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Abstract: 

In the present study, thermal behaviours of a HSS work roll in actual service condition during 

hot rolling have been systematically investigated by an experimentally validated model. 

Influencing factors including finishing stand number, heat transfer coefficients in different 

circumferential thermal boundaries and initial work roll body temperature have also been 

carefully examined on the temperature and thermal stress distributions within the work roll. 

Based on working temperature range at roll surface from the theoretical analysis, oxidation 

tests of a HSS work roll material have been conducted. It has been observed that the 

practical HSS oxide scale is obviously different compared to those developed in laboratory 

not only because of the complicated oxidation atmosphere in industry, but also influenced 

by the cyclical mechanical load and thermal stress at the work roll surface. 

Keywords: Hot rolling, manufacturing, work roll, oxidation, stress, surface morphology 

1. Introduction 

Hot rolling has been an attractive industrial process for a very long time due to its capacity 

to manufacture finished or semi-finished bulk materials at temperatures above their 

recrystallization points. During hot rolling, very complicated interactions between elastic 

deformations of work rolls and back-up rolls, plastic deformation of strips and heat transfer 

among the hot strip, work roll and surrounding environment exist. The work rolls are 
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cyclically heated during contact with hot strips (due to conduction of heat from strip, 

deformation and friction works) and cooled by cooling systems, and the fast temperature 

variations leads to the development of oxide scale, thermal cracks and fatigue at work roll 

surface [1-4]. Hence, understanding and improvement of the work roll performances in 

service have been a very important subject for both engineers and scientists. 

Due to very complicated relationship between the working temperature of a work roll during 

hot rolling and its mechanical, tribological and oxidation properties, it is very critical to 

understand the detailed temperature evolution in a work roll during its service. Steven et al. 

[5] have conducted the first on-site industrial experiment to measure the temperature 

changes in a S.G. cast iron work roll in a roughing stand of a medium-width strip mill. Their 

measurement for the first time confirmed that the work roll surface temperature could be as 

high as 500°C during hot rolling. Unfortunately no other industrial experiment has been 

reported up to now except their study because of very complicated experimental operations 

and extremely high cost in industry. Even though there are several similar measurements on 

hot rolling of aluminium alloy were conducted in laboratory [6-8], however, those results 

were not comparable with the industrial cases because a lot of practical influencing factors 

were not been able to be considered in laboratory. 

Except the experimental tools, computational model is fortunately nowadays a powerful and 

reliable tool for simulating different thermo-mechanical-metallurgical processes from 

macro-, micro- to nano-scale size, with quick development of computer skills [9-11]. To date, 

a large number of investigations have already been successfully conducted on modelling 

thermal behaviours of work rolls during hot rolling. For example, a very early model was 

proposed by Patula [12] to study the steady state temperature distribution in a rotating roll 

subject to surface heat fluxes and convective cooling. Then Troeder and co-authors [13] 

have studied stress distribution based on assumptions of uniform heat flux and convective 

cooling in a three-dimensional work roll model. Lai et al. [14] calculated the transient 

thermal stress of a work roll using coupled thermo-elasticity analytical method. The 

transient thermal behaviours of work rolls have also been studied by Guo [15] and Hwang et 

al. [16] using two-dimensional finite element models, and by Lee et al. [17] and Li et al. 

[18,19] using three-dimensional finite element models, respectively. In Ref. [20], Guerrero 

and co-authors have developed four different mathematical models to study the work roll 

temperature field during hot rolling, and Sun et al. [21] have proposed an integrated finite 

element based model for the prediction of steady-state thermo-mechanical behaviour of the 

roll-strip system and of roll life. Chang [22] developed an analytical model for the thermal 
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stress of a work roll within the roll bite region with a semi-infinite-solid approximation. Perez 

et al. [23] predicted the thermal response of a work roll using a mathematical model 

considering three different levels: independent cycle of the roll, rolling of a strip-rest, and a 

whole campaign. Strain-life of a work roll during hot rolling was calculated by Corral et al. 

[24] by means of a hybrid, analytic-numerical model, and temperatures and thermal 

stress/strains in the roll under various cooling conditions was predicted by Saha et al. [25] 

applying a mathematical model. In addition, thermal stress and temperature variations 

within work rolls in hot strip rolling have also been modelled by Fisher et al. [26], 

Serajzadehet al. [27,28], Benasciutti et al. [29] and Na et al. [30], respectively. In addition to 

modelling the temperature and thermal stress variations of work rolls as mentioned in the 

above literatures, analysis on the geometry of water spray and work roll thermal crown 

profile has also been done as reported in Refs. [31,32] using finite different method. 

Since the end of last century, application of high speed steels (HSS) work rolls during hot 

rolling in industry has been increased quickly and made a breakthrough due to their 

excellent wear resistance, hardness, and high temperature service performances [33-35]. It 

has been reported that the HSS work rolls have about three times longer service life than the 

high chromium cast iron rolls [36]. As revealed by many experimental and theoretical 

reports, working temperature at work roll surface during hot rolling could be very high and 

oxidation of work rolls cannot be avoided. Therefore, accurate understanding the oxidation 

behaviour of hot rolling work rolls is very crucial and a number of efforts have been 

contributed on investigating oxidation behaviours of HSS roll materials already. For example, 

Kim et al. [37] have reported a significant influence of alloy elements vanadium (V) and 

chromium (Cr) by oxidizing three different HSS materials at 600°C. More details can be found 

in [38-40], where Cr-rich M7C3 carbide had the best oxidation resistance than carbides MC 

and M2C because it dissolved high amount of chromium. Those observations were confirmed 

by the recent studies [41,42] by analyzing the morphology and microstructure evolutions of 

oxidized HSS samples. Zhou et al. [43,44] have compared the oxidation rate of a HSS material 

at different temperatures and they have concluded that the matrix was easier than the 

carbides to be oxidized at low temperatures. However, their conclusions obviously 

contradict with the results shown in [37-40,45]. In addition, Yin et al. [46] have recently 

reported that the HSS oxide scale thickness was as large as 5 μm after 2 hours oxidations 

below 600 °C. Actually, the oxide scale in their study was much thicker compared to the 

previous reports. Except the above mentioned contradictions, majority of the available 

reports were conducted in laboratory and the oxidation time was much longer than the 
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practical work roll contact time (generally less than one hour) during industrial hot rolling. 

Therefore, systematical investigation on the oxide scale formation mechanism at HSS work 

roll surface within reasonable short time is still necessary, and particularly comparison with 

a practical oxide scale has never been reported yet. 

For a better understanding of oxidation behavior of a HSS work roll in actual service 

condition during hot rolling, accurate understanding of temperature evolution in the HSS 

work roll in actual service condition is extremely important and should come first. However, 

it has been found that very limited reports on temperature analysis of HSS work rolls were 

available after a careful literatures review. Only two reports [4,30] have been conducted 

based on practical industrial steel hot rolling process. 

