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Abstract 

The impedance of electrodes at 1 kHz is typically reported to assess the signal-to-noise ratio of neural 

recording electrodes.  The impedance response of platinum electrodes modified by poly-3,4-

ethylenedioxythiophene doped with dextran sulfate has been examined.  The modified electrodes have 

lower impedance at low and intermediate frequencies compared to unmodified electrodes.  The 

impedance and phase angle at low frequencies is strongly correlated with the electrode area.  The 

geometric and linear diffusion charge densities of the modified electrodes are also dependent on the 

electrode area and impedance at low frequencies.  A 3 time constant equivalent circuit provided a better 

fit to the impedance than a 2 time constant model.  The decrease in impedance at low frequencies 

indicates PEDOT-DS will be suitable for reducing the thermal noise and increasing the signal-to-noise 

ratio for neural recording electrodes. 

 

Keywords 

Electroactive polymer; Neural prosthesis; Surface analysis; Impedance Spectroscopy; Brain-machine 

interface 
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Introduction 

Neural electrodes are increasingly being used to understand how the brain functions; for the control of 

prosthetic devices; and relieving symptoms associated with several neural disorders including 

Parkinson’s disease, epilepsy and chronic pain.  Whilst recent developments in electrode technologies 

have delivered significant improvements in such devices, their performance is variable and 

progressively degenerative over chronic implantation time frames.  Some improvements in short term 

performance have been achieved through modifying electrode geometry and chemical composition (1, 

2), but a poor understanding of the electrode-tissue interface has prevented translation of these benefits 

to chronic implants. 

 

Neural implants function as electrochemical transducers, converting electrical to ionic current.  For 

neural recording applications, variations in ion concentration around excitable cells lead to changes in 

the local potential.  This variation of potential can be measured by an electrode in close proximity to 

the target cells.  To obtain a useful biological signal from the electrode, the measurement must have a 

large signal-to-noise ratio (SNR).  The expected SNR of a neural electrode is typically assessed by 

measuring its impedance at 1 kHz.  However, recently we provided an analytical solution to some 

common equivalent circuits that revealed that the electrode impedance at the intermediate frequency of 

1 kHz has a weak dependence on some electrode properties, including the electrode area.  In contrast, 

the impedance at low frequencies was far more dependent on electrode area and may therefore be a 

better predictor of SNR (3).  The impedance at intermediate frequencies was also greatly affected by 

electrode modification from the bare metal.  Metal electrode modification with a doped conducting 

polymer changed the electrodes equivalent circuit, leading to a significant reduction of impedance at 1 

kHz.  However the difference in impedance at low and high frequencies between modified and 

unmodified electrodes was smaller and more variable.  Comparison of different electrodes for neural 

implantation from a single impedance frequency, especially at 1 kHz, may not provide sufficient 

information to properly assess the electrodes effectiveness.  Until a greater understanding of neural 

implant behaviour is achieved, measurement of the impedance over a wide frequency range is required. 

 

The comparative biostability and biocompatibility of platinum to other electrode materials predicates 

its use in all commercial neural implants. However, encapsulation by scar tissue during chronic 

implantation reduces its recording SNR (4-6).  Miniaturisation of the electrode may reduce the foreign 

body response to the implanted electrode (7); however this will increase its impedance, which will 

subsequently increase the electrodes SNR.  Modification of the metal electrode surface to improve 

biocompatibility and reduce impedance has the potential to overcome these issues.  A number of 

different materials, particularly doped conducting polymers, have been proposed for neural electrode 

modification, although to date, none have been stable over chronic implantation (8). 
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Modification of electrodes with doped poly-3,4-ethylenedioxythiophene (PEDOT) has been shown to 

reduce electrode impedance at low to intermediate frequencies (9, 10).  A number of studies have also 

demonstrated improvements in biocompatibility by varying the dopant ion, including a recent study 

using dextran sulfate (DS) as the dopant (11, 12).  DS is a polysaccharide that acts as an antithrombotic.  

