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Human skin interactive self-powered wearable piezoelectric bio-e-skin by
electrospun poly-l-lactic acid nanofibers for non-invasive physiological
signal monitoring

Abstract
Flexible and wearable piezoelectric bio e-skin (PBio-e-skin) based on electrospun poly(l-lactic acid) PLLA
nanofiber membrane is demonstrated for non-invasive human physiological signal monitoring and detecting
dynamic tactile stimuli. The molecular orientations of the CO dipoles by electrospinning technique result in a
longitudinal piezoelectric charge co-efficient (d 33 ) value of ∼(3 ± 1) pm V -1 realized by piezoresponse force
microscopy, allowing the PBio-e-skin for pressure sensing applications. The robust mechanical strength
(Young's modulus ∼50 MPa) of nanofiber membrane ensures PBio-e-skin's superior operational stability over
375000 cycles. Owing to the superior mechanosensitivity of ∼22 V N -1 , PBio-e-skin has the ability to
measure subtle movement of muscle in the internal organs such as esophagus, trachea, motion of joints and
arterial pressure by recognition of strains on human skin. This flexible and light weight PBio-e-skin precisely
detects vital signs and provides important clinical insights without using any external power source.
Eventually, the low cost, environmental friendly PBio-e-skin will have a huge impact in a broad range of
applications including self-powered wearable health care systems, human-machine interfacing devices,
artificial intelligence and prosthetic skin.

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details
Sultana, A., Ghosh, S. Kumar., Sencadas, V., Zheng, T., Higgins, M. J., Middya, T. Ranjan. & Mandal, D.
(2017). Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-l-lactic
acid nanofibers for non-invasive physiological signal monitoring. Journal of Materials Chemistry B, 5 (35),
7352-7359.

Authors
Ayesha Sultana, Sujoy Ghosh, Vitor Sencadas, Tian Zheng, Michael J. Higgins, Tapas Middya, and Dipankar
Mandal

This journal article is available at Research Online: http://ro.uow.edu.au/aiimpapers/2751

http://ro.uow.edu.au/aiimpapers/2751


http://pubs.rsc.org/en/content/articlelanding/2017/tb/c7tb01439b#!divAbstract 

 

Human skin interactive self-powered wearable piezoelectric bio-e-skin by 

electrospun poly-l-lactic acid nanofibers for non-invasive physiological 

signal monitoring 

 

Ayesha Sultana
†
, Sujoy Kumar Ghosh

†
, Vitor Sencadas

‡,#
, Tian Zheng

a
, Michael Higgins

a
, 

Tapas Ranjan Middya
†
, Dipankar Mandal

†,
* 

†
Organic Nano-Piezoelectric Device Laboratory, Department of Physics, Jadavpur 

University, Kolkata 700032, India 

‡
Australian Centre of Excellence for Electromaterials Science (ACES), University of 

Wollongong, NSW 2522, Australia 

#School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 

Wollongong, NSW 2522, Australia 

a
ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research 

Institute/AIIM Faculty, Innovation Campus, University of Wollongong, Squires Way, NSW, 

Australia 

 

 

*Corresponding Author  

Dr. Dipankar Mandal  

E-mail: dipankar@phys.jdvu.ac.in;dpkrmandal@gmail.com 

Fax: +91-33-2413-8917 

Tel.: +91 33241466662880 

 

http://pubs.rsc.org/en/content/articlelanding/2017/tb/c7tb01439b%23!divAbstract
mailto:dipankar@phys.jdvu.ac.in


http://pubs.rsc.org/en/content/articlelanding/2017/tb/c7tb01439b#!divAbstract 

 

Abstract 

Flexible and wearable piezoelectric bio e-skin (PBio-e-skin) based on electrospun poly(L-

lactide) PLLA nanofiber membrane is demonstrated for human physiological signal 

monitoring and detecting dynamic tactile stimuli. The molecular orientations of the C=O 

dipoles by electrospinning technique results in a longitudinal piezoelectric charge co-

efficient, d33 value of ~ (3±1) pm/V realized by piezoresponse force microscopy, allow the 