The present study is an extension from our previous work [4], and there are three main 

objectives. Firstly, systematical theoretical analysis on the temperature and thermal stress 

evolution in a HSS work roll of an industrial hot strip mill is conducted based on finite 

element models. Influences of thermal boundary conditions and initial work roll body 

temperature are discussed in details. Then, oxidation experiment of the HSS work roll 

material is conducted in working temperature range at a work roll surface during industrial 

hot rolling provided by the theoretical analysis. Surface morphology of the oxidized HSS 

samples and cross-sections of those oxide scales are carefully examined with a help of 

scanning electron microscope (SEM), focused ion beam (FIB) and transmission electron 

microscope (TEM). Influences of the oxidation atmosphere and temperature have been 

discussed. Finally, comparisons between an industrial practical oxide scale on a HSS work roll 

and the laboratory developed oxide scales are made in terms of surface morphology and 

scale thickness. It should be noted that, the present study is the first report on 

systematically evaluating the temperature, thermal stress and oxide scale evolutions of a 

HSS work roll in practical steel hot rolling conditions, and it is an important guidance for the 

steel makers. 

2. Description of theory 

2.1 Basic mathematic model 

As reported in many literatures [1,4,7,18,19,31,32], heat flows from the hot strip to the work 

rolls when they contact during hot rolling process because there is a large temperature 

difference between the strip and work roll surface. The general heat transfer mathematical 

constitutive law in cylindrical coordinates ( -  -  ) can be written as 
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where  ,  , and   are the radial, circumferential and longitudinal directions of the work roll; 

     is transient temperature;   means time;  ̇    means source of energy inside the work 

roll;   ,    and    are the thermal conductivity, density, and specific heat of work roll, 

respectively. 

Assuming no source of energy inside the work roll ( ̇     ), no movement along the radial 

direction (  
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Considering the geometric symmetry of the work roll, Eq. (2) can be further simplified to a 

two-dimensional problem as Eq. (3) by neglecting the heat conduction along the longitudinal 

direction of work roll. 
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2.2 Thermal boundary conditions 

Initial thermal conditions of the work roll during hot rolling can be expressed as [7,30] 

          |              (4) 

where    means the initial work roll temperature before hot rolling process. 

Because hot rolling is a cyclical thermal/mechanical loading problem, the thermal 

boundary conditions can be illustrated as shown in Fig. 1a based on a two-dimensional 

assumption as described in Eq. (3). Along the circumferential direction of the work roll, 

eight zones have been divided in a counter clockwise, namely roll bite region, wiper 

cooling region, nozzle spraying region, natural air cooling region, work roll and backup 

roll contact region, natural air cooling region, nozzle spraying region and wiper cooling 

region. It should be noted that practical hot rolling process in industry includes two 

processes, namely hot rolling and subsequent idling. In hot rolling process, there is 

strip-roll contact in the roll bite region, but there is no strip-roll contact in the 
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subsequent idling process. Therefore, the boundary conditions of hot rolling and idling 

are different as shown in the following section. 

 

Fig. 1 Schematic of a hot rolling mill (HSM) system investigated in this study. (a) Simplified 
assembly of a backup roll, HSS work roll and hot strip during hot rolling, (b) detailed mesh 
condition of the HSS work roll and its circumferential thermal boundary conditions, and (c) 
illustration of corresponding heat transfer coefficients for each zone shown in (b). 

2.2.1 Boundary condition in roll bite region 

2.2.1.1 During hot rolling 

During hot rolling, temperature rise is mainly due to conduction of heat between strip and 

roll. There are two heat sources in the roll bite region: deformation heating from strip being 

rolled, and friction heating due to sliding of the work roll on strip. Therefore, the total heat 

flux (  ) into the work roll in the roll bite region can be divided into two parts: the 

deformation heat flux (  ) and friction heat flux (  ). The following boundary condition has 

been assumed by introducing an effective interface heat transfer coefficient (    ) in roll 

bite region [1,31,32,47], 

                          (5) 

(i) The deformation heat flux (  ) can be calculated by 

            
  

 
           (6) 
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where    means temperature at work roll surface before entering roll bite region;    and 

   means the specific heat and density of the work roll material, respectively;   means the 

work roll velocity;    means the equilibrium temperature at the work roll surface and hot 

strip interface, and it can be calculated as 

   *  
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    +  (7) 

where     √     and     √     means penetration depth of the interface heat at 

the work roll and strip surface, respectively;    and    means the specific heat and density of 

the strip material, respectively;    means temperature at hot strip surface before entering 

roll bite region;      means the temperature rise of strip due to the deformation heat and 

can be calculated as 

     (    
     

 
)  [    (     )  ]     (8) 

where   is rolling pressure;    and    are the strip thickness at the entry and exit of roll bite 

region, respectively. 

(ii) The friction heat flux (  ) can be calculated by 

   *
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where   means friction coefficient between work roll and hot strip, and can be calculated in 

terms of a function of temperature [31] 

                          (10) 

Therefore, based on Eq. (6) and Eq. (9), the total heat flux into the work roll in roll bite 

region during hot rolling can be calculated with the following equation 
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Therefore, an effective interface heat transfer coefficient (    ) in roll bite during hot rolling 

can be calculated by 

     [       
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2.2.1.2 During idling 
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During idling, the work roll was not in contact with hot strip. The main heat loss from the 

work roll should be attributed to the heat convection from the work roll to the surrounded 

wiper coolant. The following boundary condition in this region is assumed: 

               (        )      (13) 

        is the convective heat transfer coefficient of coolant in roll bite region during idling, 

which can be calculated by the following equation 

               
       

      

  
     (14) 

                  (15) 

in which     is the thermal conductivity of coolant,    is the contact length in roll bite region, 

     is the coolant Prandtl number, and     is the viscosity of the coolant. 

2.2.2 Boundary condition in wiper cooling regions 

The surface of work roll is in contact with the coolant flowing at the wiper section. At those 

regions, the coolant is under atmospheric pressure compared with that under high pressure 

in nozzle spraying region. The following boundary condition can be used [1,30-32] 

          (        )      (16) 

       is the convective heat transfer coefficient of coolant at the wiper region, which can 

be calculated by the following equation 

           
       

      

  
     (17) 

                  (18) 

where    is the coolant length along roll circumference at wiper region. 

2.2.3 Boundary condition in nozzle spraying regions 

The most significant heat loss from the work roll occurs in the coolant nozzle spraying region. 

The heat transfer coefficient in the spraying coolant region is mainly influenced by the 

coolant flow rate, pressure, work roll surface temperature and the geometric spray 

conditions in terms of spray angle with work roll surface and nozzle distance from the work 

roll. The following boundary condition exists in this region [1,16,31,47,48]: 

          (        )     (19) 

where        is the convective heat transfer coefficient of spraying coolant at nozzle 

spraying region,     is the spraying coolant temperature. 

