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ABSTRACT 21 

Migratory animals encounter suites of novel microbes as they move between disparate sites 22 

during their migrations, and are frequently implicated in the global spread of pathogens.  23 

Although wild animals have been shown to source a proportion of their gut microbiota from 24 

their environment, the susceptibility of migrants to enteric infections as they move between 25 

sites may be dependent upon the capacity of their gut microbiota to resist incorporating 26 

encountered microbes. To evaluate migrants’ susceptibility to microbial invasion, we 27 

determined the extent of microbial sourcing from the foraging environment, and examined 28 

how this influenced gut microbiota dynamics over time and space in a migratory shorebird, 29 

the Red-necked stint. Contrary to previous studies on wild, non-migratory hosts, we found 30 

that stint on their non-breeding grounds obtained very little of their microbiota from their 31 

environment, with most individuals sourcing only 0.1% of gut microbes from foraging 32 

sediment. This microbial resistance was reflected at the population level by only weak 33 

compositional differences between stint flocks occupying ecologically-distinct sites, and by 34 

our finding that stint that had recently migrated 10,000 km did not differ in diversity or 35 

taxonomy from those that had inhabited the same site for a full year. However, recent 36 

migrants had much greater abundances of the genus Corynebacterium, suggesting a potential 37 

inflammatory response to either migration or exposure to a novel environment. We conclude 38 

that the gut microbiota of stint is largely resistant to invasion from ingested microbes, and 39 

that this may have implications for their susceptibility to enteric infections during migration. 40 

INTRODUCTION 41 

The vast communities of microorganisms that make up the gastrointestinal ('gut') microbiota 42 

of animals are fundamental to host metabolism, nutrient acquisition, and immune function 43 

(Khosravi & Mazmanian 2013; Thaiss et al. 2016; Turnbaugh et al. 2006). The ecological 44 
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dynamics of this microbial community may be particularly important for migratory animals, 45 

because migrants face exceptional metabolic, nutritional, and immunological challenges as 46 

they traverse the globe during their migrations (Altizer et al. 2011; Wikelski et al. 2003). 47 

Notably, migrants are thought to encounter and ingest novel suites of microbes, including 48 

parasites and potential pathogens, as they forage at disparate locations along their migratory 49 

routes (Figuerola & Green 2000; Leung & Koprivnikar 2016).  This increased risk of 50 

infection, in combination with their high mobility, has raised concerns that migratory animals 51 

may be of particular importance in the global transmission and dispersal of pathogenic 52 

microbes (Altizer et al. 2011; Waldenström et al. 2002).  Critically, the risk of migrants 53 

dispersing enteric pathogens is, in part, dependent on the extent to which they incorporate and 54 

maintain novel microbes encountered at each location in their gut microbiota. 55 

The susceptibility of hosts to enteric infection is linked to the capacity of their gut microbiota 56 

to resist invasion by foreign microbes  ('colonization resistance'; Van der Waaij et al. 1971).  57 

This resilience may be achieved either via niche competition between native and foreign 58 

microbes, or by commensal bacteria actively inducing host immune responses when under 59 

invasion (Kamada et al. 2013; Round & Mazmanian 2009).  Although young animals, 60 

including migratory shorebirds, have been shown to establish their gut microbiota at birth or 61 

hatching by incorporating microbes from their immediate environment (Brooks et al. 2014; 62 

Dominguez-Bello et al. 2010; Grond 2017), once established the healthy microbiota of 63 

humans and captive animals is generally associated with high levels of stability (Benskin et 64 

al. 2010; Caporaso et al. 2011; Wu et al. 2011). However, the microbiota may not be resilient 65 

to change when continually exposed to new bacterial assemblages. For example, microbes 66 

from soil sediment can successfully colonise and persist in the guts of germ-free mice, even 67 

outcompeting gut specialists (Seedorf et al. 2014). Moreover, laboratory rats challenged with 68 

the microbiota of other individuals develop a microbiota that is more diverse and resembles 69 
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that of donor rats (Manichanh et al. 2010).  Indeed, fully-grown wild hosts have been shown 70 

to source a significant number of microbes from their environment, with wild woodrats and 71 

anole lizards estimated to source up to 25% and 47% of their gut microbiota community from 72 

ingested plant food, respectively (Kohl et al. 2016; Kohl & Dearing 2014). Whether such 73 

