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Dihydroergotamine inhibits the
vasodepressor sensory CGRPergic outflow
by prejunctional activation of α2-
adrenoceptors and 5-HT1 receptors
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Abstract

Background: Dihydroergotamine (DHE) is an antimigraine drug that produces cranial vasoconstriction and inhibits
trigeminal CGRP release; furthermore, it inhibits the vasodepressor sensory CGRPergic outflow, but the receptors
involved remain unknown. Prejunctional activation of α2A/2C-adrenergic, serotonin 5-HT1B/1F, or dopamine D2-like
receptors results in inhibition of this CGRPergic outflow. Since DHE displays affinity for these receptors, this study
investigated the pharmacological profile of DHE-induced inhibition of the vasodepressor sensory CGRPergic outflow.

Methods: Pithed rats were pretreated i.v. with hexamethonium (2 mg/kg·min) followed by continuous infusions of
methoxamine (20 μg/kg·min) and DHE (3.1 μg/kg·min). Then, stimulus-response curves (spinal electrical stimulation; T9-
T12) or dose-response curves (i.v. injections of α-CGRP) resulted in frequency-dependent or dose-dependent decreases
in diastolic blood pressure.

Results: DHE inhibited the vasodepressor responses to electrical stimulation (0.56–5.6 Hz), without affecting those to i.
v. α-CGRP (0.1–1 μg/kg). This inhibition by DHE (not produced by the methoxamine infusions): (i) was abolished by
pretreatment with the combination of the antagonists rauwolscine (α2-adrenoceptor; 310 μg/kg) plus GR127935 (5-HT1B/1D;
31 μg/kg); and (ii) remained unaffected after rauwolscine (310 μg/kg), GR127935 (31 μg/kg) or haloperidol
(D2-like; 310 μg/kg) given alone, or after the combination of rauwolscine plus haloperidol or GR127935
plus haloperidol at the aforementioned doses.

Conclusion: DHE-induced inhibition of the vasodepressor sensory CGRPergic outflow is mainly mediated
by prejunctional rauwolscine-sensitive α2-adrenoceptors and GR127935-sensitive 5-HT1B/1D receptors, which
correlate with α2A/2C-adrenoceptors and 5-HT1B receptors, respectively. These findings suggest that DHE-induced inhibition
of the perivascular sensory CGRPergic outflow may facilitate DHE’s vasoconstrictor properties resulting in an increased
vascular resistance.
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Background
Dihydroergotamine (DHE) is a primary drug effective in
the acute treatment of migraine [1–3] and its therapeutic
effect may involve: (i) cranial vasoconstriction via vascular
5-HT1B and α2A/2C-adrenoceptors [4]; (ii) inhibition of
neurogenic cranial vasodilatation produced by trigeminal
release of calcitonin gene-related peptide (CGRP) [5, 6];
and probably (iii) inhibition of trigeminal nociceptive re-
flexes [7, 8]. More recently, DHE has been shown to in-
crease diastolic blood pressure (an index of peripheral
vascular resistance) by activation of vascular α1 (α1A, α1B
and α1D) and α2 (α2A, α2B and α2C)-adrenoceptors [9].
Interestingly, at peripheral level, CGRP released from pri-
mary sensory perivascular nerves induces vasodepressor
responses [10–12], but this neuropeptide does not seem
to be involved in the physiological regulation of blood
pressure [13]. Notwithstanding, evidence is now growing
suggesting that CGRP has a protective role in the gener-
ation of hypertension, which is most likely mediated via
its effects at peripheral receptors [14]. Thus, the potential
side-effects produced by DHE on the systemic CGRPergic
transmission via its prejunctional interactions on perivas-
cular sensory CGRPergic nerves deserve special attention
[15]. Indeed, DHE is capable of inhibiting the vasodepres-
sor responses induced by spinal stimulation of the perivas-
cular sensory CGRPergic outflow in pithed rats [16];
however, the pharmacological profile of the receptors in-
volved in this inhibitory action remains thus far unclear,
probably because DHE displays complex pharmacological
properties as it has affinity for an array of receptors
[1–3, 17]. In this respect, by using selective agonists and
antagonists, our group has previously shown that the rat
vasodepressor sensory CGRPergic outflow (an index of
sensory perivascular CGRP release in resistance blood ves-
sels [12]) can be inhibited by prejunctional activation of
receptors coupled to Gi/o proteins, including: (i) α2
(specifically α2A/2C)-adrenoceptors [18]; (ii) serotonin
5-HT1B [19] and 5-HT1F [20] receptors; and (iii) dopamine
D2-like receptors [21]. Since DHE displays affinity for these
receptors (see Table 1), it is reasonable to hypothesize that

