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ABSTRACT 

Due to its high theoretical capacity, high energy density, and easy availability, the lithium-sulfur 

(Li-S) system is considered to be the most promising candidate for electric and hybrid electric 

vehicle applications. Sulphur/carbon cathode in Li-S batteries still suffers, however, from low 

coulombic efficiency and poor cycle life when sulfur loading and the ratio of sulfur to carbon are 



high. Here, we address these challenges by fabricating a sulfur/carboxylated-graphene composite 

using a reverse (water-in-oil) microemulsion technique. The fabricated sulfur-graphene 

composite cathode, which contains only 6 wt% graphene, can dramatically improve the cycling 

stability as well as providing high capacity. The electrochemical performance of the sulfur-

graphene composite is further enhanced after loading into a three-dimensional heteroatom-doped 

(boron and nitrogen) carbon-cloth current collector. Even at high sulfur loading (~8mg/cm
2
) on 

carbon cloth, this composite showed 1256 mAh/g discharge capacity with more than 99% 

capacity retention after 200 cycles.  

 

Li-ion batteries have been dominant over other battery systems for portable devices (e.g. smart phones, 

laptop computers, cameras, etc.), but they barely can meet the energy and power requirements for electric 

and hybrid electric vehicles.
1
 The current Li-ion batteries can deliver gravimetric energy density of 160-

190 Wh/kg, which can, at most, run an electric vehicle for 150 to 200 km. The main hurdle for low energy 

density Li-ion batteries comes from their transition metal oxide cathodes, which can only deliver a 

theoretical capacity of 150-170 mAh/g.
2
 

Sulfur, which exhibits 2600 Wh∙kg
-1

 specific energy when coupled with lithium, is inexpensive, naturally 

abundant, and environmentally benign, so it could be a better and more promising alternative to the 

existing transition metal oxide cathode materials. Even though the Li/S system has been under 

investigation for the last thirty years, it is yet to be commercialized 
3
 due to three main challenges: (i) the 

very low electrical and ionic conductivities of sulfur, leading to limited active material utilization; (ii) 

dissolution into the electrolyte of long chain polysulfides and the polysulfide shuttle, which causes low 

cycling stability; and (iii) volume changes in the active material during charge and discharge, which 

causes degradation of the cathode. Extensive research has been conducted on loading sulfur onto different 

conductive carbon materials,
4-8

 in combination with different electrolytes,
9-10

 binders,
11-12

 and additives.
13-



17
 In most cases, a high initial capacity (> 1000 mAh/g) was achieved, but the capacity still gradually 

decays with charge/discharge cycling. 

Graphene, along with its derivatives (reduced graphene, functionalized graphene, heteroatom doped 

graphene, etc.), has high electronic conductivity and high surface area, and is considered one of the most 

promising carbons to ameliorate the challenges of the Li/S system.
18-20

 Considerable research has been 

conducted on graphene/sulfur composites to increase the capacity and stability of the Li/S system. In most 

cases, however, the graphene/sulfur composites were fabricated either by mechanical milling or by 

chemical precipitation methods,
19, 21-22

 where the graphene was not exfoliated or firmly adhered to the 

sulfur, thus requiring a high ratio of graphene to sulphur to physically separate the sulfur from the liquid 

electrolyte. To improve the cycling performance and stability, it is important to have better adhesion 

between the sulfur/sulfide and the graphene, and they need to be uniformly mixed each other with a high 

sulphur loading, which will not only help the overall capacity, but also will maintain the structural 

integrity during expansion and contraction of the sulfur. It is hard, however, to synthesize such a 

graphene/sulphur nanocomposite using traditional technologies. 