PBio-e-skin for pressure sensing applications. The robust mechanical strength (Young’s 

modulus ~ 50 MPa) of nanofiber membrane ensures PBio-e-skin’s operational stability (over 

375,000 cycles). Owing to the superior mechanical sensitivity of ~ 22 V/N, PBio-e-skin has 

the ability to measure subtle movement of muscle in the internal organs such as esophagus, 

trachea, motion of joints and arterial pressure by recognition of strains on human skin. This 

flexible and light weight PBio-e-skin can be valuable for monitoring vital signs in detecting 

cardiovascular diseases, assessing health status and, also for voice recognition. Thus, the low 

cost, environmental friendly PBio-e-skin can be used for non-invasive, artery pulse wave 

monitoring, which may lead to the use of flexible PBio-e-skin in health monitoring and 

diagnostics incardiovascular medicine. 

DOI: 10.1038 

Keywords: piezoelectric, PLLA, electrospinning, e-skin, flexible, human motion detection, 

wearable, nanofiber, health monitoring 

Introduction 

Skin-mountable, stretchable and wearable/epidermal electronic devices for human motion 

detection,
1,2 

flexible electronic skin (e-skin),
3
 human physiological and behavioural signal 

detection,
4,5

 human body temperature monitoring
6
 and personal healthcare,

7
 have recently 

received enormous attention due to their facile interaction with skin or organs of the human 

body. These flexible sensors can be attached into clothing or directly mounted on the human 
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skin for the real-time monitoring of human activities and physiological measurements with 

high efficiency. They must fulfil various minimum necessities including large stretchability, 

lightweight, flexibility, durability, biocompatibility for stable contact with human skin with 

minimal irritation. 

So far design and development of wearable sensor systems for measuring and quantifying 

physical signals are based on force-driven changes in resistivity,
8,9

 capacitance,
10,11

 piezo- 

and tribo-electricity.
12,13

 In spite of the possibility and superior performance, wide spread 

applications of some of these methods is perhaps limited by structure complexity, sensitivity, 

dependence on external power source and fabrication of high-quality materials.
14

 One 

confront for making pressure sensors that meet the aforementioned demands of high 

stretchability, ultrahigh sensitivity and biocompatibility is to use piezoelectric nanofiber 

membranes. In this context, poly(L-lactide) (PLLA) is the one which is biocompatible, 

biodegradable, optically active polymer and continuously drawing increasing attention due to 

its medical usefulness in tissue engineering scaffolds.
15-17

 Many biological systems exhibit 

unique uniaxial symmetry where both direct and inverse piezoelectric effects are present but 

only d14 and d25 (with same magnitude and opposite sign) shear piezoelectric constants are 

finite. PLLA molecular chain consists of chiral molecules where –CO-O polar group joined 

to an asymmetric carbon atom and oriented in helical conformation in the molecules. When 

the helix is sheared through its side chain –C=O dipole makes a slight rotation that changes 

the polarization of the chain molecule.
18,15

 Polarization appears in a direction perpendicular to 

the plane of applied stress. The sum of these rotation results in electric polarization.
19,15

  

Owing to its bio- piezoelectricity, PLLA is a suitable material for in-vivo applications where 

biomaterial based self-powered system is particularly relevant.
20,21

 In previous, several 

biomaterials such as, collagen, chitin, cellulose, gelatin, M13 bacteriophage and many others 
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possessing longitudinal piezoelectric coefficient (d33) have been considered as engineering 

effective materials for developing self-powered systems.
22-26

  

The thermodynamically stable conformation of PLLA is the α-crystalline form, where the 

C=O dipoles are randomly oriented along the main chain, resulting non-polarity of PLLA in 

this form. In order to induce piezoelectricity the chains must be stretched to transform the α-

form into β-crystalline form where random orientation of molecular chains is aligned along 

stretched direction.
27

 The electrospinning process applies stretching force into the molecular 

chains of PLLA under high electric field and thus aligns molecular dipoles resulting net 

polarization, in a single step.
28

  