high levels of microbial sourcing from the environment is characteristic of all wild hosts, 74 

including those with migratory lifestyles, is unknown. However, if wild migrants have similar 75 

levels of environmental sourcing, then migratory hosts may increase their susceptibility to 76 

enteric infection through the continual incorporation of novel microbes ingested as they 77 

forage at multiple sites en route.  78 

Understanding the mechanisms that drive gut microbiota composition in wild hosts is critical 79 

to understanding their susceptibility to enteric infections. This is particularly challenging for 80 

migratory animals, because migrants undergo simultaneous changes in geography, diet, and 81 

physiology, all of which may influence gut microbiota composition (David et al. 2014; 82 

Turnbaugh et al. 2006; Yatsunenko et al. 2012). Migratory birds have been shown to 83 

experience shifts in their gut microbiota composition over time, both during migration (Lewis 84 

et al. 2016), and over the breeding season (Kreisinger et al. 2017). However, the mechanisms 85 

behind these changes remain unclear. Whether they are driven by physiological requirements 86 

(e.g. a sudden physiological shift from sustained exercise to rapid mass gain in the case of 87 

refuelling migrants, or changes to reproductive hormones during breeding), shifts in diet, or 88 

represent the incorporation of novel microbes, is unknown, despite important implications for 89 

host susceptibility.  Although laboratory based studies on wild hosts may help untangle these 90 

interactions, such studies may not truly reflect mechanisms acting in the wild. For example, 91 

bacterial sharing between gut and host environment decreased significantly in wild woodrats 92 

moved into captivity (25% to 6%; Kohl & Dearing 2014), highlighting the need for studies 93 
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that elucidate microbiota dynamics and mechanisms in natural ecosystems (Amato 2013; 94 

Hird 2017).   95 

In this study, we aimed to assess the invasion resistance of a long-distance migrant, the Red-96 

necked stint (Calidris ruficollis), to ingested environmental microbes whilst controlling for 97 

host habitat and physiology.  We achieved this by firstly determining the extent to which stint 98 

on their non-breeding grounds sourced microbes from their immediate foraging environment,  99 

and secondly by examining whether this translated into altered gut microbiota community 100 

structures across sites and over time.  Importantly, the Red-necked stint provides an 101 

especially rare and insightful model species to investigate these questions for three reasons. 102 

Firstly, like many shorebird species, young birds remain on the non-breeding grounds for 1.5 103 

years following their first migration from their natal sites in Siberia. This allows comparisons 104 

between birds that have remained 'resident' on the non-breeding grounds for a full year (at 105 

this point 'second year' individuals that are 15 months old) and those that had recently 106 

migrated from Siberia, via multiple locations (those three or more years old), providing two 107 

conspecific groups that share diet and environment, but differ in how recently they completed 108 

a long distance, multi-stopover migration.  Secondly, stint forage for prey by sifting through 109 

coastal sediment and biofilm with their bills, with sediment and biofilm making up the major 110 

component of the diet and stomach contents of closely related, and ecologically similar, 111 

Calidris species (Kuwae et al. 2008; Lourenço et al. 2017; Mathot et al. 2010). This creates 112 

direct and ongoing exposure to sediment microbiota. Thirdly, stint are site faithful, and make 113 

limited movements during the non-breeding seasons, often remaining on the same foraging 114 

site within the same flock for the entire season (Rogers et al. 2010). This not only provides 115 

opportunities to monitor the same individuals over time, but also provides reasonable 116 

certainty of foraging areas and movement patterns over the season.  117 
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Given this study system, if the gut microbiota of stint is not resistant to invasion from 118 

environmental microbes, then a series of predictions can be made. Firstly, we predicted that 119 

individuals will source a similar proportion of their gut microbiota from their immediate 120 

foraging sediment to that found in previous studies of other wild hosts (30-50%). This would 121 

be reflected in distinct gut microbiota community structures between flocks occupying 122 

different sites. Secondly, we predicted that newly arrived migrants that had recently been 123 

exposed to novel suites of microbes during migration (adults) would have a phylogenetically 124 

distinct, and more diverse gut microbiota from resident second year birds that had inhabited 125 

the site for a full year. Thirdly, the microbiota of newly arrived migrants should, through 126 

ongoing exposure to the same local microbes and other members of the flock, become more 127 

similar to that of resident birds with increasing time spent at the non-breeding site.  128 