The water-in-oil microemulsion (w/o microemulsion) or reverse microemulsion method, commonly used 

for the synthesis of uniform composite nanoparticles from their salt solutions,
23-24

 can be used for the 

synthesis of graphene/sulphur nanoparticles with strong adhesion in the sulfur/sulfide carboxyl 

functionalized graphene. In the w/o microemulsion or reverse microemulsion method, an aqueous 

solution containing metal salts is dispersed in an organic oil phase with the help of a surfactant, and this 

microemulsion is designated as microemulsion-1, while another microemulsion (designated as 

microemulsion-2) is prepared, in which an aqueous solution containing a reducing agent is dispersed in 

the same organic oil phase. Then, these two emulsions are mixed together, and the aqueous phases merge 

and react with each other to form metal or composite nanoparticles.
24

 Microemulsions have been used by 

the scientific community for the last sixty years in different fields,
25-27

 but they are yet to be used for the 

synthesis of sulfur/carbon composites. This is because the synthesized sulfur from the reverse 



microemulsion method is a nonpolar molecule and dissolves in almost all the organic nonpolar solvents 

that generally have been used as the oil phase in the reverse microemulsion method. Herein, we used 

sulfur-dissolved saturated cyclohexane (sulfur solubility of 1.185 wt%) as the oil phase, so that the 

synthesized sulfur could not dissolve in the cyclohexane. We synthesized our sulfur/graphene composite 

with a 94% S ratio by mixing two emulsions to form graphene-coated/adhered sulfur, in which 

microemulsion-1 was synthesized by adding an aqueous carboxylated graphene − sodium polysulfide 

suspension solution into cyclohexane oil as, while microemulsion-2, was synthesized by adding an 

aqueous solution of hydrochloric acid into cyclohexane. With an electrode consisting of S/C composite on 

a three-dimensional (3-D) heteroatom-doped carbon-cloth current collector (loading of active materials 8 

mg/cm
2
), 1256 mAh/g discharge capacity was obtained with more than 99% capacity retention after 200 

cycles. 

RESULTS AND DISCUSSION: 

Reverse microemulsion and selection of materials  

A dispersion consisting of water, oil, and surfactant(s) is an isotropic and thermodynamically stable 

system. A dispersion with a domain diameter of ~1 to 100 nm is called a microemulsion. If the dispersed 

phase is water or an aqueous solution and the continuous phase is an organic liquid (an "oil"), it is called a 

water-in-oil (w/o) microemulsion or reverse microemulsion.
28

 In our method, 2 M Na2Sx solution mixed 

with carboxylated graphene was used as the aqueous phase. The carboxylated graphene can form 

hydrogen bonds with water, which helps to uniformly disperse the graphene in the water, while Na2Sx can 

reacts with HCl to form hydrogen sulfide (H2S) and sodium chloride (NaCl), where the H2S gas cannot 

affect the ratio of aqueous phase to oil phase. Na2S2O3, which is low-cost, widely available, and generally 

used to synthesize the sulfur chemically, produces H2O as a by-product. This extra water will cause an 

imbalance in the ratio of aqueous phase to oil phase, and hence, Na2S2O3 has been avoided in our work.  

 



Table 1. Solubility of sulfur in common organic solvents. 
29 

Solvent Solubility 

(wt%) 

Solvent Solubility 

(wt%) 

Solvent Solubility 

(wt%) 

Solvent Solubility 

(wt%) 

Ethanol 0.066 n-Hexane 0.400 Acetone 0.079 Aniline 1.259 

Carbon 

tetrachloride 

0.832 Xylene 2.051 Nitrobenzene 0.856 Diethyl ether 0.181 

Cyclohexane 1.185 Toluene 2.070 Chloroform 1.164 Chlorobenzene 2.370 

Benzene 2.093 Carbon-di-

sulfide 

34.800 Diethyl 

formamide 

0.191 Bromoform 3.640 

 

The oil phase must be nonpolar, hydrophobic, and feature extremely low solubility of sulfur. In addition, 

the oil must have very good compatibility with the surfactant and co-surfactant to produce a uniform 

microemulsion. No organic oil can fulfil all these requirements. Table 1 shows the solubility limits of 

sulfur in common organic solvents, and the left column shows the solubility of sulfur in nonpolar solvents 

apart from ethanol. Among them, carbon tetrachloride and n-hexane show low solubility of sulfur, but 

they cannot form a stable and uniform microemulsion. Cyclohexane, which has 1.185 wt% solubility of 

sulfur, can form an extremely stable and uniform microemulsion with sorbitan monooleate (Span
®
80) and 

polyethylene glycol (PEG-20) sorbitan monooleate (Tween
®
80) surfactants. 

