias angle of the 

inserted twist was measured microscopically and found to be ~32°. The amount of twist 

inserted was calculated using equation (4.1) and found to be ~514 turns per meter of 

initial fibre length. Twist count during twisting was ~492 turns per meter of precursor 

fibre length which closely approximates the calculated value.  



103 

 

 

Figure 4.3. Micrographs of polypropylene monofilament structures; (a) as-received, and 

(b) highly twisted.   

  

DSC tests were conducted to evaluate the melting point of twisted samples and then the 

heat-setting temperature was determined. Figure 4.4(a) shows the DSC result for twisted 

polyethylene where a first melting peak was observed at ~145°C and a second melting 

peak at ~154°C which lies in the range of reported melting temperature of commercial 

product of their types. Double melting peaks in a DSC experiment have been previously 

ascribed to melting of less stable crystalline structures followed by recrystallization and 

remelting of more stable crystals [187, 188].  An acceptable heat-setting temperature of 

120°C was chosen for the twisted polyethylene braids so that any melting of the crystal 

structures was avoided. Figure 4.4(b) shows the DSC results for twisted polypropylene 

monofilaments where the melting temperature was observed at ~167°C. From DSC 

results, 120°C was selected as the heat-setting temperature of the polypropylene and 

polyethylene fibres. This temperature was sufficiently below the melting temperatures 

of both polymeric fibres, ensuring the crystalline structure of the fibres to remain intact.      
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Figure 4.4. DSC results of twisted fibres; (a) polyethylene, and (b) polypropylene.  

 

Torsional stiffness of both polyethylene and polypropylene fibres was measured from 

torque-stroke curves at 26°C (non-actuated state) and 62°C (actuated state). Figure 4.5 

shows the relationship of applied torque and torsional stroke where the inverse slope of 

the lines denotes torsional stiffness. Torsional stiffness of a 70 mm long twisted 

polyethylene fibre (~ 606 µm diameter) was found to be ~667 and ~400 µN·m at 25 and 

62°C, respectively. Significant drop of torsional stiffness in this temperature region is 

probably due to the rapid decrease in density of ultra-high molecular weight 

polyethylene fibres on heating [189]. The twisted polypropylene fibre (350 µm in 

diameter and 70 mm in length) had a considerably smaller torsional stiffness of ~54 and 

~52 µN·m at 25 and 62°C, respectively.  
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Figure 4.5.  Torsional rotation of twisted fibres under applied torque; (a) polyethylene 

braided fibre, and (b) polypropylene fibre. (Inverse of slope of each curve denotes the 

torsional stiffness of that fibre).  

 

To aid detailed theoretical calculation of free stroke over the 25 – 62°C temperature 

range, torsional stiffness of both fibres were also measured at 30, 40, and 50°C. Table 

4.1 shows the torsional stiffness results at different temperatures.    

 

Table 4.1. Torsional stiffness of twisted fibres in several temperatures.  

 

Temperature (°C) Torsional stiffness (µN·m)  

Twisted polyethylene fibre Twisted polypropylene 

fibre  

26 667 54 

30 556 53 

40 500 53 

50 435 52 

62 400 52 
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4.3.2 Anisotropic Thermal Volume Expansion of Twisted Fibres 

The twisted fibres were heated slowly using an infrared heating source while fibres 

were imaged with a microscope and the diameter change was recorded. The lever arm 

transducer system provided a measurement of the fibre length change under a constant 

external tensile stress. Within the 26°C to 62°C temperature range, the twisted 

polyethylene fibre showed radial thermal expansion of ~0.48% with an axial thermal 

contraction of ~0.06% (Figure 4.6).  

 

Figure 4.6. Thermal expansion and contraction of twisted polyethylene and 

polypropylene fibres; (a) diameter expansion, and (b) axial contraction with increasing 

temperature.    

 

These observations are similar to previously published results for the anisotropic 

thermal expansion of oriented high density polyethylene fibre over this temperature 

range [171]. However, there is no such report for thermal expansion in ultra-high 

molecular weight oriented polyethylene fibres, such as the one used in the present study. 

Thermally-induced dimension change of polypropylene fibre was also measured within 

the same temperature range of 26°C to 62°C. A radial thermal expansion of ~0.12% was 

obtained along with axial thermal contraction of ~0.04% (Figure 4.6). Compared to the 

thermal expansion across the fibre, both polyethylene and polypropylene showed little 



107 

 

axial thermal contraction which also supports the previous studies regarding thermal 

properties of oriented polymers [171, 190].   

4.3.3 Torsional Stroke and Torque Generation 

Isotonic torsional stroke was measured at a small fixed applied torque and then 

converted to an equivalent free rotation at zero external torque by using torsional 

stiffness values (Table 4.1) in equation (4.5). Figure 4.7 shows the torsional stroke of 

twisted polyethylene fibres (opposed by 72 µN·m torque) and polypropylene fibres 

(opposed by 40 µN·m torque). The calculated free rotations are also plotted to 

demonstrate the comparison in the torsional actuation of twisted fibres: one under small 

external torque (experimental, broken lines) and the other calculated from equation (4.5) 

under zero torque (solid lines). The differences in the isotonic and free strokes are small 

because of the small external torques used and the small change in torsional stiffness of 

the fibres over the temperature range used. Free rotation of twisted polyethylene and 

polypropylene fibre was found to be -1.21 and -0.22 °/mm, respectively, over the 26 – 

62°C temperature range. Torsional stroke of polyethylene fibre in higher temperature 

region got larger due to the rapid decrease in torsional stiffness as discussed previously. 

However, torsional stiffness of polypropylene drops only a small extent in this 

temperature range; hence, exhibited less torsional stroke. Both of the fibres have shown 

good reversibility and the results were reproducible for several actuation heating and 

cooling cycles. In comparison, the torsional stroke of polyamide-6 twisted fibres over 

the same temperature range was -3.14 °/mm [184].  
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Figure 4.7. Torsional stroke of twisted fibres; (a) polyethylene, and (b) polypropylene. 

(Note that different Y-axis ranges are used for two figures).  

 

Figure 4.8 shows the blocked torque generated from twisted polyethylene and 

polypropylene fibres. The maximum blocked torque of the twisted polyethylene and 

polypropylene fibres were 614 and 13 µN·m, respectively, when heated from 26°C to 

62°C. The large difference in torques reflects the significant variation in torsional 

stiffnesses of the two fibres. A large hysteresis in blocked torque was shown by the 

polypropylene fibre during continuous heating and cooling. The hysteresis was smaller 

in the polyethylene fibres in comparison to the polypropylene fibred and may 

demonstrate a difference in the degree of viscoelasticity in these materials. A detailed 

investigation of the molecular processes of viscoelasticity was considered beyond the 

scope of the present thesis. However, both the of fibres showed high reversibility in 

torque generation when cooled, and the actuation pattern was quite reproducible for 

several heating / cooling cycles.         
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Figure 4.8. Blocked torque generated from twisted fibres; (a) polyethylene, and (b) 

polypropylene. (Note that different Y-axis ranges are used for the two figures).  

 

4.4 Discussion  

4.4.1 Theoretical Prediction of Torsional Actuation  

Previous work has demonstrated that the single-helix approximation was able to predict 

the torsional stroke of twisted polyamide-6 monofilament. This material represented a 

special case since the length of the twisted fibre did not change during heating. Under 

these conditions, the single helix model can be greatly simplified from equation (4.2) to 

equation (4.3). The twisted polyethylene and polypropylene fibres used here displayed 

considerable length changes during heating. Therefore, to predict the torsional stroke of 

these fibres equation (4.2) must be validated and used. The expected torsional stroke 

was calculated at any given temperature using the measured fibre diameter and length 

expansion ratios (Figure 4.6). In Figure 4.9, the predicted torsional actuations are 

plotted as a function of temperature, together with previously reported torsional stroke 

of twisted polyamide-6 fibre (840 µm diameter). In Figure 4.9, the torsional actuation is 

presented as the final twist to initial twist numbers ratio (𝑛/𝑛0). This expression is 

independent of the fabrication parameters used during twisting of the fibres, such as the 

number of inserted twist, bias angle, and fibre diameter. The 𝑛/𝑛0 only depends on the 
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thermally induced volumetric changes that occur during heating of the samples. In 

addition to the calculated torsional stroke of polyethylene and polypropylene by 

considering both length and diameter expansion coefficients, it was also evaluated by 

assuming negligible length change. In such cases the calculated torsional strokes deviate 

by ~3% for thermal expansions due to a small temperature change (26-62°C). However, 

the main aim of this work is to evaluate the scalability of actuator performance which 

can be extended to a broader temperature range to induce a larger torsional stroke. 

