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InWireless BodyAreaNetworks (WBANs), the tradeoffbetweennetwork throughput and energy efficiency remains a key challenge.
Most current transmission schemes try to cope with the challenge from the perspective of general Wireless Sensor Networks
(WSNs), whichmay not take the peculiarities ofWBAN channels into account. In this paper, we take advantage of the correlation of
on-body channels in walking scenarios to achieve a better tradeoff between throughput and energy consumption. We first analyze
the characteristics of on-body channels based on realistic channel gain datasets, which are collected by our customized wireless
transceivers in walking scenarios. The analytical results confirm the rationale of our newly proposed transmission scheme A3NC,
which explores the combination of the aggregative allocation (AA) mechanism in MAC layer and the Analog Network Coding
(ANC) technique in PHY layer. Both theoretical analyses and simulation results show that the A3NC scheme achieves significant
improvement in upload throughput and energy efficiency, compared to the conventional approaches.

1. Introduction

In recent years, with the technological advancements in
wireless communication, Microelectromechanical Systems
(MEMS), and integrated circuits, WBANs have become
a more practical and promising technology [1]. However,
WBANs have strict energy constraints as frequent change of
batteries is inconvenient or even infeasible. Besides, sensory
devices are usually placed either in or on the human body;
thus the maximum radiated transmission power is restricted
to comply with the limitation of Specific Absorption Rate
(SAR) of local regulatory bodies (the limitation of Federal
Communications Commission is 1.6W/Kg). Meanwhile, up
to 10Mbps throughput should be offered to satisfy the
required set of entertainment and healthcare services [2]. It
is a challenging task to maintain a high throughput while ful-
filling the specific energy efficiency requirement of WBANs.

Propagation paths in WBANs can experience fading due
to different reasons, such as energy absorption, reflection,
diffraction, shadowing by the body, and body postures [3]. All

these unique features lead to high packet losses. Relay nodes,
if deployed outside of the human body, might possess better
channels and less stringent energy limitations. Therefore,
cooperative communication [4] has received considerable
interest in recent years [5–8]. Initial solutions apply the exist-
ing methods, which were proposed for general Wireless Sen-
sor Networks (WSNs), to WBANs. These schemes may not
be optimized for the unique challenges and specific charac-
teristics of WBANs, such as spatial correlation of channels,
stringent tradeoff between energy requirement and through-
put gains, and Quality of Service (QoS) requirements.

Due to the broadcast nature ofwireless networks, network
coding (NC) [9], which enables nodes to code or mix packets
(or symbols) before forwarding, is a potential method to
produce a significant improvement in the throughput, relia-
bility, manageability, and QoS of wireless networks [10, 11].
The applications of network coding in WBANs are still
an emerging area and most existing works consider the
expansions of conventionalwireless network coding schemes.
The works of [12–15] expanded the cluster-based scheme
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proposed in [16], which divides intermediate relay nodes into
multiple clusters, and NC packets are transmitted between
clusters. However, because only one-hop or two-hop star
topologies are considered suitable for most WBAN systems
[2], the feasibility of cluster-based schemes is limited. In [17],
the authors proposed practical NC implementations in the
context of WBANs.The linear NC is performed in the source
node to improve the energy efficiency. In [18], the relay first
demodulates the received symbols from sensor nodes and
then generates a network coded symbol by theXORoperation
of selected symbols. In a similar way, the works in [19–22]
also utilize the NC technology in the relay node to improve
the transmission efficiency. The authors of [23] focus on the
energy efficiency of cooperation transmission; decode-and-
forward network coding (DF-NC) is proposed to aid relay
cooperative transmission.TheDF-NC scheme achieves a near
optimal outage probability performance while maximizing
the energy efficiency ofWBANs by fixing the average number
of transmissions per node. In [24], the authors explored the
application of NC for the cloud-assisted ambient assisted
living (AAL) environments. Random linear network coding
(RLNC) technology is employed to the source node to
improve the efficiency of retransmission. Some other works
provided new perspectives to the harnessing of NC in
WBANs. In [25], the cooperative compressed sensing ap-
proach is combined with RLNC technology to increase the
energy efficiency of WBANs. However, most of the pre-
vious works did not consider the particular characteristics of
WBAN channel when employing the NC technology.

One particular feature of WBANs is that the signal
attenuation is significantly affected by the shadowing of body
tissues in addition to the distance between two devices. In
other words, the movement and posture of the human
body have a dramatic effect on the strength of the received
signal. Motivated by the spatial cross-correlation of channels
in walking scenarios [26, 27], we proposed a novel NC
transmission scheme, named A3NC, in our previous work
[28]. However, the simulation model in [28] was built based
on a distance-based channel model, rather than adopting the
realistic channel gain. Also, the theoretical performance anal-
ysis was not provided in [28]. Moreover, the cross-correlation
of on-body channels was presumed to be significant in [28].
In [29], we performed a full-scale experiment-based analysis
of on-body channels in the walking scenarios and found
that the on-body channels do not manifest meaningful cross-
correlation, either negative or positive. The experimental
measurements presented later in this paper show that the path
loss discrepancy between the on-body channels, rather than
the cross-correlation, is significant, and it provides a more
suitable basis for the new proposed scheme A3NC. However,
[29] did not provide any analyses or evaluation of our newly
proposed A3NC scheme. In this paper, we will derive in-
depth mathematical analyses and performance evaluations,
based on real path loss datasets.

The contributions of this paper are as follows:

(i) The real channel gain datasets in walking scenarios
are collected by our customized portable wireless
transceiver. In-depth analyses of these experimental

datasets confirm the basis of our newly proposed
A3NC transmission scheme.

(ii) Instead of the distance-based channel model used in
[28], the realistic channel gain datasets collected from
our measurement campaign are imported into the
IEEE 802.15.6-compatible simulation model to evalu-
ate the performance of A3NC. Simulations show that
the proposed A3NC achieves a better performance
from upload throughput, energy efficiency, and
throughput balance perspectives.

(iii) To deepen the understanding of all key parameters
that affect system performance, we provide the math-
ematical analyses from all three perspectives, namely,
upload throughput, energy efficiency, and throughput
balance.

The rest of the paper is organized as follows. In Section 2,
the system model is presented. Then, the characteristics of
on-body channels in the walking scenarios are analyzed
in Section 3. Section 4 details the proposed A3NC scheme.
In Section 5, the mathematical analyses are provided. Per-
formance evaluation results based on the realistic channel
gain datasets are presented in Section 6. Finally, Section 7
concludes the paper.

2. System Model

In this section, we first present the network model for typical
walking scenarios. Then channel models, including the on-
body channel and relay-related channel, are introduced.
Finally, the notations utilized throughout this article are
presented.

2.1. Network Model. We consider the walking scenarios
where two sensors (SN1 and SN2) mounted on the wrists
communicate with a hub, and a relay node deployed outside
the human body is optional. As the hub is expected to be
larger than a sensor node, the torso is considered to be a
preferable part to mount the hub. In this paper, we consider
two typical device deployments as depicted in Figure 1, where
the hub is placed on the abdomen (attached to the belt
buckle) or on the back collar. The main task for the sensors
is to continually upload monitoring data to the hub with or
without the help of the relay node. All wireless devices operate
in the half-duplex mode, and Time Division Multiple Access
(TDMA) is used to schedule the channel resource.

2.2. Channel Model. Some current works, including our
paper [28], simply utilize the distance-based formula to
quantify the strength of received signal power. However, the
path loss of on-body channels inWBANs is affected by many
factors, such as the absorption effect of human tissues and the
mobility of the human body. In this work, the wireless
channels in the walking scenarios are classified into two
categories: on-body channel and relay channel (as shown in
Figure 2). Since only the sensors and the hub are deployed
on the body, the channel between the sensors and the hub is
named as on-body channel. On the other hand, the channel
to or from the relay node is called relay channel.
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Figure 1: Deployment of the sensors, relay, and hub.

Relay Hub

３．1

３．2

On-body channel
Relay channel

Figure 2: The on-body channel and relay channel.