Collectively, these analyses allow us to assess how resistant the gut microbiota of migratory 129 

stint are to invasion from novel environmental microbes during their non-breeding season. 130 

MATERIALS AND METHODS 131 

Sample collection 132 

Red-necked stint from two non-breeding populations were captured using cannon nets in 133 

Victoria, Australia. One  population occupied a coastal beach site, Flinders (-38°48 S, 145°00 134 

E), and was sampled at three time points during the non-breeding season (September 2015 – 135 

April 2016) in order to assess temporal changes in gut microbiota communities.  Twelve out 136 

of a total of 71 individuals were recaptured at least once over the season (see below). Firstly, 137 

a single flock of recent migrants (3+ years old) and resident second years (15 months old) 138 

were captured on the 20th September (n = 29). Given that adult stintarrive at this site over the 139 

course of mid- to late- September, recent migrants captured on this day would have 140 

completed their post-breeding migration 1 - 14 days prior to capture.  Although age 141 
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differences exist between the two groups, it is extremely unlikely that this would be the cause 142 

of differences in microbiota community structure. Age is an important factor determining gut 143 

microbiota composition when young, with chicks having different gut microbiota to adult 144 

birds in penguins, kittiwakes and barn swallows (Barbosa et al. 2016; Kreisinger et al. 2017; 145 

van Dongen et al. 2013). However, poultry studies suggest that gut microbiota structure 146 

resembles that of adults within 0.5 - 3 months after hatching (Oakley et al. 2014; Ranjitkar et 147 

al. 2016), and studies of two wild migratory shorebird species, Dunlin and Red phalarope, 148 

suggest that microbiota diversity stabilizes in 3-10 days old chicks (Grond 2017).  On this 149 

basis, and given that both our resident and migrant groups consist of fully-grown birds that 150 

have completed at least one Siberia-to-Australia migration,  we do not believe that 151 

differences in gut microbiota should exist between second year birds at 15 months old and 152 

birds that are 3+ years old due to age per se.  The population was then targeted  on the 23rd 153 

January (n = 13), and again prior to the pre-breeding migration, on the 11th March (n = 18).  154 

At this point in their moult cycle adults and second year birds could not be distinguished on 155 

the basis of their plumage, although juveniles (birds hatched in the 2015 breeding season, and 156 

which arrived on the site October-November, after the first September catch) were still 157 

distinguishable. However, using recapture history of banded birds we were able to distinguish 158 

between adults and second year birds for 61% of the individuals at this point in time. As a 159 

comparison site, a second population inhabiting the Werribee Western Treatment Plant 160 

(WTP; -37°99 S, 144°61 E), a sewage treatment works characterized by lagoons and 161 

estuaries, was also sampled.  Birds were captured during two capture events on the 28th 162 

December 2015 (n = 25).  Stint are site-faithful on the non-breeding grounds, with little 163 

connectivity between the sites: of 9,856 recaptures of the same individual stint across the 164 

wider region of our study site over the last 30 years, only 146 individuals (1.5%) were 165 

recaptured at a different site to where they were first caught (Rogers et al. 2010). 166 
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Cloacal swabs were taken from stints using sterile swabs (Copan 170KS01), placed in sterile 167 

plastic tubes without medium, and kept refrigerated for 3 - 5 hours before being stored at -168 

80°C. Differences in bacterial composition resulting from storage conditions generally do not 169 

eclipse differences between samples (Dominianni et al. 2014; Lauber et al. 2010), therefore 170 

we assume differences in refrigeration time had minimal effect on our results. Environmental 171 

samples of mud or sand from where birds had been observed foraging were collected at each 172 

capture site immediately after each capture event, and handled in the same manner as the 173 

cloacal swabs. Six environmental samples from each site were pooled into two DNA samples 174 

(2 x 3) per site, because we deemed small-scale spatial variation within the foraging areas 175 

were not relevant to our study. 176 

DNA isolation, amplification and sequencing 177 

DNA was isolated using the phenol-chloroform method (Green et al. 2012). Briefly, swabs 178 

were suspended individually in 400 μl cetrimonium bromide (CTAB) with 50 μl of proteinase 179 