The convective heat transfer coefficient is calculated by the following equation 

                   
        (          ) (20) 
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where     is the spraying coolant pressure;           is the coolant flow per unit area 

created on work roll surface where     is the coolant flow of the nozzle and     is the 

coolant flow area created on work roll surface;   is taken as 1 when   is larger than 10000, 

otherwise   (
   

  
)
     

. 

2.2.4 Boundary condition in natural air cooling regions 

In the natural air cooling region, the heat loss from the work roll surface is assumed to take 

place by convection and radiation [30] 

                          
     (22) 

where    is the convective heat transfer coefficient in air and it is usually taken as a constant 

of 4.55~12.15 W/m2·K;    is the surrounding temperature;   is Stephan-Boltzmann 

radiation constant of black body;   is emissivity of the work roll material. 

2.2.5 Boundary condition in work/backup rolls contact region 

As reported in the studies [31,32], the boundary condition at the interface between work 

and backup roll can be assumed as 

                      (23) 

in which     is the effective heat transfer coefficient at the interface between the work roll 

and backup roll,    is the surface temperature of backup roll. The value of     can be 

determined by 

    
      

      √   

√       √
 

 

    

     
(
    

 

  
 

    
 

  
)   (24) 

where     is the angle connection between the work and backup rolls during hot rolling. 

3. Finite element analysis 

3.1 Finite element model 

As described in Eq. (3), a two-dimensional finite element model can be reasonably assumed 

to study the thermal problem of the work roll during hot rolling, by neglecting the 

temperature variation along the longitudinal direction [4,7,8,30-32]. In this study, a similar 

two-dimensional assumption has been applied in a finite element model and the schematic 
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illustration is shown in Fig. 1(a). Fully coupled thermal-stress analysis has been conducted 

using a commercial FE solver Abaqus/Standard in this study to investigate the temperature 

and thermal stress evolutions of a HSS work roll during hot rolling in industrial service 

conditions. 

Table1 
Practical hot rolling parameters collected from a hot strip mill finishing stands of an 
industrial steel company used in the models in this study. 

Parameters Stand F1 Stand F2 Stand F3 Stand F4 

Rolling force 17780 kN 14940 kN 12270 kN 8510 kN 

Diameter of work roll 760.8 mm 766.8 mm 790.9 mm 627.4 mm 

Length of work roll 1580 mm 1580 mm 1580 mm 1580 mm 

Diameter of back-up roll 1600 mm 1450 mm 1480 mm 1330 mm 

Length of back-up roll 1560 mm 1560 mm 1560 mm 1560 mm 

Velocity of work roll 1.36 m/s 2.15 m/s 3.34 m/s 4.82 m/s 

Strip temperature before hot rolling 973 °C 955 °C 942 °C 927 °C 

Strip temperature after hot rolling 955 °C 942 °C 927 °C 913 °C 

Strip thickness before hot rolling 40 mm 20.25 mm 12.44 mm 8.15 mm 

Strip thickness after hot rolling 20.25 mm 12.44 mm 8.15 mm 5.82 mm 

Strip width before hot rolling 1136 mm 1141 mm 1145 mm 1147 mm 

Hot rolling reduction per pass 49.38% 38.57% 34.49% 28.59% 

Nozzle water spraying pressure 1.25 MPa 1.25 MPa 1.20 MPa 1.15 MPa 

 

Detailed thermal boundary conditions along the circumferential direction of the work roll 

are shown in Fig. 1(b), where 8 regions have been divided as marked. Region AB indicates 

the roll bite region, regions BC and HA indicate the wiper cooling regions, regions CD and GH 

indicate the nozzle spraying regions, regions DE and FG indicate the natural air cooling 

regions, and region EF indicates the contact between the work roll and back-up roll. During 

finite element analysis, the above mentioned thermal boundary conditions were defined in a 

user subroutine FILM [49], which can be used to define a node/element/surface-based non-
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uniform film coefficient and will be called during procedures that allow heat transfer analysis 

at each node or surface integration point. 

This study was focused on the four front finishing stands (F1, F2, F3 and F4) in a hot strip mill, 

where HSS work rolls are used. The roll was assumed as deformable body, and its physical 

and mechanical properties are shown in Table 1, 2 and 3, respectively. In order to avoid the 

convergence problem during simulation, a small hole with diameter of 20 mm (  =20 mm) 

in the work roll center was removed when building the finite element model. As can be seen 

in Fig. 1(b), very fine mesh was used in the outer layer of the work roll and coarse mesh was 

used inside to improve the calculation accuracy of work roll surface temperature. The 

element type for the work roll was CPE4T, namely four-node plane strain thermally coupled 

quadrilateral, bilinear displacement, and temperature [49]. 

3.2 Analysis procedures 

Detailed finite element analysis procedures in this study are given as following: 

Step 1: Collecting industrial parameters, including physical and mechanical properties of 

strip, work and back-up rolls, and rolls geometry dimensions, rolling pressure, roll speed and 

so on, from practical steel hot rolling industry company as listed in Table 1 and Table 2, 

respectively. 

Step 2: Identifying the heat transfer coefficients at different boundary conditions as 

described in Section 2.2 based on the above collected industrial parameters and 

experimental parameters in [5]. 

Step 3: Building finite element models to simulate the hot rolling experiment reported by 

Steven et al. [5] and validating the models by comparing the simulation results and their 

experimental measurements. 

Step 4: Conducting finite element analysis on the thermal behaviour (temperature and 

thermal stress evolutions) of a HSS work roll based on practical steel hot rolling conditions. 

Step 5: Investigating the influencing factors, such as finishing stand number F1-F4, heat 

transfer coefficients in different thermal boundary regions and initial work roll body 

temperature. 

Step 6: Calculating the working temperature at the HSS work roll surface during hot rolling 

for further investigation on oxidation behaviour of the HSS work roll material. 

Table 2 
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Physical and mechanical properties of the work roll and back-up roll used in the FE models in 
this study [2,5,21,30,50,51]. 

Roll material type HSS Cr5 S.G. cast steel 

Thermal conductivity 27.3 W/m·K 43.5 W/m·K 32.4 W/m·K 

Specific heat capacity 462 J/kg·K 448 J/kg·K 743 J/kg·K 

Density 7620 Kg/m3 7837 Kg/m3 7200 Kg/m3 

Elastic modulus 220 GPa 205 GPa 176.7 GPa 

Thermal expansion coefficient 1.4×10-5 K-1 1.7×10-5 K-1 1.25×10-5 K-1 

Poisson’s ratio 0.3 0.3 0.275 

Tensile strength 800 MPa 1916 MPa 263.5 MPa 

Compressive strength 3200 MPa 1620 MPa 1317.4 MPa 

 

4. Experimental details 

4.1 On-site measurement of work roll temperature [5] 

Due to the complicated operations and extremely high cost of on-site work roll temperature 

measurement, the report by Stevens et al. [5] has been the unique available industrial 

experiment. Therefore, simulating their experiment is very important and should be 

conducted first to validate the models. Details of their experimental set-up were simply 

recalled in this section. 