2.2.1. On-Body Channel Model. Due to the high variability of
on-body channels, neither distance-based nor other formula-
based methods seem to be sufficient to describe the on-
body channel condition, especially in the activity scenarios.
Therefore, adopting channel gain datasets collected from
the real walking scenarios to model the on-body channel
is a better choice. To collect the realistic on-body channel
gain data, we constructed wireless transceivers, as illustrated
in Figure 3. Each wireless transceiver consists of one radio
module, one microcontroller, and one MicroSD card. The
main function of the transceivers is to transmit/receive
continuous data packets to/from each other, thus facilitating
the analysis of channel gains. Every testbed is composed of
three printed circuit boards, and they stack on each other to
make the system self-contained. More details about the
hardware can be found in [29].

As demonstrated in [30, 31], in narrowband communi-
cation environments, the on-body channels show prominent

reciprocity, which means the channel profiles of downlink
and uplink are around the same. Therefore, the channel gain
can be estimated by themeasurement of downlinks (from the
hub to the sensors).The transmitter attached on the abdomen
or the back collar continuously broadcasts sample packets
to the receivers located on the two wrists, and the receivers
record the channel gain data by time sequence.These datasets
created from the experiment are utilized to model the on-
body channels. More details about these experiments and the
analysis of channel gain datasets will be presented in the next
section.

2.2.2. Relay Channel Model. In the context of WBANs, due
to severe fading caused by body shadowing, the relay node
may improve the transmission reliability effectively. As the
off-body channel is considered to be more stable than the
on-body channel, we assume the relay node is deployed
outside the human body. In this work, the channel SN𝑖-relay
and channel relay-hub are collectively called “relay channel.”
Besides, since the swing motions of two arm are symmetrical
when the human iswalking, the average packet delivery ratios
(PDRs) tend to be the same for the two relay channels, that is,
SN1-relay-hub and SN2-relay-hub. Accordingly, without loss
of generality, we assume the average PDRs of the two relay
channels are the same.

2.3. Notations. 𝑅 (Kbps) refers to the transmission rate of the
upload data from the sensor to the hub, which is assumed
to be the same for the two sensors. 𝐿𝑝 (Kbits) denotes the
length of one packet. 𝑇𝑐 is the total time assigned to the two
sensors and the relay node (if exist). Both 𝑇𝑠 and 𝑇𝑐 are in
unit of second. 𝛽𝑖 represents the average PDR of the channel
SN𝑖-hub and 𝛽𝑟 is the average PDR of the channel SN-relay-
hub.Asmentioned before, the two relay channels are assumed
to have the same 𝛽𝑟. In the proposed A3NC scheme, two
sensors share a common time period to upload monitoring
data. Therefore, some packets may be lost due to the signal
collision, and we denote the average packet error ratio (PER)
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Figure 3: Components of the wireless transceiver.

caused by collision as 𝑒. Note that 𝛽𝑖 is measured when the
channel is only occupied by SN𝑖, without taking the packet
losses caused by signal collisions into account.𝑈𝑖 denotes the
actual upload throughput from SN𝑖 to the hub with the
influence of fading and collision.P𝑤 is the working power of
the sensor node, and we assume the two sensors have the
same working power.

3. Characteristics of On-Body Channels

In this section, we first present the measurement setups for
typical walking scenarios. Then the characteristics of the on-
body channels are analyzed based on the datasets collected
from these measurements.

3.1. Measurement Setups. Themeasurements were conducted
in both indoor and outdoor environments. The outdoor
environment is an open oval field of about 13,000 square
meters. The indoor environment is a hallway inside a build-
ing. Accordingly, there are four different walking scenarios
generated based on the environment and the location of the
hub. For the rest of the paper, four scenarios are named as
“Indoor + Belt,” “Indoor + Collar,” “Outdoor + Belt,” and
“Outdoor + Collar.” Specifically, the transmitter located on
the belt buckle or the back collar continuously broadcasts
packets to the two receivers bound on the wrists with the
transmit (Tx) power of 0 dBm and the sampling frequency of
200Hz. Then the receivers record the RSSI (Received Signal
Strength Indicator) value of received packets, the timestamp,
and the packet sequence number in the MicroSD card. Note
that, as the Tx power is 0 dBm, the inverse of the RSSI is the
path loss.

To explore the effect of the antenna direction and the
shadowing effect of wrists, the portable transceivers are rolled
around the wrist in four directions: 0∘, 90∘, 180∘, and 270∘, as
depicted in Figure 4. Consequently, there are four different
measurement setups (or subscenarios) in each scenario.

3.2. Channel Data Statistics. We first analyze the RSSI data
for four different scenarios. Figures 5–8 present typical time-
varying RSSI data for the two links from the hub to the two
sensors. RSSI1 and RSSI2 refer to the RSSI of the packets
received by SN1 and SN2, respectively. Observations that can
be derived from the four figures are listed below.

(i) When the hub is on the “Collar,” the channel path
losses are much bigger than the “Belt” cases. The
main reason is that, in the “Collar” cases, the signal is
affected by not only the shadowing of the torso but
also the shadowing of the upper limbs

(ii) The comparison between the indoor and outdoor
environments shows that there exist more small-scale
fluctuations in the indoor environment, resulting
from the reflection from surrounding objects, such as
desks, wall, and roof.

(iii) The direction of transceivers also affects the signal
attenuation. When the hub is on the abdomen, the
180∘ cases experience the biggest path loss.The reason
is that when the transceivers are bound on the top
of the wrists, the signal is affected by not only the
shadowing of the torso but also the shadowing of
the wrists themselves. Similarly, in the “Collar” cases,
both 90∘ and 180∘ cases bring more shadowing from
the upper limbs, leading to lower RSSI values.
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0∘ 90∘ 180∘ 270∘

Figure 4: Four directions of the transceiver on the wrist.
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Figure 5: RSSI versus time in the “Indoor + Belt” scenario.

Next, we analyze the cross-correlation between the two
links from the sensors to the hub. The Pearson product-
moment correlation coefficient (PCC) [32] is adopted to
evaluate the cross-correlation.

𝜌𝑐 = ∑𝑁𝑛=1 (𝑥 (𝑛) − 𝑥) (𝑦 (𝑛) − 𝑦)
√∑𝑁𝑛=1 (𝑥 (𝑛) − 𝑥)2√∑𝑁𝑛=1 (𝑦 (𝑛) − 𝑦)2

, (1)

where 𝜌𝑐 is the correlation coefficient between 𝑥(𝑛) and 𝑦(𝑛);𝑥 and 𝑦 are themean path loss values of the link SN1-hub and
SN2-hub, respectively. 𝑁 = 12,000 is the number of samples
in each measurement.

Table 1 presents the correlation coefficient for different
experimental setups. It is found that the walking scenarios
exhibit relatively small spatial cross-correlation coefficients,
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Figure 6: RSSI versus time in the “Outdoor + Belt” scenario.

Table 1: Cross-correlation between two links.

Indoor Outdoor
Belt Collar Belt Collar

0∘ −0.45 −0.08 −0.42 −0.27
90∘ 0.15 0.00 0.43 0.14
180∘ 0.20 0.06 0.22 0.09
270∘ −0.27 −0.26 −0.30 −0.44

as the spatial cross-correlation is generally considered to be
significant when its absolute value is 0.7 or greater. Further,
the cross-correlations vary dramatically with the network
deployment, including the placement of the hub and sensors,
surrounding environment, and the direction of transceivers.
When the radio device rolls around the wrist, that is, 0∘, 90∘,
180∘, and 270∘, the PCC also varies accordingly. The differ-
ences mainly result from the change of antenna direction and
the change of shadowing from the arms. Especially for the
“Collar” cases, the significant shadowing coming from both
torso and upper limbs outweighs other effects, leading to a
relatively insignificant PCC.

The cross-correlation between different links is con-
sidered to be an instructive parameter for the design of

communication systems. However, a small absolute value of
PCC does not necessarily mean that two links are entirely
independent. Take the subscenario of Figure 6(c) as an
example. The PCC of the two channels is 0.22, but the two
channels are obviously not independent. In this paper, we
focus on a simple but important parameter, namely, the path
loss discrepancy (in dB), referred to as PLD, to reflect the
actual difference between two channel gains.