30
 These two surfactants have 

very low surface tension, with a hydrophilic-lipophilic balance (HLB) of 4.3 and 15, respectively. A 

lower HLB number indicates higher hydrophobicity and vice-versa. In the reverse microemulsion method, 

a large amount of oil and small amount of water are generally used, and because of that, a ratio of 8:1 of 

Span80 and Tween80 surfactants was used in 450 ml of cyclohexane. Moreover, it was found that, to 

form a stable reverse microemulsion, the HLB of the surfactant should be in the range of 3 to 6.
31

 Figure 1 

presents a schematic illustration of the preparation of the reverse microemulsions and the synthesis of the 

sulfur-graphene composite from these emulsions, where the cyclohexane was saturated with sulfur before 

it was used as an oil phase. Photographs of the products in the reverse microemulsion method and 

synthesis of the sulfur-graphene composite are shown in Figure S1 in the Supporting Information. 



 

Figure 1. Schematic illustration of the reverse microemulsion method: a) preparing microemulsion-1, b) 

preparing microemulsion-2, and c) synthesis of sulfur/graphene composite. 

The nanosized sulfur synthesized using the reverse microemulsion method has better adhesion to 

carboxylated graphene, improving the electronic conductivity and utilization of the sulfur in the electrode. 

Moreover, carboxyl functional groups on graphene can attract polysulfides, thus reducing the polysulfide 

shuttle reactions. The graphene content in our sulfur/graphene composite is 6.1 wt%, which was measured 

by thermogravimetric analysis (TGA) (Figure S2). The conductivity of the synthesized composite, along 

with those of carboxylated graphene, commercial sulfur, and hand-mixed sulfur-graphene composite with 

the same weight percent of graphene, was measured with a four probe Signatone conductivity tester, and 

the results are shown in Table 2. 

 

 

 



Table 2. Electronic conductivity of sulfur-based materials. 

Sample Conductivity 

S/cm 

Sample Conductivity 

S/cm 

Pure Sulfur 3.32×10-25 Reverse microemulsion 

sulfur-graphene (RM-S/G) 

composite 

7.92×104 

Carboxylated graphene 4.09×106 Hand-mixed sulfur-graphene 

composite 

3.27×102 

 

As shown in Table 2, the conductivity of the RM-S/G composite is two orders of magnitude higher than 

that of hand-mixed sulfur-graphene composite with the same composition. The increased conductivity of 

RM-S/G is due to better adhesion and exfoliation of graphene in the sulfur and the uniform distribution of 

sulfur on graphene. The particle size and morphology of the synthesized RM-S/G were characterized 

using scanning electron microscopy (SEM). As shown in Figure 2a and 2b, the graphene firmly adheres 

to the sulfur, forming 10 to 20 µm S/G composite particles. It has been reported that the cyclohexane, 

Span 80, and Tween 80 system is one of the most stable microemulsions with uniform micelle size 
30

. The 

size of the micelles synthesized using Span 80 and Tween 80 in cyclohexane oil is approximately 7 to 100 

nm 
30

, which is much smaller than the sizes of the S/G composite particles. It is possible that 10 to 20 µm 

sulfur particles are induced by agglomeration of nanoscale sulfur during the nucleation and growth. 

Figure 2c and 2d shows transmission electron microscope (TEM) micrographs of the RM-S/G composite. 

It is clear that the crystalline graphene sheets, which have a moiré pattern, are exfoliated and well-

distributed inside the sulfur particles. The graphene that is trapped inside the big sulfur particles 

demonstrates that the sulfur particles are agglomerated from graphene-coated sulfur nanoparticles during 

the nucleation and growth process. 



 

Figure 2. SEM and TEM micrographs of RM-S/G: a, b) SEM images of the as-synthesized composite at 

different magnifications; c, d) TEM micrographs that prove the presence and exfoliation of graphene 

inside the sulfur; and e) SEM image of ball-milled RM-S/G composite. 

To further confirm the entrapment of graphene inside the sulfur, a sample of microsized sulfur/graphene 

composite was ball-milled (in the presence of isopropanol at 300 rpm), so that all the graphene sheets that 

were entrapped inside the sulfur particles could be exposed. The SEM micrograph of RM-S/G composite 

in Figure 2e shows the morphology of the sulfur/graphene composite after the ball milling, where smaller 

sized sulfur/graphene composite particles are observed. Each smaller particle contains carboxylated 

graphene sheets adhering to the sulfur particles that have been exposed after ball milling. It can be 

deduced from this that the large particles shown in Figure 2b are mainly composed of smaller sized 

sulfur/graphene composite particles. 