As a dopant ion trapped on the surface of a neural implant it has the potential to reduce the level of 

fouling and encapsulation on the electrode surface, leading to improved chronic performance.  We 

recently investigated the voltammetric response of PEDOT-DS modified electrodes to gain an 

understanding of effective electrode area and charge density for neural stimulation (13).  In this article 

we explore the impedance of these electrodes as a predictor of neural recording ability.  The results are 

compared to PEDOT doped with para-toluene sulfonate (pTs) which we have previously recommended 

for acute neural recording applications (9). 

 

Experimental Section 

3,4-ethylenedioxythiophene (EDOT), dextran sulfate sodium salt (DS, average MW > 500,000),  

sodium para-toluene sulfonate (Na2pTs) (Sigma-Aldrich) and 99.0 % di-sodium phosphate (Fluka) 

were used as received.  Electrodes were coated as described previously (13, 14), briefly polymer 

coatings were deposited on 32, 413 μm2 nominal geometric area platinum electrodes (Neuronexus 

Technologies – A4x8-5mm-200-200-413).  Conducting polymer deposition with various dopants were 

electrochemically deposited onto microelectrodes via a potentiostat (CH660D, CH Instruments) from 

solutions containing 10 mM EDOT and 0.1 M Na2pTs or 2 mg mL-1 DS in deionised water.  Deposition 

was performed in a three-electrode configuration using one electrode as working electrode, Ag/AgCl 

(3 M NaCl) as reference electrode and Pt mesh as counter electrode.  Solutions were degassed for 30 

minutes with nitrogen before depositing the doped conducting polymers.  All polymers were deposited 

at 1 V vs Ag/AgCl.  PEDOT-DS was deposited for 4 growth times (15, 30, 45 or 60 s), PEDOT-pTs 

was grown for 45 s as previously recommended (9, 15).  2 probes were coated with PEDOT-DS, 4 sites 

at each deposition time in a staggered format as described previously (9), leaving 12 uncoated platinum 

electrodes and 4 PEDOT-pTs coated electrodes as controls.  Electrodeposition of conducting polymers 

produces homogeneous thin films (16, 17), further details on the morphology of the PEDOT-DS films 

are detailed in reference (13). 

 

Electrode areas and charge density were determined optically and electrochemically as previously 

described (14).  Images were collected on a BX61 optical microscope (Olympus) and the geometric 

area measured with ImageJ.  A cross sectional SEM showed a uniform coating of approximately 15 nm 

thickness (Figure S1).  Electrochemical analysis was performed in 0.3 M phosphate buffer in deionised 

water and the electroactive areas determined by addition of 5 mM Ru(NH3)6
3+.  Test solutions weren’t 

degassed to better represent conditions in vivo.  A CHI660B potentiostat with CHI684 multiplexer (CH 

Instruments) were used to perform cyclic voltammetry and electrochemical impedance spectroscopy 
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(EIS) at each of the individually addressable working electrode sites (3, 9, 15).  A 3 electrode 

configuration was used with a Ag/AgCl (3 M KCl) reference and Pt mesh counter electrode.  Charge 

density measurements were performed via cyclic voltammetry over a potential window of 0.8 to -0.8 V 

vs Ag/AgCl at a scan rate of 100 mV s-1.  Electroactive area measurements were collected from a 

potential window of 0 to -0.5 V varying the scan rate from 10 mV s-1 to 1 V s-1.  EIS was performed at 

0 V with a 10 mV amplitude over a frequency range of 10-100,000 Hz.  Equivalent circuit fitting of the 

EIS data was performed with ZView. 

 

Results 

The voltammetric response of the PEDOT-DS (data not shown) was similar and increased with 

deposition time, indicating the charge movement in the film is consistent across all thicknesses used in 

this study.  The impedance of uncoated platinum microelectrodes was typical for a series RC circuit 

(Figure 1) (3, 9).  Modification of the electrode with doped PEDOT led to a different response that 

required a more complex equivalent circuit.  PEDOT-DS modified electrodes showed an increase in 

impedance with decreasing frequency with a plateau region at intermediate frequencies (Figure 1d).  