these receptors could be involved in DHE-induced inhib-
ition of the vasodepressor sensory CGRPergic outflow. On
this basis, the present study in pithed rats was designed to
investigate: (a) whether DHE is capable of inhibiting the
vasodepressor responses induced by either stimulation of
the perivascular sensory CGRPergic outflow or i.v. bolus
injections of exogenous α-CGRP; and (b) the pharmaco-
logical profile of the receptors involved in DHE-induced
inhibition of the vasodepressor sensory CGRPergic outflow
by analysing the effects of pre-treatment with the
antagonists rauwolscine (α2-adrenoceptors), GR127935
(5-HT1B/1D) and haloperidol (D2-like).

Methods
Animals
Male Wistar normotensive rats (300–350 g) were main-
tained at a 12/12-h light/dark cycle (with light beginning
at 07:00 h) and housed in a special room at constant
temperature (22 ± 2 °C) and humidity (50%), with food
and water freely available in their home cages. All animal
procedures, number of animals and the protocols of the
present investigation were approved by our Institutional
Ethics Committee on the use of animals in scientific ex-
periments (CICUAL Cinvestav; protocol number 507–12),
and followed the regulations established by the Mexican
Official Norm (NOM-062-ZOO-1999), in accordance with
ARRIVE (Animal Research: Reporting In Vivo Experi-
ments) reporting guidelines for the care and use of labora-
tory animals.

General methods
Experiments were carried out in a total of 90 rats. After
anaesthesia with ether and cannulation of the trachea,
the rats were pithed by inserting a stainless-steel rod
through the orbit and foramen magnum into the verte-
bral foramen [22]. Then, the animals were artificially
ventilated with room air using a model 7025 Ugo Basile
pump (56 strokes per min; stroke volume = 20 ml/kg), as
established by Kleinman and Radford [23]. After bilateral
vagotomy, catheters were placed in: (i) the left and right

Table 1 Binding affinity constants (pKi) for the α2-adrenergic, dopamine D2-like or serotonin 5-HT1 receptor families and their
respective receptor subtypes for dihydroergotamine (DHE), rauwolscine, GR127935 and haloperidol for cloned human receptors
(unless otherwise stated)

pKi values

Receptors
Ligands

α2- D2-like 5-HT1

α 2A α 2B α 2C D2 D3 D4 1Aª 1B 1D 1E 1F

DHE 8.7a 8.0a 9.0a 8.2a 8.2a 8.1a 9.3a (r)7.8a 8.6a 6.2a 6.9a

Rauwolscine 8.9b 8.9b 9.3b N.D. N.D. 6.5c 7.8c 5.5c N.D.

GR127935 < 6.0 d,* N.D. 7.2 e (r)8.8f 8.6g 5.4g 6.4g

Haloperidol 5.8 h,* 9.4i 8.5i 8.8i N.D.

Data taken from: a[33]; b[34]; c[35]; d[36]; e[37]; f[38]; g[39]; h[40]; i[41]. All data are given as pKi values at human recombinant receptors, except when stated
otherwise: rodent (r) receptors; N.D., not determined; *These pKi values are referred for the respective family receptor
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femoral and jugular veins, for the continuous infusions
of agonists (methoxamine and DHE) and i.v. administra-
tion of the antagonists, respectively; and (ii) the left ca-
rotid artery, connected to a Grass pressure transducer
(P23XL), for the recording of arterial blood pressure.
Heart rate was measured with a tachograph (7P4, Grass
Instrument Co., Quincy, MA, USA) triggered from the
blood pressure signal. Both blood pressure and heart
rate were recorded simultaneously by a model 7 Grass
polygraph (Grass Instrument Co., Quincy, MA, USA).
At this point, the 90 rats were divided into two main sets,
so that the effects produced by the continuous infusions
of methoxamine and DHE under different treatments
could be evaluated on the vasodepressor responses in-
duced by: (i) electrical stimulation of the vasodepressor
sensory CGRPergic outflow (set 1; n = 80); and (ii) i.v.
bolus injections of exogenous α-CGRP (set 2; n = 10).
The vasodepressor stimulus-response curves and
dose-response curves by electrical stimulation and ex-
ogenous α-CGRP, respectively, were elicited using a
sequential schedule at 5–10 min intervals (see below)
and were completed in about 50 min. Each response
was elicited under unaltered values of resting blood
pressure. The body temperature of each pithed rat
was maintained at 37 °C by a lamp and monitored
with a rectal thermometer.