Herein, a simple structured, easy to fabricate, wearable, lightweight, cost-effective 

piezoelectric bio-e-skin was prepared for pressure monitoring. This device is capable of 

working in a multimodal manner for human physiological signal monitoring, sports 

performance monitoring and also for voice recognition. It asserts a sensitivity of 22 V/N as 

well as a pressure detection extent down to 18 Pa for detection of feather light pressure. In 

loading-unloading cycle a negligible change in output signal was experimentally noticed over 

375,000 cycles, suggesting its performance stability and durability. The flexible e-skin thus 

evidenced the capability of monitoring human physiological signals such as throat and wrist 

pulse and muscle movement when a person is speaking, which might extend their possible 

applications for real-time disease diagnosis and voice recognition.  

 

Experimental Section 

Materials. Poly (L-lactic acid) (PLLA, Purasorb PL18, = 217 – 225 kDa) from Corbion 

(Netherlands), N,N-dimethylformamide (DMF, from Merck), dichloromethane (MC, from 
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Sigma-Aldrich), Copper (Cu)–nickel (Ni) plated fine knit polyester fabric (Coatex Industries, 

India) and poly(dimethylsiloxane) (PDMS) (SYLGARD, 184 SILICONE ELASTOMER). 

 

PLLA electrospun membranes preparation: PLLA was dissolved in a mixed solvent of 

DMF and dichloromethane (3/7 v/v) to achieve a polymer concentration of 10 wt% of the 

solution. The polymer solution was dissolved at room temperature with the help of a 

magnetic stirrer until complete polymer dissolution.
29

 The polymer solution was placed in a 

commercial glass syringe (10 mL) fitted with a steel needle with 500 µm of inner diameter. 

Electrospinning was conducted at 1.25 kV.cm
-1

 with a high voltage power supply from 

Gamma High Voltage. A syringe pump (from KD Scientific) was used to feed the polymer 

solutions into the needle tip at 0.5 mL.h
-1

. The electrospun fibres were collected in ground 

collecting plate placed at 20 cm apart from the needle. All experiments were conducted at 21 

± 2 ºC and a relative humidity of 43 ± 5%. 

Piezoelectric bio-e-skin (PBio-e-skin) fabrication. The simple structured PBio-e-skin was 

fabricated by the following method. At first a (2.5 × 2) cm
2
 area was cut from electrospun 

PLLA membrane with thickness of ~ 40 µm. Then top and bottom electrodes were prepared 

by attaching Ni−Cu−Ni plated polyester fabric on either side with effective contact area of (2 

× 1.5) cm
2
. Then conducting copper wires were attached on both electrodes. Finally, it was 

sandwiched between two layers (thickness of ~0.5 mm) of) PDMS which were prepared by 

10:1 PDMS curing agent ratio and cured at 60 
o
C for 2 h.  

 

Characterization 

The morphological features of the electrospun fibers were imaged by a Field Emission 

Scanning Electron Microscope (FE-SEM, FEI, INSPECT F50) operated at an acceleration 

voltage of 20 kV. Fourier transform infrared (FT-IR) spectra were recorded (Bruker Tensor 
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II) to characterizethe different bands within the NFs. The topography images were obtained 

in AC mode with an MFP3D atomic force microscope (AFM) (Asylum Research, CA). Scan 

rate was set as 0.5 Hz. Dual AC Resonance Tracking Mode piezoresponse force microscopy 

(PFM) was used for measuring piezoresponse locally. A Pt/Ir coated silicon tip with force 

constant of 2.8 N/m and gold layer on the substrate was used as top and bottom electrodes. 

Contact frequency varied from 320 kHz to 340 kHz due to slightly changes on sample surface 

from point to point. A small AC voltage (200 mV) was applied to oscillate the tip during 

measurement. A sweeping DC bias (Frequency = 0.2 Hz) in the range of ± 25 V was applied 

to the tip. 5 cycles of sweeping triangle/square waves (frequency = 0.2 Hz) were applied to 

the tip to offer the fiber with essential electric field. Igor Pro 6.36 Software was used to 

obtain the butterfly loops. Stress-strain measurement was carried out using universal testing 

machine (Tinius Olsen H50KS). PBio-e-skin was fabricated by simply sandwiching the 

nanofiber mat between two conducting Ni−Cu−Ni plated polyester fabric substrates. 