The phase angle was around -70˚ at high frequencies, approached 0˚ at intermediate frequencies and 

then became more negative at low frequencies (Figure 1e).  The Nyquist plot displayed a semi-circle at 

high frequencies and approached a vertical response at low frequencies (Figure 1f).  This impedance 

response at 0 V of PEDOT-DS modified electrodes in an electrolyte solution in the presence of 

dissolved oxygen is similar to PEDOT-pTs and PEDOT-PSS (3).  PEDOT-DBSA modified electrodes 

tested in the same manner had a Nyquist plot where the low frequency region was much closer to 45˚.  

This variation in shape of the Nyquist plot is most likely due to the measurement potential being at 0 V 

where a Faradaic process occurs on PEDOT-DBSA modified electrodes (10); the other modified 

electrodes do not show Faradaic peaks at this potential. 

 

The impedance (Z) is typically measured to assess thermal noise (
th

rmsV ) and the expected signal-to-noise 

ratio (SNR) of the electrode for electrophysiological recording, according to 

th

rms bV k TZ f=       (1) 

where kb is Boltzmann’s constant, T is the absolute temperature and f is the measuring bandwidth (18).  

Traditionally a frequency of 1 kHz has been used for this assessment.  At 1 kHz, increased deposition 

time of PEDOT-DS led to a slight decrease in impedance and less negative phase angle (Figure 1 and 

Table 1).  Recently, we provided an analytical solution to the impedance of a simplified Randles circuit 

and normal Randles circuit which indicated that while impedance at 1 kHz was affected by changing 

the equivalent circuit model, it provided little further information on the electrode properties (3).  In 

contrast, low frequency impedance and phase angle were far more dependent on electrode area (A) and 

may be a better predictor of electrophysiological performance.  Clearly, at low frequencies, the 
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impedance of PEDOT-DS modified electrodes is seen to decrease and the phase angle become less 

negative with longer deposition times (Figure 1 and Table 1). 

 

While the analytical solution to the Randles circuit provides a relationship between electrode area and 

impedance, this equivalent circuit is not applicable to PEDOT-DS modified electrodes.  Doped 

conducting polymers have been modelled previously as a series resistor, capacitor and finite length 

Warburg diffusion impedance (10).  However, this type of model does not generate a time constant that 

would accommodate the semi-circle in the Nyquist plot seen in Figure 1.  A more complex equivalent 

circuit is required for PEDOT-DS modified electrodes, beginning with a parallel capacitor and resistor 

element to fit the high frequency impedance.  The time constant is also slightly depressed in height, so 

that the goodness of fit was still poor with a capacitor; in contrast a constant phase element (CPE1) in 

parallel with a resistor (R2) fit the high frequency impedance very well.  A series finite length Warburg 

diffusion impedance (W1) is required to fit the low frequency behaviour; and another series resistor (R1) 

is included to account for solution resistance.  Fitting of this 2 time constant equivalent circuit (Model 

1 - Figure 2a) produced a reasonable average 2 over 29 electrodes of 9.4 × 10-4, however the fit to 

intermediate frequencies was poor (~50 – 1000 Hz).  Inclusion of another time constant consisting of a 

parallel capacitor (C1) and resistor (R3) led to a significant improvement in the goodness of fit in this 

region.  Using this 3 time constant model (Model 2 - Figure 2b), the average 2 over 30 electrodes was 

less than 8 × 10-5, with an improving goodness of fit with increased PEDOT-DS deposition time.  A 

comparison of the fit to PEDOT-DS deposited for 60 s using the two models is displayed in Figure 2c.  

Fitting with model 2 produces several fitting parameters including resistance (R) values for R1, R2 and 

R3; a capacitance (C) value for C1; an admittance (Q0) and power (n) term for the constant phase 

element; and a diffusion resistance (RD) and diffusional time constant (D) associated with the Warburg 

impedance.  Table 2 provides the average fitted values from model 2 with different PEDOT-DS 

deposition times. 

