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Optical conductivity of a commensurate graphene-topological insulator

heterostructure

Matthew Sanderson1, Sunchao Huang1, Qiaoliang Bao2, Chao Zhang1

1 School of Physics, University of Wollongong, Northfield Avenue, New South Wales 2522,

Australia and
2 Department of Materials Science and Engineering, Monash University, Wellington Road,

Clayton, Victoria 3800, Australia

The optical conductivity of a heterostructure formed by a commensurate stacking of

graphene and a topological insulator (TI) is investigated using the Kubo formalism. Both

the intra- and interband AC conductivities are found to be sensitive to the graphene-TI

coupling. The direct interband transition in graphene which is the origin of the univer-

sal conductance is forbidden due to the topological nature is the coupling. Furthermore,

the graphene-TI coupling gives rise to additional broken symmetries, resulting in both the

inter- and intraband conductivity to be reduced in the graphene-TI heterostructure. By

varying the Fermi energy of the heterostructure, the band that gives the largest contribution

changes, which in turn affects the overall electronic transport.
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Topological insulators (TI’s) have been widely studied particularly with respect to semiconducting

heterostructures, formation of interface states and topological quantum Hall edge states1–4. The

surface states of a topological insulator are found to have a linear low energy dispersion5, known

as a Dirac point, similar to the dispersion for monolayer graphene. In both systems near the Dirac

point, the massless two-dimensional chiral fermionic excitations are characterized by the inter-

locking of spin (or quasi-spin) and the momentum. Both graphene and topological insulators have

also been theorised to exhibit large magneto-optical effects6,7 which can affect the conductivity and

result in Kerr rotation. There does however exist qualitative differences between these two types of

massless Dirac Fermions, chief among them is that the quantum spin Hall effect only exists in the

surface states of TI’s. Due to the linear dispersion relation around the Dirac point there has been

a considerable amount of interest in the optical properties of the aforementioned two-dimensional

systems8. It is yet to be seen however, what effect there is on the optical properties of a system

whereby a coupling occurs between these two similar two-dimensional systems. Recently it has

been shown9 that such a TI-graphene heterostructure can be fabricated. It is expected that the weak

spin-orbital coupling (SOC) in graphene can be enhanced by the proximity effect in TI-graphene

heterostrctures10–12. Theoretical work13 showed a significant enhancement of the SOC in graphene

which can be further controlled by the relative rotation of the graphene lattice and the TI lattice.

The optical properties of graphene and topological materials in the terahertz to far infrared regime

has been a topic of some interest due to the ongoing search for viable terahertz detectors and

emitters, as well as the ubiquitous research being undertaken within the infrared frequencies used

for telecommunications purposes. Due to the tunable Fermi levels in these systems, the optical

properties such as conductance and plasmon frequency can be tuned in a wide range. The linear

energy dispersion can also give rise to a strong nonlinear response in both graphene and TI’s14–16.

A new graphene-Bi2Te3 heterostructure formed by growing Bi2Te3 on the graphene template has

been fabricated to study the coupled 2D plasmons. It has been found that the extinction spectra of

the graphene-Bi2Te3 heterostructure is three times greater in magnitude than that of graphene17.

In this work we investigate the intra- and interband optical conductivity of a TI-graphene het-

erostructure. In what follows we shall show that the band hybridization blocks the direct band-to-

band transition between the graphene bands. The total conductivity of the heterostructure decreases

significantly when compared to the case where the graphene and TI are separated. This effect is

2



independent of the graphene-TI coupling strength and due to the topological nature. The formal-

ism is based on the Kubo formula of conductivity and a constant relaxation rate is assumed. The

results found highlight the effect of hybridisation of bands on the overall conductivity of a system.

Individually the conductivities of the two systems are quite simple, but when brought together the

conductivity exhibits quite complicated behavior. The conductivity calculated gives us a clearer

picture of the optical properties of the material, as well as potentially allowing for creation of

devices utilising these properties.