As shown in Figure 9, the probability distributions of
the PLD are different for the four scenarios, but they all
show a high proportion for the case when the PLD is greater
than 5 dB. Besides, the PLD medians for four experimental
setups fromFigures 9(a)–9(d) are 15 dB, 7 dB, 21 dB, and 11 dB,
respectively. In the outdoor environment, the PLD tends to be
greater than that in the indoor environment.Themain reason
is that the reflections from surrounding objects in the indoor
environment narrow the gap between the RSSI of the two
channels. Besides, the “belt” cases experience a bigger PLD
than the “collar” cases, mainly because the shadowing effect
is stronger in the latter.

Assuming that the environmental noise is relatively small,
the PLD is the major constituent of the overall SNR (Signal-
to-Noise Ratio). Meanwhile, SNR is a crucial parameter for
the bit error ratio (BER). The relationship between SNR
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Figure 7: RSSI versus time in the “Indoor + Collar” scenario.

and BER has been investigated intensively in the literature
[33, 34]. When SNR > 7 dB, the system achieves a BER lower
than 1 × 10−2 for the most low-order modulation schemes,
which may be considered to be sufficient for practical imple-
mentation. Accordingly, if two sensors located on the wrists
concurrently broadcast packets to the hub on the torso in
walking scenarios, the hub can restore at least one signal with
a high probability. In other words, although the two sensors
transmit simultaneously, the probability of packet collisions is
small. Consequently, the observed PLD in walking scenarios
may be sufficient to justify the rationale for simultaneous
transmission from the two sensors to the hub, which is
the core idea of our proposed A3NC scheme. The A3NC
scheme will be detailed in the next section. More accurate
quantitative mathematical analyses of this proposed scheme
will be provided in Section 5.

4. Joint Analog Network Coding
and Channel Allocation

InA3NC, the aggregative allocation (AA)mechanism and the
ANC [35] technique are incorporated to improve the system
throughput and energy efficiency in walking scenarios. AA is

the implementation method of simultaneous transmission in
IEEE 802.15.6. ANC techniquemainly focuses on the problem
of energy efficiency, which is a crucial performance metric
for WBANs. These two components of the proposed A3NC
scheme are described below.

4.1. Aggregative Allocation. As mentioned in the previous
section, the significant PLD in the walking scenarios is the
motivation for simultaneous transmissions of different source
nodes. The proposed AA mechanism aims to make the
simultaneous transmission compatiblewith the IEEE 802.15.6
standard.Therefore, it is instructive to introduce the structure
of the IEEE 802.15.6 superframe briefly. As depicted in
Figure 10, a superframe is divided into Exclusive Access
Phases (i.e., EAP1 and EAP2), Random Access Phases (i.e.,
RAP1 and RAP2), Managed Access Phases (MAP), and a
Contention Access Phase (CAP) [2]. In EAP, RAP, and CAP
periods, nodes contend for the channel allocation using either
CSMA/CA (carrier sensemultiple accesswith collision avoid-
ance) or slotted Aloha access procedure. In MAP periods,
scheduled, unscheduled, and improvised access methods are
possible.The scheduled access procedure is generally used for
applications that involve periodic monitoring.
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Figure 8: RSSI versus time in the “Outdoor + Collar” scenario.

In this paper, only the RAP1 and one MAP are adopted
to compose the superframe in the beacon-enable mode.
Compared to the contention-basedmethods, TDMA channel
access method provides better energy efficiency. Therefore,
TDMAmethod is utilized to upload the data from the sensors
and the relay to the hub. As suggested by the IEEE 802.15.6
standard, the TDMA time slots should be assigned to the
MAP duration. This is the reason why the MAP is utilized to
upload the data from the sensors or the relay to the hub. As for
RAP1 period, it precedesMAP to complete the transactions of
the connection request and assignment on the basis of
CSMA/CA method, which is the suggested approach for
RAP in IEEE 802.15.6. These transactions occurring in the
RAP1 period are essential for the AA mechanism, as they
assign a shared transmission period to a pair of sensors
with significant PLD and facilitate the cooperation of relay
(the necessity of relay node will be discussed in Section 4.2).
Besides, the one-periodic allocation is adopted, where the
assigned intervals are reoccurring in every beacon period
(superframe). The details of the assignment transactions are
illustrated in Figure 11.

The transactions depicted in Figure 11 occur in the RAP1
phase. Initially, the hub broadcasts the beacon frame to the

sensors (SN1 and SN2) and relay, and all receivers contend
for the channel access by a CSMA/CA mechanism. Suppose
that SN1 randomly chooses the smallest backoff value. SN1
transmits the connection request packet (PktCR) to the hub
to request an uplink interval in theMAP.Then, the hub sends
a connection allocation packet (PktCA) to SN1 to allocate a
scheduled uplink interval (SUI). The processes of allocating
a SUI to SN2 and the relay are similar. In addition, the relay’s
scheduled downlink interval (SDI) is allocated to the same
period with the sensors’ SUI in order to receive the packets
from the sensors, which will be detailed in the next sub-
section. Note that handling the received PktCR in the hub is
the key process for the AAmechanism, which is also marked
as three blue rectangles in Figure 11.

The detail of processing PktCR in the hub is depicted
in Algorithm 1. We add a new field item, named PID (Pair
Identifier), in the header of PktCR to assist the relay coopera-
tion. More specifically, the two correlated sensors and their
relay have the same PID value, and the SDI of the relay is
assigned to overlap with the SUI of the two sensors to
receive the packets from the two sensors. NIDassigned denotes
the NID (Node Identifier) assigned to the node. The hub
maintains two independent maps: MapNID and MapPID.
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Figure 9: The distribution of the PLDs.
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Beacon period (superframe)

CAP

Figure 10: Superframe structure of IEEE 802.15.6.

MapNID contains the mapping between MAC address and
NID, and theMapPID maintains the relation between PID and
SUI or SDI. As illustrated in Algorithm 1 (Lines (2)–(5)), a
dedicated NID is assigned to each node (sensor or relay) with
the help ofMapNID. Consequently, correlated sensorswith the
same PID share the same SUI by searching MapPID (Lines
(7)–(13)). If PktCR is sent by a relay, the relay node will be
allocated with the SDI overlapped with the SUI of the two
sensors with the same PID. Meanwhile, an SUI is allocated
to the relay to forward data to the hub (as detailed in Lines
(15)–(21)). Note that SDI is not essential for sensors since their
primary task is uploading the monitoring data to the hub.

After channel allocation, two sensors are allocated to
share the same SUI, and the SDI of the relay is overlapped
with the SUI of the two sensors. From the perspective of

the hub, the two correlated sensors can be looked at as
one virtual sensor node. Meanwhile, the beacon period is
fixed. Consequently, a longer SUI can be allocated to the
sensors, allowing the AA technology to improve the system
throughput in walking scenarios. The mathematical analyses
will be presented in the next section.

4.2. Cooperative Communication with Analog Network Cod-
ing. In this subsection, we first explain the reasons for intro-
ducing the relay node. Firstly, by adopting pure AA without
employing relay nodes, one of the sensors experiences more
severe fading compared to the other one, which is a waste
of energy. In other words, AA may achieve the throughput
improvement at the cost of additional energy consumption,
which is strictly limited inWBANs. Secondly, in the case that
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Input: Receive a PktCR from radio layer(1) Get PID, MAC address, required time slots from PktCR;(2) if Find a record in MapNID by MAC Address then(3) Set NIDassigned by MapNID;(4) else(5) NIDassigned = current free connected NID;(6) end(7) if PktCR comes from a sensor node then(8) if Find a record in MapPID by PID then(9) Set SUI.startSlot and SUI.endSlot by the record;(10) else(11) Set SUI.startSlot and SUI.endSlot from the end of MapPID;(12) Update MapPID;(13) end(14) else(15) if Find a record in MapSID by PID then(16) Set SDI.startSlot and SDI.endSlot by the record;(17) Set SUI.startSlot and SUI.endSlot from the end of MapPID;(18) Update MapPID;(19) else(20) Discard PktCR;(21) end(22)end(23)Construct a PktCA based on NIDassigned, SDI.startSlot, SDI.endSlot, SUI.startSlot and SUI.endSlot;(24)Add PktCA to sending buffer;

Algorithm 1: Uplink and downlink allocation.

two correlated sensors experience different packets delivery
ratios (PDR), AA may cause the sensor with the lower PDR
to experience even a worse throughput performance than
the conventional TDMA scheme. These two issues can be
addressed effectively by deploying a relay node.