In Ref. [5], a full-scale S.G. cast iron work roll was modified firstly and fitted with five 

thermocouples at different depths from the work roll surface to measure the corresponding 

temperature distributions. Two identical plugs were installed in order to avoid failure of any 

of the thermocouples. Then, the modified roll was fitted on several occasions into the No. 2 

roughing stand of the No. 1 medium width strip mill of the BSC Tubes Division at Corby. 

Finally, practical hot rolling of slabs was conducted and a typical set of temperature 

distributions were recorded. In their hot rolling experiment, the work roll had an angular 

speed of 12.8 rpm and initial temperature of 20 oC. Temperatures of the slabs were 1230 oC 

on the entry side, and the rolling reduction was 22.75% per pass with rolling pressure of 

108.5 MPa. The industrial experiment was conducted up to 5 hours for testing temperature 

variations both at the surface and within main body of the work roll. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2 High temperature oxidation test 

In addition to systematically understanding temperature and thermal stress evolutions in a 

HSS work roll during hot rolling in industry, another important goal of this study is to 

understand the oxidation behaviour of the HSS work rolls during hot rolling in actual service 

condition. Due to extremely difficult and complicated operations, it is impossible to examine 

the oxidation of work rolls during industrial hot rolling operations. Therefore, oxidation 

experiment of the HSS work roll materials has been conducted in laboratory. Table 1 shows 

the chemical composition of the material investigated in this study. Samples with 

dimensions of 12 × 12 ×6 mm3 were cut from a HSS work roll in actual service condition. 

Sample surface was polished with a 1 um diamond suspension and the roughness was about 

17 nm. All samples were ultrasonically cleaned with acetone and kept in vacuum before the 

oxidation experiment. Four different oxidation temperatures from 550 to 700°C have been 

selected in this study. The overall oxidation time was set to 10 and 30 minutes, which are 

comparable to the practical strip-roll contact time during industrial hot strip rolling process. 

Table 3 
Chemical compositions of the investigated HSS work roll, Cr5 backup roll and strip materials 
during hot rolling in this study, wt.%. 

Material C Mn Si Ni Cr Cu Mo Al V W Fe 

HSS 1.78 0.551 0.69 0.52 5.0 0.080 3.7 0.005 5.2 0.2 Bal. 

5%Cr 0.7 0.5 0.6 0.4 5.2 - 0.5 - 0.2 - Bal. 

Strip 0.032 0.25 0.009 0.01 0.01 0.02 - - 0.001 - Bal. 

 

4.3 Characterization of oxide scales 

Surface morphology of all the oxidized HSS samples was characterized with a help of a JEOL 

JSM-6490 scanning electron microscopy (SEM). In addition, a FEI XT Nova Nanolab 200 work 

station combining a dual beam of focused ion beam (FIB) and a field emission scanning 

electron microscope was used to cut samples along the oxide scale thickness direction. They 

were further observed by a JEOL JEM-ARM200F probe corrected scanning transmission 

electron microscope (STEM) with an accelerating voltage of 200 kV. Microstructure of the 

oxide scale formed at a HSS work roll surface during practical steel hot rolling in industry was 

also examined for a comparison. 

5. Results and discussion 
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5.1 On-site temperature measurement and model validation 

In this section, simulated temperature evolution in a S.G. iron steel work roll based on the 

experimental condition in industry [5] has been shown, and a comparison with their on-site 

measurement has been made in order to validate the developed model. 

 

Fig. 2 (a) Simulated temperature evolution histories at three different depths in a S.G. iron 
steel work roll under industrial hot rolling service condition as provided by Steven et al. [5], 
and (b) comparison between the simulated results in this study and their on-site 
experimental measurements. 

Fig. 2a shows the simulated temperature evolution history of three selected depths from 

work roll surface during one revolution of hot rolling. As can be seen, the temperature at the 

roll surface increases rapidly from 20 °C to 510.8 °C during contact with hot slab having 

initial temperature of 1230 °C, and then decreases gradually due to the subsequent water 

cooling and natural air cooling. The minimum temperature is about 50 °C at the end of 

revolution. By contrast, the temperatures at depth of 3.5 mm and 6.7 mm from the roll 

surface are much lower than at surface. The temperature rise rate in a work roll decreases 

significantly with depth, and the maximum temperatures obtained during one revolution are 

105.2 °C at depth of 3.5 mm and 63.5 °C at depth of 6.7 mm, respectively. In the report [5], 

the measured temperature at surface was about 500 °C during the first revolution, which is 

slightly lower than the present simulation result. This can be attributed to the experimental 

errors by operations and sensitivity of the thermocouples. 

In Fig.2b, a direct comparison between the finite element simulation and practical on-site 

measurement has been made, in terms of the temperature distribution in the work roll 

along its radial direction. Very good agreement between the simulation and experiment 

indicates that the developed finite element model is able to reasonably capture the 

temperature evolution in a S.G. cast iron work roll during hot rolling. This method will be 

further used to study the thermal behaviour of a HSS work roll during hot rolling. 
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5.2 Simulated temperature evolution in a HSS work roll 

As validated in the section 5.1, finite element model has very good capacity to study the 

temperature evolution in a work roll during hot rolling. Simulations based on the industrial 

condition as listed in Table 1 have been conducted. 

Table 4 
Heat transfer coefficients used in the FE models to understand the influence of thermal 
boundary conditions on the temperature and thermal stress evolution in a HSS work roll 
during hot rolling in actual service condition. 

Case no.      (kW/m2·K)        (kW/m2·K)        (kW/m2·K)    (W/m2·K) 

1 10 1 35 10 

2 25 1 35 10 

3 40 1 35 10 

4 50 1 35 10 

5 75 1 35 10 

6 100 1 35 10 

7 150 1 35 10 

8 50 0.1 35 10 

9 50 5 35 10 

10 50 10 35 10 

11 50 15 35 10 

12 50 35 35 10 

13 50 1 5 10 

14 50 1 15 10 

15 50 1 25 10 

16 50 1 45 10 

17 50 1 55 10 

 

5.2.1 Temperature evolution at different finishing stands 
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HSS work rolls were only applied in the first four finishing stands (F1-F4) in the studied hot 

strip mill as suggested by our industrial collaborators. Therefore finite element simulations 

only about these four stands have been conducted. 

Based on the industrial hot rolling service conditions, temperature evolution at work roll 

surface has been analysed using the finite element method as introduced in Section 2. Fig. 