We consider a graphene-TI structure where the stacking is commensurate. It has been determined5

that for Bi2Se3, Bi2Te3, and Sb2Te3 compounds, the surface states are on the 111 surface. The

projected surface Brillouin zone (BZ) is hexagonal with a single DP at the zone center5. The Dirac

points of the graphene monolayer will line up quite closely to the Dirac points of the topological

insulator due to the difference in sizes in the crystal structures. Due to the overlap of Brillouin

zones, a direct coupling between Dirac cones is possible. The structure is a
√

3 ×
√

3 stacked

graphene BZ and TI BZ in the repeated zone scheme and the model Hamiltonian is given in the

following form13,

Ĥ =


Ĥg,K

k 0 T̂ †

0 Ĥg,K′

k T̂ †

T̂ T̂ ĤTI
k

 (1)

where Ĥg,K = vgF

(
0 0 0 p−
0 0 p− 0
0 p+ 0 0
p+ 0 0 0

)
and Ĥg,K′ =

(
Ĥg,K

)†
are the (4×4) Hamiltonians for graphene

at the K and K ′ points respectively (including spin degeneracy), ĤTI = ivTIF
( 0 p−
p+ 0

)
is the

Hamiltonian for the surface of a topological insulator without a gap, and T̂ = ( t 0 0 0
0 t 0 0 ) is a coupling

term describing hopping between the graphene layer and the TI surface. p± = pe±iθ = ~(kx±iky),

and vgF and vTIF are the Fermi velocity for the graphene and topological insulator layers respectively,

and t = 0.05eV is the inter-layer hopping energy13. The basis vector for Eq. (1) contains terms

for creation of massless Dirac fermions on both sublattices in the graphene lattice for both valleys

and spins (accounting for the first 2 × 2 × 2 = 8 terms), and the creation of a surface massless

fermion with spin on the topologically insulating surface (accounting for a further 2 terms). While

the Hamiltonians are usually not linked, by including a hopping term between the two layers, there
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is an intermingling of terms entering through the T̂ operator.

This Hamiltonian includes both K and K ′ valleys of graphene, as well as the spin state of elec-

trons which are both normally ignored and added as degeneracies (gv = 2 and gs = 2 respectively).

By diagonalising the Hamiltonian we can find an implicit form of the energy dispersion for this

system

(E + vgp)
2(E − vg)2

(
E3 − vTIpE2 − (2t2 + v2gp

2)E + vTIv
2
gp

3
)

×
(
E3 + vTIpE

2 − (2t2 + v2gp
2)E − vTIv2gp3

)
= 0 (2)

where vg = vgF and vTI = vTIF . We will be using the familiar value of vgF ≈ 1 × 106m/s, and we

will approximate vTI = 1
2
vg due to the difference in sizes of the physical structures of graphene

and topological insulators13.

It can be seen from Eq. (2) that the usual graphene band structure still remains, but with a degen-

eracy of 2 instead of 4 as would be expected when considering valley and spin degeneracy. The

energy dispersion shown in Fig. 1 is the same as that presented in Ref.[10]. We redraw it here

with explicit band labelling to assist our discussion of various electronic transitions and optical

conductivity.

FIG. 1: Energy band structure for t = 0.05eV. The bands are numbered from bottom to top as a

convenient referencing system. Both graphene bands have two numbers due to their 2-fold

degeneracy.
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The lowest point of the upper bands is at Emin = 3
√
6t√

10+7
√
7
, and the crossing point of the two

upper bands is at Ec =
√

2t. As we will be calculating the conductivity at zero temperature, sharp

changes are expected to occur at these points. The upper splitting of the bands is a Rashba-like

splitting and the size of this can be written as ∆R = Ec − Emin.

We write the velocity operators using v̂ν = 1
~
∂Ĥ
∂kν

= ∂Ĥ
∂pν

.

v̂ν =


v̂Kν 0 0

0 v̂K
′

ν 0

0 0 v̂TIν

 (3)

This system exhibits an interesting property that in partially breaking the degeneracy of the

graphene bands, the remaining degenerate graphene bands are actually hybridised from the original

valley degenerate bands13. Due to this hybridisation of two orthogonal states, transitions between

the two different graphene bands are forbidden, ie.

〈ψαg,s|vx|ψα
′

g,s′〉 = 0 (4)

for s, s′ =↑ or ↓, and α 6= α′. The hybridisation is such that ψαg,s = 1√
2

(
ψαK,s − ψαK′,s

)
where the

wavefunctions on the right are those for an isolated graphene sheet. It is straightforward to show

that the berry phase of the two graphene bands is zero as compared to π of an isolated graphene

sheet.