Electrical contacts for recording open-circuit voltagewere made by Cu-wire leads from PBio-

e-skin connected through a National Instrument (NI) Data acquisition (DAQ) device (NI, 

USB 6000) using a sampling rate of 1000 samplesper second, interfaced with a computer 

with a standaloneprogram made by using LabVIEW software and current measurement were 

carried out with KEITHLEY 6485 picoammeter. 

 

Results and Discussion 

The schematic diagram in Fig. 1a shows a PLLA nanofiber fabrication process by 

electrospining technique. The resulting PLLA nanofiber mat is used in flexible PBio-e-skin 

(2 ×1.5 cm
2
) design with splendid capability to bend in desirable shape (Fig. 1b). The 

morphology of as-electrospun nanofibers of PLLA is shown in Fig. 1c. The nanofibers are 

entangled with one another and form a network-structured fiber mat. All fibers evidence 
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smooth and bead free morphology with an average fiber diameter found to be 450 nm (inset 

of Fig. 1c). Fig. 1d shows the FTIR spectra of nanofibers. The bands at 871, 1088, 1184, 

1755 cm
-1 

are assigned to the C-C backbone stretching, symmetric and asymmetric stretching 

of C-O-C group and stretching vibration of C=O which are responsible for piezo- and ferro-

electricty in PLLA nanofibers.
30,31

 All the bands of different wavenumbers are labelled in 

Fig. 1d.  

As the piezoelectric output performance of the nanofibers is greatly affected by their 

mechanical properties in addition to piezoelectric coefficient value, thus, tensile stress-strain 

behaviour of PLLA nanofibers has been studied as shown in Fig. 2a. Firstly, when a small 

external stress (<8 kPa) is applied, the non-woven nanofibers are forced to align along stress 

direction. This forced orientation results in a nonlinear elastic behaviour. With continual 

increase of stress, the stress-strain curve exhibits a linear elasticity. Thus, the PLLA fibers 

have ultimate tensile stress of 6.8 MPa, tensile strain of 42.3% with Young’s modulus value 

of ~ 50 MPa. PLLA nanofiber membrane with the robust mechanical strength could be 

applied as promising material towards real time applications. 
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Fig. 1 (a) Schematic illustration of the experimental setup for preparation of PLLA 

nanofibers. (b) The digital photograph of fabricated PBio-e-skin from PLLA nanofiber mat 

showing its flexibility by human fingers. (c) FE-SEM micrograph and corresponding fiber 

diameter distribution plot in the inset. (d) FT-IR spectra from 2000 to 800 cm
-1 

frequency 

region. 

 

To quantify local piezo- and ferro-electricity of PLLA nanofiber piezoelectric hysteresis 

loops composed of phase voltage and amplitude voltage loops, PFM was conducted in a 

single polymeric fiber deposited on a gold substrate. It assesses the dipole orientation and 
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mechanical fashion of the nanofiber when an electrical signal was applied by a metal-coated 

AFM tip and scanning the sample. 
 

Fig. 2 (a) Stress-strain curve, (b) AFM topography, (c) PFM phase-voltage and (d) 

amplitude-voltage hysteresis loops of the PLLA nanofibers. 