Experimental protocols
After the animals (n = 90) had been in a stable haemo-
dynamic condition for at least 15 min, baseline values of
diastolic blood pressure (a more accurate indicator of
peripheral vascular resistance, as previously established
[12, 18–21]) and heart rate were determined.

Protocol 1. Electrical stimulation of the perivascular
(vasodepressor) sensory outflow
In the first set of rats (n = 80), the pithing rod was re-
placed by an electrode enamelled except for 1.5 cm
length 9 cm from the tip, so that the uncovered segment
was situated at T9-T12 of the spinal cord, and an indiffer-
ent electrode was placed dorsally [16, 18–22]. Before
electrical stimulation, the animals received (i.v.): (i) a
bolus injection of gallamine (25 mg/kg) to avoid
electrically-induced muscular twitchings; (ii) ten min
later, a continuous infusion of hexamethonium (2 mg/
kg·min) to block the electrically-induced vasopressor re-
sponses that are produced by stimulation of the pregan-
glionic sympathetic vasopressor outflow; and (iii) ten
min later, a continuous infusion of methoxamine (20 μg/
kg·min) to produce a sustained increase in diastolic
blood pressure that allows us to produce the subsequent
induction of vasodepressor responses, as previously de-
scribed [16, 18–21]. Ten min later, this set of rats was
divided into three groups.

The first group (n = 10) was subdivided into two sub-
groups (n = 5 each one) that received: (i) nothing (con-
trol experiment with no vehicles; see below); and (ii) an
i.v. continuous infusion of DHE (3.1 μg/kg·min), a dose
that has previously been shown to produce (amongst
several doses) a maximal inhibition of the vasodepressor
sensory CGRPergic outflow in pithed rats [16]. Twenty
minutes later, diastolic blood pressure and heart rate
were determined again, and then, the vasodepressor sen-
sory CGRPergic outflow was electrically stimulated dur-
ing the above treatments to elicit vasodepressor
responses by applying 10-s trains of monophasic, rect-
angular pulses (2 msec, 50 V), at increasing frequencies
of stimulation (0.56, 1, 1.8, 3.1 and 5.6 Hz). When dia-
stolic blood pressure had returned to baseline levels, the
next frequency was applied. This procedure was system-
atically performed until the stimulus-response curve had
been completed.
The second group (n = 35) received an i.v. continuous

infusion of 1% propylene glycol (PPG; vehicle for dissolv-
ing DHE) (0.02 ml/min). Ten min later, this group was
subdivided into seven subgroups (n = 5 each) comprising
i.v. bolus injections of, respectively: (i) saline (1 ml/kg); (ii)
rauwolscine (310 μg/kg); (iii) GR127935 (31 μg/kg); (iv)
haloperidol (310 μg/kg); (v) rauwolscine+GR127935 (310
and 31 μg/kg, respectively); (vi) rauwolscine+ haloperidol
(310 μg/kg, each); and (vii) GR127935 + haloperidol (31
and 310 μg/kg, respectively). After 10 min, a
stimulus-response curve was constructed as described
above during the infusion of methoxamine to determine
the effect of these antagonists per se.
The third group (n = 35) received an i.v. continuous in-

fusion of DHE (3.1 μg/kg·min). Ten min later, this group
was subdivided into seven subgroups (n = 5 each) com-
prising i.v. bolus injections of, respectively: (i) saline (1 ml/
kg); (ii) rauwolscine (310 μg/kg); (iii) GR127935 (31 μg/
kg); (iv) haloperidol (310 μg/kg); (v) rauwolscine
+GR127935 (310 and 31 μg/kg, respectively); (vi) rauwols-
cine+haloperidol (310 μg/kg, each); and (vii) GR127935 +
haloperidol (31 and 310 μg/kg, respectively). Ten minutes
later, a stimulus-response curve was constructed as de-
scribed above, during the infusion of DHE.