Based on these electronic properties, we calculate the frequency dependent conductivity of the

system. From the Kubo formula the intraband conductivity can be written in the form,18

σintraµν =
igsgvσ0
π2

∑
λ

∫
p dp dθδ(Eλ(p)− EF )

〈ψλ|vµ|ψλ〉〈ψλ|vν |ψλ〉
ξ + iγλ

(5)

where the summation runs over the band index, λ, ξ = ~ω and γλ = ~/τλ. Eq.(5) ignores the

details of the electron scattering and electron-electron correlation in transport19 and assumes a

constant relaxation rate per band, γλ. As all spin and valley degeneracies are included explicitly in

the Hamiltonian we have that gs = gv = 1. For the relaxation rate, γλ we will use one value for all
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the bands, γ = γλ = 2.6meV and neglect the frequency dependency. This value for the relaxation

rate is assigned arbitrarily, so we pick the value that has been used for graphene20 previously,

allowing us to compare the results between the two systems more easily. The actual value for the

system will of course vary from the value in graphene, and will vary by individual band within the

structure. The primary effect this value has on the result is peak broadening, so the details of the

result will still be valid, irrespective of our chosen value for γ.

FIG. 2: Intraband conductivity vs frequency at EF = 0.05eV at various coupling parameters.

Inset: Conductivity vs Fermi energy with ω = 1THz. Solid and dashed lines correspond to the

real and imaginary components respectively.

Fig. 2 shows the longitudinal intraband conductivity in terms of σ0 = e2

4~ . The main panel is the

frequency dependence. The zero-frequency limit represents the Drude weight. As the graphene-TI

coupling increases, the Drude weight decreases. Since the Drude weight for an isolated system

is inversely proportional to the scattering rate, the reduction of the Drude weight in the coupled

system is due to the additional hopping between the two layers in the system. The carrier can be

relaxed via scattering or via interlayer hopping.As the coupling increases, the TI band (band 5)

flattens further. For samples with fixed carrier concentration, the Fermi level decreases because the

density of states increases as band flattens. This will result in a further decrease of the conductivity

as t increases. The inset of Fig. 2 shows the dependence of the conductivity on the Fermi level. The

intraband conductivity increases with the Fermi level. When the Fermi level touches the bottom

of band 8 where the density of states is highest, the conductivity gains a sudden extra source. As a

result a kink is seen at EF = Emin and EF = Ec.
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We note that the structure considered here consists of two pure 2D Dirac systems coupled together

through the interlayer hopping. In principle there is a kz-dependence since the interlayer hopping

is along the z-direction. However, such dependence is now implicitly included in the hopping

parameter. A large interlayer separation means a small t. The electromagnetic response is purely

2D, i.e, the electrons only respond to the field polarising along the plane. A field component along

the z-direction will modify the interlayer hopping. Since hopping is a parameter in this model, the

transport along the 2D plane can be viewed as dependent on the z-component of the field through

the parameter t.

The interband conductivity can be calculated in the same manner,18

σinterµν =
i~e2

4π2

∑
λ 6=λ′

∫
p dp dθ

(fλ − fλ′) 〈ψλ|vν |ψλ′〉〈ψλ′ |vµ|ψλ〉
(Eλ − Eλ′) (Eλ − Eλ′ + ~ω + iγλ)

(6)

Where we sum over inequivalent bands.

Fig. 3 shows the frequency dependent interband conductivity. This rich structure of the frequency

dependency reflects the contribution of various interband transitions allowed at a given Fermi

level.

Various peaks and steps in the conductivity curves are related to the transitions between specific

bands. The highest peak is due to the transition between the states with highest density of states, for

example the transition from band 4 to band 8. We have analyzed and identified specific transitions

associated with the steps in conductivity. For example, at EF = 0.05 the steep step around 10THz

is due to the transition from the lowest TI band (5) to the lowest graphene band (6/7). The same

step occurs at around 12THz for EF = 0.07eV and around 15THz for EF = 0.09eV. Steps in the

real part of the conductivity become dips in the imaginary part of the conductivity, therefore all

dips can be assigned to a given interband transition based on the energy dispersion of Fig. 1. This

is shown in Fig. 3(b).