 

The real (Z') and imaginary (Z") components of model 2 can be derived 

2 4 4
1 2 3 D2 2

2 2 3 1 4 4 4

1 sinh sin1 1

2 1 1 ( ) cosh co
'

s

aK K K
Z R R R R

K aK R C K K K

     + −
= + + +     

+ + + −      
 (2) 

3 12 4 4
2 3 D2 2

2 2 3 1 4 4 4

sinh sin1

2 1 1 ( ) cosh cos
''

R CbK K K
Z R R R

K aK R C K K K





     − +−
= + +     

+ + + −      
 (3) 

where ω is the perturbation frequency and 

2 2 0( )nK R Q=      (4) 

4 D2K =       (5) 
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cos(90 )a n=       (6) 

sin(90 )b n=       (7) 

This gives a total impedance 

2 2 2' ''ZZ Z= +      (8) 

2

2 4 4
1 2 3 D2 2

2 2 3 1 4 4 4

2

3 12 4 4
2 3 D2 2

2 2 3 1 4 4 4

1 sinh sin1 1

2 1 1 ( ) cosh cos

sinh sin1

2 1 1 ( ) cosh cos

aK K K
R R R R

K aK R C K K K

R CbK K K
R R R

K aK R C K K K







      + −
= + + +      + + + −       

      − +−
+ + +      + + + −       

(9) 

The phase angle (ϕ) can also be defined as 

1 '
tan

'

'

Z

Z
 −=       (10) 

3 12 4 4
2 3 D2 2

2 2 3 1 4 4 41

2 4 4
1 2 3 D2 2

2 2 3 1 4 4 4

sinh sin1

2 1 1 ( ) cosh cos
tan

1 sinh sin1 1

2 1 1 ( ) cosh cos

R CbK K K
R R R

K aK R C K K K

aK K K
R R R R

K aK R C K K K







−

      − +−
+ +     

+ + + −       =       + − + + +      + + + −       

(11) 

The dependence on electrode area is achieved by substitution of capacitance according to 

0 /C A d=       (12) 

where ɛ is the solution dielectric constant, ɛ0 is the permittivity of free space and d is the double layer 

thickness.  At intermediate and high frequencies, the impedance and phase angle are independent of 

electrode area.  At low frequencies, the relationship between total impedance and electrode area can be 

fitted to a trend line of the form 
2

a b
Z c

A A
= + +  while the phase angle can be fitted to 

1tan
b

a
A

 −=

. 

 

The geometric and electroactive electrode areas were determined by optical microscopy and reduction 

of Ru(NH3)6
3+ respectively (13).  Reduction of Ru(NH3)6

3+ could be performed at slow and fast 

voltammetric scan rates to provide steady-state and linear diffusion electroactive areas.  However the 

PEDOT-DS electrodes were too large to produce a steady-state response down to 10 mV s-1.  Deposition 

of PEDOT-DS on metal electrodes increased the geometric and linear diffusion electroactive areas (13).  

In agreement with theory, plots of impedance at 1 kHz versus geometric or linear diffusion electroactive 

area displayed no correlation (Figure 3a and b).  In contrast, very strong correlations of the form 

2

a b
Z c

A A
= + + were found between impedance at low frequencies (using 12 Hz as a representative 

frequency) and geometric and linear diffusion electroactive areas (Figure 3c and d).  The R2 was only 
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slightly reduced by fitting a trend line of the form 
b

Z c
A

= + .  A trend line of the form 
1tan

b
a

A
 −=  

was fit to the phase angle at 12 Hz versus geometric and linear diffusion electroactive areas giving good 

R2 values, which were very similar to a linear trend line (Figure 4). 

 

After fitting the model 2 equivalent circuit, a number of parameters are obtained (table 2).  Each of 

these can also be plotted against the geometric and linear diffusion electroactive areas (Figure 5).  Both 

Q0 and RD show little correlation with electrode area; C1 and D displayed a linear trend with electrode 

area; and R3 had a correlation with electrode area of the form 
2

a b
R c

A A
= + + . 