Protocol 2. Administration of exogenous α-CGRP
The second set of rats (n = 10) was prepared as describe
above, but the pithing rod was left throughout the ex-
periment and the administration of both gallamine and
hexamethonium was omitted, as previously described
[16, 18–21]. Then, this set received and i.v. continuous
infusion of methoxamine (20 μg/kg·min); after 10 min,
this set was divided into two groups (n = 5 each) that re-
ceived, respectively: (i) nothing (control group); or (ii) an
i.v. continuous infusion of DHE (3.1 μg/kg·min). Twenty
min later, the values of diastolic blood pressure and
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heart rate were determined again, and then, the vasode-
pressor responses elicited by i.v. bolus injections of ex-
ogenous α-CGRP (0.1, 0.18, 0.31, 0.56 and 1 μg/kg) were
examined during the infusions of methoxamine and
DHE.

Other procedures applying to protocols 1 and/or 2
The doses of hexamethonium, methoxamine and DHE
were continuously infused at a rate of 0.02 ml/min by a
WPI model sp100i pump (World Precision Instruments
Inc., Sarasota, FL, USA). The dose of DHE was selected
from a previous study [16]. The intervals between the
different stimulation frequencies or doses of α-CGRP
applied were dependent on the duration of the resulting
vasodepressor responses (5–10 min), as we waited until
diastolic blood pressure had returned to baseline values.

Drugs
Apart from the anaesthetic (diethyl ether), the com-
pounds used in this study (obtained from the sources in-
dicated) were: gallamine triethiodide, hexamethonium
chloride, rat α-CGRP, methoxamine hydrochloride, rau-
wolscine hydrochloride, (Sigma Chemical Co., St Louis,
MO, USA); N-[methoxy-3-(4-methyl-1-piperazinyl)phe-
nyl]-2′-methyl-4′-(5-methyl-1,2,4-oxadiazol-3-yl)[1,1-bi-
phenyl]-4-carboxamidehydrochloride (GR127935) (gift
from GlaxoSmithKline, Stevenage, Hertfordshire, UK);
and DHE tartrate (gift from Novartis Pharma A.G., Ba-
sel, Switzerland). All compounds were dissolved in sa-
line, except: (i) DHE, which was dissolved in propylene
glycol and gauged with saline to have a final solution of
1% PPG; and (ii) haloperidol, which was dissolved in
some drops of 5% ascorbic acid and the resulting solu-
tion was finally diluted with saline. These vehicles had
no effect on baseline diastolic blood pressure or heart
rate (data not shown). Fresh solutions were prepared for
each experiment. The doses of agonists refer to their re-
spective salts, whereas those of the antagonists refer to
their free base.

Data presentation and statistical evaluation
All data in the text, tables and figures, unless stated other-
wise, are presented as mean ± standard error of the mean
(S.E.M). The peak changes in diastolic blood pressure by
electrical stimulation or exogenous α-CGRP were
expressed as percent change from baseline, as previously
reported [16, 18–21]. The difference in the absolute values
of diastolic blood pressure and heart rate within one sub-
group of animals before and during the continuous infu-
sions of methoxamine (20 μg/kg·min) and DHE (3.1 μg/
kg·min) were evaluated with paired Student’s t-test. More-
over, a one-way analysis of variance was used to compare
the absolute values of diastolic blood pressure and heart rate
obtained during the continuous infusions of methoxamine

(20 μg/kg·min) and DHE (3.1 μg/kg·min) before, immedi-
ately after and 10 min after administration of saline or the
antagonists used. Finally, the vasodepressor responses in-
duced by electrical stimulation or exogenous α-CGRP in the
different subgroups of animals were compared with a
two-way analysis of variance. The one- and two-way ana-
lyses of variance were followed, if applicable, by the
Student-Newman-Keuls’ test. Statistical significance was ac-
cepted at P < 0.05. The statistical analysis was performed
using the SigmaPlot software (V 12.0; Systat Software, Inc.),
whereas the graphs were made with GraphPad Prism® soft-
ware (V 6.01; GraphPad Software, Inc.).