Since two sensors broadcast their signals concurrently,
the traditional decode-and-forward (DF) relay strategy is
impractical. Similarly, the digital network coding (DNC)
technology, which requires the relay node to decode and
reencode the packets in the MAC layer, is also unrealistic.
Given that concurrently transmitted packets from two sen-
sors are mixed naturally at PHY layer and the hub can
receive at least one sensor’s packet with a high probability,
physical-layer network coding (PLNC) technology may be a
better choice. In our proposed A3NC, the Analog Network
Coding (ANC) technology originally proposed in [35] is
adopted. The relay node simply amplifies and forwards the
mixed signal to the hub without any decoding, and the hub
undertakes the decoding using the mixed signal and one
original signal. Perfect synchronization is not required in the
ANC technology. Besides, since decoding of packets is not
required, the complexity of the relay node is reduced and
might be beneficial for the communication security.

Similar to [35], the MSK (Minimum Shift Keying) is
adopted as an example modulation scheme to explain the
main principle of ANC, for the reason that it has a simple
demodulation algorithm as well as good bit error prop-
erties. Figure 12 illustrates how to incorporate ANC with
cooperative communication. The cooperation procedure can
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Figure 11: Transaction procedure of A3NC in RAP1.

be divided into two phases, which correspond to the SUI
of the two sensors (also identical to the SDI of the relay)
and the SUI of the relay. As depicted in Figure 12(a), the
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Figure 12: Cooperative communication with ANC. (a) Phase 1: sensors’ SUI. (b) Phase 2: relay’s SUI.

signals transmitted from SN1 and SN2, respectively, can be
represented as

𝑠1 [𝑛] = 𝐴 𝑠 [𝑛] 𝑒𝑖𝜃𝑠[𝑛],
𝑠2 [𝑛] = 𝐵𝑠 [𝑛] 𝑒𝑖𝜙𝑠[𝑛],

(2)

where 𝐴 𝑠[𝑛] and 𝐵𝑠[𝑛] are the amplitudes of the 𝑛th sample,
and 𝜃𝑠[𝑛], 𝜙𝑠[𝑛] are their phases.

If the signal from SN2 (i.e., 𝑠2) experiences a severe fading
and the hub successfully receives the signal from SN1, the
received signal at the hub, 𝑦ℎ[𝑛], can be represented as

𝑦ℎ [𝑛] = ℎ𝐴 𝑠 [𝑛] 𝑒𝑖(𝜃𝑠[𝑛]+𝛾) + 𝑤 (𝑛) , (3)

where ℎ𝑒𝑖𝛾 is the complex coefficient for channel SN1-hub and𝑤(𝑛) is the additive Gaussian noise. For brevity, 𝑛𝑜𝑖𝑠𝑒 term
will be ignored in our subsequent formulas.

Meanwhile, the relay node receives and stores the mixed
signal 𝑦𝑟[𝑛] from two sensors as follows:

𝑦𝑟 [𝑛] = ℎ1𝐴 𝑠 [𝑛] 𝑒𝑖(𝜃𝑠[𝑛]+𝛾1) + ℎ2𝐵𝑠 [𝑛] 𝑒𝑖(𝜙𝑠[𝑛]+𝛾2), (4)

where ℎ1 and 𝛾1 are the channel gain and phase shift, respec-
tively, for the channel SN1-Relay, and ℎ2 and 𝛾2 are those
for the channel SN2-Relay.

In the second phase (i.e., the SUI of the relay node), which
is shown in Figure 12(b), the relay node amplifies the ANC
mixed signal 𝑦𝑟[𝑛] and forwards it to the hub. Since the relay
node only amplifies and forwards 𝑦𝑟[𝑛], for simplicity, we
assume the received signal at the hub is the same as themixed
signal at the relay, which can be presented as

𝑦󸀠ℎ [𝑛] = 𝐴 [𝑛] 𝑒𝑖𝜃[𝑛] + 𝐵 [𝑛] 𝑒𝑖𝜙[𝑛], (5)

where 𝐴 = ℎ1𝐴 𝑠, 𝐵 = ℎ2𝐵𝑠, 𝜃[𝑛] = 𝜃𝑠[𝑛] + 𝛾1, and𝜙[𝑛] = 𝜙𝑠[𝑛] + 𝛾2. In the complex plane, 𝑦󸀠ℎ[𝑛] is a sum of two

vectors, which have lengths 𝐴 and 𝐵, respectively. As shown
in Figure 13, the two vectors lie on two circles with radii 𝐴
and 𝐵. As proved in [35], there exist two solutions for the pair
(𝜃[𝑛], 𝜙[𝑛])

𝜃 [𝑛] = arg (𝑦󸀠ℎ [𝑛] (𝐴 + 𝐵𝐷 ± 𝑖𝐵√1 − 𝐷2)) ,
𝜙 [𝑛] = arg (𝑦󸀠ℎ [𝑛] (𝐴 + 𝐴𝐷 ∓ 𝑖𝐴√1 − 𝐷2)) ,

(6)

where𝐷 = (|𝑦󸀠ℎ[𝑛]|2 −𝐴2 −𝐵2)/2𝐴𝐵, |𝑦󸀠ℎ[𝑛]| is the norm, and
arg is the angle of the complex number. Note that, for each
solution 𝜃[𝑛], there is a unique solution for 𝜙[𝑛]. Specifically,
if 𝜃[𝑛] = arg(𝑦󸀠ℎ[𝑛](𝐴+𝐵𝐷+𝑖𝐵√1 − 𝐷2)), the corresponding
solution of 𝜙[𝑛] is arg(𝑦󸀠ℎ[𝑛](𝐴 + 𝐴𝐷 − 𝑖𝐴√1 − 𝐷2)). In
addition, the amplitude of the two signals (i.e., 𝐴 and 𝐵) can
be estimated by the received signal [35].

The next step is to estimate the phase difference between
the signals from two sensors, that is, 𝜃[𝑛+1]−𝜃[𝑛] and 𝜙[𝑛+1] − 𝜙[𝑛]. Corresponding to two potential phase pairs at each
sample time, there are four possible pairs of phase differences

(Δ𝜃𝑥𝑦 [𝑛] , Δ𝜙𝑥𝑦 [𝑛])
= (𝜃𝑥 [𝑛 + 1] − 𝜃𝑦 [𝑛] , 𝜙𝑥 [𝑛 + 1] − 𝜙𝑦 [𝑛])

∀𝑥, 𝑦 ∈ {1, 2} .
(7)

Since the channel of SN1-hub is in a “good” condition,
the hub knows the signal transmitted from SN1, 𝑦ℎ[𝑛] (cf.
(3)). Thus, the hub knows the phase difference Δ𝜃[𝑛]. Next,
the hub picks Δ𝜃𝑥𝑦[𝑛] that produces the smallest deviation toΔ𝜃[𝑛] as the optimal one, and the matching Δ𝜙𝑥𝑦[𝑛] is the
optimal phase difference for the signal from SN2. In the last
step, the hub obtains SN2’s bits based on these estimated
phase differences.

Since the focus of this paper is the spatial correlation
of on-body channels and the combination of AA and ANC,
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many other decoding details of ANC, such as the estimation
of amplitudes 𝐴 and 𝐵 and the alignment of pilot sequences,
are omitted in the above example. More details of the ANC
technology can be found in [35].

5. Performance Analysis

In this section, the performance of the proposed scheme
is analyzed and compared to the existing schemes from
three perspectives: total throughput, energy efficiency, and
throughput balance. The AA mechanism and ANC coopera-
tion are two key components of the proposed A3NC scheme.
Three alternative schemes that do not employ both AA and
ANC are considered for comparison, and their time slot
schedules are depicted in Figure 14.