 

Figure 3. XRD patterns (a) and Raman spectra (b) of RM-S/G composite before and after ball milling. 

The phase structure of RM-S/G composite along with that of graphene was characterized using X-ray 

diffraction (XRD, Figure 3a). Along with other small peaks, RM-S/G exhibits a characteristic peak of 

crystalline octa-sulfur (S8) at around 23.1 that is diffracted from the (222) planes. This characteristic 

peak at 23.1 is broadened for RM-S/G composite compared to commercial sulfur, which indicates the 

smaller particle size of sulfur. Nevertheless, no significant peak broadening occurs after the ball milling 

of RM-S/G composite, which means that the crystallite size remains same and that the disparity of 

particle sizes is due to the physical adhesion of micro- and nano-sized particles. The Raman spectra of 

pure sulfur and RM-S/G composite are presented in Figure 3b, and all the spectra show sharp peaks at 

219.1 cm
-1

 and 473.2 cm
-1

, which reflect the bending and the stretching of nonpolar S-S bonds, 

respectively.
32

 Moreover, RM-S/G composite shows small peaks around 1400 cm
-1

 and 1600 cm
-1

, which 

are the characteristic peaks of the D band and the G band for carbon, respectively.
33

 The D and G bands 

of the RM-S/G composite are very weak, confirming that graphene is buried inside the RM-S/G due to 

the aggregation of graphene-coated nano-sulfur particles. After ball milling, the graphene sheets are 

exposed to the laser radiation and exhibit higher intensity of the D and G bands of carbon in the ball-

milled RM-S/G. Due to the confinement and exfoliation of graphene inside the sulfur particles, electrons 

not only can strike the surface of the sulfur/graphene composite, but also can pass through the RM-S/G 



particles, and thus, RM-S/G composite shows higher conductivity compared to hand-mixed sulfur-

graphene composite, where the graphene only adheres to the surfaces of the sulfur particles. 

The presence of carboxyl groups in both graphene and RM-S/G composite was confirmed by Fourier 

transform infrared (FTIR) spectroscopy. Figure S3 shows the FTIR spectra of graphene, RM-S/G 

composite, and sulfur. It is shown that both graphene and RM-S/G composite feature two sharp peaks at 

1760 cm
-1

 and 2890 cm
-1

, which are characteristic peaks of C=O stretching and O-H stretching for 

carboxyl groups, while no characteristic peaks of C=O stretching and O-H stretching exist in the sulfur 

sample. The very sharp peak that appears at 2400 cm
-1

 in sulfur is attributed to the symmetric stretching 

of water (H2O) that comes from moisture. It is important to note here that the intensity of the O-H 

stretching-peak is decreased after the formation of RM-S/G composite and that the peak intensity 

decreases even further after ball milling. The breakage of hydrogen bonds is responsible for this. The 

lower the amount of hydrogen bond formation, the lower the intensity of the O-H stretching-peak will be. 

These carboxyl groups play a pivotal role in the exfoliation and the uniform dispersion of graphene in 

aqueous solution, as well as the bonding of lithium polysulfide onto graphene to stabilize the capacity 

during charge/discharge cycling. 

Electrochemical performance of RM-S/G composite 

The electrochemical performance of the RM-S/G composite was evaluated by both cyclic voltammetry 

and galvanostatic charge-discharge cycling. The cyclic voltammograms of RM-S/G composite in Figure 

4a show two reduction peaks and one oxidation peak, with a small deviation in intensity with increasing 

cycle number. The first reduction peak appearing at 2.3-2.4 V is related to the change from elemental 

sulfur to long chain lithium polysulfides (Li2Sn, n ≥ 4), and the second reduction peak appearing at 1.9-2.0 

V reflects the reduction of long chain lithium polysulfides to short chain lithium polysulfides (Li2Sn, n < 