3a shows the simulated temperature evolution history at the HSS work roll surface during 

the first hot rolling revolution at stand F1 to F4. As can be seen, time required for one rolling 

revolution decreases gradually with the stand number, which is about 1.75 seconds at stand 

F1 but only about 0.4 seconds at stand F4. This is attributed to the different work roll 

velocities, work roll dimensions and rolling reductions as shown in Table 2. For all four 

stands, temperature at the work roll surface increases rapidly when contact with the hot 

strip is established in the roll bite region. Fig. 3b is the highlighted part in Fig. 3a, which 

shows the maximum temperatures reached at HSS work roll surface during one rolling 

revolution. They are about 581.3 °C at stand F1, 525.5 °C at stand F2, 442.4 °C at stand F3, 

and 340.1 °C at stand F4, respectively. Those results indicated that the maximum 

temperature at the work roll surface is highly dependent on the number of stands, which 

means a large influence on the thermal stress distribution, oxidation behavior and service 

life of a HSS work roll [2]. The larger maximum surface temperatures at earlier stands are 

due to the longer roll-strip contact time, higher strip temperature and slower strip speed. 

 

Fig. 3 Variation of temperature at the HSS work roll surface in the finishing stands F1-F4 of a 
hot strip mill. (a) Temperature evolution histories at the HSS work roll surface during the first 
hot rolling revolution, and (b) highlighted the temperature evolutions at work roll surface 
during contact with strip as marked in (a) during hot rolling. 

5.2.2 Influence of hot rolling parameters on temperature evolution 
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Based on the comparison of results shown in Fig. 3, stand F1 which has the largest peak 

temperature has been selected in this study for further investigating the influence of 

thermal boundaries on the temperature evolution in a HSS work roll during hot rolling. 

As introduced in section 2, thermal boundaries of hot rolling are very complicated and can 

be influenced by many factors. In this study, the main influences of      varying from 10 to 

150 kW/m2·K in the roll bite region,        varying from 0.1 to 35 kW/m2·K in the wiper 

cooling regions, and        varying from 5 to 55 kW/m2·K in the nozzle spraying cooling 

regions as shown in Table 4 are carefully studied. 

Fig. 4a shows the relationship between temperature evolution history at the HSS work roll 

surface during one revolution and the value of coefficient    . As can be seen from the 

figure, there is a significant influence, particularly on the maximum temperature obtained at 

roll surface at the exit of roll bite region marked as position B. From the summary in Fig. 4b, 

the maximum temperature rises linearly with     , and the rise rate decreases when      is 

larger than 60 kW/m2·K. The maximum temperature is about 200 °C at      of 10 kW/m2·K, 

and about 850 °C at      of 150 kW/m2·K. In addition, a larger      also leads to a higher 

temperature in region BC, which indicates that the HSS work roll undergoes a longer 

oxidation at a higher temperature. 

Fig. 4c shows the influence of        in the wiper cooling regions BC and HA. The results 

suggest that the maximum temperature is not influenced because of the constant      and 

roll-strip contact time in region AB, but there is a large temperature difference in region BC. 

At position C, the temperature is about 50 °C at        of 0.1 kW/m2·K, and 150 °C at        

of 35 kW/m2·K, respectively. By comparison, Fig. 4d shows that        has a much smaller 

influence on the temperature at the HSS work roll surface. The smaller        leads to a 

continuous temperature decrease at roll surface when the roll leaves nozzle spraying cooling 

region at position D, but a temperature rise has been observed at position D at a larger 

      . These results suggest a complicated thermal stress state and will be discussed in 

section 5.3. 
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Fig. 4 (a) Influence of coefficient     in roll bite region, (b) the maximum temperature 
obtained at roll surface in (a), (c) influence of coefficient        in wiper cooling regions, and 

(d) influence of coefficient        in the nozzle cooling regions on the temperature evolution 

history at a HSS work roll surface during one revolution of hot rolling. 

5.2.3 Influence of initial work roll body temperature 

In fact, the available reports on the temperature field of a work roll during hot rolling are not 

consistent with each other. One of the main reasons is the different initial temperatures of 

roll body, and very limited studies have considered its influence. For example, the initial roll 

body temperature was assumed as 30 °C by Li et al. [18,19], 100 °C by Sun et al. [21], 150 °C 

by Benasciutti et al. [29], and 200 °C by Chang [22], respectively. Up to now, only Na et al. 

[30] have studied the influence of initial roll body temperature. However, they have only 

focused on the 7th stand of a hot strip rolling mill, where the maximum temperature at roll 

surface was very low (only about 300 °C) and it is not high enough for investigation of 

oxidation behavior of a work roll. Therefore, this study provides the first consideration on 

the influence of initial roll body temperature at stand F1 of a hot strip rolling mill, which is 

very important to understand the thermal stress evolution and oxidation in a HSS work roll. 

In this study, temperature evolutions during both hot rolling and subsequent idling have 

been studied in detail by assuming initial roll body temperature as 25, 100 and 200 °C, 
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respectively. Fig. 5 shows the temperature distribution in the cross-section of a HSS work roll 

at the end of hot rolling one strip and subsequent idling. By comparing the results in Fig. 5a, 

c and e, it can be observed that temperature decreases gradually from the roll surface along 

its radial direction for all three initial roll body temperatures, which can also be found in Fig. 

6a by plotting temperature as a function of depth from roll surface at the end of hot rolling. 

In addition, large temperature gradient only exists close to the surface within depth of 10 

mm. A careful examination indicates that the initial body temperature has a slight influence 

on the maximum temperature, which increases gradually and reaches to about 650 °C at roll 

surface when the initial temperature is 200 °C. 

Opposite to the small influence during hot rolling, a large difference in temperature 

distribution in the work roll has been observed during idling. Fig. 5b shows the cross-section 

of temperature contour at the end of idling for initial temperature of 25 °C. The figure 

reveals that the temperature at roll surface is lower than its subsurface layer, which should 

be attributed to the water and natural air cooling. From Fig. 6b, the temperature increases 

gradually from 35 °C at the roll surface when the depth is smaller than about 20 mm, but 

decreases again with increasing depth and reaches to stable at depth of 100 mm. The result 

for initial roll body temperature of 100 °C is quite similar to that of 25 °C as shown in Fig. 5d 

and Fig. 6b, where the minimum temperature is about 40 °C at the roll surface, while the 

maximum temperature is about 135 °C at depth of 25 mm. It should be noted that Fig. 6f 

shows an obvious different trend for initial roll body temperature of 200 °C by comparing 

with Fig. 5b and d. The temperature increases from about 40 °C at surface and reaches to 

about 200 °C at depth of 50 mm, and no obvious temperature drop in the HSS work roll has 

been observed with further increasing depth. 
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Fig. 5 Influence of initial roll body temperature on the temperature evolution in a work roll 
during hot rolling and subsequent idling. Temperature contours in the cross-section of a HSS 
work roll at the end of hot rolling one strip, with initial roll body temperature of (a) 25 °C, (c) 
100 °C, and (e) 200 °C; at the end of idling after hot rolling one strip with initial roll body 
temperature of (b) 25 °C, (d) 100 °C, and (f) 200 °C. 