K and 60 μl of 10% sodium dodecyl sulfate (SDS). This solution was briefly vortexed and 180 

incubated overnight at 56 °C. The next day, 50 μl of 5M NaCl and 500 μl of phenol was 181 

added to each solution, briefly vortexed and left at room temperature for 10 minutes. From 182 

here, DNA isolation and ethanol precipitation followed standard procedures outlined in Green 183 

et al. (2012). DNA was extracted from four sterile swabs as negative controls to correct for 184 

contaminants (Salter et al. 2014).  DNA samples were sent to the Ramaciotti Centre for 185 

Genomics, Sydney, for amplification using paired 27F/519R primers that amplify a 500bp 186 

V1-V3 region of the 16S rRNA bacterial gene, and amplicons were then sequenced using 187 

Illumina MiSeq technology (Caporaso et al. 2012; full protocol for these primers available at 188 

www.bioplatforms.com). A mock community provided by Zybiotics was included as a 189 

positive control in order to assess exact sequencing error rate. In addition, two technical 190 

replicates were included as an additional data quality check. 191 
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Sequence processing 192 

Paired sequences were joined using UPARSE pipeline (Edgar 2013), and quality filtered 193 

using USEARCH's maximum expected error method. Sequences were aligned and filtered in 194 

mothur following their standard operating procedure (MiSeq SOP; Kozich et al. 2013; 195 

accessed December 2016).  We pre-clustered 2,066,515 unique sequences to allow four base 196 

pair differences, resulting in 703,453 unique sequences. Chimeras were identified using the 197 

UCHIME algorithm (Edgar et al. 2011), and 209,094 (29%) unique sequences were removed 198 

from the dataset. Sequences were grouped into operational taxonomic units (OTUs) based on 199 

a 97% similarity threshold. Taxonomic classification was performed using the SILVA 200 

taxonomy (v123.1; Pruesse et al. 2007) trimmed to the alignment space of the amplicons 201 

(Werner et al. 2012). OTUs that were identified as mitochondria, eukaryotic (including 202 

chloroplast) or archaeal were removed from the data set. This created a total output of just 203 

under 4 million sequences. Analysis of the mock community found an average sequencing 204 

error rate of 0.2%. This is slightly higher than normal, and may explain the high proportion of 205 

singleton OTUs found in the final dataset, with 90% of 77,000 OTUs being represented by a 206 

single sequence (with a 'normal' proportion being between 5 - 40%, depending on sample 207 

types). Inspection of the technical repeats indicated that these singletons were likely due to 208 

sequencing error. We controlled for this error by excluding OTUs represented by 10 209 

sequences or fewer to ensure sequencing error did not bias results. This excluded only 2% of 210 

total sequences. To ensure data quality, we also reran sequence processing with stricter 211 

quality control using a 50bp sliding window within mothur to discard reads that drop below 212 

Q25, which did not change analytical results. Rarefaction curves for the OTU table used for 213 

the study (i.e. excluding OTUs with total abundance of 10 or less) showed that almost all 214 

OTUs were detectable by 5000 reads (Fig. S1).  Sequences classified to the genus 215 

Corynebacterium (see results) were extracted from the main data set and further analysed by 216 
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oligotyping, using the minimum entropy decomposition pipeline (version 2.1) to reveal fine-217 

scale diversity within the genus (Eren et al. 2014), to assess whether the increased 218 

abundances observed were representative of a single or multiple strains. 219 

Data analysis 220 

Analysis of OTU communities was conducted using the Phyloseq (McMurdie & Holmes 221 

2013) and vegan (Oksanen et al. 2007) packages in R. The negative control contained forty 222 

OTUs represented by at least 5 sequences, and these OTUs were removed from the dataset. A 223 

single sample with under 7000 reads was excluded, and all remaining samples were rarefied 224 

to 9795 reads (the minimum read count) for further analyses. Because rarefied data can lead 225 

to false positives (McMurdie & Holmes 2014), we repeated analyses without rarefying 226 

samples with no difference to overall results or conclusions. We applied MDS and NMDS 227 

ordinations and conducted ADONIS tests (Anderson 2001) to statistically test for differences 228 

between groups. Methods for accounting for repeated samples from the same individual in 229 

ordination analyses are not currently available. To make sure repeat samples did not affect 230 

results we reiterated analyses randomly excluding repeats, which did not affect overall 231 

results. Because primary components in the MDS analyses generally explained little variance, 232 

we present results from the NMDS ordination. We present both Bray-Curtis (based on 233 

abundance of OTUs) and unweighted Unifrac (based on evolutionary distance between 234 