Results
Systemic haemodynamic effects of the different
treatments
The baseline values of diastolic blood pressure and heart
rate in the 90 pithed rats were 57 ± 5 mmHg and 243 ± 8
beats per min, respectively; these variables remained un-
changed after gallamine or hexamethonium. Twenty min
after starting the i.v. continuous infusions of methoxa-
mine, baseline values of diastolic blood pressure and heart
rate were significantly (P < 0.05) increased in all animals
(i.e. 140 ± 4 mmHg and 273 ± 4 beats per min, respect-
ively). It is noteworthy that during the infusions of meth-
oxamine and/or DHE a transient, but significant, decrease
in diastolic blood pressure was produced immediately
after administration of an i.v. bolus injections of rauwols-
cine, haloperidol or the combinations of these antagonists,
but not with saline or GR127935 (see Table 2). However,
the values of diastolic blood pressure in the different sub-
groups before and 10 min after administration of saline,
or antagonists, were not significantly different (P > 0.05)
(Table 2). Furthermore, the increase in diastolic blood
pressure produced by the continuous infusion of methox-
amine was sustained throughout the experiments, as illus-
trated in Fig. 1a.

Vasodepressor responses produced by electrical
stimulation or exogenous α-CGRP
Figure 1a shows some representative experimental tracings
illustrating that during the infusion of methoxamine the on-
set of the responses induced by electrical stimulation (0.56–
5.6 Hz) of the vasodepressor sensory outflow (T9-T12) were
immediate and resulted in frequency-dependent decreases
in diastolic blood pressure. It must be emphasized that these
vasodepressor responses were due to selective stimulation of
the vasodepressor sensory CGRPergic outflow, since only
negligible and inconsistent effects in heart rate were ob-
served, as described earlier [16, 18–21]. In addition, as previ-
ously reported by Lozano-Cuenca et al. [16], stimulation of
the vasodepressor sensory CGRPergic outflow also resulted
in vasodepressor responses during the infusion of DHE
(3.1 μg/kg·min), but the magnitude of these responses was
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clearly smaller than those elicited during the infusion of
methoxamine (20 μg/kg·min).
Moreover, during the methoxamine infusion (control;

20 μg/kg·min): (i) electrical stimulation of the perivascular
sensory outflow resulted in frequency-dependent vasode-
pressor responses, which were inhibited during the infu-
sion 3.1 μg/kg·min DHE (see Fig. 1b); and (ii) i.v. bolus
injections of exogenous α-CGRP elicited dose-dependent
vasodepressor responses, but these responses, unlike those
by electrical stimulation, remained unchanged during the
infusion of 3.1 μg/kg·min DHE Fig. 1c). In view that
3.1 μg/kg·min DHE inhibited the electrically-induced
vasodepressor responses without affecting those by ex-
ogenous α-CGRP, we considered this infusion dose of
DHE for further pharmacological analysis. In all cases, the
vasodepressor responses to electrical stimulation or ex-
ogenous α-CGRP: (i) appeared about 10 s after starting
each electrical stimulus or dose of α-CGRP, and reached a
maximum 1 min after the stimulus had ended; and (ii)
returned to baseline levels within 5–10 min after each
stimulus/dose, as previously reported [18].

Effect per se of saline, rauwolscine, GR127935 or
haloperidol (given separately or in combination) on the
neurogenic vasodepressor responses during an infusion
of methoxamine
During the methoxamine infusion (control; 20 μg/
kg·min), the vasodepressor responses to electrical stimu-
lation in control animals did not significantly differ from
those elicited in animals pre-treated (see Additional file 1:
Figure S1 [S1]) with an i.v. bolus injection of: (i) vehicle
(1 ml/kg; Additional file 1: Figure S1a); (ii) rauwolscine
(α2-drenoceptor antagonist, 310 μg/kg; Additional file 1:
Figure S1b); (iii) GR127935 (5-HT1B/1D receptor antagon-
ist, 31 μg/kg; Additional file 1: Figure S1a); (iv) haloperidol
(D2-like receptor antagonist, 310 μg/kg; Additional file 1:
Figure S1d); (v) rauwolscine+GR127935 (310 and 31 μg/

kg respectively; Additional file 1: Figure S1e); (vi) rauwols-
cine+ haloperidol (310 μg/kg each; Additional file 1:
Figure S1f); and (vii) GR127935+ haloperidol (31 and
310 μg/kg respectively; Additional file 1: Figure S1g).
These results indicate that these compounds, at the
doses used and under the present experimental condi-
tions, were essentially devoid of any effect per se on
the electrically-induced vasodepressor responses.