4), which is in agreement with the two plateaus of RM-S/G composite in the galvanostatic 

charge/discharge profiles in Figure 4b.
34

 In the charging profile, a small bump is observed at 2.3 V which 



later disappears with cycling, the position of which resembles the activation energy of polysulfide 

formation from Li2S. For the first cycle, the energy barrier is quite high, but in the following cycles, it is 

reduced significantly due to the presence of polysulfides that were formed in the previous cycle. It is well-

established that the presence of trace amounts of polysulfides significantly reduces the activation barrier 

of Li2S.
35-36

 It is important to note here that the reduction peak represented by a small bump at 1.7 V in the 

first two cycles of cyclic voltammograms (CVs) is due to the reduction of LiNO3 salt, which can help to 

form a stable solid electrolyte interphase (SEI) on the lithium metal surface,
37

 thus reducing the shuttle 

reaction. The cycling behaviours of RM-S/G composite and hand-milled sulfur/graphene composite at a 

current density of 0.1 C are shown in Figure 4c. Both the hand-milled sulfur-graphene composite and the 

RM-S/G composite cathodes consist of 6 wt% graphene, 34 wt% carbon black, 50 wt% sulfur, and 10 

wt% poly(vinylidene fluoride) (PVDF). On the other hand, commercial sulfur contains no graphene, but 

the sulfur content remains the same (~50 wt%). All three sulfur cathodes show typical charge/discharge 

behaviour with two plateaus at 2.4 and 2.1 V. The RM-S/G composite, however, shows much higher 

capacity and cycling stability than the hand-milled sulfur/graphene composite. The hand-milled 

sulfur/graphene composite cathode shows an initial discharge capacity of 587 mAh/g (based on sulfur), 

which drops to 103 mAh/g after 200 cycles, representing 17.5% of the initial capacity. RM-S/G 

composite shows a much higher initial discharge capacity of 914 mAh/g (based on sulfur) and retains 

discharge capacity of 731 mAh/g after 200 cycles. The capacity retention of RM-S/G composite (around 

80%) is 62% higher than that of the hand-milled composite. The increased discharge capacity and 

capacity retention are due to the better exfoliation and adhesion of graphene in the sulfur particles, which 

not only increases the active material utilization, but also reduces the shuttle phenomenon. In addition, the 

RM-S/G composite shows excellent Coulombic efficiency of more than 99%. 



 

Figure 4. Electrochemical performance for low loading (1-2 mg/cm
2
) of RM-S/G composite on Al 

current collector: a) cyclic voltammograms of RM-S/G composite for the first 6 cycles at a scan rate of 

0.1 mV s
-1

; b) galvanostatic charge-discharge curves for selected cycles of RM-S/G composite at 0.1 C; c) 

cycling performance of RM-S/G composite and hand-milled sulfur/graphene composite at a current 

density of 0.1 C; and d) rate capability of RM-S/G composite at different current densities. 

The RM-S/G composite also show superior rate performance (Figure 4d), and even at the higher current 

density of 3 C (5.025 A/g), the RM-S/G composite cathode can still deliver 250 mAh/g of discharge 

capacity. It has been calculated that, to surpass the current Li-ion technology, it is necessary to load more 

than 4 mg/cm
2
 of active material in a cathode 

38
. With the conventional aluminum (Al) foil current 

collector, it is hard to load such a large amount of sulfur because the large volume changes of S/C 

composite will easily delaminate the thick S/C coating film on Al. A three-dimensional (3-D) 



interconnected conductive network such as carbon cloth has a large accessible surface area with high 

electrical conductivity, and can accommodate and utilize high amounts of active material. Recent reports 

39-41
 demonstrated that a 3-D network-structured carbon-cloth current collector can load larger amounts of 

active material while maintaining higher electrical conductivity, thermal stability, and structural integrity. 

The present 3-D interconnected carbon cloth for sulfur cathode is only used to physically block the high-

order polysulfides, however, while maintaining the transport of electrons and ions during charging and 

discharging of the battery. Recently, Yuan et al. 
42

 reported that heteroatom-doped (boron and nitrogen) 

carbon powders can enhance the cycling performance and stability of the Li/S system by minimizing the 

polysulfide shuttle phenomenon. Here, to increase the active material content as well as improving the 

cycling performance, we have introduced boron, nitrogen-doped carbon cloth as the current collector and 

active material host. 