OTUs; Hamady et al. 2010), distance measures.  Unifrac distances were calculated using a 235 

16S alignment with SILVA. To identify which particular groups of bacteria were different 236 

between groups, we ran the analysis through LEFse, hosted by the Huttenhower galaxy server 237 

(https://huttenhower.sph.harvard.edu/galaxy). We analysed bacterial richness by calculating 238 

both observed OTU richness and the Shannon diversity index. When comparing bacterial 239 

diversity between the three capture events within the Flinders population, we applied a mixed 240 

effect regression model with stint ID as a random effect to account for repeated measures.  241 

https://huttenhower.sph.harvard.edu/galaxy
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We estimated the proportion of OTUs sourced from sediment samples using a Bayesian 242 

approach within SourceTracker (Knights et al. 2011).  This approach uses the relative 243 

abundance of each OTU within both the sediment and each host to calculate the probability 244 

that each OTU found in the host gut was sourced from the sediment microbiota. Thereby it 245 

provides an estimate for the proportion of OTUs sourced from local sediment.  For this 246 

analysis, we excluded any OTU which was represented by a single sequence in the control 247 

sample, because analyses suggested that 3% of OTUs present in our samples were sourced 248 

from laboratory contamination, despite being present at extremely low abundances (and 249 

therefore not affecting previous community composition analyses). Therefore, we note that 250 

previous studies that did not account for contamination may have inflated levels of OTU 251 

sourcing. We repeated this analysis between all groups, and in both directions, to estimate 252 

common sources between groups (see Fig. 5a). However, one bird was excluded from these 253 

analyses because it was estimated to source 27% of its gut microbiota from the environment, 254 

whilst the median was 0.1% (see Fig. 2b). We therefore could not rule out that this was due to 255 

environmental contamination of this sample. Because the sediment microbiota of the two 256 

sites differed (see results), we carried out analyses within SourceTracker for each site 257 

separately.  For birds at Flinders, we compared birds to sediment samples collected during the 258 

March capture only. Although microbial profiles of sediment may change to certain extent 259 

over time, there was no difference in levels of OTU sourcing from sediment between birds 260 

captured in September, January or March, indicating that this should not affect results.  261 

RESULTS 262 

A total of 2275 operational taxonomic units (OTUs) were identified from 85 cloacal samples 263 

from 71 individual stint, with 10 individuals from Flinders beach sampled twice over the non-264 

breeding season, and two individuals sampled at all three time points. The majority of these 265 

OTUs had very low prevalence within the sampled stint population (Fig. S2). Only 12 OTUs 266 
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(0.5% of the total OTUs derived from bird samples) made up the sampled population's 'core' 267 

microbiota (defined here as the suite of OTUs that occur in over 80% of samples; Table 1), 268 

whilst 85% of OTUs were present in less than 5% of birds. On average, the core microbiota 269 

made up 40 ± 23 (s.d.) % of the total microbial abundance for each individual, with the 270 

remainder being largely OTUs that were unique to the individual. Across stint samples, the 271 

most abundant bacterial phyla were Proteobacteria (33%), Fusobacteria (17%), Firmicutes 272 

(14%), Actinobacteria (11%), and Bacteroidetes (9%).  Environmental samples taken from 273 

foraging sediment at each site showed a less diverse microbial community at the phylum 274 

level, consisting of mostly Proteobacteria and Bacteroidetes (Fig. 1a), but each sample 275 

contained a much richer suite of OTUs than present within the individual stints (Fig. 1b).  276 

Both non-breeding sites displayed a distinct sediment microbial profile (Fig. 1b) which was 277 

also distinct from the overall stint gut microbiota (Fig. 1c), with the most abundant OTUs for 278 

each site not overlapping with each other (Table 2). 279 

Microbial sourcing from sediment across sites 280 

Bayesian analysis with SourceTracker estimated only 1.7% of sediment OTUs at each site 281 

shared a common source (Fig. 2a). However, stint did not source a significant proportion of 282 

their gut microbiota from their environment, with an average of 0.16 % (± 0.6 SD) and 0.4 % 283 

(± 1.4 SD) of gut microbiota estimated to be sourced from sediment for flocks occupying the 284 