Effect of saline, rauwolscine, GR127935 or haloperidol
(given separately or in combination) on DHE-induced
inhibition of the neurogenic vasodepressor responses
Figure 2 shows that the inhibition induced by DHE
(3.1 μg/kg·min) of the electrically-induced vasodepressor
responses, which remained unaltered in animals pre-
treated with vehicle (1 ml/kg; Fig. 2a), was: (i) abolished
in animals pretreated with rauwolscine+GR127935 (310
and 31 μg/kg respectively; Fig. 2e); and (ii) resistant to
blockade in animals pretreated with rauwolscine
(310 μg/kg; Fig. 2b); GR127935 (31 μg/kg; Fig. 2c); halo-
peridol (310 μg/kg; Fig. 2d); rauwolscine+haloperidol
(310 and 310 μg/kg each; Fig. 2f ); or GR127935+ halo-
peridol (31 and 310 μg/kg respectively; Fig. 2g).

Discussion
General
Apart from the implications discussed below, our study
confirms that DHE can inhibit the vasodepressor sensory
CGRPergic outflow in pithed rats by prejunctional mecha-
nisms, as previously reported by Lozano-Cuenca et al. [16].
However, these authors made no attempt to identify the
pharmacological profile of receptors involved in such inhib-
ition by DHE. Hence, by using antagonists for α2-adreno-
ceptors (rauwolscine), 5-HT

1B/1D
receptors (GR127935) and

D2-like receptors (haloperidol) (since DHE displays affinity
for these receptors; see Table 1), the present study suggests
that α2-adrenoceptors and 5-HT1B/1D receptors (but not

Table 2 Values of diastolic blood pressure and heart rate during the infusion of methoxamine (20 μg/kg·min): (i) before; (ii)
immediately after (within 0–1 min after antagonist administration); and (iii) 10 min after i.v. administration of saline, rauwolscine,
GR127935 and haloperidol given separately, as well as their respective combinations

Treatment Dose
(μg/kg)

n Diastolic blood pressure (mm Hg) Heart rate (beats per min)

Before 0–1 min after 10 min after Before 0–1 min after 10 min after

Saline 1a 5 155 ± 9 158 ± 7 160 ± 13 260 ± 6 267 ± 3 259 ± 6

Rauwolscine (Rauw) 310 5 131 ± 5 105 ± 15* 134 ± 6 261 ± 6 257 ± 6 264 ± 5

GR127935 (GR) 31 5 137 ± 6 134 ± 7 140 ± 11 257 ± 4 251 ± 5 250 ± 5

Haloperidol (Halo) 310 5 124 ± 7 67 ± 4* 119 ± 7 234 ± 3 229 ± 3 230 ± 4

Rauw+GR 310, 31 5 168 ± 15 116 ± 13* 163 ± 11 264 ± 7 255 ± 8 271 ± 6

GR+ Halo 31, 310 5 149 ± 10 92 ± 15 119 ± 7 270 ± 10 259 ± 7 268 ± 9

Rauw+Halo 310, 310 5 123 ± 7 84 ± 6* 110 ± 3 298 ± 1 283 ± 3 300 ± 10

All values are expressed as mean ± S.E.M
aSaline was given at a dose of 1 ml/kg
*P < 0.05, significantly different from before. One-way analysis of variance
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D2-like receptors) are involved in the prejunctional mecha-
nisms by which DHE inhibits the vasodepressor sensory
CGRPergic outflow in pithed rats.
Moreover, it is important to note that we did not measure

sensory nerve activity directly, but the electrically-induced
CGRP release in the systemic vasculature could be esti-
mated indirectly by measurement of the evoked vaso-
depressor response, as previously established using the
CGRP receptor antagonists CGRP8–37 [12] and olcegepant
[24]. Hence, the inhibition by DHE was considered
sensory-inhibitory since this ergot inhibited the vasodepres-
sor responses induced by spinal (T9-T12) stimulation of the
vasodepressor sensory CGRPergic outflow (Fig. 1b), with-
out affecting those by exogenous α-CGRP (Fig. 1c).