As shown in Figure 14, suppose a certain period 𝑇𝑐 is
allocated to the two sensors and the corresponding relay
node. In the conventional TDMA scheme, denoted as Con-
TDMA (Figure 14(a)), 𝑇𝑐 is split into two for the SUI of the
two sensors, whereas whenAAmechanism is employedwith-
out the cooperative communication part of A3NC, denoted
as Only-AA (Figure 14(b)), both sensors share the whole 𝑇𝑐
concurrently. Next, there are two different approaches to
assign the SUI of the relay. First, when the relay node forwards
the digital network coding (DNC) packets to the hub in the
third time interval, each of the two sensors possesses an
exclusive SUI. This approach is named as TDMA-DNC, in
which 𝑇𝑐 is divided into three identical parts.The second one
is our proposed schemeA3NC (Figure 14(d)); the two sensors
are assigned to a shared SUI, and the ANC is adopted as the
relay technology to improve the performance.

5.1. Throughput Analysis. Before analyzing the upload
throughput of the four schemes, it is necessary to examine𝑒 in more detail. As introduced in Section 2, 𝑒 denotes the
packet error ratio (PER) caused by signal collision, which
only occurs when two sensors perform simultaneous

transmissions in the MAP duration, so 𝑒 only exist in Only-
AA and A3NC. As will be presented in the next section, 𝑒 in
the typical walking scenario would be small enough (about
0.022) to be ignored. However, in order to explore the per-
formance of A3NC in other situations, rather than being
limited to walking scenarios, we consider 𝑒 as a variable
parameter in both mathematical and simulation analyses.
Besides, we assume 𝑒 for the two sensors to be identical due to
symmetry.

5.1.1. Conventional TDMA. Wefirst consider theCon-TDMA
scheme without the cooperation of the relay node. In this
scheme, every sensor is scheduled with a dedicated uplink
interval. The expectation of upload throughput of SN1,
denoted as 𝐸(𝑈1) (Kbps), can be calculated as

𝐸 (𝑈1)Con-TDMA = (𝑅 × 12𝑇𝑐 ×
1
𝐿𝑝 × 𝛽1 × 𝐿𝑝) ×

1
𝑇𝑠

= 12
𝑅𝑇𝑐𝛽1𝑇𝑠 .

(8)

Since only two sensors share the time interval, every
sensor occupies (1/2)𝑇𝑐 upload interval; 𝑅 × (1/2)𝑇𝑐 × 1/𝐿𝑝
is the number of packets transmitted in one beacon period by
SN1. (𝑅×(1/2)𝑇𝑐×1/𝐿𝑝×𝛽1×𝐿𝑝) is the amount of bits received
by the hub.The calculation for the upload throughput of SN2,
that is, 𝐸(𝑈2), is similar. Thus, the expectation of the sum of
upload throughputs of the two sensors can be expressed as

𝐸 (𝑈1 + 𝑈2)Con-TDMA = 12
𝑅𝑇𝑐𝑇𝑠 (𝛽1 + 𝛽2) . (9)

5.1.2. Only-AA. In the Only-AA scheme, since two sensors
transmit simultaneously, the packet errors caused by signal
collisions should be considered.The actual PDRs for SN1 and
SN2 are (𝛽1 − 𝑒) and (𝛽2 − 𝑒), respectively. Accordingly, the
throughput of the two sensors can be expressed as

𝐸 (𝑈1 + 𝑈2)Only-AA = 𝑅𝑇𝑐 (𝛽1 − 𝑒)𝑇𝑠 + 𝑅𝑇𝑐 (𝛽1 − 𝑒)𝑇𝑠
= 𝑅𝑇𝑐𝑇𝑠 (𝛽1 + 𝛽2 − 2𝑒) .

(10)

5.1.3. TDMA+DNC. TheTDMA+DNCscheme is a classical
approach that adopts DNC as the cooperative technology.
As Figure 14(c) shows, the relay node occupies the third
time interval to transmit the network coding packets to the
hub. Since the packet loss in the first two time slots may be
recovered in the third time slot, the probability of effective
cooperative communication should be taken into account to
calculate the actual PDR (denoted as B1 and B2). If the
result of whether the hub receives the packets from SN1 is
represented by a discrete random variable (DRV) 𝑋, then let𝑋 = 𝑆 denote the situation that the hub receives the packets
from SN1 successfully, and𝑋 = 𝐹 represents the failure of the
hub to receive the packets from SN1. Similarly, DRV 𝑌 and 𝑅
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denote the situations for SN2 and the relay node, respectively.
Hence,B1 andB2 can be calculated as

B1 = 𝑃𝑋,𝑌 (𝑆, 𝐹) + 𝑃𝑋,𝑌 (𝑆, 𝑆) + 𝑃𝑋,𝑌 (𝐹, 𝑆) 𝑃𝑅 (𝑆) ,
B2 = 𝑃𝑋,𝑌 (𝐹, 𝑆) + 𝑃𝑋,𝑌 (𝑆, 𝑆) + 𝑃𝑋,𝑌 (𝑆, 𝐹) 𝑃𝑅 (𝑆) , (11)

where 𝑃𝑋,𝑌 is the joint probability that considers both DRV𝑋 and 𝑌, and 𝑃𝑅 denotes the probability of whether the hub
receives the packets from the relay node. It is worth noting
that 𝛽1 = 𝑃𝑋,𝑌(𝑆, 𝐹) + 𝑃𝑋,𝑌(𝑆, 𝑆), 𝛽2 = 𝑃𝑋,𝑌(𝐹, 𝑆) + 𝑃𝑋,𝑌(𝑆, 𝑆),
and 𝛽𝑟 = 𝑃𝑅(𝑆). Accordingly,B1 andB2 can be expressed as

B1 = 𝛽1 + (𝛽2 − 𝑃𝑋,𝑌 (𝑆, 𝑆)) 𝛽𝑟,
B2 = 𝛽2 + (𝛽1 − 𝑃𝑋,𝑌 (𝑆, 𝑆)) 𝛽𝑟. (12)

For a general wireless network, it is not straightforward to
calculate the probability that the packets from two sensors are
received by the hub, that is, 𝑃𝑋,𝑌(𝑆, 𝑆). However, since we
mainly consider the walking scenarios, 𝑃𝑋,𝑌(𝑆, 𝑆) can be
approximated as

𝑃𝑋,𝑌 (𝑆, 𝑆) ≈ {{{
0; 𝛽1 + 𝛽2 ≤ 1,
(𝛽1 + 𝛽2) − 1; 𝛽1 + 𝛽2 > 1. (13)

We derive the above approximation based on the following
observations. Compared to the walking cycle (about 1000ms,

see Section 3.2), the superframe (about 100ms) is relatively
short. Moreover, the two upload intervals assigned to the
two sensors are typically adjacent. So, based on the statistical
results in Section 3, it is reasonable to assume that the PLD
between the two channels remains significant and stable in
one superframe. To make the approximation in (13) clear,
suppose that each sensor only sends one packet in one
superframe. Accordingly, in the case of 𝛽1 + 𝛽2 ≤ 1, the hub
tends to receive only one packet from either SN1 or SN2 with
a high probability in one superframe, instead of receiving
packets fromboth sensors simultaneously.On the other hand,
in the case of 𝛽1 + 𝛽2 > 1, the received signal strength from
the “bad” channel is still strong enough to decode, regardless
of the big PLDs between the two channels. Note that the
latter case is normally caused by the increase of Tx power of
sensors. Therefore, based on ((12)-(13)), the expected overall
throughput can be obtained as

𝐸 (𝑈1 + 𝑈2)TDMA+DNC = 13
𝑅𝑇𝑐B1𝑇𝑠 + 13

𝑅𝑇𝑐B2𝑇𝑠

≈
{{{{{{{{{

1
3
𝑅𝑇𝑐𝑇𝑠 (𝛽1 + 𝛽2) (1 + 𝛽𝑟) ; 𝛽1 + 𝛽2 ≤ 1,
1
3
𝑅𝑇𝑐𝑇𝑠 ((𝛽1 + 𝛽2) (1 − 𝛽𝑟) + 2𝛽𝑟) ; 𝛽1 + 𝛽2 > 1.

(14)
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5.1.4. A3NC. As for the A3NC scheme, two sensors broadcast
the data packets simultaneously in the first half period, and
the ANC packet is relayed in the second half. This situation
can be considered as an integration of Only-AA and TDMA
+DNC schemes. When calculating the actual PDRs, denoted
as B̃1 and B̃2, both the cooperative communication and the
packet loss caused by signal collision should be taken into
account. The actual PDRs for SN1 and SN2 are expressed as

B̃1 = (𝛽1 − 𝑒) + (𝛽2 − 𝑒) 𝛽𝑟,
B̃2 = (𝛽2 − 𝑒) + (𝛽1 − 𝑒) 𝛽𝑟.