Flinders and WTP non-breeding sites, respectively (Fig. 2b). Stint were estimated to share 285 

slightly more OTUs with their own foraging site than the alternative foraging site (Fig. 2a), 286 

but these differences were not significant (t = 1.22, p = 0.23).  This low incorporation of 287 

sediment bacteria was reflected by the two flocks occupying different sites differing only 288 

weakly (but significantly) in their gut microbiota composition (Fig. 3a; Adonis test applying 289 

Bray Curtis distance matrix, which emphasises differences in abundance: R2 = 0.02, p = 0.04; 290 
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Unifrac distance matrix, which takes into account phylogeny but only considers 291 

presence/absence rather than abundance: R2 = 0.05, p = 0.001, n = 85).   292 

The weak differences in gut microbiota between the two flocks were attributed to a number 293 

of bacterial groups being slightly more prevalent in birds at the water treatment plant than 294 

birds at Flinders beach, including bacteria belonging to phylum Chloroflexi, family 295 

Succinivibrionaceae (phylum Proteobacteria), genera Streptococcus (phylum Firmicutes) and 296 

Salinimicrobium (phylum Bacterioidetes; Fig. 3b; Fig. S3 for abundance plots of each 297 

bacterial group). However, with the exception of three Chloroflexi OTUs that were found at 298 

very low abundances in one stint each, none of the strains that showed higher prevalence in 299 

birds occupying the water treatment plant were present in environmental samples.    300 

Despite the low levels of microbial sourcing from the environment, birds inhabiting the water 301 

treatment plant tended to have a richer suite of OTUs that those occupying Flinders beach 302 

(Observed richness: Flinders mean = 80.9 ± 32.6 s.d.; WTP mean = 142.5 ± 99.9 s.d.;  t = 3.0, 303 

p = 0.006; Shannon index: t = 2.3, p = 0.03; Fig. 3c), although overall composition at the 304 

phyla level between populations was very similar (Fig. 3d). 305 

Differences between recently arrived migrants and resident birds 306 

At the start of the non-breeding season at Flinders beach, the composition of the gut 307 

microbiota of stint that had just returned from migration was distinct from second-year 308 

individuals that had inhabited the site for a full year (Fig. 4a; adonis test based on Bray Curtis 309 

distances; R2 = 0.10, p = 0.01, n = 29).   However, this difference disappeared when using 310 

unweighted unifrac distances (adonis test; R2 = 0.04, p = 0.14). Together, these results 311 

indicate that at the start of the non-breeding season the microbiota of both recent migrants 312 

and residents consists of phylogenetically similar communities but with marked differences 313 

in abundance. These differences primarily resulted from much higher abundances of 314 
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Actinobacteria in recent migrants (Fig. 4b), particularly strains of the genus Corynebacterium 315 

(Fig. 4c), and in particular just one OTU that was present in 13 of the 15 migrants in high 316 

abundances (average relative abundance of 23%), yet in only six of 14 residents at extremely 317 

low abundance (average relative abundance of less than 1%; Fig. S4).  Oligotyping of the 318 

whole genus suggested that the majority of these sequences belonged to just one bacterial 319 

strain, although the strains found in the two migrants with the highest abundances of 320 

Corynebacterium were assigned to a different group (Fig. S5). In addition, residents had 321 

higher relative abundances of Flavobacteriaceae and Mollicutes (Kruskal-Wallis test: p < 322 

0.05; Fig. 4c; Fig. S4). These differences were not obviously linked to condition, with both 323 

recent migrants and residents having similar body mass (t = 1.04, p = 0.31, n = 29). However, 324 

contrary to our predictions, migrants did not have a more diverse suite of gut bacteria in 325 

comparison to residents (Fig. 4d; migrants = 86.6 ± 37.4 s.d.; residents = 88.7 ± 36.0 s.d.; t = 326 

0.14, p = 0.88).  This was reflected by similar levels of OTU sourcing from the environment 327 

between recent migrants and residents in September (Fig. 4d), suggesting that length of time 328 

spent at the site did not influence OTU sourcing from foraging sediment. 329 

Changes over the non-breeding season 330 

The gut microbiota of stint shifted weakly (but significantly) over the non-breeding season 331 

(Fig. 5a; Adonis test applying unifrac: R2 = 0.07, p = 0.001; Bray curtis; R2 = 0.07, p = 332 