The results indicate that the Influence of initial roll body temperature on the temperature 

evolution in a HSS work roll during both hot rolling and subsequent idling in this study is 

consistent with the earlier report by Na et al. [30]. However, the maximum temperature is 

much higher in this study than their results, because this study focused on stand F1 while 

the latter focused on stand F7. In our previous work [4], it has been shown that the 

maximum temperature of 628 °C was obtained at roll surface during hot rolling one strip 

when the roll body had an initial temperature of 25 °C. By contrast, the maximum 

temperature at roll surface during hot rolling one strip was about 647.1 and 651.9 °C when 

the initial roll body temperature increased to 100 and 200 °C, respectively, as shown in Fig. 
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6a. It is therefore the working temperature range at a HSS work roll surface at stand F1 from 

581.3 to 651.9 °C during hot rolling can be concluded from the above modeling analysis. 

 

Fig. 6 Influence of initial roll body temperature on the temperature distribution along the 
HSS work roll radial direction at the end of (a) hot rolling one strip, and (b) subsequent idling. 

5.3 Analysis of thermal stress evolution 

5.3.1 Thermal stress evolution during hot rolling 

Fig. 7a shows the thermal stress evolution history of three selected depths, namely at roll 

surface, depth of 2 mm and 5 mm, in a HSS work roll during one revolution of hot rolling at 

stand F1 in actual service conditions. As can be seen, very large compressive circumferential 

thermal stress of 950 MPa has been introduced at roll surface due to contact with hot strip 

in the roll bite region AB. Then, the compressive thermal stress decreases continuously due 

to the wiper cooling in region BC and nozzle spraying cooling in region CD. The stress is 

about -205 MPa at position C, -150 MPa at position D, -160 MPa at position G, and -53 MPa 

at the end of revolution. By contrast, the thermal stress evolutions at the other two depths 

are completely different from at surface. At depth of 2 mm, compressive circumferential 

thermal stress also develops because of the circumferential expansion is constrained by the 

surrounding material with lower temperature. However, the maximum thermal stress is not 

reached at the exit of roll bite region AB but in the subsequent wiper cooling region BC, 

because of the maximum temperature reached there. The magnitude of compressive stress 

is about 208.7 MPa, and then decreases gradually with further cooling and reached to 66.2 

MPa at the end of revolution. By contrast, the compressive stress at depth of 5 mm is much 

lower than at surface and depth of 2 mm, and continuous stress rise can be observed in Fig. 

7a. Similar phenomena have also been reported by Benasciutti et al. [29] and Na et al. [30], 

respectively. 
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The simulation results for the other three stands (F2-F4) revealed very similar thermal stress 

evolution trend to stand F1, suggesting a large thermal stress gradient in a very thin layer 

close to the roll surface. In Fig. 7b, a direct comparison of the thermal stress evolution in a 

HSS work roll at all four stands has been made in terms of magnitudes of the maximum 

compressive circumferential thermal stress obtained at roll surface during on revolution. The 

figure indicates that the thermal stress decreases gradually from stand F1 to F4, which is 

consistent with the roll surface temperature evolutions as shown in Fig. 3. As can be seen, 

the maximum compressive stress is about 900 MPa at stand F2, 750 MPa at stand F3, and 

500 MPa at stand F4, respectively. 

 

Fig. 7(a) Circumferential thermal stress evolution history at three selected depths from the 
HSS work roll surface during one revolution of hot rolling, and (b) comparison of the 
maximum compressive circumferential thermal stress obtained at the HSS work roll surface 
at stands F1-F4. 

Fig. 8 shows the influence of thermal transfer coefficients on the thermal stress evolution in 

a HSS work roll. In Fig. 8a, a significant influence of      varying from 10 to 150 kW/m2·K has 

been observed by examining the thermal stress evolution history at the roll surface. 

Compressive thermal stress was introduced for all cases due to the constrained 

circumferential expansion. As compared in Fig. 8d, magnitude of the peak stress increased 

gradually from about 357.9 MPa at      of 10 kW/m2·K to 1641.3 MPa at      of 150 

kW/m2·K. In addition, thermal stress at surface almost does not change after position C 

when      is smaller than 25 kW/m2·K, but slight stress rise in region DG can be observed 

when      is larger than 25 kW/m2·K. Fig. 8b shows that a larger        leads to a quicker 

stress drop in region BC. The stress at position C was -392.4 MPa when        is 0.1 

kW/m2·K, but only -88.6 MPa when        is 35 kW/m2·K. Similarly, stress decreases fast 

with increasing        in region CD as shown in Fig. 8c. It is interesting to see that, stress 

does not increase but decrease continuously when        is smaller than 15 kW/m2·K in 
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region DG. This suggests that the heat conduction from the subsurface layers is lower than 

heat loss at surface due to cooling. The detailed stresses at the marked positions in Fig. 8 

have been listed in Table 5. 

Table 5 
Circumferential thermal stress (  ) at the marked positions in Fig. 8, where X = B, C, D, G, H 
indicates the number of positions. 

Case No.    (MPa)    (MPa)    (MPa)    (MPa)    (MPa) 

1 -357.9 -112.1 -50.3 -46.2 -26.6 

2 -745.2 -234.8 -97.1 -92.4 -43.3 

3 -855.5 -322.6 -130.7 -125.6 -55.8 

4 -978.9 -367.7 -139.8 -135.4 -59.7 

5 -1314.1 -449.3 -179.8 -173.9 -74.2 

6 -1466.1 -566.6 -212.6 -216.9 -84.8 

7 -1641.3 -635.6 -212.6 -243.8 -94.7 

8 -978.9 -392.4 -238.4 -141.2 -61.8 

9 -978.9 -281.6 -115.9 -114.4 -52.1 

10 -978.9 -211.7 -95.5 -95.9 -45.4 

11 -978.9 -166.7 -81.5 -83.2 -40.6 

12 -978.9 -88.6 -54.7 -57.6 -31.1 

13 -978.9 -367.7 -272.1 -204.6 -151.3 

14 -978.9 -367.7 -207.8 -173.7 -99.2 

15 -978.9 -367.7 -170.5 -154.7 -75.1 

16 -978.9 -367.7 -131.8 -129.5 -54.1 

17 -978.9 -367.7 -120.9 -123.5 -48.9 
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Fig. 8 Thermal stress evolution history at a HSS work roll surface at stand F1 during one 
revolution: (a) Influence of      in the roll bite region, (b) influence of        in the wiper 

cooling regions, (c) influence of        in the nozzle spraying cooling regions, and (d) 

comparing influence of      on the maximum thermal stress reached at the HSS work roll 
surface. (Sign of “-” means compressive thermal stress.) 