Therefore, equation (4.2) is recommended to be used which considers both λ𝑙 and λ𝑑 for 

more accurate prediction of torsional stroke. Experimentally measured torsional strokes 

are also included in Figure 9 for comparison with calculated values. There is a very 

good agreement between the measured and calculated values for all three samples. The 

single-helix theory is capable of correctly predicting the dependence of torsional stroke 

on the volume change and the amount of inserted twist. This theory also predicts the 

quantitative torsional strokes with high accuracy, meaning that our assumption in which 

the string length was considered constant is valid for oriented polyamide-6, 

polyethylene and polypropylene.   

 

Figure 4.9. Torsional stroke of twisted fibres comparing experimentally measured 

values (symbols) with predictions from the single helix model (solid lines).  
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It is noted that the amount of torsional rotation varied significantly between twisted 

polyamide-6, polyethylene, and polypropylene fibres under the same experimental 

condition. The predictive single helix model allows exploring the possible reasons for 

the observed differences in torsional actuation of these three polymers.  

Figure 4.10 shows calculated torsional strokes expressed as a fractional of twist bias 

angle. Of note, these three polymers were prepared with different initial twist bias 

angles. The analysis used the measured diameter and length expansion ratios, and 

assumed that these parameters were unaffected by the inserted twist. The calculated 

torsional actuation shows a slightly change over a wide range of initial bias angle for all 

three polymeric fibres. Figure 4.10 suggests that the bias angle has negligible effect on 

the actuation of fibres. Then, it can be concluded that the different torsional actuations 

that were observed between polymer fibres was mainly the result of their different 

thermal expansion. The thermal expansion of polyamide-6 is significantly higher than 

that of polypropylene monofilament and ultra-high molecular weight polyethylene 

braided fibres, hence resulting in much larger actuations. Higher thermal expansion can 

be due to the lower crystallinity or high friction between polymer chains in the 

amorphous phase. Amorphous polymers are known to show higher thermal expansion 

coefficients than crystalline polymers [191]. 
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Figure 4.10. Torsional stroke of twisted fibres as a function of initial twist angles 

(dotted lines represent theoretically calculated values and the symbols denote 

experimentally measured values for the corresponding bias angles).  

 

4.4.2. Theoretical Prediction of Generated Torque  

Experimental results of the torque generated by heating twisted polyethylene and 

polypropylene fibre were significantly different.  Theoretical analysis of the torque 

generated from these fibres was conducted using torsion mechanics [184] which is 

summarized in equation (4.6), and the results are plotted together with experimental 

results in Figure 4.11. Previously measured torque generation by twisted polyamide-6 

fibre (840 µm diameter) is also included in the plot for comparison.   

𝜏blocked = ∆𝑛. 𝑆𝐴
′            (4.6) 

Here, 𝜏blocked is the torque generated from twisted fibre, Δn represents the calculated 

free rotation (in radians) for a certain length (𝑙) of twisted fibre and 𝑆𝐴
′  is the fibre 

torsional stiffness in the actuated condition. In all cases, there is an excellent agreement 

between the measured and calculated values, which further supports the analytical 

approach based on a single-helix model. The higher torsional stiffness of the 

polyethylene fibre results in a generated torque that is similar to that produced by the 
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polyamide-6 twisted fibre, despite of showing almost three times smaller torsional 

stroke. The generated torque for polypropylene fibre is considerably small which is due 

to its small torsional actuation and low stiffness.  

 

Figure 4.11. Measured and calculated blocked torque generated by twisted fibres when 

heated from 26
o
C to 62

o
C.  

 

4.5 Summary  

The objective of this work was to investigate the torsional actuation in twisted polymer 

fibres of different nature and to further evaluate the validity of the previously developed 

single-helix model for quantitative prediction of torsional stroke and torque. Highly 

twisted fibres were prepared by using a rotary motor and the torsional actuation tests 

were conducted over a temperature range of 26 – 62°C. As reported in our previous 

work, twisted polyamide-6 fibre showed negligible length change with significant 

diameter expansion when heated from 26 to 62°C. In comparison, both polyethylene 

and polypropylene fibres used here exhibited length contractions over this temperature 

range. Excellent agreement was found between the experimentally measured and 

theoretically calculated results for torsional actuation and generated force proving the 

validation of the single-helix model. The analysis also demonstrated that the torsional 
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actuation observed in twisted polymer fibres was mainly governed by the thermal 

expansion of fibres. The thermal expansion of fibres, in turn, is influenced by the degree 

of crystallinity.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 

 

 

 

 

 

 

 

CHAPTER 5 Thermo-Mechanical Effects in the Torsional 

Actuation of Twisted Nylon 6 Fibre 

 

 

 

 

 

 

This chapter has been submitted for publication as “S. Aziz, S. Naficy, J. Foroughi, H. 

R. Brown and G.M. Spinks, Journal of Applied Polymer Science, DOI: 

10.1002/app.45529 (2017)”. 

The introduction and experimental sections in this chapter are shortened versions 

compared with the published article to avoid duplication with the previous chapters. 



116 

 

5.1 Introduction 

One practical issue raised in early work on both twisted and coiled polymer fibre 

torsional and tensile actuators was the need for several ‘training cycles’ of heating and 

cooling to achieve fully reversible actuation [155, 184]. In the first few cycles, the 

degree of fibre untwist during heating exceeded the fibre re-twist that occurred during 

cooling [184, 185]. The magnitude of this effect has not previously been reported, nor 

has the molecular origin been described. Fibre twisting and coiling of oriented 

semicrystalline polymer fibres is an elasto-plastic mechanism where much of the 

inserted twist is lost due to elastic recovery unless the twisted fibre is thermally 

annealed while maintaining an external torque. Annealing or heat-setting is also 

commonly used to improve the mechanical properties of drawn polymer fibres by 

altering the fibre microstructure [192-194]. Here, we apply these annealing techniques 

to modify the structure of twisted nylon-6 fibres and investigate the effects on the 

torsional actuation behaviour. 

In addition, the effect on its torsional actuation response of the applied external load 

acting on the fibre on its torsional actuation response is investigated.  Tensile creep is 

known in drawn, semicrystalline polymer fibres and is likely to also occur during the 

thermally-induced torsional actuation of twisted polymer fibres. The magnitude of this 

effect has yet to be established, and here we investigate torsional creep in twisted nylon 

6 fibres when subjected to small temperature changes. 

5.2 Experimental  

5.2.1 Sample Fabrication 

To fabricate the samples twist was inserted to the commercially available polymer fibres 

using a variable speed DC rotary motor [184] while keeping the fibres well stressed at 
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10 MPa axial stress. 500 µm diameter monofilaments of nylon 6 (Sport Fisher 

monofilament fishing line) were twisted (~445 turns per meter) just before the first coil 

was due to form as a result of overtwisting (saturation). In this saturated state, the twist 

angle on the surface of fibres remained consistent (~35° from the fibre axis) amongst all 

samples. Heat-setting of the twisted samples were conducted at acceptable temperatures 

which were held well below of the melting temperature of nylon 6. Differential 

scanning calorimetry (DSC) tests (TA Instrument DSC Q100) were conducted on as-

received and twisted nylon 6 fibres, confirming their actual melting point. Heating rate 

was set at 10°C/min and cooling rate was at 20°C/min by using a 50 ml/min compressed 

nitrogen flow as the purging gas.  