0.001; n = 59).  Over time, the relative abundance of Actinobacteria declined across the 333 

population, and was at negligible levels by March (Fig. 5b). This was mostly attributed to a 334 

decrease in the abundance of the order Corynebacteriales in recent migrants over the season 335 

(Fig. 5b; Fig. S6 for plots across individuals), as well as an increase in Fusobacteria in some 336 

individuals (genus Cetobacterium; Fig. 5b; S6).  Both migrants and residents shifted their 337 

microbiota substantially over the season (Fig. 5a; Fig. S7 for stacked barplot showing 338 

changes in composition at the phyla level per individual). Observed richness did not differ 339 
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significantly between months, with individuals both increasing and decreasing over time (Fig. 340 

6; Mixed effect regression model: September baseline estimate = 78.4 ± 4.4; January =  -6.3 341 

± 6.9, p = 0.38; March = 11.7 ± 8.3, p = 0.19).   342 

DISCUSSION 343 

This study aimed to understand the susceptibility of the gut microbiota of migrants to 344 

sediment microbes by determining the extent of microbial sourcing from the environment, 345 

and examining the effect of environmental sourcing on gut microbiota dynamics over time 346 

and space in the long-distance migrant, the Red-necked stint.  Contrary to our predictions, we 347 

found very little sourcing of microbes from the local foraging sediment (<0.1%), which is 348 

much lower than previous studies of wild hosts. Correspondingly, we found only very weak 349 

differences between stint flocks occupying separate sites with distinct environmental 350 

microbial profiles. We found no difference in taxonomic composition or diversity of the gut 351 

microbiota between stint that had recently migrated and those that had remained resident at 352 

the site for a full year, suggesting migrants had not incorporated sediment microbes into their 353 

gut during their migration.  However, recent migrants had much higher abundances of the 354 

genus Corynebacterium on arrival compared to residents, and this group of bacteria 355 

decreased in abundance within individuals over the non-breeding season.  Over this same 356 

period, the gut microbiota of both migrants and residents remained highly diverse, with 357 

individuals experiencing large fluctuations in the composition of gut microbiota.  358 

We predicted that if migratory shorebirds incorporate environmental microbes into their gut 359 

during foraging, then stints on their non-breeding grounds should source a proportion of their 360 

gut bacteria from their foraging sediment. However, we found that stints were able to largely 361 

resist the incorporation of sediment microorganisms, despite high exposure through their 362 

feeding behaviour.  This is in contrast to other studies that found relatively high levels of 363 
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OTU sourcing (up to 45%) between the gut microbiota of resident species, including wild 364 

anoles and woodrats, and their ingested natural food (Kohl et al. 2016; Kohl & Dearing 365 

2014), although it is unknown whether hosts sourced these microbes as adults or juveniles.  It 366 

is also in contrast to studies of migratory shorebird chicks on the breeding grounds, which 367 

have been shown to share nearly 40% of their gut bacteria with their environment between 368 

zero and ten days old (Grond 2017).  This suggests that once the gut microbiota is established 369 

from environmental sources, it is relatively resistant to further invasion once the migratory 370 

host is fully grown.  371 

High invasion resistance in stint may provide an explanation for why flocks inhabiting 372 

ecologically-distinct sites differed only weakly in their gut microbiota, with site explaining 373 

approximately 4% of variation in microbiota.  This is considerably less than seen in studies of 374 

largely sedentary species, with geographic site explaining an average of 30 – 70 % in 375 

allopatric populations of Black howler monkeys (Amato et al. 2013), Red colobus monkeys 376 

(McCord et al. 2014), and Galapagos land and marine iguanas  (Lankau et al. 2012).  In 377 

contrast, differences in the gut microbiota of the migratory Greater white-fronted goose 378 

inhabiting two lakes in China during the non-breeding season found that only 2% of variation 379 

was explained by site (Yang et al. 2016). Similarly small but significant differences were 380 

found between nearby colonies of migratory Barn swallows (Kreisinger et al. 2017), which 381 

aligns closely with our findings in Red-necked stint.  In light of our findings of minimal 382 

uptake of environmental microbiota, and previous work suggesting that the environment 383 

experienced during infancy has lasting effects on the gut microbiota into adulthood (Goedert 384 

et al. 2014; Thompson et al. 2008), this difference in site-specific effects between migratory 385 