The AFM topography investigation (Fig. 2b) shows that the PLLA nanofiber has height of 

650 nm (supporting information, Fig. S1). Excellent phase and amplitude responses (Fig. 2c–

d) from one single nanofiber have been observed as a function of applied voltage between –

25 V to +25 V to the AFM conductive cantilever tip with respect to ground. The PFM phase 

response demonstrates a clear and almost rectangular hysteresis in the phase versus voltage 
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diagram (Fig. 2c), with
 
a phase contrast of 180

o
 at bias voltage of 25 V. In response to 

sweeping DC voltage the hysteretic switching of the phase signal by 180
o
 is assigned to the 

switching of the direction of polarization of the C=O dipoles, which implies the evidence of 

nano-scale ferroelectricity of the PLLA nanofibers. The PFM amplitude response is hysteretic 

and the shape resembles the piezoelectric “butterfly loop” (Fig. 2d). Each point of this loop 

includes information about piezoelectric deformation (εp = d33E, where d33 is the longitudinal 

piezoelectric co-efficient) under corresponding applied voltage/electric field (E). The 

estimated effective piezoelectric coefficient from the slope of the curves of amplitude versus 

voltage is d33 ~ 3±1 pm/V.
32,33

 The observations of hysteretic phase switching and butterfly 

shaped amplitude loops reveal a clear evidence of ferro– and piezo–electric properties in the 

PLLA nanofiber mat. 

Thus, we have fabricated PLLA nanofibers based piezoelectric bio e-skin (PBio-e-skin) 

which could also be used for mechanical energy harvesting and piezotronics applications. 

The performance of the PBio-e-skin as a function of various deformation frequencies was 

investigated since mechanical energies from environment is irregular and varies in frequency. 

The corresponding output voltage and current are shown in Fig. 3a–b. As the frequency of the 

applied stress (~0.3 MPa) increases, the open circuit voltage (Voc) increases because the 

electrons are flowing to reach equilibrium in a shorter time.
34
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Fig. 3 Characterization of output performance of the nanogenerator under external force with 

different frequencies in terms of (a) voltage and (b) current in the range of 1 to 19 Hz. (c) 

Simulated piezopotential distribution of the network structure PLLA nanofibers. (d) 

Simulated deformation distribution of network structured PLLA nanofibers at the constant 

external stress amplitude of 0.3 MPa. (e) Variation of output voltage and current as well as (f) 

instantaneous output power density as a function of variable external resistances ranging from 

100 kΩ – 30 MΩ. Inset shows the corresponding equivalent circuit diagram. (g) The stability 

test of the PBio-e-skin under a 0.3 MPa stress by recording the open circuit voltage as a 

function of time over 375,000 cycles. (h) Piezoelectric output performance of the PBio-e-skin 

under different applied forces. 

 

The maximum Voc reaches up to 1 V at the frequency of 15 Hz then it gradually decreases to 

0.7 V at 19 Hz. The short-circuit current (Isc) presents an increasing trend with the increase of 

frequency, from 2.2 nA at 1 Hz to 5 nA at 15 Hz (Fig. 3b), because the deformation rate 

increases with applied frequency, which leads to a higher flow rate of charges, that is, higher 

current. As a matter of fact, when the compressive force is of high frequency the 

nanogenerator then cannot retrieve the original posture before next impact of force and thus 

Voc and Isc decreases at very high frequency.
35

  

To yield a quantitative explanation on the piezopotential distribution inside the deformed 

PLLA nano-fibers based nanogenerator, theoretical simulation was conducted using the 

Finite Element Method (FEM) by COMSOL multiphysics software under uniaxial σa~0.3 

MPa (Fig. 3c). It is demonstrated by eight nanofibers based network structure. The 

experimentally measured piezopotential (~1.0 V) was very much consisted with the simulated 

potential difference of 1.2 V. The resulting deformation (i.e., maximum displacement ~ 0.2 

µm) distribution of nano-fibers corresponding to the piezopotential distribution is shown in 
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Fig. 3d. Interesting fact is that, maximum deformations (~ 0.2 µm) occur in the interaction 

region between lower and upper layer of the fibers during applied stress. In the non-

interactive regions, the deformations gradually diminish. It indicates that the network-

structure of nanofibers enhance the resulting polarization in comparison to single fiber due to 

cooperative electromechanical mutual interaction among the adjacent fibers during applied 

pressure. 