To study the effect of heat-setting on the actuation performance of twisted fibres, two 

different annealing approaches were conducted to permanently set the number of twists 

inserted and the helical structure introduced. In our previous studies, the heat-setting 

process used after the twist insertion was thoroughly described [184]. Following this 

process, four different samples of similarly twisted fibres were heat-set at 120, 150, 175, 

and 200°C for 2 hours followed by a 2 hours cooling period at room temperature (will 

be denoted ‘Set A’ hereafter). In the second approach (denoted ‘Set B’ hereafter), heat 

setting of twisted fibres was performed in situ and during the twist insertion process. 

Figure 5.1 shows the schematic illustration of this simultaneous twisting/heat-setting 

process. A two-end open electric heating furnace was used through which the fibre was 

suspended. A programmable temperature controller (Electro Chemical Engineering Pty 

Ltd, Australia) was used to sense and control the temperature throughout the furnace. 

Temperature was maintained at 120, 150, 175, and 200°C depending on the parameter 

chosen for fabrication process. Heating the sample during twist insertion causes a 

decrease in torsional stiffness of the fibre [184]; hence, the number of twists required to 
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form the first coil become higher compared to the twists needed in ambient temperature. 

Therefore, we inserted the similar number of twists (~445 turns per meter) in ‘set B’ 

fibres as has been inserted in ‘Set A’ fibres. After twisting the fibres were then left for 2 

hours to cool down at atmospheric conditions. The sample was then taken out from the 

furnace and was directly used for actuation tests.   

 

Figure 5.1. Experimental set up for simultaneous fibre twisting/heat-setting process: (1) 

DC rotary drill; (2) electrically driven heating furnace with proper insulation; (3) fibre 

under twist; (4) weight stone to apply stress to the fibre with rotation blocker to prevent 

untwist; (5) thermocouple for sensing inside temperature of the furnace; (6) 

programmable temperature controller maintaining the required power delivered to the 

furnace.   
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5.2.2 Thermogravimetric (TGA) Tests  

To study the effect of water content on the actuation performance of twisted fibres 

exposed to moisture, thermal gravimetric analysis TGA (METTLER TOLEDO 

DSC/TGA) was employed. Initially, annealed samples were environmentally dried for 

~24 hours and then, taken to the TGA chamber to be thermo-gravimetrically tested. The 

amount of water loss was analysed by heating the samples to 150°C. For comparison, 

other samples taken after annealing process were desiccator-dried (with anhydrous 

calcium chloride desiccant) for 24 hours to remove possible moisture. The dried 

samples were also tested with TGA and the results were compared with non-desiccated 

samples.  

5.2.3 Torsional Actuation Tests 

An in-house-built testing apparatus was used to perform thermally induced torsional 

actuation tests [184]. The test assembly was equipped with a DC power supply, 

programmable temperature controller and a dual mode lever arm force/distance 

transducer system (Aurora Scientific 305B). Twisted nylon 6 fibres were thermally 

actuated by electrical heating of the furnace. The fibres were fixed at one end and the 

other end was attached to a shaft supported by two near frictionless air bearings. Free 

rotation of actuated fibres was measured optically by placing an optical microscope 

(ISSCO-OPTEK) focused axially to the bearing shaft.  

The rotation of the shaft caused by the isotonic (constant torque) torsional response of 

the twisted fibres was measured continuously from the lever arm that was connected to 

the shaft by a fibre held at constant tension. Different isotonic tests reported herein were 

conducted under a range of constant small external torques (68, 140, 280, and 560 

µN·m) applied by the lever arm and opposing the fibre untwisting. Applied torque 
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values were chosen well below of the torsional yield stress at which the fibre starts to 

deform permanently to the twisting / untwisting direction. Unless otherwise stated, a 

constant twisted sample length (70 mm) and a constant temperature range (26-62°C) at 

average heating and cooling rates of 3.6°C/min and 1.8°C/min, respectively, were 

programmed and used for all the actuation tests. 

5.3 Results and Discussion 

5.3.1 Differential Scanning Calorimetry 

The mechanical and physical properties of semicrystalline polymers are strongly related 

to their microstructure, which is here investigated by DSC. Figure 5.2(a) shows the 

DSC curves obtained from a 500 µm diameter as-received nylon 6 fibre when heated 

from 10°C to 300°C and then cooled. The  melting temperature was ~223°C and the 

area of melting peak was 85.23 J/g  from which a degree of crystallinity of 36% was 

calculated by comparison to the heat of fusion reported for a perfectly crystallized nylon 

6 sample (239 J/g) [195, 196]. Figure 5.2(b)  and 5.2(c) shows the DSC results for 

highly twisted fibres annealed at 120°C (Set A) and  120°C (Set B), respectively. Both 

materials show similar DSC thermograms with a slight increase in the melting 

temperature of 1-2°C and a small decrease in the degree of crystallinity by 1-2% when 

compared with the as-received fibre. The similar phenomenon was observed from the 

recrystallization peaks (on cooling) of different samples while recrystallization 

enthalpies decreased for twisted fibres compared to the as-received one.  Tsujimoto et 

al. and co-workers have previously investigated the effect of twist and annealing on the 

microstructure of nylon 6 monofilaments [197]. They observed that twisting slightly 

decreases the degree of crystallinity by partial destruction of lamellae. The lamellae are 

initially oriented perpendicular to the fibre long axis and remain perpendicular to the 
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twist angle for low to medium levels of twist insertion. Twist strain is accommodated by 

distortion of the amorphous regions and be re-orientation and partial destruction of the 

lamellae. It was further observed that annealing of the twisted fibres at 170°C for 15 

minutes when held at constant length did not alter the degree of crystallinity, but 

stabilised the structure possibly due to better packing within the amorphous regions 

[197]. 

 

Figure 5.2. Differential scanning calorimetry result nylon 6: (a) as-received fibre; (b) 

highly twisted fibre annealed after twist insertion; (c) highly twisted fibre annealed 

during twist insertion.  
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5.3.2 Moisture Content in the Twisted Samples  

Due to the presence of hydrogen bonds, nylon 6 absorbs considerable amount of water 

when left in natural condition [198, 199]. In particular, amorphous phase water sorption 

of nylon 6 is largely recognized [199-201] which acts as a plasticiser to reduce the glass 

transition temperature [202]. This process may influence the actuation performance, 

since the thermal expansion coefficient of polymers increases above Tg and thermal 

expansion drives the torsional actuation in twisted polymer fibres. TGA was performed 

to evaluate the amount of water present in the twisted fibres.  

Figure 5.3 shows the TGA results for the twisted and annealed (200°C) nylon 6 samples 

when heated from 30°C to 150°C. Figure 5.3(a) shows gradual but continuous weight 

loss of up to 2.7 wt% for the non-desiccated sample, whereas the desiccated sample had 

a significantly lower water loss of 0.8 wt% when heated over the same temperature 

range [Figure 5.3(b)]. In both cases, successive heating cycles have shown almost 

negligible sample weight changes in that particular temperature region. These results 

indicate that the non-desiccated sample retained a small amount of atmospheric water. 

The reduction in mass due to water loss for both samples during their first heating cycle 

over the temperature range of 30-62°C was small. Since torsional actuation tests were 

conducted over this temperature range, it was concluded that the effect of moisture loss 

during actuation tests could be ignored in this study.  
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Figure 5.3.  Thermogravimetric test results of twisted nylon 6 fibre: (a) as-twisted non-

desiccated sample; (b) 24 hours desiccator dried sample.   

 

5.3.3 Effect of Annealing Conditions on Torsional Actuation 

Figure 5.4 shows the torsional stroke recorded during the first heat/cool cycle for 

twisted fibre samples prepared by both annealing methods. Almost identical torsional 

strokes were obtained for samples prepared by both methods when the annealing 

temperature was consistent. Regardless of the annealing method used, those fibres 

annealed at 120°C and 150°C showed large untwisting rotations of up to -7°/mm during 

heating, but with a smaller re-twisting recovery during cooling (+2°/mm). As the 

annealing temperature increased the fibres exhibited less untwisting on first heating but 

with considerably higher degrees of reversibility. Samples annealed at 200°C provided 

the smallest rotation of -1.7°/mm on heating and almost the same re-twisting on cooling. 