5.3.2 Thermal stress evolution during idling 

In Fig. 9, the thermal stress evolution history at a HSS work roll surface during hot rolling one 

strip and subsequent idling has been shown, and the influence of initial roll body 

temperature has also been compared. Fig. 9a shows the cyclical character of stress evolution 

during hot rolling when initial roll body temperature is 25 °C. The roll surface undergoes 

compression along the circumferential direction during the whole process (namely hot 

rolling and idling). During hot rolling, magnitudes of the maximum and minimum stresses 

increase gradually from the first revolution to the eighth revolution, and then become 

relatively stable as reported in [4]. However, thermal stress during idling is completely 

different from hot rolling, where the stress decreases quickly and reaches to about 0.5 MPa 

at the end of idling. This result is consistent with the previous reports [19,29,30] when the 

initial work roll body temperature is low. With increasing the initial roll body temperature to 

100 °C as shown in Fig. 9b, the HSS work roll undergoes cyclical compression and tension at 

surface during rolling and a relatively stable condition has been reached after six revolutions. 
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It has been found that the rise of initial roll body temperature leads to a decrease of the 

maximum compressive stress during rolling, and the decrement is about 100 MPa from the 

previous 950 MPa. In addition, a tensile stress of about 50 MPa has been reached at the end 

of each revolution during steady-state hot rolling stage. The figure also shows that the 

thermal stress is compressive during the early stage of idling but tensile during the rest 

(after about 10 seconds). The maximum tensile stress of about 150 MPa has been observed 

at the end of idling. With further increasing the initial roll body temperature to 200 °C as 

shown in Fig. 9c, a large drop of compressive stress can be observed. It is different from the 

previous two cases, the maximum compression stress decreases gradually from the first 

revolution due to the higher temperature at subsurface layers. Relative stable rolling state 

has been reached only after two revolutions. Similar to the result in Fig. 9b, the roll surface 

undergoes cyclical compression and tension during rolling, and the maximum compression 

stress and tensile stress are about 750 MPa and 310 MPa, respectively. The work roll surface 

is subjected to tension during the whole stage of idling when the initial roll body 

temperature is 200°C. 

The maximum and minimum circumferential thermal stresses developed at the HSS work roll 

surface during both hot rolling and subsequent idling have been summarized in Fig. 10. As 

can be seen, the difference between the maximum and minimum stresses is very small 

during hot rolling for all three initial roll body temperatures. However, it is large during idling. 

The stress changes from completely compressive at initial roll body temperature of 25 °C to 

completely tensile at initial roll body temperature of 200 °C. Tensile stress in a work roll has 

also been predicted in the early reports [21,22,29]. It should be noted that the two 

temperatures of 25 and 200 °C are the lower bound and upper bound of the work roll body 

temperature during hot rolling process under industrial service conditions. Initial 25 °C only 

exists during the early stage of hot rolling as shown in [4], while 200 °C is very difficult to 

reach because the period of rolls exchange is shorten for increasing the rolls life. It is 

therefore the second case of initial 100 °C is more close to the practical steady-state hot 

rolling and the work rolls are subjective to both compression and tension in majority of the 

practical conditions. 
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Fig. 9 Thermal stress evolution history at a HSS work roll surface during hot rolling and 
subsequent idling with different initial work roll body temperature of: (a) 25 °C, (b) 100 °C, 
and (c) 200 °C. 

 

Fig. 10 Comparison of the maximum and minimum circumferential thermal stresses 
obtained at the HSS work roll surface during hot rolling and subsequent idling with different 
initial roll body temperatures. 

5.4 Surface morphology of oxide scales 
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The typical microstructure of the HSS work roll material before high temperature oxidation 

test has been shown in Fig. 11a [4]. With a help of XRD and EDX analysis, vanadium rich 

carbides (MC), molybdenum rich carbides (M2C), and chromium rich carbides (M7C3) 

dispersed in the matrix have been identified. From the figure, the calculated total volume 

fraction of all three carbides is approximately 11.4%. As revealed in the earlier reports [33-

35], those carbides in a HSS material contribute on its mechanical strength and wear 

resistance due to their high hardness relative to the matrix. 

 

Fig. 11 Surface morphology of HSS samples observed by SEM: (a) before high temperature 
oxidation test [4], and (b) after oxidation at 550 °C for 10 minutes in a humid atmosphere. 

According to the finite element analysis in section 5.2, it has been found that the working 

maximum temperature range is from 581.3 to 651.9°C at a HSS work roll surface during hot 

rolling at stand F1. Therefore, oxidation tests at 600°C and 650°C have been conducted in 

laboratory. In order to make a comparison, additional HSS samples were also oxidized at 

550°C and 700°C. Fig. 11b shows the HSS sample surface morphology after oxidation at 

550 °C for 10 minutes in a humid atmosphere. As can be seen, it is very difficult to detect the 

oxide growth on the steel matrix and only the carbides are slightly oxidized maintaining their 

original shapes. This observation is consistent with the study by Kim et al. [37], and it is 

attributed to the high free energy at the carbide/matrix interface and lower thermal stability 

of the carbides. In contrast, the formation and growth of oxide scales on the HSS sample 

surface can be clearly observed at higher temperatures as shown in Fig. 12. The morphology 

of HSS sample surface after oxidation at 600°C in a dry atmosphere is shown in Fig. 12a, 

where a compact thin oxide scale covers the HSS matrix and the carbides are oxidized and 

protrude above the matrix surface. Similar results for oxidation at 650°C and 700°C can be 

observed in Fig. 12b and c, respectively. It is evident that the height difference between the 

oxidized matrix and carbides increases gradually with temperature. It should be noted that 
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different type of carbides also have different oxidation rate as reported by Zhou and co-

authors [43,44]. Their results indicated that vanadium rich MC carbides are oxidized more 

heavily than the chromium rich M7C3 carbides. According to the study by Molinari and 

Pellizzari [39], the Mo rich M2C carbides have an intermediate oxidation rate. 

 

Fig. 12 Surface morphology of HSS samples oxidised for 10 minutes at temperature of (a) 
600 °C, (b) 650 °C and (c) 700 °C in a dry atmosphere; and at temperature of (d) 600 °C, (e) 
650 °C and (f) 700 °C in a humid atmosphere. 

In addition, morphologies of the oxidized HSS sample surface at temperatures from 600 to 

700°C under humid atmosphere have also been examined as shown in Fig. 12d-f. It is 

obvious that the humid atmosphere leads to more heavily oxidation than the dry 
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atmosphere at the same temperature. The figure also shows that the oxide scales under dry 

atmosphere are dense, but the layer developed under humid atmosphere is porous. Besides, 

the sample surface becomes more evenly because the water vapour improves oxidation rate 

of both matrix and carbides under humid atmosphere. It was proposed that the increased 

oxidation was due to a dissociation reaction in the pores of the oxide which contained H2O 

and H2 [52]. The presence of water vapour also prevents the development of a protective 

chromium oxide layer which was formed in dry air [40]. 

 

Fig. 13 Surface morphologies of HSS samples oxidised for 30 minutes at temperature of 
650 °C (a) in a dry atmosphere [42] and (b) in a humid atmosphere; (c) morphology of a HSS 
work roll surface in actual service condition after industrial hot rolling process, and (d) FIB 
image of an ion-milled cross section of practical oxide scale. 