 



Figure 5. Electrochemical performance of RM-S/G composite loaded on boron, nitrogen-doped carbon 

cloth: a) cyclic voltammograms for the first 5 cycles of doped-RM-S/G composite at a scan rate of 0.1 

mV s
-1

; b) galvanostatic charge-discharge curves for selected cycles of doped-RM-S/G composite at 0.1 

C; c) cycling performance of B,N-doped RM-S/G composite and hand-milled undoped-sulfur/graphene in 

functionalized carbon cloth at a current density of 0.1 C; d) rate capability of doped-RM-S/G composite at 

different current densities. 

Figure S4a shows the morphology RM-S/G composite-loaded B,N-doped carbon cloth, and Figure S4b 

shows the energy dispersive spectroscopy (EDS) mapping of B,N-doped carbon cloth, which confirms the 

presence of boron and nitrogen in the carbon cloth. The boron and nitrogen come from the 

tetrafluoroborate anion and the 1-ethyl-3-methylimidazolium cation, respectively. Figure S4a also shows 

the interaction between the RM-S/G composite and the carbon cloth, which firmly adhere to each other 

and compose a stable 3-D interconnected network. It is expected that this RM-S/G composite loaded on 

boron, nitrogen-doped carbon cloth will show better electrochemical performance along with high active 

material loading. 

Figure 5 shows the electrochemical performance of the RM-S/G-composite-loaded B,N-doped carbon 

cloth cathode, where each cathode contains more than eight milligrams of active materials (~8-9 mg/cm
2
). 

The CV curves in Figure 5a show two well-known reduction peaks and one oxidation peak. In the first 

cycle in Figure 5a, a big shoulder is observed on the oxidation peak, which is due to the lack of contact of 

the active materials with the electrolyte, which slows the oxidation process, giving rise to a broad 

shoulder in the oxidation curve rather than a sharp peak. After the first cycle, the electrolyte may have 

sufficient contact with the sulfur particles, which facilitates oxidation process, and for this reason, the 

broad shoulder disappears. It is also important to mention here that a similar phenomenon is not observed 

in Figure 4a, where a low amount of active materials (1-2 mg/cm
2
) was used in each electrode compared 

to Figure-5a, where around 8-9 mg/cm
2
 active materials were used. The low amount of active materials 

certainly reacts and quickly establishes contact with the electrolyte, so no broad shoulder was observed in 



Figure 4a. The corresponding two discharge plateaus and one charge plateau were observed in the 

galvanostatic discharge-charge curves. Both the anodic and the cathodic current increased significantly 

compared to Figure 4a, which confirms the high loading of active materials and their utilization. The 

cycling performance in Figure 5c shows that, even at the higher loading of 9 mg/cm
2
, a specific discharge 

capacity of 1256 mAh/g was still maintained after 200 cycles at a current density of 0.1 C, corresponding 

to 99% capacity retention of the second cycle capacity. It is important to mention here that there is 

fluctuation in capacity with cycle numbers. The usage of different amounts of active materials, as well as 

the polysulfide confinement by the lone pair electrons of boron and nitrogen, may responsible for this 

phenomenon. In every cycle, there may be some differences in usage of active materials and polysulfide 

confinement that result in fluctuation in discharge capacity. In sharp contrast, the hand-milled 

sulfur/graphene composite cathode loaded in B,N-doped carbon cloth exhibits a quick capacity decay to 

300 mAh/g after 100 cycles, with capacity retention of 40% at 0.1 C current density due to the high sulfur 

loading. It can be deduced from the cycling performance that the doped 3-D carbon cloth and the reverse 

microemulsion method make a significant contribution to achieving higher capacity and better capacity 

retention. The rate performance of the RM-S/G-composite-loaded, B,N-doped carbon cloth cathode 

(Figure 5d) also shows that, even at higher current density, this cathode can deliver acceptable discharge 

capacity and can regain its capacity when low current density is restored.  