 

The charge density of the electrode is also typically measured to assess the ability of an electrode to 

stimulate neurons.  An electrode with a larger charge density is able to deliver sufficient charge to excite 

a neuron from a smaller area, allowing the electrode size to be reduced, subsequently increasing the 

devices biocompatibility and potential ability to stimulate individual neurons.  The charge density (mC 

cm-2) is typically measured from the charge passed during a voltammogram and the nominal electrode 

area.  A greater understanding of charge density was obtained by measuring the geometric and 

electroactive areas to provide geometric and electroactive charge densities (14).  Plots of impedance at 

1 kHz versus geometric and linear diffusion charge density displayed no correlation, however all 

PEDOT-DS modified electrodes possessed larger geometric charge densities and smaller linear 

diffusion charge densities than unmodified electrodes (Figure 6a and b).  Plots of impedance at 12 Hz 

versus charge density also show all PEDOT-DS modified electrodes possessed larger geometric charge 

densities and smaller linear diffusion charge densities than unmodified electrodes (Figure 6c and d).  It 

was found that the charge density of the PEDOT-DS modified electrodes were correlated to electrode 

area (13).  In further agreement with this result, at small charge densities, the impedance at 12 Hz also 

displayed a trend of increasing charge density with decreasing impedance. 

 

Discussion 

Modification of neural electrodes with PEDOT-DS led to an increase in effective electrode area and 

charge density (13).  This may result in improved electrode properties for neural stimulation 

applications.  For neural recording, the electrode impedance is usually measured, as the impedance 

affects the thermal noise (equation 1) and subsequently the signal-to-noise ratio.  Bare metal electrodes 

display a linear impedance versus frequency response which can be modelled as a simple RC network.  

This results in an inverse dependence of electrode area with impedance at all frequencies.  The 

impedance of modified electrodes is more complex than bare metal electrodes, the non-linear PEDOT-

DS response requiring a 3 time constant equivalent circuit to achieve a good fit.  When determining the 

potential thermal noise and SNR from more complex equivalent circuits, choice of measurement 
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frequency will affect the SNR prediction.  Typically SNR for neural electrodes has been assessed at 1 

kHz, and it is clear that by simply modifying the electrodes to conform to a number of different 

equivalent circuits, a reduction in impedance occurs at this intermediate frequency. 

 

It currently isn’t known which impedance frequencies lead to a reduction in thermal noise for neural 

recording.  If the impedance at 1 kHz is important, than many forms of electrode modification and their 

associated equivalent circuits can be utilised to reduce the electrode impedance.  However, it is likely 

that the thermal noise and SNR is dependent on the electrode area.  For an RC circuit, the impedance at 

all frequencies is dependent on electrode area, so that prediction of SNR could be achieved by 

measuring the impedance at any frequency.  On electrodes with more complex equivalent circuits, the 

impedance at 1 kHz is not dependent on electrode area.  In this case, measurement of impedance at 1 

kHz may be a poor predictor of SNR.  In contrast, the impedance and phase angle at low frequencies is 

highly dependent on electrode area. 

 

In contrast to previous reports of electrochemical impedance spectroscopy of doped conducting 

polymers, where a 3 element equivalent circuit has been used (10, 19), an equivalent circuit producing 

3 time constants was required to fit the impedance of PEDOT-DS modified electrodes in a solution 

containing oxygen.  The first element required accounts for the solution resistance (R1); the interface 

between the conducting polymer and electrolyte solution double layer includes a parallel constant phase 

element (CPE1) and polarisation resistance (R3), the use of a constant phase element rather than a 

capacitor is usually explained as surface roughness or inhomogeneity in current distribution at the 

electrode surface; a finite length Warburg diffusion impedance (W1) is required to account for the 

conducting polymers Faradaic process; finally a parallel capacitor (C1) and resistor (R3) element is 

included to achieve a good fit in the intermediate frequency region.  The appearance of this final time 

constant may be due to the presence of oxygen in the solution, generating a charge transfer process (10).  