Eventually, the PBio-e-skin is useful to drive portable electronic devices by harvesting small 

scale mechanical energies. To assess the output power performance, the PBio-e-skin is 

directly connected to the loads of different resistances (RL) ranging from 100 kΩ to 30 MΩ, 

(under a frequency of 15 Hz). The voltage across the load increases and saturates to open 

circuit voltage when the resistance gets infinitely large. In contrast, the current through the 

load decrease from short circuit current when the resistance increases (Fig. 3e). The 

instantaneous output power (P) was calculated from the relation, P = , where, A is the 

effective contact area, and V is the voltage drop across RL. The dependency of output power 

with load resistance is shown in Fig. 3f, where maximum value of 0.07 µW/cm
2
 at a load 

resistance of 700 kΩ is achieved.
36,37

 

In addition, to further investigate the long-term stability of the PBio-e-skin under mechanical 

deformation, a pressure of 0.3 MPa with a frequency of 15 Hz was applied. The fatigue test 

of the PBio-e-skin was done by recording the output voltage as a function of time over 

extended cycling times (375,000 cycles, Fig. 3g), that indicates the superb stability in the 

output performance without any electrical output degradation. The voltage amplitudes exhibit 

negligible changes after a total 375,000 cycles, revealing a high repeatability, durability and 

stability of the PBio-e-skin.  
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To evaluate the sensitivity, the output voltages from the PBio-e-skin have been obtained 

under different forces. Interestingly, Voc changes linearly with the applied force. 

Quantitatively, the sensitivity is defined as, S = , where  and  are the differences of 

Voc and σa respectively. To understand the relationship between applied force and 

piezoelectric output voltage, different weights was dropped from a height of 10 cm. The force 

from different weight (supporting information, Text S1) corresponds to distinct output 

voltage. Fig. 3h shows a nearly linear relationship between the applied force and output 

voltage. Interestingly, from the slope of the linear fitted data the sensitivity of the PBio-e-skin 

is found to be 22 V/N. 
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Fig. 4 (a) Molecular structure of PLLA chain with orientation of C=O dipoles in all 

directions. (b) Preferential orientation of the C=O dipoles due to electrospinning process. 

The origin of piezoelectricity in biomaterials is not absolutely disclosed as they do not follow 

the classic models of piezoelectric theories. PLLA exhibit shear piezoelectricity, in contrast, a 

collection of ordered PLLA nanofiber existing in PBio-e-skin, exhibits a completely different 

behavior. This kind of difference was also being observed formerly in M13 bacteriophage 

[26]. In this work, the strong electric field used during electrospinning results in stretching 

along the longitudinal direction of the nanofiber and thus the randomly oriented C=O dipoles 

(Fig. 4a) are aligned perpendicular to nanofiber length (Fig. 4b), and the high sensitivity of 

the PBio-e-skin is due to such alignment of the dipoles. Additionally, the other possible 

explanation for such enhancement of the PBio-e-skin is associated to the cooperative 

electromechanical interaction among the adjacent nanofibers during the applied mechanical 

pressure in contrast of a single nanofiber.
 22,26,38

 

Furthermore, the PBio-e-skin displays a sensitive response to external impact with extremely 

lightweight objects. The experiment was demonstrated with a feather (0.2 g). It detects the 

external impacts of 45 Pa, and responds with an output response of 0.15 V (Fig. 5a). Another 

object lighter than the feather, for example, a cubical block made with thermocol (0.07 g), 

was used to investigate the sensitivity of the PBio-e-skin. By detecting the impact of the 

cube, it exhibited an output response of 0.06 V (Fig. 5b). Therefore, the output response of 

the PBio-e-skin upon loading/unloading the two light weight objects, result in promising 

pressure sensing with detection capability as low as 45 and 18 Pa, respectively. Hence, PBio-

e-skin is very sensitive and can identify even a small change of mechanical impact 

accurately, and displays distinct electrical output responses. 
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Fig. 5 Output voltage response from PBio-e-skin with different applied external pressure for 

the detection of a (a) feather (illustrated in the inset) and a (b) cubic thermocol block 

(illustrated in the inset). Piezoelectric output (c) current and (d) voltage responses as a 

function of area of PBio-e-skin.   