For sulfur cathode with high active material content (generally more than 5 mg/cm
2
), precipitation of the 

sulfur active material from the current collector is observed due to loss of contact between the current 

collector and the active material. This sulfur is eventually deposited on the Li anode, which increases the 

internal impedance of the cell 
43

. To analyse this, electrochemical impedance spectroscopy (EIS) was used 

to measure the evolution of impedance during charge/discharge cycling. Figure S5 shows EIS curves of 

RM-S/G composite-loaded B,N-doped carbon cloth cathode in the discharged state. The EIS curves show 

a depressed semicircle followed by an inclined straight line, which reflect the charge transfer resistance 

and lithium ion diffusion, respectively. It can be seen from the EIS curves that the impedance remains 



stable over 100 cycles, which indicates that the precipitation of active materials into the electrolyte was 

effectively supressed, with the active materials maintaining firm adhesion to the carbon cloth. 

CONCLUSION: 

Microsized carboxylated-graphene/sulfur particles formed by aggregation of primary nano-S/graphene 

particles were synthesized using a reverse microemulsion method, and the resultant carboxylated-

graphene sheets could effectively absorb both the sulfur and high-order polysulfides. This synthesized 

RM-S/G composite showed a very high initial discharge capacity of 914 mAh/g (based on sulfur), and 

retained discharge capacity of 731 mAh/g after 200 cycles. The electrochemical performance of the RM-

S/G composite was further enhanced by using B,N-doped 3-D carbon cloth as a current collector. The 

RM-S/G composite provided capacity of1256 mAh/g after 200 cycles, with a capacity decay rate of 

0.0127% per cycle at a current density of 0.1 C, even at 8 mg/cm
2
 of active material loading. This 

represents one of the best performances among all reported S/G composites at similar sulfur loadings.  

EXPERIMENTAL: 

Preparation of carboxylated-graphene/sodium polysulfide solution: 6.4 g commercial sulfur was 

added into 50 ml of 2 M Na2S aqueous solution. Then, the solution was stirred for several hours until all 

the sulfur reacted with the Na2S to form Na2Sx.There was some unreacted sulfur residue powder in the 

solution, which was filtered out to obtain a clear red-colored Na2Sx solution. 100 g carboxylated graphene 

was added into this solution, and it was sonicated for 10 min to form a homogeneously dispersed 

graphene/polysulfide solution. All the chemicals, the sulfur, the Na2S, and the carboxylated graphene 

were purchased from Sigma Aldrich. The following chemical reaction (reaction-1) occurred for the 

formation of polysulfides. 

(x-1)S8 + 8Na2S → 8Na2Sx -------------------------------------------(1) 



Preparation of microemulsions and graphene/sulfur composite: 30 g of a mixture of sorbitan 

monooleate (Span
®
80) and polyethylene glycol (PEG-20) sorbitan monooleate (Tween

®
80) in a ratio of 

8:1, along with 10 ml n-butanol, was added into 450 ml of sulfur-saturated cyclohexane. Both Span80 and 

Tween80 act as surfactants, whereas n-butanol and cyclohexane act as a cosurfactant and the oil, 

respectively. Then, the mixture was homogenized by a Sonic Ruptor-400 ultrasonic homogenizer for 1 

hour. The homogenized mixture was equally divided into two beakers to prepare two reverse 

microemulsion solutions. In the first beaker, 12.5 ml of carboxylated-graphene-containing Na2Sx was 

poured in, and the microemulsion was sonicated again for 10 to 15 minutes, whereas, in the second 

beaker, 12.5 ml of 4M HCl was added, and this microemulsion was also sonicated for 10 to 15 minutes. 

Finally, these two reverse microemulsions were mixed together and stirred for 2 to 3 hours to form the 

graphene/sulfur composite. The following reaction (reaction-2) occurred when the sulfur precipitated out 

and formed the graphene/sulfur composite. 

8Na2Sx + 16HCl → 16NaCl + 8H2S + (x-1)S8↓-----------------------------------(2) 

The composite was then separated by centrifugation at 5000 rpm and repeatedly washed with acetone and 

water to remove all the oils and salts. A schematic illustration of this method is shown in Figure 1, and 

Figure S1 in the Supporting Information shows the photographs of the different steps. All the chemicals 

in this case were also purchased from Sigma and directly used without any purification. 