This result is the same as reported previously [184] for identical 500 um diameter nylon 

6 twisted fibre that had been annealed at 120°C but had been further ‘trained’ for 

several heat / cool cycles to achieve full torsional reversibility.  



124 

 

 

Figure 5.4. Torsional actuation test results of 70 mm long twisted nylon 6 fibre samples 

prepared at different annealing temperatures: (a) samples annealed after twisting (Set 

A); (b) samples annealed during twisting (Set B). (Each heating process is shown to 

start at ‘0’ torsional stroke for all cases).  

 

The effect of annealing temperature on the reversibility of torsional actuation of these 

twisted nylon 6 fibres may be understood from previous studies of heat-treatment 

induced microstructural changes in axially drawn nylon 6 fibres. Prior work has shown 

that important microstructural differences occur when fibres were annealed under 

tension or when slack [203]. Considerable shrinkage occurs in the length direction in 

slack fibres as a result of molecular refolding processes, but these mechanisms are 

significantly inhibited by applied tension. In the present study, annealing was conducted 

at constant fibre length thereby potentially limiting molecular reorganization. First 

heating during torsional actuation testing of incompletely annealed twisted fibres may 

allow sufficient molecular mobility for some reorganization to occur. Shrinkage along 

in the chain orientation direction, which forms helically paths in these twisted fibres, 

would then promote fibre untwisting. The result is a large untwisting during first 

heating due to both irreversible molecular reorganization and reversible thermal 

expansion effects. Twisted fibre samples annealed at 200°C appear to be immune from 
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these irreversible processes, suggesting that the higher annealing temperature allows a 

stable molecular structure to form even when the fibre was held at constant length 

during heat treatment. Indeed, Tsujimoto et al. have shown that annealing of twisted 

nylon 6 fibres at 170°C at constant length stabilises the molecular structure, possibly by 

increased molecular packing in amorphous regions [197].  

5.3.4 Effect of External Torque on Torsional Actuation   

The effect of an external torque applied in the twist direction on the torsional stroke 

during the first heating and cooling cycle was next investigated for samples prepared by 

annealing at 200°C (Figure 5.5). With increasing applied external torque, the untwisting 

rotation on heating diminished in magnitude and the retwisting on cooling increased. 

The net result was an increase in sample twist after the first heat / cool cycle for samples 

tested at high external torque.  

 

Figure 5.5. Torsional actuation test results of 70 mm long twisted nylon 6 fibre samples 

tested with different externally applied torque. (a) samples annealed after twisting (Set 

A); (b) samples annealed during twisting (Set B).   

 

The effect of the applied torque was particularly noticeable for samples that were 

annealed during twisting and was smaller for samples that were annealed post twisting. 

It was found that two heat / cool ‘training cycles’ were required at a fixed external 
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torque before the sample showed equivalent untwist / retwist magnitudes during heating 

and cooling. Fibre samples tested at the maximum torque for three heat / cool cycles 

were then re-tested at the minimum torque. The first heat / cool cycle at the low torque 

condition showed a reversibility of 80-95% with some unrecovered untwist. 

Torsional creep tests were conducted to further investigate the effect of applied torque 

on the torsional actuation response.  Longer time exposure to an external torque applied 

in the twist direction resulted in a gradual increase in fibre twist with the effect more 

pronounced at higher torques and higher temperatures (Figure 5.6). The observed 

increase in twist due to this torsional creep correlates approximately with the results of 

Figure 5.5 when the temperature and timescale of the heat / cool cycles are considered.  

In addition, the sample tested initially at the maximum torque and then re-tested at the 

minimum torque showed some recovery of the torsional creep. Again, this observation 

is in qualitative agreement with the assumption that there was some net untwisting 

during the heating / cooling of the sample tested at the minimum torque immediately 

following testing at the maximum torque.   

Tensile creep is well documented in polymers, and studies of nylon 6,6 demonstrate 

appreciable increases in compliance, even at room temperature and at the timescales of 

the experiments described here [204, 205]. This torsional creep can be explained as 

gradual deformation of oriented polymer chains. Thermal annealing treatment has been 

shown to aid creep deceleration in semicrystalline polyester and polyamide materials 

[206]. The reduced creep rate was reportedly due to the formation of undeveloped 

crystallites in the amorphous phase during annealing which serve as obstacles for 

sliding of chain ends between polymer chains [206]. In the present study, however, the 

high temperature annealing was unable to completely eliminate the torsional creep 
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process when high external torques were involved. Modelling approaches, such as 

proposed recently by Fancey [207], may allow the prediction of time-dependent 

torsional strokes at different loads and temperatures. Preferably, the creep in torsional 

actuators should be negligible and techniques used to reduce tensile creep in polymers, 

such as fibre reinforcement, or crosslinking are beyond the scope of the current thesis, 

but are worthy of further investigation. 

 

Figure 5.6. Time based torsional creep of twisted nylon 6 fibres under different isotonic 

torques. Tests were conducted at 26°C: (a) annealed at 200°C after twisting (Set A), (b) 

annealed at 200°C in situ twisting (Set B). Tests conducted at 62°C: (c) annealed at 

200°C after twisting (Set A), (d) annealed at 200°C in situ twisting (Set B).  
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5.4 Summary  

The purpose of this study was to further explore the torsional actuation of twisted nylon 

6 monofilament and to optimise their fabrication conditions to achieve a more stable 

actuation performance under varying isotonic torques. Nylon 6 monofilaments were 

twisted and annealed at several temperatures below their melting point. One set of 

samples was prepared by heat-setting during twisting, whereas another sample set was 

annealed after twist insertion. Heating and cooling of the samples over a 36°C range 

resulted in cyclic torsional stroke due to untwisting (heating) and retwisting (cooling) of 

the fibres. As in prior studies, samples annealed at low temperature (< 175°C) showed a 

larger untwisting and smaller retwisting during the first heat / cool cycle. In contrast, 

samples annealed at 200°C showed complete reversibility in the first cycle, without the 

need for any ‘training’. The application of an external torque caused torsional creep that 

was accelerated by increases in temperature and torque. The baseline twist in the fibre 

readjusts to a new level during the first two heat/cool cycles when the external torque is 

changed. Thereafter, the torsional untwist and retwist remain consistent in subsequent 

heat / cool cycles at constant torque. Heat setting can, therefore, be used as an effective 

means for fixing a consistent torsional actuation response. 
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CHAPTER 6 Twist–Coil Coupling for High Stroke Contractile 

Artificial Muscles 
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6.1 Introduction  

Torsional artificial muscles made from twisted polymer fibres and yarns have created 

much interest lately mainly because they are the basis for high performance tensile 

actuation in twisted and coiled fibres and yarns [154, 155, 157, 161, 165, 208]. In these 

systems, the torsion that occurs when the twisted fibre is stimulated translates into a 

length change in the coil. Tensile strokes as high as 50% have been observed. Here we 

report a new mechanism of torsional driven tensile actuation. A torsionally active fibre 

is coupled in series with a second fibre that has a low critical torque for twist-induced 

coil formation. Significant length contraction occurs as coils form and this effect is 

optimised by consideration of the relative lengths of the two fibre materials.  