(15)

The first parts of (15) refer to the PDRs for the first half
timeslot, and the second parts are the PDRs with the help of

the relay node. Consequently, the upload throughput of the
whole network can be written as

𝐸 (𝑈1 + 𝑈2)A3NC = 12
𝑅𝑇𝑐B̃1𝑇𝑠 + 12

𝑅𝑇𝑐B̃2𝑇𝑠
= 12

𝑅𝑇𝑐𝑇𝑠 (𝛽1 + 𝛽2 − 2𝑒) (1 + 𝛽𝑟) .
(16)

As a summary, we list some important observations by
comparing the analytical results of the four schemes.

Observation 1. If the packets error ratio caused by signal
collision is below the quarter of 𝛽1 + 𝛽2, the throughput
performance of Only-AA is better than that of Con-TDMA
scheme. That is

𝐸 (𝑈1 + 𝑈2)Only-AA
{{{{{
> 𝐸 (𝑈1 + 𝑈2)Con-TDMA ; 𝑒 < 14 (𝛽1 + 𝛽2) ,
≤ 𝐸 (𝑈1 + 𝑈2)Con-TDMA ; o.w.

(17)

Observation 2. The upload throughput performance of
A3NC is always under that of Only-AA, because the PDR of
the relay channel cannot exceed one; that is, 𝛽𝑟 ≤ 1.

𝐸 (𝑈1 + 𝑈2)A3NC ≤ 𝐸 (𝑈1 + 𝑈2)Only-AA . (18)

Observation 3. The comparison between Con-TDMA and
TDMA + DNC is complicated. If 𝛽1 + 𝛽2 ≤ 1, we have

𝐸 (𝑈1 + 𝑈2)TDMA+DNC

{{{{{{{

> 𝐸 (𝑈1 + 𝑈2)Con-TDMA ; 𝛽𝑟 > 12 ,
≤ 𝐸 (𝑈1 + 𝑈2)Con-TDMA ; 𝛽𝑟 ≤ 12 .

(19)

If 1 ≤ 𝛽1 + 𝛽2 ≤ 4/3 and we denote 𝑄 = (𝛽1 + 𝛽2)/(4 −2(𝛽1 + 𝛽2)), the relationship between these two schemes can
be expressed as

𝐸 (𝑈1 + 𝑈2)TDMA+DNC
{{{
> 𝐸 (𝑈1 + 𝑈2)Con-TDMA ; 𝛽𝑟 > 𝑄,
≤ 𝐸 (𝑈1 + 𝑈2)Con-TDMA ; 𝛽𝑟 ≤ 𝑄. (20)

If 𝛽1 + 𝛽2 > 4/3, the throughput performance of TDMA +
DNC cannot exceed that of Con-TDMA.That is,

𝐸 (𝑈1 + 𝑈2)TDMA+DNC < 𝐸 (𝑈1 + 𝑈2)Con-TDMA . (21)

Observation 4. When 𝑒 < (1/6)(𝛽1 + 𝛽2), A3NC achieves a
better throughput performance than TDMA + DNC:

𝐸 (𝑈1 + 𝑈2)A3NC > 𝐸 (𝑈1 + 𝑈2)TDMA+DNC . (22)

It can be seen that both A3NC and Only-AA outperform
the conventional schemeswhen the values of specific parame-
ters (i.e., 𝑒,𝛽𝑟, and𝛽1+𝛽2) satisfy certain conditions. Detailed
performance evaluation based on walking datasets will be
provided in the next section.

In addition, if the packets losses due to signal collisions
and failed cooperation are small, that is, 𝑒 ≈ 0 and 𝛽𝑟 ≈ 1,
we can derive the upper bounds for the four schemes in the
walking scenarios. For brevity, denote 𝑀 = (𝑅𝑇𝑐/𝑇𝑠)(𝛽1 +𝛽2). The upper bounds of upload throughput are depicted
in Table 2. We notice that the upper bounds for Only-AA
and A3NC are the same, that is, (𝑅𝑇𝑐/𝑇𝑠𝐿𝑝)(𝛽1 + 𝛽2), which
achieves 2 and 1.5 throughput gain in comparison with Con-
TDMA and TDMA + DNC, respectively.

5.2. Energy Efficiency Analysis. An effective MAC layer
method for energy saving is prolonging sleep time of the
sensors, which also means completing data transmission in a
shorter active time. Generally, recharging and changing the
battery in a hub are easier than in the sensors. The relay
node is deployed out of human body. Hence, in this paper,
the energy efficiencies of hub and relay are not considered.
Moreover, due to the behaviors of hub, relay and sensor nodes
are repeated in each beacon period, and we take the active
time in one beacon period as an example. Note that the active
state of the radio includes both Tx (transmission) and Rx
(reception) states. Assuming the working power of sensors
remains the same for both Rx and Tx states, the energy
efficiency (EE) in Kbits/Joule can be defined as the ratio of
the amount of uploading data and the power consumed in
one beacon period:

EE = 𝐸 (𝑈1 + 𝑈2) 𝑇𝑠𝑇activeP𝑤 , (23)

where 𝑇active is the active time of the two sensors in one
beacon period, and P𝑤 is the working power of the sensor.𝐸(𝑈1 + 𝑈2) is the expected sum of the upload throughput
of the two sensors, and it has been analyzed before. We now
focus on the 𝑇active, which can be calculated from Figure 14.
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Table 2: The upper bound of throughput.

Con-TDMA Only-AA TDMA + DNC A3NC
Expectation of
throughput

1
2𝑀 𝑀 2

3𝑀 𝑀

Table 3: Energy efficiency comparison.

Con-TDMA Only-AA TDMA + DNC A3NC
𝑇active 𝑇𝑐 2𝑇𝑐 2

3𝑇𝑐 𝑇𝑐
EE 1

2𝑁
1
2𝑁 𝑁 𝑁

Table 4: Balance factor comparison.

Con-TDMA Only-AA TDMA + DNC A3NC

BF
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨log2

𝛽1𝛽2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨log2
𝛽1 − 𝑒𝛽2 − 𝑒

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 0 0

Similar to the analysis of throughput, if 𝑒 = 0, 𝛽𝑟 = 1, and
we denote 𝑁 = 𝑅(𝛽1 + 𝛽2)/P𝑤, the upper bounds of EE
are summarized in Table 3. FromTable 3, the two cooperative
schemes (TDMA + DNC and A3NC) achieve a twofold EE
gain, compared to Con-TDMA and Only-AA.

Combining the results in Tables 2 and 3, we find that
the A3NC scheme not only achieves the highest throughput
upper bound but also retains the best energy efficiency. In
other words, the A3NC scheme provides a better tradeoff
between network throughput and energy efficiency.

5.3. Throughput Balance Analysis. The above analyses con-
sider the total upload throughput of the two sensors. In
this subsection, the throughput disparity between the two
sensors (i.e., 𝐸(𝑈1) and 𝐸(𝑈2)) is taken into account, instead
of only considering their sum.Theaim is to assesswhether the
proposed A3NC scheme may result in a severe throughput
imbalance between the two sensors, for example, one sensor
being completely starved. We define a new parameter called
the balance factor (BF) to evaluate whether the transmission
scheme can achieve a reasonable throughput balance between
the two sensors. The balance factor, BF, is defined by the
following equation:

BF = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨log2
𝐸 (𝑈1)𝐸 (𝑈2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (24)

where 𝐸(𝑈1) and 𝐸(𝑈2) are the expected throughput of SN1
and SN2, respectively. If BF = 0, the two sensors achieve
the same throughput, no matter whether 𝛽1 is equal to 𝛽2
or not. On the other hand, the larger the BF is, the bigger
the throughput disparity between the two sensors is. Table 4
summarizes the BF when the relay node achieves a perfect
cooperation, that is, 𝛽𝑟 = 1.