(small effects of site) and sedentary species (large effects of site) may in part be a legacy 386 

effect of the disparate natal sites of migratory individuals on their non-breeding (Finch et al. 387 

2015; Fraser et al. 2012).   Although inter-population differences in diet are often shown or 388 
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assumed to be the primary reason for differences in the gut microbiota between host 389 

populations of the same species (Amato et al. 2016; Amato et al. 2013; Degnan et al. 2012; 390 

McCord et al. 2014), we suggest that host movement ecology should also be considered more 391 

explicitly in future studies.  392 

High invasion resistance may also explain why recent migrants had similar gut microbiota 393 

communities to resident second year birds that had remained at the site for a full year. 394 

Although stint may have arrived at the non-breeding site at Flinders up to two weeks prior to 395 

being sampled, potentially allowing enough time for rapid changes to the microbiota to have 396 

taken place before sampling, our results suggest that such changes were not driven by the 397 

incorporation of novel microbes. This was supported by both migrants and residents having 398 

similarly low levels of OTU sourcing from their environment (Fig. 2b). However, migrants 399 

notably differed in the abundances of some groups of bacteria, particularly the genus 400 

Corynebacterium. The role of Corynebacterium within the gut microbiota is not well studied. 401 

However, increased abundances of Corynebacterium have been associated with chronic 402 

inflammation of the nasal sinus (Abreu et al. 2012; Wagner Mackenzie et al. 2016), induced 403 

inflammation of the gut (Ribière et al. 2016), and viral infection in pandas (Zhao et al. 2017), 404 

collectively indicating these bacteria may be associated with inflammatory immune 405 

responses.  Moreover, Rooks et al. (2014) found that abundances of Corynebacterium in the 406 

gut of mice increase in response to an experimental dose of TFN-α (a pro-inflammatory 407 

cytokine), suggesting that an immune response can trigger an increase in this bacterial genus.  408 

Considering almost all recently arrived migrants had a remarkably high abundance of the 409 

same OTU, this may indicate either a physiological change related to migration or an 410 

intestinal immune response, rather than an opportunistic infection. This is generally 411 

supported by the fact that recently arrived migrants did not display signs of intestinal disease, 412 

with both body mass and gut microbial diversity maintained at a similar level to resident 413 
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birds, although infections have variable effects on species diversity within the gut (e.g. de 414 

Vos & de Vos 2012; Moeller et al. 2013; Newbold et al. 2016; Zhao et al. 2017). Therefore, 415 

although we found significant differences in the composition of gut microbiota between 416 

recent migrants and resident individuals, the causal mechanisms behind these differences 417 

cannot be fully elucidated in this study.  Considering the importance of the gut microbiota in 418 

mediating host immune responses (Belkaid & Hand 2014), expanding our understanding of 419 

the interactions between the gut microbiota, pathogenic infection, and host immune function 420 

in migrants will be critical to fully understand the susceptibility and transmission potential of 421 

migrants.  422 

Finally, we found only weak shifts in gut microbiota composition within the flock over the 423 

non-breeding season, and individual stints underwent large, seemingly random, fluctuations 424 

in their gut microbiota composition and diversity, demonstrating a remarkably variable 425 

microbiota within individuals even during sedentary periods. Such dramatic shifts have also 426 

been found in other wild species such as anolis lizards (Ren et al. 2016) and baboons (Ren et 427 

al. 2015), suggesting microbial fluctuations in community composition, potentially in 428 

response to short-term shifts in host diet or physiology, may be the norm in wild animals, 429 

independent of being sedentary or migratory. However, our findings suggest these changes 430 

are likely to be due to short-term shifts in diet or physiology, rather than exposure to altered 431 

environmental microbiota. 432 

Conclusions 433 

Overall, our results indicate that although the gut microbiota of Red-necked stint is subject to 434 

fluctuations, it is relatively resistant to invasion from ingested environmental microbes, in 435 

contrast to other studies on wild (non-migratory) hosts. Further research is required to assess 436 

whether this high resistance is characteristic of migratory hosts more generally, as well as 437 
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understand the relationship between invasion susceptibility and infection risk. However, we 438 

suggest the high resistance to environmental microbes found in stint are likely to have 439 

implications for the susceptibility of migratory hosts to infection  as they visit novel locations 440 

during their migrations. 441 
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