The actuation process was first modelled to guide experimental design. The change in 

actuator length was considered based on the helix geometry and the number of turns 

expected to form was estimated based on torsion mechanics and the criterion of Ross 

[209] that predicts the torque needed to initiate coiling in a fibre, wire or slender rod: 

𝜏𝑐 = √2𝐸𝐼𝐹           (6.1) 

where 𝐸 is the tensile modulus and I is the fibre second moment of area, which is 

Dy
4
/64 for fibres of circular cross-section and diameter Dy. Fibres of low elastic 

modulus favour coil formation, so elastomeric fibres (commercially-available Spandex 

yarn) was used in the current work. The torsion was induced by heating a twisted and 

annealed nylon 6 fibre, as described in Chapter 3 [184]. The free torsional stroke per 

fibre length (∆𝑛free) and generated blocked torque (𝜏blocked) have been shown in 

Chapter 3 to be given by [184]: 

∆𝑛free =
𝑛𝑜

𝑙𝐴
(

𝑑𝑜

𝑑
− 1)         (6.2) 
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𝜏blocked = ∆𝑛free × 𝐽A𝐺A        (6.3) 

where 𝑛𝑜 is the initially inserted twist (turns) per initial fibre length 𝑙𝐴, 𝑑𝑜 and 𝑑 are the 

fibre diameters before and after heating, and 𝐽𝐴𝐺𝐴 is the torsional modulus of the twisted 

fibre after heating; 𝐺𝐴 is the fibre shear modulus after heating and 𝐽𝐴 is the polar 

moment of area which is d
4
/32 for fibres of circular cross-section. The above relation 

predicts the ‘free’, or unimpeded, torsional stroke. However, the attached spandex yarn 

acts as a return spring (torsional modulus, 𝐽𝑁𝐺𝑁; length, 𝑙𝑁) as described in Chapter 2 

[110, 184] and reduces the torsional stroke of the twisted fibre:  

∆𝑛 = ∆𝑛free (
𝐽𝐴𝐺𝐴

𝐽𝐴𝐺𝐴+
𝑙𝐴
𝑙𝑁

(𝐽𝑁𝐺𝑁)
)           (6.4) 

The full range of generated torsional strokes and torques can be represented by the 

torque – stroke curve as shown schematically as line A in Figure 6.1. The effect of the 

return spring fibre is illustrated by the dashed line B having a slope equivalent to the 

torsional stiffness of the return spring. The intersection of lines A and B represent the 

final torsional stroke and residual torque applied by the torsional actuator on the return 

spring. The case of a return spring fibre that forms a coil when connected in series to a 

torsional actuator is represented by line C. Here, the torsional stiffness of the return 

spring changes when each coil turn forms. First coil turn forms when the torque acting 

on the return spring reaches the critical torque (c) or equivalently the critical twist 

(𝑙𝑁𝑛c) inserted in the return spring fibre. The number of turns formed in the coil (𝑁c) 

depends on the remaining torsional stroke after the initiation of first coil formation so 

that: 

𝑁c = (𝑙𝐴∆𝑛 − 𝑙𝑁𝑛c)         (6.5) 
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Figure 6.1. Schematic illustration of the mix of torque generated and torsional stroke 

generated by a torsional actuator when activated (line A). The final torque and stroke 

generated depends on the external loading conditions. Free rotation generates the largest 

torsional stroke (∆𝒏𝐟𝐫𝐞𝐞) and blocked rotation generates the largest torque (𝝉𝐛𝐥𝐨𝐜𝐤𝐞𝐝). 

The torsional properties of non-coiling and coiling return spring fibres are represented 

by lines B and C, respectively.  

 

The overall length contraction (𝛥𝐿total) of the series actuator by the formation of coil 

turns can be predicted using the geometry of a single helix. Figure 6.2 shows the 

schematic illustration of the series actuator arrangement. The total length before 

stimulation (𝐿total) comprised the elastomer yarn length (𝐿) and the length of the 

torsionally-active twisted polymer fibre (𝑙𝐴). For each coil turn that forms, a straight 

segment of elastomeric fibre of length 𝐿S is converted to a coil of length Lc. Assuming 

that the overall length of both the elastomeric fibre and the twisted polymer fibre remain 

unchanged, then the formation of Nc turns in the elastomeric fibre causes an overall 

length change given by: 

 
 

c

c
cc

c

c
cccscctotal

cos

1sin
π

cos

π
tanπ


















 DN

D
DNLLNL   (6.6) 



133 

 

where Dc is the coil diameter and c is the coil bias angle taken against the 

perpendicular direction to the long axis of the elastomeric return spring yarn. Here, 

Ltotal is the contraction of the elastomeric yarn which also represents the overall tensile 

stroke of the series muscle since the length change during torsional actuation of the 

twisted fibre has been found to be negligible in previous studies [185].  Combining 

equations (6.5) and (6.6) gives the final predicted tensile stroke for the series actuator: 

Δ𝐿total = 𝜋𝐷c(𝑙𝐴∆𝑛 − 𝑙𝑁𝑛c)
(sin𝛼c−1)

cos 𝛼c
      (6.7) 

 

Figure 6.2. Schematic illustration of single-helix approximation for coiled spandex yarn 

formed due to torsional actuation of twisted nylon fibre.   

 

A series of experiments were conducted using different lengths of spandex yarn return 

spring and nylon 6 torsionally active fibres to evaluate equation (6.7). The lengths of 

each fibre affects the expected torsional stroke as described in equation (6.4) since 

torsional stiffness depend inversely on fibre length and the torsional free stroke of the 
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actuating fibre is proportional to actuating fibre length. The tensile stroke is expressed 

as a percentage of the initial unloaded length of the series actuator to effectively 

compare the performance of different length combinations. The effect of the applied 

external load on coil formation and tensile stroke is also considered. 

 

6.2 Experimental 

6.2.1 Materials 

Commercially sourced nylon 6 fibre (0.54 mm diameter, Sport Fisher monofilament 

fishing line), silver coated nylon multifilament yarn (0.50 mm diameter, Sheildex 

Shieldex silver plated polyamide yarns) and spandex yarns (0.6, 1.2, and 1.7 mm 

diameter, Spandex Co. Ltd., China) were used. The torsional actuating samples were 

made by co-twisting the nylon 6 fibre with a slightly longer length of silver coated 

nylon multifilament yarn. A total of 428 twists per meter of fibre length were inserted 

with a constant axial stress of 10 MPa applied to the nylon 6 monofilament. The twisted 

fibres were heat set at 120 °C for 30 minutes [184]. The desired lengths of twisted nylon 

fibre and spandex yarn were joined using a metallic crimp to prepare series actuator 

samples. 

Tensile properties of the spandex yarn samples were measured using a tensile tester 

(Shimadzu EZ-L Tester) and elastic moduli (𝐸) were calculated by fitting engineering 

stress (𝜎) and extension ratio () data to the rubber elasticity theory [210]:   

𝜎 =
𝐸

3
( −

1

2)         (6.8) 

Torque-torsional stroke curves were generated experimentally by using the custom built 

torsion tester described in Chapter 2 [184] for different diameter yarns where the slope 
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of the curves denote torsional stiffness. Figure 6.3 shows the test apparatus along with 

the inset showing the functional parts. Yarns of different length were tested, since 

torsional stiffness proportionally depends on the yarn length. A force / distance 

transducer (Aurora Scientific lever arm model 305B) was utilised to apply certain 

torques to the yarn connected to the shaft of a frictionless air bearing. During the test, 

the yarn was also subjected to a constant axial force from a second horizontally placed 

lever arm (Aurora Scientific model 300B) that allows contraction/expansion of the yarn 

length. Gradually increasing torque applied by the lever arm to the shaft caused twisting 

of the yarn at one end and therefore provided a measure of torque-torsional stroke 

relationship. Torsion testing of spandex yarns in this manner was continued until coils 

formed and the torsional stiffnesses before and after coil formation could be determined. 

 

Figure 6.3. Test apparatus for generating torque-torsional stroke curve (components are 

shown in right panel): (1) spandex yarn, (2) first lever arm applying axial tension to the 

yarn, (3) air bearing for frictionless yarn rotation, (4) second lever arm applying torque 

to the yarn, and (5) connecting fibre transferring torque from a second lever arm to the 

bearing shaft connected with yarn.   
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6.2.2 Actuation Tests 

The overall length change of the series actuator during electrical heating (over 26-

125°C temperature range) of the nylon 6 torsional element was measured under isotonic 

conditions (Figure 6.4). One end of the spandex fibre was tethered to a force / distance 

transducer (Aurora Scientific lever arm 305B). The other end of the nylon fibre was 

firmly clamped and a small constant tension was applied using the lever arm to keep the 

muscle straight. A DC power supply (TMS
®
 Precision Variable 30V 5A DC Power 

Supply) was connected to the twisted fibre and an infrared thermal imaging camera 

(Micro-Epsilon TIM 160, supplied by Bestech Australia Pty Ltd) was used to measure 

the temperature of the fibre surface. Five different lengths of spandex yarn were 

considered for each of the three yarn diameters and twisted fibre lengths were varied 

according to the rotation requirements. As-made samples were used for the tests without 

changing geometrical configurations.  