It can be seen in Fig. 3 that changing the Fermi energy will cause a drastic change in the con-

ductivity curves as the location or possibility of the resonances vary with the size of the Fermi

energy.

In the high frequency limit, the real part of the conductivity approaches as constant value of 5
4
σ0.
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FIG. 3: The interband conductivity vs frequency at various Fermi energies, the coupling

parameter is t = 0.05eV. (a) the real part, and (b) the imaginary part.

The conductivity of 5
4
σ0 is significantly lower that the sum of two universal conductances, 2σ0, for

the decoupled two Dirac systems. This is mainly due to the fact that the direct transitions between

the two graphene-like bands is forbidden. Secondly, due to the hopping breaking the degeneracies

of the graphene layer and modifying the band structure, the resultant bands give a lower contribu-

tion to the conductivity due to their flatter shape.

In Fig. 4, we show the Fermi energy dependent conductivity at low frequencies. We now analyze

the Fermi level dependence of the real part of the interband conductivity. The imaginary part can

be understood through the Kramars-Kronig relations. At zero frequency (black line) the transition

energy is zero and the only possible transitions are around the Dirac points. There are two Dirac

points, one at E = 0, and the other at E =
√

2t. When the Fermi level is around either of these
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FIG. 4: Interband conductivity vs the Fermi energy for a range low frequencies. The solid lines

are the real parts and the dotted lines are the imaginary parts. At zero frequency, the conductivity

is purely real. The coupling is t = 0.05eV.

two points, an absorption peak occurs. Away from the Dirac points, the absorption is negligible but

non-zero due to the finite relaxation rate γ. For ω = 10THz (blue line), the transition probability is

finite everywhere. At zero EF , three transitions are allowed; the 2/3→ 5 and 4→ 6/7 transitions,

both at the same momentum (p1), and the 4 → 5 transition which is at a higher momentum (p2

where E5(p2) − E4(p2) = ~(10THz)). The total strength of these transitions is weaker than the

4 → 5 transition at zero momentum (ie. EF = 0) since the density of states diverges for bands 4

and 5 at zero momentum. As a result, the conductivity is slightly lower at ω = 10THz than at zero

frequency. As EF increases, the 4 → 5 transition, for example, is no longer possible at 10THz as

the upper energy states are now filled at p = p2, causing the conductivity to decrease. This decrease

with increasing EF is offset by the increase in conductivity due to new transitions contributing

(for example 4 → 6). This gives rise to the complex structure of the conductivity as seen in

Figs. 3 and 4. With the help of the energy dispersion (Fig. 1), we can identify which transition

are allowed and which are disallowed as EF and ω vary. By decomposing the conductivity into

contributions due to individual band transitions the complicatedEF dependence of the conductivity

can be understood qualitatively and quantitatively.

In summary we have calculated the frequency and Fermi energy dependence of the optical con-

ductivity in a graphene-TI heterostructure. The transport is strongly dependent on the graphene-TI

coupling. By allow hopping between the two commensurate layers, the total conductivity is in
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general decreased compared to the total conductivity found by naively adding the graphene and

topological insulator conductivities together. This is due to a direct interband transition being

forbidden between the two hybridised graphene bands. Hybridisation of bands as well as lifted

degeneracies results in a complex band structure, which in turn leads to an optical conductivity

with a large number of features.

The frequency dependence of the interband conductivity is considerably more complex than the

case for the two system separately due to the far larger number of possible transitions between

bands, and thus many more resonances are possible. If the hopping strength between layers could

be modified it would create a way to vary the conductivity, allowing for direct tuning of electronic

transport though the material. This in-depth investigation into the conductivity could also be used

to determine and understand the plasmonic properties of the material.

Finally we note that in this work we only considered the case of commensurate stacking and a

gapless TI surface state. Going beyond these two assumptions and calculating the conductivity

for an incommensurate stacking or a gapped graphene-topological insulator stacking will result in

a more complicated band structure21–23 and could lead to further interesting electronic transport

properties. It is possible that the restricted interband transition between the two graphene-like

bands could be lifted in either of these cases, potentially leading to an increase in conductivity.
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