In order to understand the influence of oxidation time, two additional HSS samples have 

been oxidized at 650 °C for 30 minutes in both dry and humid atmospheres, and their 

surface morphologies are shown in Fig. 13a and b, respectively. It is obvious that increasing 

oxidation time from 10 minutes to 30 minutes leads to a heavier oxidation of carbides, 

according to the comparison between Fig. 13 and Fig. 12. TEM observations reveal that the 

oxide scale consists of two sub-layers under both dry and humid atmospheres. The outer 

layer is characterized by large oxide crystals, while inner layer has fine oxides and an amount 
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of pores. Ref. [42] shows more details on the TEM study of oxide scale developed in a dry 

atmosphere at 650 °C for 30 minutes. Fig. 13c shows morphology of a HSS work roll surface 

in actual service condition after industrial hot rolling process, and Fig. 13d shows the SEM 

image of cross section of the practical oxide scale prepared by FIB. The figures reveal that 

the morphology of practical oxide scale is completely different from those shown in Fig. 11, 

Fig. 12 and Fig. 13. The shiny HSS work roll surface indicates that the oxide scale is very thin. 

In fact, careful examination of the oxide scale cross section reveals that the average oxide 

scale thickness is only about 400 nm. Compared to the oxide scales developed in laboratory, 

the industrial oxide scale is more compact, which should be attributed to the cyclical 

mechanical loads (contact stresses) during contacts between the work roll and strip or 

backup roll. The oxide scales can be deformed by compression and shearing due to existence 

of the contact stresses, and density of the pores in the oxide scale can be reduced. In Fig. 

13c, the bright dashed lines indicate the shearing direction or sliding direction at the 

industrial HSS work roll surface, which corresponds with the rolling direction. Wear scars at 

the roll surface have also been observed as marked by red arrows. Mechanical loads also 

lead to stress localization at the interface between the oxidized carbides and matrix, which 

leads to formation of micro-cracks or micro-voids. Presence of the micro-voids at work roll 

surface as shown in Fig. 13c indicates that the oxidation is not uniform and the oxidized 

carbides are peeled off during hot rolling process. This phenomenon is attributed to the 

different thermal expansions between the matrix and carbides [53], and the oxidized 

carbides are subjected to more stress localization when they protrude above the work roll 

matrix surface during contacts [54]. However, micro-voids have not been observed at the 

oxide scale surface developed in laboratory. This should be interpreted by less stress 

localizations in the oxide scales induced by mechanical loads which are not been able to be 

considered in laboratory oxidation experiment in the present study. 
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Fig. 14 Comparison of the oxide scale thickness between the oxide scales developed at a HSS 
work roll surface in actual service condition during industrial hot rolling and in laboratory. 

Fig. 14 shows comparison of the oxide scales thickness developed both under practical 

industry conditions and in laboratory. As can be seen, the oxide scale thickness is 

significantly influenced by the oxidation atmosphere and temperature. For example, the 

oxide scale formed in a humid atmosphere at 650 °C is about five times thicker than the one 

developed in a dry condition. In addition, the oxide scale thickness at 550 °C is smallest and 

it is less than 300 nm, while the scale thickness at 600 °C is comparable to the industrial one. 

A slight oxide scale thickness rise can be observed at 650 °C, which can be considered as one 

of the critical temperatures for this studied HSS material because the figure shows a scale 

thickness growing rate transition. With further increasing the oxidation temperature up to 

700 °C, the scale thickness increases very fast and reaches to about 1.5 μm. In addition to 

the oxidation temperature and atmosphere, mechanical loads in actual service condition of 

hot rolling also contributes to the different thicknesses of oxide scales developed in 

laboratory and industry. According to the reports by Zhou et al. [55] and Xiao et al. [56], 

stresses are induced in the oxide scale and substrate material during oxidation, and such 

stresses in return affect the diffusion of ions and vacancy in the oxide layer. Therefore, 

existence of the mechanical loads leads to the contact stresses, which affect the stress 

distribution in both oxide scales and substrate and then affect the formation of pores and 

growth of oxide scales. 

It should be noted that more microstructual studies (especially TEM and EBSD) are needed 

to investigate the defects and crystallographic orientations of those oxide scales developed 
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in different conditions. As pointed out in the earlier studies [38,46], it is very difficult to 

study the oxidation behavior in a work roll during industrial hot rolling. The main reasons are: 

(i) it is not an isothermal condition and it actually comprises part of both the roll bite region 

and subsequent wiper cooling region where the roll surface temperature is larger than a 

critical one (oxidation starts); (ii) the oxidation atmosphere is not a simple dry atmosphere 

or humid atmosphere. The oxidation in the roll bite region can be treated as in a dry 

condition, but the oxidation in the subsequent wiper cooling region is in a humid condition; 

and (iii) the influence of mechanical load, thermal stress and initial stress state of the work 

rolls cannot be neglected. Unfortunately, no experimental or modeling studies able to 

consider all the above mentioned influencing factors are available now. Therefore, further 

comprehensive studies on the oxidation mechanism and tribological mechanism of HSS work 

roll materials in actual service conditions from both the microstructural and theoretical 

views are still very essential. 

7. Conclusion 

In this study, the thermal and oxidation behaviours of a HSS work roll during hot rolling in 

actual service conditions have been systematically investigated, and the following 

conclusions can be obtained: 

(1) Temperature evolution in a HSS work roll of a practical hot strip mill has been 

systematically studied by an experimentally validated model. The results reveal that the 

maximum temperature varies from 580 to 650 °C at the roll surface at stand F1 during 

hot rolling. The maximum surface temperature decreases quickly from stand F1 to F4, 

and it is only about 340.1°C during one revolution of hot rolling at stand F4. 

(2) Thermal stress evolutions during hot rolling and subsequent idling are significantly 

influenced by the initial work roll body temperature. Magnitude of the maximum 

compressive circumferential thermal stress decreases obviously from 950 to 750 MPa 

with increasing the roll body temperature from 25 to 200 °C during hot rolling. 

(3) During idling, the HSS work roll surface undergoes pure compression when its initial 

temperature is 25 °C. By contrast, initial roll temperature of 200 °C leads to a completely 

tension at the roll surface, which is subjected to both compression and tension at an 

initial temperature of 100 °C. 

(4) The oxidation experiments show that only the carbides but not the steel matrix are 

slightly oxidized at 550 °C, because of the high free energy at the carbide/matrix 
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interface and lower thermal stability of the carbides. However, a compact thin oxide 

scale covers the HSS matrix, and the oxidized carbides protrude above the matrix surface 

when the oxidation temperature is equal to or larger than 600°C in both dry and humid 

atmospheres. 

(5) The practical HSS oxide scale developed in industry has less thickness than those formed 

in laboratory, and the surface morphologies are different. Those differences should be 

attributed to the complicated oxidation atmospheres (not simply dry or humid) at 

industrial service condition, and influences of the cyclical mechanical load and thermal 

stress during hot rolling. 
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