 

Figure 6.4. Schematic illustration of actuation test set-up used for torsional actuation 

driven contractile artificial muscle.    
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In a separate experiment, the nylon 6 fibre volume was measured optically over the 

experimental temperature range (26-125°C) by heating with an infrared light. The 

diameter and bias angle of coils formed in the spandex yarn were observed and 

measured microscopically (ISSCO-OPTEK microscopic camera).  

6.3 Results 

6.3.1 Characteristic Properties of Actuator Segments  

The critical torque to initiate coil formation in the spandex yarns were measured. Figure 

6.5(a) shows torque-torsional rotation curves for three different diameter yarns each of 

10 mm length. The axially applied force was kept constant at 0.02 N while the yarn was 

rotated at one end and fixed at the other end. All three samples showed a linear increase 

in torque with increasing rotation angle and with a distinct change in slope that 

corresponded to the initial formation of the first coil turn. The axial displacement of the 

yarn during twisting and with a constant axial force was also measured [Figure 6.5(b)]. 

The yarn contraction during twisting and before coil formation was less than 3% of the 

yarn length. The rate of length contraction with twist insertion increased significantly as 

the first coil turn formed. The larger diameter spandex yarns generated the largest length 

contractions of up to 30% from the formation of one coil turn.  

The critical torque required to initiate coiling increased with spandex yarn diameter. 

The predicted critical torques were calculated using the Ross criterion and the measured 

spandex elastic modulus of 0.24 MPa. As shown in Figure 6.5(c) the calculated critical 

torques increased with both spandex yarn diameter and applied tensile force. The 

measured critical torques were slightly higher than the calculated values for all three 

yarns, but the results agree within 5% in all cases. Based on this comparison, it is 
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concluded that the Ross criterion can be used as a reasonable estimate for coiling torque 

in the further analysis of the series actuator.  

 

Figure 6.5. Torque requirement for 10 mm long spandex yarn; (a) torque-torsional 

rotation curves showing change in stiffness of different diameter yarns, (b) yarn 

contraction during twisting and coiling, and (c) critical torques for differently loaded 

yarns.   

 

Table 6.1 shows the parameters of the coil forming spandex yarn that will be used for 

the theoretical calculation of actuator contraction. The amount of rotation needed prior 

to form the first coil turn (critical twist, 𝑛𝑐) was calculated from the critical torque and 

the measured yarn stiffness, as given in equation (6.3).   
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Table 6.1. Spandex yarn (10 mm long) parameters for theoretical calculation of actuator 

contraction under 0.02 N axial force.    

Spandex yarn 

diameter (𝐷, m) 

Torsional modulus 

before critical point 

(𝑆𝑁, µN·m2
) 

Calculated critical 

torque (𝜏𝑐, µN·m) 

Calculated critical 

twist (turns) 

0.0006 0.60 7.8 0.021 

0.0012 1.10 31.1 0.045 

0.0017 1.68 62.4 0.059 

 

The torsional rotation produced by thermally actuating a 0.54 mm diameter twisted 

nylon 6 fibres was calculated as previously described [185] using measured values of 

the radial thermal expansion and torsional stiffness. As described in Chapter 3, free 

torsional rotation of twisted nylon 6 depends only on the amount of twist inserted into 

the fibre and the diameter expansion caused by the heating process [185]. The torsional 

stiffness of the heated nylon 6 fibre was calculated from the previously reported shear 

modulus (𝐺𝐴) value at the maximum temperature of 125°C [182, 184]. Radial thermal 

expansion was measured microscopically over the same temperature range of 26-125°C 

that was used for actuation test (Figure 6.6). These measurements were used to calculate 

the expected free rotation of the nylon 6 fibre, as given by equation (6.2). Since the 

diameter of the twisted nylon 6 fibre was kept constant for all experiments, the blocked 

torque was also independent of fibre length. Table 6.2 summarises the torsional and 

thermal properties of the twisted nylon fibre used for theoretical calculation of muscle 

contraction.   
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Figure 6.6. Thermal expansivity of twisted nylon 6 fibre diameter (𝒅/𝒅𝟎) over 26-

125°C temperature range.    

 

Table 6.2. Torsional and thermal properties of 0.54 mm diameter twisted nylon fibre.   

Temperature  Shear 

modulus  

(𝐺𝐴, GPa) 

Radial thermal 

expansion (%) 

Blocked torque 

(𝜏𝑏𝑙𝑜𝑐𝑘𝑒𝑑, µN·m) 

Free rotation 

(∆𝑛free, 

turns/m) 

26°C 0.40 - -  

125°C  0.30 7%  440 30 

  

6.3.2 Spandex Coil Geometry  

The theoretical calculation of the muscle contraction requires the measurement of the 

diameter and bias angle of the coils that form in the spandex yarn. Figure 6.7(a) shows 

images of three different diameter spandex yarns when the first coil is formed at a 

constant 0.02 N axial force. For all spandex yarns investigated, a similar coil bias angle 

was produced at this lowest applied force. The coil bias angles were negative as defined 

in Figure 6.2. The single coil model is illustrated from the top [Figure 6.7(b)] to show 

the active diameter (𝐷c) of yarn coil was considered to be calculated by subtracting yarn 
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diameter (𝐷y) from coil outer diameter (𝐷). Figure 6.7(c) shows coils formed in the 1.7 

mm diameter spandex yarn and when the axial force applied during coil formation 

varied from 0.02 N to 0.1 N. When higher axial forces were applied, the formed coils 

were deformed and stretched out so that the coil bias angles increased.   

 

Figure 6.7. Dimension and geometry of spandex yarn coils; (a) three different diameter 

yarns showed similar coil bias angle when twisted under 0.02 N axial force, (b) coils 

formed in 1.7 mm diameter yarn when actuated under different axial forces increasing 

from 0.02 N to 0.1 N and then repeated at 0.02 N; and (c) top view of yarn coil showing 

active diameter (𝑫𝐜) to be used in theoretical calculation of muscle contraction.  

 

The proof of active diameter concept was experimentally evaluated by using a solid 

rubber cylinder. A portion of the solid rubber cylinder (length, 𝐿S = 264 mm and 

diameter, 𝐷y = 10 mm) was wrapped around a 10 mm diameter cylindrical mandrel 

which forms 4 full coil turns [Figure 6.8(a)]. The outer diameter (𝐷) of the coil was 

measured to be 30.5 mm; therefore, the active coil diameter was calculated as 20.5 mm. 

From Figure 6.8(b), the expression for length of coil diameter can be expressed as: 
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𝐿c = √𝐿𝑆
2 − (. 𝑁𝑐. 𝐷𝑐)2        (6.9) 

The calculated coil length was found to be ~58 mm which agrees quite accurately with 

the measured coil length of ~61 mm. These results confirm that the active coil diameter 

is the most appropriate dimension in using the single coil model to evaluate the overall 

contraction of the series muscle.    

 

Figure 6.8. Experimental validation of the use of active coil diameter (𝑫𝐜) to calculate 

overall series muscle contraction; (a) coil dimensions, (and (b) single helix model for 

calculation.   

 

6.3.3 Tensile Actuation Results 

First experiments used five different lengths of 1.7 mm diameter spandex yarn with a 

constant 2:1 ratio of nylon fibre to spandex yarn length. Reproducible results with fully 

reversible actuation were obtained for all samples when heated and cooled over the 26-

125°C temperature range [Figure 6.9(a)]. The actuation stroke increased with increasing 

overall combined sample length, but actuation strains remained at ~10% since strains 
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are independent of starting length. This actuation strain is similar to that obtained from 

fully twisted and coiled nylon 6,6 fibres when heated over the same temperature range 

[155]. The rate of contraction of the series nylon-spandex actuators was higher when the 

samples were heated above 60°C which accords with larger torsional rotation described 

in Chapter 2 for nylon 6 above its glass transition temperature (𝑇𝑔~ 50°C) [211]. 