Systemic haemodynamic effects produced by
methoxamine and DHE
As previously established in pithed rats [16, 18–21], the
artificial and sustained increase in diastolic blood pressure
(at around 140 mmHg) by a continuous infusion of the
α1-adrenoceptor agonist methoxamine (20 μg/kg·min;
Fig. 1a) is a conditio sine qua non for inducing vasodepres-
sor responses. Otherwise, the basal blood pressure in pithed
rats is so low that there is no “window” for eliciting further
decreases in this variable. The methoxamine-induced in-
crease in diastolic blood pressure has been attributed to an
increase in peripheral vascular resistance [25]. In addition,
it is noteworthy that 3.1 μg/kg·min DHE can slightly in-
crease diastolic blood pressure when the methoxamine

Fig. 1 Effect of dihydroergotamine (DHE) on the vasodepressor CGRPergic outflow in pithed rats. a Original experimental tracings illustrating the
vasodepressor responses induced by electrical stimulation of the perivascular sensory CGRPergic outflow during continuous infusions of either
methoxamine (control; above) or DHE (below). Note that during continuous infusions of DHE (3.1 μg/kg·min) the vasodepressor responses
induced by electrical stimulation were attenuated versus control. In both cases, the vasodepressor responses were selective as no changes in heart
rate were observed. Panels (b) and (c) show the vasodepressor responses by electrical stimulation or i.v. bolus injections of α-CGRP, respectively,
induced during an i.v. continuous infusions of 3.1 μg/kg·min DHE (n = 5 each). For the sake of clarity, control responses (○) were induced during
continuous infusions of methoxamine (20 μg/kg·min). * Significantly different responses (P < 0.05) vs. control. BP, blood pressure; HR, heart rate
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infusion is not given (i.e. when basal diastolic blood pres-
sure is too low; data not shown). Accordingly, the
methoxamine-induced increase in blood pressure, which
is maximal [16, 18], could most probably have masked the
slight effect of DHE on this variable. In fact, the pressor
effect of DHE has been extensively described in humans
[26, 27], and its pressor effect in pithed rats has recently
been associated with vascular activation of α1 (α1A, α1B
and α1D) and α2 (α2A, α2B and α2C)-adrenoceptors [9].

Effects of several antagonists per se on systemic
haemodynamic variables and on the sensory-induced
vasodepressor responses
To identify the mechanisms involved in the prejunctional
inhibition by DHE (Fig. 1b and c), we decided to evaluate
the effect of several antagonists per se (Table 1) on systemic
haemodynamic conditions and on the vasodepressor

responses induced by electrical stimulation. A transient, but
significant, decrease in diastolic blood pressure was ob-
served when animals received a bolus injection of rauwols-
cine and/or haloperidol (Table 2). In the case of
haloperidol, this effect could be explained by considering
that this compound exhibits high affinity for α1-adrenocep-
tors (pK

i
: 8.0; see Table 1). Thus, it is tempting to suggest

that haloperidol may have an antagonistic effect on meth-
oxamine (α1-adrenoceptor agonist)-induced increase in
blood pressure. In contrast, we have no clear-cut explan-
ation for the decreases in diastolic blood pressure induced
by rauwolscine, which does not display affinity for
α1-adrenoceptors. Nevertheless, in all cases, 10 min
after administration of antagonists the values of dia-
stolic blood pressure had returned to baseline values
(Table 2; before and 10 min after). These results,
coupled to the lack of effect of the above antagonists

Fig. 2 Effect of i.v. bolus injections of: (a) saline (1 ml/kg); (b) rauwolscine (310 μg/kg); (c) GR127935 (31 μg/kg); or (d) haloperidol (310 μg/kg)
given separately, as well as the combinations (e) rauwolscine plus GR127935 (310 and 31 μg/kg, respectively); (f) rauwolscine plus haloperidol
(310 μg/kg each); or (g) GR127935 plus haloperidol (31 and 310 μg/kg, respectively) on the inhibition induced by dihydroergotamine (DHE;
3.1 μg/kg·min; □) of the electrically-induced vasodepressor responses. The control responses (○) represent that of animals receiving an i.v.
continuous infusion of methoxamine (20 μg/kg·min) which is shown for comparison. * Significantly different responses (P < 0.05) vs. control
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(alone or in combination) on the electrically-induced
vasodepressor responses (see Additional file 1: Figure S1)
indicates that these compounds, at the doses used, were
devoid of any effects per se on the above variables. Ac-
cordingly, these data suggest that any effect of a given an-
tagonist on DHE-induced sensory inhibition is due to a
direct interaction of the antagonist with its respective re-
ceptors. It must be emphasized that: (i) our suggestion
supporting and/or excluding the role of α2-adrenergic,
5-HT1B/1D or D2-like receptors is based on the as-
sumption that species differences between the binding
of agonists and antagonists used do not play a major
role (Table 1); and (ii) the doses of antagonists used
were high enough to completely block prejunctional
α2-adrenoceptors (rauwolscine; [18]), 5-HT1B/1D re-
ceptors (GR127935; [19, 20, 28, 29]) and D2-like re-
ceptors (haloperidol; [21]) mediating inhibition of
neurogenic cardiovascular responses in pithed rats.