As shown in Table 4, the BFs of the two cooperative
schemes (TDMA + DNC and A3NC) are zero, but the BFs of
other two noncooperative schemes vary with the ratio of two
actual PDRs. That is because, with the help of the relay, the
hub can decode the packet sent through the “bad” channel
by receiving a cooperative packet from the “good” channel,

which balances the throughput of the two sensors.Therefore,
TDMA + DNC and A3NC achieve a better throughput
balance, compared to the schemes without relay nodes.

In summary, the proposed A3NC scheme achieves a
better throughput in comparison with the schemes without
AA method. Meanwhile, due to the contribution of relay
node, the A3NC also achieves a better energy efficiency and
throughput balance compared to the schemes without the
relay.

6. Performance Evaluation

In this section, simulation results will be provided to show
the performance of the A3NC scheme in terms of total
throughput, energy efficiency, and throughput balance.

6.1. Simulation Model and Configurations. The protocol
stacks from PHY layer to application layer are developed
based on the Castalia framework [36] in OMNeT++. All
the important default parameters of protocol stacks and
hardware are listed in Table 5. The parameters of the routing
layer are not listed in the table because the routing layer
in the model only forwards packets between the application
layer and MAC layer. Besides, the initial energy of the sensor
is set to 2430 Joules, which is the average energy of one
CR2032 lithiumbutton batterywith 3.0 voltages and 225mAh
capacity. For the fairness of comparison, the SUI of the
sensors and the SUI of the relay are set up to different values
in different schemes to make sure that the overall time (𝑇𝑐)
remains 120ms (as depicted in Figure 14).

In this paper, both the path loss datasets and a simulated
networkmodel are utilized to construct channel-related para-
meters. First, the datasets collected from experiments are
imported to simulate the variation of the path loss in time.
However, these datasets only cover a limited number of walk-
ing scenarios, and the critical parameters, that is, 𝛽𝑖, 𝛽𝑟,
and 𝑒, in each scenario are fixed. In order to verify the
theoretical analyses results mentioned in Section 5, a sim-
ulated network model should also be used to adjust 𝛽𝑖, 𝛽𝑟,
and 𝑒.The combination of the experimental datasets and sim-
ulated network model constructed a more flexible simulation
platform.

Figure 15 presents the simulated network model. SP1 and
SP2 are the starting points for the two sensors. The recipro-
cating motion of the two sensors is simulated by importing
the trace file, which records the path loss sequence during the
walking activities. We now explain how to tune 𝛽𝑖, 𝛽𝑟, and 𝑒.
The “Outdoor + Belt” scenario with the transceivers bound in
0 degree is picked as the typical one, and the corresponding
path loss dataset is imported into the network model. First of
all, the average PDR for the channel SN𝑖-hub (i.e., 𝛽𝑖) can be
changed by modifying the Tx power. As shown in Figure 16,
when the Tx power of the two sensors decreases, the sum of𝛽1 and 𝛽2 also diminishes.Moreover, because the two sensors
have the same Tx power, 𝛽1 and 𝛽2 are also approximately
identical.

The average PDR of channel relay-hub (i.e., 𝛽𝑟) can be
tuned by setting up a parameter (named PDR Relay) in
OMNeT++ to modify the behavior of the relay node. At
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Table 5: Simulation parameters.

Parameter Value
Radio layer

dataRate 512 kbps
Bandwidth 20MHz
noiseFloor −101 dBm
CCAthreshold −95 dBm
Tx Power −38 dBm
Rx state energy consumption 3.1mW
modulationType DIFFBPSK
carrierFreq 2400.0MHz
Sensitivity −91 dBm
symbolsForRSSI 8 bits
Tx state energy consumption 2.9mW
Idle state energy consumption 0.05mW

MAC layer
beaconPeriodLength 160ms
SlotLength 5ms
Data’s ACKType N ACK
RAP1Length 40ms
pTIFS 0.03ms
Control’s ACK I ACK

Others
Sensor’s initialEnergy 2430 J
simulationTime 50 s

Relay

LE1

SP1

SP2

RE1

RE2LE2

Hub

３．1

３．2

Figure 15: Simulated network model in OMNeT++.

last, the average PER due to collisions (i.e., 𝑒) is controlled
by changing the relative position between the two sensors’
start points (SP1 and SP2). From Figure 15, intuitively, the
interference between the two sensors is maximized (i.e.,
maximum 𝑒), if both SP1 and SP2 are in the left endpoint
of their motion trajectories (i.e., LE1 and LE2). But, if SP1 is
on LE1 and SP2 is on RE2, which is a common situation in
walking scenarios, 𝑒 reaches its minimum value. Accordingly,
we can change the value of 𝑒 by changing the two start points
of the sensors. Specifically, 𝑒 can be changed by scrolling
the path loss sequence of SN2 while remaining the path loss
sequence of SN1. As the sampling rate is fixed, the scrolling
of path loss sequence can also be denoted as the time shifting
compared to the normal arm swing in the walking scenarios.
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Figure 16: 𝛽1 + 𝛽2 versus TX power.
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Figure 17: 𝑒 versus time shifting.

Figure 17 presents the curve of 𝑒 versus time shifting,
when the Tx power of the two sensors is set to −38 dBm and𝛽1 + 𝛽2 is approximately one. The case of “time shifting = 0”
corresponds to the normal swing motion of arm in walking
scenarios. As shown in Figure 17, the average PER due to
collisions for normal walking scenarios is about 0.022. On the
contrary, when the time shifting reaches 525ms, both 𝑒1 and𝑒2 reach themaximum (about 0.5). In addition, it also implies
that the cycle for chosenwalking scenarios is around 1050ms.
It is worth noting that the change of Tx power may also lead
to the variation of 𝑒.
6.2. Simulation Results

6.2.1.Throughput. Figure 18 shows the average total through-
put of the proposed A3NC scheme in comparison with the
Con-TDMA, Only-AA, and TDMA + DNC schemes in four
typical walking scenarios, with consideration of four different
deployment directions on the wrists.TheTx power and 𝛽𝑟 are
set at −38 dBm and 0.9, respectively. The “total throughput”
here means the sum of the average upload throughput of the
two sensors.

As shown in Figure 18, the performances of Only-AA and
A3NC are slightly below that of Con-TDMA and TDMA
+ DNC in the “Indoor + Collar” scenario. The reason is
that, compared to the cases where the hub is deployed in
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Figure 18: Throughputs of typical walking scenarios.

the belt, the PLD is relatively small when the hub is located
on the back collar. Furthermore, the significant reflection
effect in the indoor environment offsets the PLD between
the two channels. Nevertheless, we find that Only-AA and
A3NC achieve a significant improvement in terms of upload
throughput in the other three scenarios, which confirms the
feasibility of AA method in the real walking scenarios.

Next, we explore relationship between the upload
throughput and three key parameters: 𝛽1 + 𝛽2, 𝛽𝑟, and 𝑒.
Firstly, Figure 19 shows the results of total throughput versus𝛽1 + 𝛽2, when 𝛽𝑟 = 0.9 and the time shifting is 0ms. The Tx
power of two sensors is amplified to increase the sum of 𝛽1
and 𝛽2; hence the value of 𝑒 is also augmented.The dash lines
correspond to theoretical results derived from mathematical
analyses in Section 5. The solid lines indicate the simulation
results. Figure 19 clearly shows the good agreement between
the mathematical analyses in Section 5 and the simulation
results. The small deviation between the analytical and simu-
lation curves ismainly due to two reasons. Firstly, the theoret-
ical formulas analyze the throughput at the bit level, but the
simulation model works at the packet level. The overhead of
the packet header is not taken into account in the theoretical
analyses.Meanwhile, because of the packetization of data, the
wastage of the tail end of SUI (when the duration is too short
to complete the transmission of one packet) is inevitable.
Secondly, the idle interval between the transmission of two
packets is not considered in the theoretical analysis.