Actuation tests were also conducted for a 10 mm long spandex yarn attached with 20 

mm twisted nylon 6 fibre under different isotonic loading conditions [Figure 6.9(b)]. 

Since the critical torque and rotation were shown to be larger for muscles subjected to 

higher axial force, a lower fraction of the overall twisted fibre rotation is then available 

for coiling the spandex yarn. Consequently, the overall muscle contraction decreased 

significantly at higher applied tensile forces. Notably, reversible actuation was observed 

even at the higher loading conditions.   

 

Figure 6.9. Experimentally obtained muscle contraction for 0.54 mm twisted nylon 6 

fibre attached to 1.7 mm diameter spandex yarn; (a) in terms of different spandex 

lengths where the spandex yarn length was always double the twisted nylon 6 lengths, 

and (b) in terms of externally applied tensile force acting on a sample of 10 mm long 

spandex yarn and 20 mm long twisted nylon 6 fibre.  
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6.4 Discussion 

Calculated tensile strokes occurring as a result of torsion-induced coil formation in the 

spandex yarn were obtained using equations (6.1), (6.2), (6.4) and (6.7). The free 

torsional stroke expected from the nylon fibre was first calculated using equation (6.2) 

from the measured nylon fibre diameter at various temperatures over the experimental 

range. Measured fibre torsional stiffnesses were then used with equation (6.4) to 

determine the torsional stroke available when the nylon fibre was connected in series 

with the spandex yarn. This calculated torsional stroke (∆𝑛) was experimentally verified 

by observing the junction rotation during the heating of a 180 mm long nylon 6 fibre 

attached in series to a 30 mm long, 0.6 mm diameter spandex yarn [Figure 6.10(a)]. At 

the maximum actuation temperature (125°C), a measured rotation of 2 turns was 

observed which agreed within 2% of the calculated result. The critical torsional stroke 

needed for first coil turn formation was calculated using equations (6.1) and (6.3) and 

the measured spandex yarn torsional modulus. The analysis of coiling can be expressed 

graphically by plotting the torque-stroke curve of the twisted nylon fibre super-imposed 

with the torsional stiffness curve of the coiling spandex yarns. Figure 6.10(b) shows the 

torque-stroke curve in which free rotation and blocked torque of a 20 mm long twisted 

nylon fibre is plotted and connected (green dotted line). The green shaded region now 

shows the rotation available (∆𝑛 − 𝑛c) for spandex coil formation.   
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Figure 6. 10. (a) Thermally induced torsional rotation at the junction of a 180 mm long 

nylon 6 fibre and 30 mm long, 0.6 mm diameter spandex yarn. (b) Graphical 

representation of effective torsional rotation of a 20 mm long 540 µm twisted nylon 6 

fibre when heated from 26°C to 125°C and the formation of coils in serially attached 10 

mm long spandex yarns of three different diameters.      

 

Finally, the tensile stroke was calculated from equation (6.7) using the measured coil 

diameter and bias angles. Figure 6.11 shows plots for calculated muscle contraction 

using three different spandex diameters and each with five different lengths. Tensile 

contractions are expressed as a percentage compared to the total initial length. All 

spandex yarns showed a peak contraction as the twisted nylon yarn length increased. 

The torsional stroke generated by the twisted nylon fibre initially increased and then 

decreased as the fibre length increased due to the competition between increasing free 

stroke and decreasing torsional stiffness. The maximum contraction strain was 

consistent regardless of the spandex yarn lengths and occurred at a consistent ratio of ~2 

of spandex yarn to twisted nylon fibre length (inset Figure 6.11(d)). The maximum peak 

contraction was found to depend on the spandex yarn diameter. The largest diameter 

yarn (1.7 mm diameter) had a maximum peak contraction of ~12% compared to ~9.7% 

(1.2 mm diameter) and ~7% (0.6 mm diameter). This effect reflects the dominance of 

the larger coil diameter formed from larger diameter spandex yarns (Figure 6.11(d)).  
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Figure 6.11. Theoretically predicted contraction of spandex yarn attached to a twisted 

nylon 6 fibre artificial muscles in terms of different muscle lengths for; (a) 0.6 mm 

diameter yarn, (b) 1.2 mm diameter yarn, (c) 1.7 mm diameter yarn, and (4) peak 

contraction comparison (inset shows the ratio of twisted fibre to spandex yarn that 

provides the peak contraction).  

 

The theoretically calculated results were then compared to the measured muscle 

contraction. Figure 6.12(a) shows the comparative peak contraction between calculated 

and measured values of the actuators having 2:1 length ratios of twisted nylon 6 fibre to 

attached spandex yarn. Figure 6.12(b) shows the actuator contraction of a 10 mm long 

spandex yarn connected to a 20 mm long nylon 6 fibre when subjected to different axial 
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loads. For all of the experimental conditions, experimental results agree with the 

theoretical calculations within the limit of ~10% standard deviations. .  

 

Figure 6.12. Comparison of theoretically calculated muscle contraction to that 

measured ones; (a) in terms of different muscle length, (b) under different axial force 

condition.  

  

Additionally, a well-desired characteristic was achieved from the concept of a series 

actuator. Previous studies have shown that polymer fibres when modified to twisted 

structure, exhibit low structural stability during the first few actuation cycles [184, 185], 

therefore training of the fibres is necessary before a consistent result is achieved. This 

criterion also exists when the actuation experiments are conducted under different 

loading conditions i.e. torque applied [185]. In this work, due to the presence of 

significant rubber-elasticity spandex return spring highly reversible actuation obtained 

from the very first cycle. Coils of spandex yarn store a significant amount of torque 

while formed, and released the torque acted to the direction of retwisting during the 

cooling process of twisted fibre. Hence, both of these torques enhances the reversibility 

of overall muscle contraction which is practically demanding to use this systems as a 

feasible real world artificial muscle.     
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6.5 Summary  

A new type of contractile artificial muscle is demonstrated herein with a combination of 

torsional and tensile actuation. Preliminary aim was to make the muscle functional and 

then to optimise the contraction ability. Another interest was to investigate the 

reversibility of actuation and practical usability under different mechanical conditions. 

A set of identical twisted nylon 6 fibre was fabricated having 540 µm diameter and 

~428 twists per meter of fibre length. Spandex yarn was attached to the twisted fibre in 

series under certain tension blocking the end torsional drive but allowing tensile 

movement. Thermally induced torsional rotation of twisted fibre caused formation of 

coils in spandex yarn which resulted in overall muscle contraction. Torsional rotation of 

twisted fibre and resultant spandex coil geometry are utilized to theoretically predict the 

amount of muscle contraction by means of a modified single helix theory. Experimental 

tests were conducted considering similar muscle parameters as used in theoretical 

calculations and a good agreement was found in between measured and calculated 

results. Practical applicability of this muscle was evaluated by using different 

mechanical conditions. It was found that this multifunctional muscle could be useful as 

a real world actuator system without prior preconditioning which is considered as a 

significant drawback among other polymer artificial muscles.   
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CHAPTER 7 Conclusions and Recommendations 
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7.1 Conclusions           

Highly twisted oriented polymer fibres or yarns show large scale torsional actuation 

from volume expansion that can be induced, for example, thermally or by 

electrochemical charging. When formed into spring-like coils, the torsional actuation 

within the fibre or yarn generates powerful tensile actuation per muscle weight. For 

further development of these coil actuators and for the practical application of torsional 

actuators, this Ph.D. project aimed to investigate the fundamental mechanism that 

determines the response of twisted actuators. The aims of the thesis were achieved in a 

progression of four steps. Initially, a test method with an in-house built apparatus was 

developed to characterize the torsional actuation and related torsional properties of 

twisted fibre or yarn structures.  Next, torsional actuation was measured from differently 

twisted fibre and quantitative prediction of such results was successfully made by using 

a single-helix based model. After that, thermo-mechanical investigation was conducted 

to evaluate a path in reducing the unwanted torsion based properties (torsional creep, 

stress relaxation, stroke irreversibility) of twisted oriented polymer fibres. Finally, an 

integrated contractile artificial muscle system was proposed by utilizing torsion 

actuation of twisted polymer fibre, and a modified single-helix model was presented to 

predict the overall muscle contraction.  