Fabrication of boron- and nitrogen-doped carbon cloth: For the synthesis of boron- and 

nitrogen-doped carbon cloth we followed Yuan’s method for preparing boron, nitrogen doped graphene.
42

 

To do so, small diameter (5 mm) carbon cloth discs were cut and submerged in1-ethyl-3-

methylimidazolium tetrafluoroborate ([Emim]BF4) ionic liquid in an argon-filled glove box. Then, the 

fully soaked carbon cloths were put into a quartz boat and transferred into a furnace for heat treatment at 

330 °C under vacuum. After the heat treatment, the carbon cloths were further annealed at 400 °C in 

argon to form boron- and nitrogen-doped carbon cloth. 



Fabrication of electrodes and coin cells: The aluminum-current-collector-based cathode was 

fabricated by using the carboxylated graphene–sulfur precipitated composite, carbon black, and 

polyvinylidene difluoride (PVDF). The PVDF was added in the amount of 10 wt%, and the amount of 

carbon black was dependent on the amount of sulfur, which was maintained at 50 wt% of the total 

amount. The composite, carbon black, and PVDF mixture was manually mixed for 20 to 30 minutes with 

the addition of an appropriate amount of N-methyl-2-pyrrolidone (NMP). The obtained slurry was coated 

on Al foil to a thickness of 90 microns and was then dried at 50 
o
C for 24 hours under vacuum. Then, the 

electrode was cut into 10 mm diameter discs. Each 10 mm disc contained around 1 mg of active materials 

(sulfur). The fabricated disc electrodes were dried again at 50 
o
C for a few hours before use. For the 

carbon-cloth current-collector-based cathode, the slurry was prepared with the addition of carbon black 

and PVDF, where the sulfur content was 80 wt% along with 10 wt% PVDF and 10 wt% graphene and 

carbon black. 5 mm diameter carbon cloth discs were dipped into the slurry and dried in a vacuum oven 

for 24 hours at 50 
o
C. Each 5 mm diameter carbon cloth disc contained 7.5 to 8.5 mg of sulfur. These 

discs were then directly used as cathode in the coin cells. The CR 2032 coin-type cells were assembled in 

an Ar-filled glove box, where discs of Li foil were used as the counter electrode and reference electrode. 

The electrolyte was prepared by dissolving 1 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) and 

0.1 wt% LiNO3 in co-solvents of 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME), in a volume 

ratio of 1:1. A porous polypropylene film was used as the separator. 

Characterization: To characterize the sulfur-graphene composite and Li-S cells, different analytical 

tools were used. For physical characterization of the composite, we conducted X-ray diffraction (XRD; 

Bruker Smart-1000, Bruker AXS Inc., USA, using Cu Kα radiation), Raman spectroscopy (Horiba Jobin 

Yvon Labram Aramis using a 532 nm diode-pumped solid-state laser), Fourier transform infrared 

spectroscopy (FTIR; NEXUS 670 FT-IR), thermogravimetric analysis (TGA; Netzsch STA 449F3, 

Germany, in an argon environment with a heating rate of 5 °C/min), and four probe conductivity 

measurements (Signatone SP4). For morphological analysis, scanning electron microscopy (SEM) and 



transmission electron microscopy (TEM) were conducted on a Hitachi SU-70 analytical SEM (Japan) and 

a JEOL (Japan) 2100F field emission TEM, respectively. The scanning electron microscope was also used 

for conducting large-area energy dispersive X-ray spectroscopy (EDS) mapping. For electrochemical 

performance evaluation of the Li-S cell, an automatic battery tester system (Land
®
, China) was used at 

various current densities at room temperature within a conventional voltage window (1.5-3 V). 

Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements were 

performed on a Gamry Reference 3000 Potentiostat/Galvanostat/ZRA with a scan rate of 0.1 mV s
-1

 

(within a voltage window of 1.5 V to 3 V), and for impedance analysis, a frequency range of 10 mHz to 

100 kHz was applied. 
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Figure S1: Photographs of the different steps in the reverse microemulsion method and 

synthesis of the sulfur-graphene composite. 
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Figure S2: Thermogravimetric analysis (TGA) of sulfur-graphene composite. 

 



 

Figure S3: FTIR spectra of sulfur, graphene and RM-S/G composite. 

 



 

Figure S4: (a) SEM and (b-e) energy dispersive spectroscopy (EDS) analysis of boron, 

nitrogen-doped carbon cloth. 
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