Both theoretical and simulation results prove that Only-
AA and A3NC achieve a remarkable improvement in com-
parison with Con-TDMA and TDMA-DNC, especially when𝛽1 + 𝛽2 = 1. Also, it can be seen the performances of Only-
AA, TDMA+DNC, and A3NC plateau when the 𝛽1+𝛽2 > 1.
For the two schemes with AA mechanism, based on (10) and
(16), the key part determining the throughput of Only-AA
and A3NC is 𝛽1 +𝛽2 −2𝑒, that is, (𝛽1 − 𝑒) + (𝛽1 − 𝑒). However,
since the signal collisions increase with the amplifying of Tx
power, 𝛽1 − 𝑒 and 𝛽1 − 𝑒 are limited under 0.5. Therefore,
after 𝛽1 +𝛽2 reaching one, further increase of 𝛽1 or 𝛽2 cannot
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Figure 19: Throughput versus 𝛽1 + 𝛽2.

improve the total throughput. For the TDMA+DNC scheme,
based on the analysis result in (14), if 𝛽𝑟 = 0.9 and 𝛽1 +𝛽2 > 1, the increment of 𝛽1 or 𝛽2 affects the throughput
slightly.The reason is that, if the probability of successful relay
cooperation is close to one, the reception of either one packet
from the two sensors can lead to the decoding of the other
packet. In other words, when 𝛽1 +𝛽2 ≥ 1, the hub can receive
both two sensors’ packets which is the best situation in one
transmission process. Therefore, the upload throughput of
the TDMA +DNC is saturated if 𝛽1 +𝛽2 > 1. As for the Con-
TDMA, the SUI of the two sensors are separated in the time
domain and the relay node is not adopted, so the performance
of Con-TDMA scheme raises linearly with the increase of𝛽1 + 𝛽2.

Figure 20 shows the throughput performance as a func-
tion of𝛽𝑟, with theTx power of−38 dBmand the time shifting
of 0ms. As expected, the performances of both TDMA +
DNC and A3NC improve with the increase of 𝛽𝑟, while those
of Only-AA and Con-TDMA remain constant. Besides, when
the time shifting is 0 and Tx power is −38 dBm (i.e., 𝛽1 +𝛽2 <1), 𝑒 is small enough to be ignored (around 0.022). There-
fore, based on (14) and (16), the slope of TDMA + DNC is1/3(1+𝛽𝑟), while that slope of A3NC is 1/2(1+𝛽𝑟).That is the
reason why the curve of A3NC is steeper than that of TDMA
+ DNC. In other words, A3NC is more sensitive to the relay
channel condition, which is acceptable when the relay node
is deployed outside the human body.

In Figures 19 and 20, the time shifting is set to 0ms,
which also matches the normal swing motion of arms in
walking scenarios. However, if we increase the time shifting,
the resulting change of 𝑒 will affect the system performance.
Figure 21 shows the throughput performance as a function
of 𝑒, when the other parameters are set to the default value
(including 𝛽1 + 𝛽2 = 0.99, and 𝛽𝑟 = 0.9). As expected, the
performance of Con-TDMA is not affected by 𝑒, and the
performances of the two schemes with AA mechanism
decrease with the increase of 𝑒. Moreover, since 𝛽𝑟 = 0.9, the
slope of two AA schemes are almost the same. An exception
is that although AA mechanism is not adopted in TDMA +
DNC, its performance still declines with the rise of 𝑒, which
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Figure 21: Throughput versus 𝑒.

does not match the analysis result in (14). The reason for this
exception is that because the two SUI of the two sensors are
adjacent and are relatively short compared to the walking
cycle, when 𝑒 increases by changing the swing behavior of
two arms, the hub tends to receive or discard both packets
from the two sensors. Accordingly, the effectiveness of the
relay cooperation is reduced.

6.2.2. Energy Efficiency. Figure 22 compares the energy effi-
ciency of the four schemes when 𝛽𝑟 and time shifting are set
to 0.9 and 0ms, respectively. Because both the PDR sum of
the two sensors (i.e., 𝛽1+𝛽2) and the energy consumption are
affected by the Tx power of the sensors, we take the Tx power
to evaluate the energy efficiency.The “energy efficiency” (EE)
in Figure 22 represents howmanymegabytes (MB) of data are
transmitted by consuming one joule energy of the two sensors
(cf. (23)). As mentioned before, the energy consumption of
the relay and hub is not considered in this paper.

FromFigure 22, the energy efficiency of Only-AA, A3NC,
and TDMA + DNC schemes increases slightly when the
Tx power decreases from −5 dBm to −38 dBm and reduces
rapidly when Tx power is below −38 dBm. The curve trend
can be explained by two reasons. First, combining the simu-
lation results in Figures 19 and 16, when the Tx power is below
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Figure 22: Measured energy efficiency (MByte/Joule) versus Tx
power.

−38 dBm (i.e., 𝛽1 + 𝛽1 < 1), the upload throughputs rise up
with the increase of the Tx power, and the throughputs reach
a plateau after Tx power ⩾ 38 dBm. On the other hand, the
working power of the sensor slightly reduces with the decline
of TX power. Accordingly, based on the definition of EE
in (23), the energy efficiency reaches the maximum at the
point of −38 dBm. As for the Con-TDMA scheme, since its
throughput declines continuously with the decrease of Tx
power (see Figure 19), its energy efficiency experiences a sim-
ilar trend. At last, combining Figures 19 and 22, when the Tx
power is −38 dBm, both the throughput and the energy
efficiency reach the maximum. The Tx power −38 dBm is
considered as the optimal value forOnly-AA, TDMA+DNC,
and A3NC for the simulation configuration.

We also estimate the lifetime for a typical WBAN appli-
cation, in which an upload traffic of 200 kbps is required for
each sensor equipped with one CR2032 button battery. In
this case, the TX powers of the two sensors are set to the
optimal value: −38 dBm. Figure 23 shows that the estimated
lifetime of Con-TDMA or Only-AA is less than 12 days, while
A3NC lasts over 21 days, which is a significant enhancement
for WBANs systems.

6.2.3. Throughput Balance. All the above results are derived
when the PDRs of two sensors are approximately equal, that
is, 𝛽1 ≈ 𝛽2. Here we consider the case where 𝛽1 and 𝛽2 are
different.

Figure 24 shows the average ratio between the upload
throughput of the two sensors, 𝐸(𝑈2)/𝐸(𝑈1), as a function
of 𝛽2/𝛽1. The curves of both TDMA + DNC and A3NC are
almost constant and are approximately equal to one, that is,𝐸(𝑈1) ≈ 𝐸(𝑈2).Thatmeans the two schemes with relay coop-
eration can achieve a better throughput balance between the
two sensors. In contrast, when the relay node is not utilized
(Con-TDMA andOnly-AA schemes), the difference between𝐸(𝑈1) and 𝐸(𝑈2) increases significantly with the decrease
of 𝛽2/𝛽1. The simulation results in Figure 24 also confirm
our analysis in Table 4.

In summary, the simulation results confirm the the-
oretical analyses in Section 5. In contrast to conventional
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methods, the newly proposed A3NC scheme achieves a
significant throughput improvement (about 10%–40% in
normal walking scenarios), while attaining substantial power
saving. Besides, with the help of cooperation communication,
A3NC maintains a good throughput balance between two
correlated sensor nodes.

7. Conclusion

In this paper, first, we introduced our customized portable
wireless transceivers, which enable us to collect the realistic
on-body wireless channel data in the walking scenarios. The
statistical results of these collected datasets show that there
exists a significant path loss discrepancy between two on-
body channels when people are walking. This feature of on-
body channel confirms the rationale of our newly proposed
cross-layer network coding scheme, called A3NC.The A3NC
scheme integrates the ANC technology in the PHY layer
and a timeslot allocation algorithm in the MAC layer, to
improve transmission performance in the walking scenarios.
In A3NC, two sensors with significant path loss discrepancy
simultaneously transmit packets to the relay and hub. Then,
the relay forwards network coding packets to the hub and the
hub performs the decoding process after the first two phases.
We also derived the mathematical analyses for the proposed

A3NC from three perspectives, namely, sum throughput,
energy efficiency, and throughput balance, in comparison
with three other existing schemes. The validity of these
performance analyses has been confirmed by our simulation.
Simulation results show that the A3NC scheme achieves
the best tradeoff between the energy efficiency and the
throughput, compared to the other three existing schemes.
Meanwhile, A3NC scheme provides a better sum throughput
than theCon-TDMAandTDMA-DNCand roughly the same
sum throughput as the Only-AA one. To the best of our
knowledge, this is the first work attempting to bridge network
coding to a spatially correlatedWBAN system. For the future
work, we plan to deepen the exploration of the on-body
WBAN channels by considering more sensors and more
generalized scenarios.
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