However attempts to fit a circuit including a second Warburg impedance element in place of C1 and R3 

gave a very poor fit, suggesting this process isn’t associated with oxygen.  There were correlations 

between the electrode area and fitting parameters C1 and R3.  Therefore it is more likely this process is 

due to dispersion in the electrode surface properties, which is dependent on the PEDOT-DS deposition 

time.  The increased deposition time subsequently affects the electrode geometry and potentially its 

surface chemical structure.  Further work is required to gain a greater understanding of this behaviour.  

The fitted parameters for R1, C1 and D with model 2 are in very good agreement with corresponding 

elements from a 3 parameter model used for fitting PEDOT-PSS on gold neural electrodes (19). 

 

After fitting a suitable equivalent circuit to the impedance, various fitting parameters also display 

dependence on electrode area.  If the electrode area is an important property for determining thermal 

noise and SNR, then these parameters may become useful predictors of electrophysiological response.  
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However care must be taken to ensure that the equivalent circuit is a valid physical model.  Furthermore, 

Figure 6 highlights that the relationship between each parameter and electrode area is not a simple linear 

dependence.  The correlation between C1 and electrode area was very strong, particularly the linear 

diffusion electroactive area.  In contrast, the correlation of R3 and D with electrode area were not as 

strong (compare Figures 3 and 5).  The comparison of the impedance at 12 Hz and 1 kHz as well as 

each fitting parameter to neural recording data (9) will provide great insight into the key electrode 

properties for determining their SNR. 

 

Regardless of the specific choice of equivalent circuit, PEDOT-DS modification reduced the electrode 

impedance at all low to intermediate frequencies.  The use of this doped conducting polymer should 

therefore reduce the thermal noise and improve the signal-to-noise ratio of neural recording electrodes.  

As DS is an antithrombotic, it’s inclusion in the electrode coating may also result in improved 

biocompatibility, resulting in more stable chronic performance. 

 

PEDOT-DS modification also produced larger optical charge densities and lower linear diffusion charge 

densities than unmodified electrodes (13).  This suggests that a greater, more homogenous charge can 

be delivered from the electrode surface compared to PEDOT and PPy doped with sulphate, para-toluene 

sulfonate (pTs), poly(styrenesulfonate) (PSS) and dodecylbenzenesulfonate (DBSA).  This could 

produce more consistent neural stimulation behaviour.  It was also found that the charge density was 

dependent on the geometric and linear diffusion electroactive area (13).  Correlation of impedance at 

low frequencies with geometric and linear diffusion charge density further highlights the relationship 

between effective electrode area and charge density.  The charge density of a material is generally 

assumed to be independent of its geometry.  The dependence of charge density on effective electrode 

area, and hence impedance at low frequencies, has important implications for the reporting of single 

charge density values for a material.  An ability to modify the charge density and impedance of a 

material by altering its effective area allows significant improvement in the performance of both neural 

stimulating and recording electrodes. 

 

Electrodes coated with PEDOT-DS displayed similar coefficients of variation in electrode area 

compared to PEDOT-pTs, but larger coefficients of variation in impedance, phase angle and some 

charge density measurements.  It is unclear as to whether this will lead to an increase in error of 

electrophysiological performance.  Systematic measurement of the electrophysiological performance 

of these PEDOT-DS modified electrodes will provide important information on the impact of 

electrochemical variation on neuron-electrode interaction.  Overall, the electrochemical characteristics 

of PEDOT-DS modified electrodes and biocompatibility evident in the adhesion of extracellular matrix 

proteins and PC12 neuronal cells (11) suggest  that PEDOT-DS may be of significant value for 

improving electrode function in vivo, in particular by reducing SNR. 
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Conclusion 

PEDOT-DS modification of microelectrodes can be fit with a 3 time constant equivalent circuit.  The 

impedance at low and intermediate frequencies is reduced compared to unmodified electrodes.  The 

electrode area controls the impedance and phase angle at low frequencies.  The geometric and linear 

diffusion charge densities are also dependant on electrode area.  The low impedance of PEDOT-DS 

modified electrodes indicates they will reduce the thermal noise and increase the signal-to-noise ratio 

of neural recording electrodes.  The large charge density of the electrodes is also favourable for neural 

stimulating electrodes. 
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Figure Captions 

Figure 1: Typical impedance response of electrodes in 0.3 M Na2HPO4 at 0 V and 10 mV amplitude (a-

c) uncoated and PEDOT-pTs deposited for 45 s, and (d-f) PEDOT-DS at varying deposition times. (f) 

data points with calculated curve using model 2. 