To demonstrate the energy harvesting performance and practical application in rough 

environment, the PBio-e-skin electrical responses was investigaed by applying compresssive 

stress periodically by human finger. Here finger was imparted on PBio-e-skin made with 
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different areas. It was observed that the Isc and Voc increases from 30 nA to 400 nA (Fig. 5c) 

and 1.25 V to 10 V (Fig. 5d) respectively with an increase in sensor area ranging from 200 to 

2200 mm
2
. The output current and voltage shows almost linear depencency with the area of 

total active area of the sensor following the relations of the piezoelectric theory.
39

 Thus the 

current and voltage value can be modulated by changing the active area of PBio-e-skin as per 

the power requirement of portable electronic devices. 

In addition, the PBio-e-skin was further used for detecting static tactile stimuli. To show 

applicabiliy of PBio-e-skin, as skin mountable sports performance monitoring device the 

sensor was attatched to the wrist Fig. 6a. The static strain on the PBio-e-skin increases upon 

bending of wrist, and recovers its original position after straightining of wrist. The response 

of the PBio-e-skin on bending and relaxing of wrist with good quality of sensitivity is 

demonstrated in Fig. 6b. This sensory information from skin mountable wearable PBio-e-skin 

is beneficial for body movement analysis during sports activities and shows the potential of 

using as epidermal device for skin motion monitoring.
 40,41

 

The sensor was further placed near the throat and wrist, not only to measure the blood 

pressure but also for measuring vibrations of muscle movements associated with several 

human activities. By detecting strain of muscle movement for noninvasively monitoring 

human activities, the PBio-e-skin was first attatched arround the throat. The PBio-e-skin 

exhibits high sensitivity to the muscle movement of esophagus (the food pipe) and displays 

distinct patterns, allowing to differentiate between signals generated by esophagus during 

drinking and swallowing (Fig. 6c-d).  These results show that for monitoring body motions, 

skin strain monitoring is an effective method.  

To demonstrate the performance as a stretchable PBio-e-skin for several biomedical 

application the PBio-e-skin was attatched to carotid artery and raidal artery of an adult 
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human. At first, the sensor is placed on the wrist to allow the measurement of blood pulse 

wave (Fig. 6e). Three wave related to radial artery pressure are incident blood pulse wave, 

reflected wave from hand and reflected wave from lower body. The acquired real-time 

current output response from radial artery pressure is given in Fig. 6f. PBio-e-skin is placed 

over carotid artery Fig. 6g and the real-time current output over several pulse period is shown 

in Fig. 6h.  
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Fig. 6 (a) Photograph of the PBio-e-skin mounted on wrist joint. (b) Detected wrist joint 

motion in terms of current output. Monitoring of strain caused by muscle movement for 

function of esophagus during (c) drinking and (d) swallowing. (e) Photograph of the PBio-e-

skin placed on a wrist for measuring the pressure associated with flow of blood through near-

surface arteries. (f) Current vs time plot for the PBio-e-skin mounted on the wrist. (g) 

Photograph showing PBio-e-skin directly attached to the carotid artery of an adult subject. (h) 

The real-time current outputs for the sensor placed over carotid artery. The enlarged view in 

the right shows the systolic (PS), point of inflexion (PI) and diastolic peak (PD) of one cycle.  

 

 

 

 

 

 

 

 

 

 

 

(b) 

0 2 4 6
Time (s)

S
ig

n
a
l 

(V
)

2
0

 m
V

0 2 4 6
Time (s)

S
ig

n
al

 (
V

)
2
0
 m

V

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

Frequency (Hz)

0
0
.0

0
0

0
0

7

0
0
.9

9
5

7
4

7

0
1
.9

9
1

4
8

7

0
2
.9

3
0

0
0

7

Amplitude

2.90 0.9 1.9

F
re

q
u

en
cy

 (
H

z)

0

250

500

  

0 2 4 6
Time (s)

S
ig

n
al

 (
V

)
2

0
 m

V

O N P D L

R
es

p
o

n
se

 (
a

.u
.)