The research project demonstrated a new test method to measure torsional actuation of 

twisted fibre or yarn in terms of free stroke and blocked torque in a one-end-tethered 

system. In addition, it was also shown that the actuation can be measured when 

operating against an externally applied torque (isotonic) and actuation against a return 

spring fibre (variable torque). These analyses suggested that all torsional actuation 

parameters can be determined from knowledge of the free stroke, actuating fibre 

stiffnesses, return spring stiffness and actuating fibre length. Theoretical prediction of 
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torsional stroke generation of twisted fibre was developed using torsion mechanics that 

gave good agreement between experimental measurement and calculated values for the 

isotonic and return-spring experiments. 

Previous investigations of torsional actuation in twisted fibres and yarns have suggested 

that a single-helix approximation can provide some insight into the actuation 

mechanism [110, 155]. This project further investigated the scalability of torsional 

actuation in twisted fibres and yarns and to evaluate the single-helix model for 

quantitatively predicting torsional stroke and torque. Combined torsional actuation 

measurements and volume expansion data allows the application of the single-helix 

model to quantitatively predict the amount of torsional stroke. The starting assumption 

is that the “string length” in the single helix remains constant during the volume change. 

For the twisted nylon fibres the “string” can be thought of as the oriented polymer 

chains helically  wrapped around  the surface of the fibre. These molecules are likely 

highly extended and firmly connected through crystalline blocks. This topology exhibits 

a high axial stiffness and can be considered mechanically inextensible. The single-helix 

model accurately predicted the torsional stroke based on the measured fibre diameter 

and length changes occurring during heating of twisted nylon 6, polyethylene and 

polypropylene fibres. Generated torques were also accurately predicted by the single-

helix model when combined with the measured fibre torsional stiffness. Torque was 

strongly dependent on fibre diameter, along with the amount of inserted twist. 

The degree of agreement between the measured torsional actuation parameters and 

those calculated from the single-helix model was remarkable considering that the model 

greatly simplifies the complex internal structure of the twisted fibres and yarns to a 

single helix. In contrast, the real twisted fibre is a solid where the twist angle (f) 
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increases from zero at fibre centre to a maximum at the fibre surface.  Treating the 

twisted fibre as a series of concentric cylinders of increasing diameter and with the same 

inserted twist provides some insight into why the single helix model is appropriate. 

Each cylinder in the concentric cylinder model can be described by equation 4.2: 

λ𝑛 = [
1

tan2α𝑓
(

λ𝑠
2−λ𝑙

2

λ𝑑
2 ) +

λ𝑠
2

λ𝑑
2]

1/2

        (4.2) 

where the parameters are defined in Chapter 4. In the case where the string length and 

twisted fibre length do not change during fibre volume expansion, equation 4.2 reduces 

to equation 4.3: 

λ𝑛 =
1

λ𝑑
          (4.3) 

So that all cylinders would show the same torsional rotation. All cylinders would rotate 

in sychronicity. However, if the fibre length did change appreciably during fibre volume 

expansion, then equation 4.2 indicates that the torsional rotation of each cylinder would 

be different and the connection between cylinders would result in a constraining effect. 

This situation is still to be tested experimentally. 

One practical issue raised in early work on both twisted and coiled polymer fibre 

torsional and tensile actuators was the need for several ‘training cycles’ of heating and 

cooling to achieve fully reversible actuation. In this project, the effect of annealing 

conditions applied to twisted nylon 6 monofilament is investigated to overcome the 

aforementioned issue and it was found that annealing at 200°C eliminates the need for 

the training cycles. Furthermore, the effect of an applied external torque on the torsional 

actuation is also investigated and torsional creep is shown to be affected by the 

temperature and load. The baseline twist in the fibre readjusts to a new level during the 
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first two heat/cool cycles when the external torque is changed. Thereafter, the torsional 

untwist and retwist remain consistent in subsequent heat / cool cycles at constant torque.  

This thesis also introduced a concept of integrated artificial muscle which shows 

contractile behaviour originated from torsional actuation of a twisted polymer fibre. The 

core idea was adapted from the torsional muscle with a return spring fibre connected in 

series. A spandex yarn is attached to the twisted nylon 6 fibre in series under certain 

tension blocking the end torsional drive but allowing tensile movement. Thermally 

induced torsional rotation of twisted fibre caused formation of coils in spandex yarn 

which resulted in overall muscle contraction. Torsional rotation of twisted fibre and 

resultant spandex coil geometry are utilized to theoretically predict the amount of 

muscle contraction by means of a modified single-helix theory. Experimental tests are 

conducted considering similar muscle parameters as used in theoretical calculations and 

a good agreement is found in between measured and calculated results. Practical 

applicability of this muscle is evaluated by using different mechanical conditions. It is 

found that this multifunctional muscle could be useful as a real world actuator system 

without prior preconditioning (training cycles) which is considered as a significant 

drawback among other polymer artificial muscles.  

7.2 Future Recommendations    

With the development of twisted CNT yarn, graphene oxide yarns, and polymer fibres 

torsional artificial muscles find more potential applications, such as soft robotics, 

microfluidic mixing, microsensors, photonic displays, and even energy-harvesting 

devices. In this thesis, we highlighted the recent advances of polymer fibre based 

torsional actuators, their actuating mechanism and potential applications, and featured 

limitations. A detailed actuating mechanism, characterization methods as well as 



154 

 

scalability of these actuators were investigated in this thesis. Several areas of direct 

extension of this work include: 

 The further investigation of the single helix model and the suggested concentric 

cylinder model to evaluate the torsional actuation in fibres where appreciable 

length changes occur during actuation. 

 Helix model studies can be approximated for twist induced hierarchically helical 

coiled structures. Further work can also extend the modelling to study the 

untwisting of co-twisted fibres and their effect on linear actuation of hierarchical 

coiled structures.  

 Investigation of the origin of the thermal expansion anisotropy in oriented fibres. 

The present thesis has shown that the measured length and diameter expansions 

can be used to predict the torsional actuation. However, there is no accurate 

prediction of the thermal expansion based on first principles. 

 Creep has been shown to influence the load-dependency and time-dependency of 

the torsional actuation. Methods for mitigating creep in oriented polymers could 

be investigated for twisted polymer fibre torsional actuators. 

 Further optimisation of the series connected torsional actuator with a coiling 

fibre could be considered and guided by an extension of the theory presented in 

Chapter 6. 

Despite the developments highlighted in this thesis, it should also be understood that the 

gap between the lab bench and real world application is still massive. More efforts are 

required to narrow the gap and the future development of practical applications for 

torsional actuators needs to address many challenges, including: 
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 High-speed torsional actuators based on small diameter twisted fibre/yarn still 

lack acceptable torque generation compared to that of low-speed actuators such 

as SMAs. Practical methods for increasing the speed of fibre expansion and 

contraction in twisted polymer fibres need to be developed.  

 Attention should also be paid to the biocompatibility of the torsional actuators as 

such systems could be useful for several biomedical aspects such as microscopic 

surgery tool, and drug delivery devices.  

 Bulk and continuous production of twisted fibre/yarn actuators are needed. 

Small lengths of twisted fibre are easy to make, but mass production techniques 

will be needed for commercial application of torsional actuators.  

As a final point, exciting progress has been made in recent decade in the field of 

torsional actuators. Extraordinary performances, novel and integral functionalities and 

convenient fabrication procedures have been exploited. However, investigations on the 

protocols for the massive production of controllable torsional actuators are needed to 

translate these promising systems into designer artificial muscles for human welfare.  
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