Figure 2: (a) Model 1 and (b) model 2 equivalent circuits used for PEDOT-DS modified electrodes in 

the presence of oxygen, R1 is the solution resistance, CPE1 is the constant phase element, R2 and R3 are 

resistors, C1 is a capacitor and W1 is a finite length Warburg diffusion impedance. (c) Comparison of 

model 1 and 2 fitting to PEDOT-DS deposited for 60 s. 

Figure 3: Comparison of impedance at (a and b) 1 kHz and (c and d) 12 Hz of PEDOT-DS modified 

electrodes measured in 0.3 M Na2HPO4 at 0 V and 10 mV amplitude with electrode area measured (a 

and c) optically or (b and d) by electrochemical reduction of 5 mM Ru(NH3)6
3+ at linear diffusion.  (a 

and b) The fitted trendline is linear, (c and d) the trendline is of the form 
2

a b
Z c

A A
= + + . 

Figure 4: Comparison of phase angle at 12 Hz of PEDOT-DS modified electrodes measured in 0.3 M 

Na2HPO4 at 0 V and 10 mV amplitude with electrode area measured (a) optically or (b) by 

electrochemical reduction of 5 mM Ru(NH3)6
3+ at linear diffusion. The fitted trendline is linear. 

Figure 5: Comparison of model values versus geometric area and linear diffusion electroactive area.  

The fitted trendlines of Q0, C1, RD and D are linear, the trendline of R3 is of the form 
2

a b
R c

A A
= + +

. 

Figure 6: Comparison of impedance at (a and b) 1 kHz and (c and d) 12 Hz of PEDOT-DS modified 

electrodes measured in 0.3 M Na2HPO4 at 0 V and 10 mV amplitude versus charge density with an 

electrode area measured (a and c) optically or (b and d) by electrochemical reduction of 5 mM 

Ru(NH3)6
3+ at linear diffusion. 
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Figures 

Table 1. Average, standard deviation and coefficient of variation of impedance (kOhm). 

Polymer coating Impedance 1kHz Impedance 12 Hz Phase Angle 12 Hz 

Ave SD CV Ave SD CV Ave SD CV 

15s PEDOT-DS 26.8 1.4 0.05 237.5 41.6 0.17 -81.1 5.0 0.06 

30s PEDOT-DS 24.9 4.1 0.16 98.8 15.6 0.16 -70.9 9.5 0.13 

45s PEDOT-DS 23.3 3.7 0.16 62.5 7.7 0.12 -63.5 6.1 0.10 

60s PEDOT-DS 23.5 3.2 0.13 45.3 5.7 0.12 -49.7 9.1 0.18 

45s PEDOT-pTs 29.7 1.8 0.06 250.7 17.8 0.07 -79.6 2.3 0.03 

Uncoated 307.9 22.5 0.07 23693.9 8441.2 0.36 -91.8 27.4 0.30 

 

Table 2. Average electrochemical impedance parameters from fitting model 2. 

Polymer coating R1 / Q0 / 10-9 

S s1/2 

n R2 /k C1 /nF R3 

/M 

RD 

/k 

D 

/ms 

15s PEDOT-DS 284 0.67 0.95 24.2 91.1 4.86 8.34 1.27 

30s PEDOT-DS 345 0.63 0.95 23.0 224.0 1.93 10.8 4.58 

45s PEDOT-DS 357 0.73 0.94 22.0 330.1 2.05 13.1 11.84 

60s PEDOT-DS 395 0.66 0.95 22.4 548.3 0.80 15.9 19.41 
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Figure 4 
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