 

Hi

 

 

Hi

 
R

es
p

o
n

se
 (

a
.u

.)

Female Voice

Male Voice

 

(a) 

0 5 10 15 20

R
es

p
o
n

se
 (

a
.u

.)

Female Voice

 

PLLA

PLLA

Male Voice

Time (sec)
 

http://pubs.rsc.org/en/content/articlelanding/2017/tb/c7tb01439b%23!divAbstract


http://pubs.rsc.org/en/content/articlelanding/2017/tb/c7tb01439b#!divAbstract 

 

Fig. 7 Wavefront spectrum of female and male voices saying (a) “hi” and “PLLA”. (b) 

Output wavefront spectrum observed from PBio-e-skin as different letters (O, N, P, D and L) 

are pronounced with FFT signal in the upper part. 

Change in current results from variation of pressure related to blood flow. Systolic peak (PS), 

point of inflexion (PI) and diastolic peak (PD) can be identified from the enlarged image. 

These peaks are known to be composed of three waves which are resulted from pulse wave 

ejected from left ventricle, its reflected wave and ejected blood pulse back to left ventricle.
42

 

These types of pulse waveforms provide valuable information for diagnosis and therapy for 

cardiovascular diseases.
43,44

 The skin mounted sensor developed here, proved to be useful as 

an arterial pulse wave monitor. 

As a speech pattern recognition system, the PBio-e-skin was attached firmly to the human 

speaker's neck and pressure difference of muscle movement during speech was recorded. The 

sensor exhibits separate patterns when the different words such as “hi” and “PLLA” (Fig. 7a) 

were spoken. Both these words were recorded for several cycles to investigate its 

repeatability and similar characteristic patterns were obtained. In addition, it can also 

differentiate between female and male voice, accurately. For non-invasively monitor the 

variation of epidermis deformation and muscle movement throughout the throat during 

phonation, alphabets such as ‘O’, ‘N’, ‘P’, ‘D’ and ‘L’ were pronounced. PBio-e-skin can 

clearly detect and distinguish between the pronunciation of alphabets by mimicking the vocal 

cord vibration and generating output signal waveform (Fig. 7b). The corresponding short time 

Fourier transforms (STFT) processed spectrograms of each alphabet (upper part of Fig. 7b) 

shows different output profiles. It is evident from the spectrogram that the maximum 

amplitude of ‘O’ is in the higher frequency range of 400 Hz, for the letters N’ and ‘P’, the 

frequency range is around 250 Hz, and for ‘D’ it is from 100-500 Hz. These results provide 
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interesting method for using the PBio-e-skin to monitor muscle movement, voice recognition 

and assisting in speech rehabilitation training. 

Thus, the PBio-e-skin can be used as multimodal manner for arterial pulse wave, muscle 

movement monitoring and as well as voice recognition. This skin strain monitoring might 

have future applications on biomedical fields and remote control of human/machine 

interfaces.  

 

Conclusion 

In summary, a stretchable, skin-mountable, highly sensitive, multifunctional piezoelectric bio 

e-skin was developed by using PLLA nanofiber membrane with a longitudinal piezoelectric 

coefficient value of 3±1 pm/V. Systematic and elaborate strain tests for sensor and energy 

devices based on the fabricated multimodal e-skin showed high sensitivity, good stability, 

and reliability with a detection limit of the device as low as 18 Pa. Skin motion detection was 

performed byattaching the e-skin on different parts of the body for monitoring human 

physiological signals, such as voice recognition, real-time wrist pulse detection etc. The e-

skin, with its ability to conform to bend can be used in different applications in a multitude of 

fields, including personal health monitoring, epidermal electronic device, soft robotics, 

artificial skins, and human machine interfaces.  The good sensing performance of the PBio-e-

skin broadens its application in cost effective wearable electronics for the prevention of 

sicknesses, in vivo and in vitro diannostics and the statement of early diseases. 
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