Role of α2-adrenergic and 5-HT1B/1D, but not D2-like,
receptors in the inhibition by DHE
As previously pointed out, DHE displays affinity for α2-ad-
renergic, 5-HT

1
and D2-like receptors (see Table 1).

Activation of these receptors, which are coupled to Gi/o

proteins, may inhibit adenylyl cyclase activity, inactivate
Ca2+ channels and/or activate inwardly rectifying K+

channels [30, 31]. These are signal transduction systems
usually associated with inhibition of neurotransmitter re-
lease [30, 31]. With this idea in mind and considering our
results (Fig. 2), the simplest interpretation of these find-
ings suggests that DHE-induced inhibition mainly involves
the activation of prejunctional α2-adrenergic and 5-HT1B/

1D receptors, but not of D2-like receptors since the DHE
response was: (i) only abolished by rauwolscine plus
GR127935 (Fig. 2e); and (ii) resistant to blockade by rau-
wolscine (Fig. 2b), GR127935 (Fig. 2c), haloperidol
(Fig. 2d), rauwolscine plus haloperidol (Fig. 2f) or
GR127935 plus haloperidol (Fig. 2g). However, the lack of
blockade by some of the above treatments deserves fur-
ther considerations. For example, the fact that rauwolscine
or GR127935 alone failed to block DHE-induced inhib-
ition may reflect the fact that a maximal dose of DHE was
used [16]; accordingly, DHE could be stimulating α2-adre-
noceptors and 5-HT

1B/1D
receptors simultaneously; thus,

when blocking only one of these receptors, the inhibition
produced by the unblocked receptor will overshadow the
antagonism produced on the other receptor. In addition,
the involvement of D2-like receptors seems unlikely based
on the lack of effect of haloperidol, an antagonist with
high affinity (pKi) for the D2-like receptors subtypes (D2:
9.4; D3: 8.5 and D4: 8.8; see Table 1). This suggestion gains
weight when considering that DHE-induced inhibition
remained unaffected after rauwolscine plus haloperidol
(Fig. 2f) or GR127935 plus haloperidol (Fig. 2g).

Having established the main involvement of rauwolsci-
ne-sensitive α2-adrenoceptors and GR127935-sensitive
5-HT1B/1D receptors in DHE-induced inhibition, we
have to recognize that no attempt was made here to
further identify the specific subtypes of these main re-
ceptor families. The reason for this omission is based
on the fact that we have previously shown (using select-
ive agonists and antagonists) that these receptors cor-
relate with the pharmacological profile of, respectively: (i)
α2A/2C (but not α2B)-adrenoceptor subtypes [18]; and (ii)
5-HT1B and 5-HT1F (but not 5-HT1A or 5-HT1D) receptor
subtypes [19, 20]. However, the fact that DHE-induced in-
hibition was abolished by the combination rauwolscine
(310 μg/kg) +GR127935 (31 μg/kg), where the latter dose is
not enough to block the prejunctional 5-HT1F receptors that
inhibit the rat vasodepressor sensory CGRPergic outflow
[20], makes the role of these subtypes rather unlikely. Fi-
nally, it is noteworthy that DHE also displays moderate af-
finity for other receptors, including the 5-ht1E (pKi: 6.2)
subtype (Table 1). However, the 5-ht1E retains its lower-case
appellation as it is not a functional receptor [32].

Conclusion
The above results suggest that DHE-induced inhibition of
the vasodepressor sensory CGRPergic outflow is mainly me-
diated by prejunctional activation of rauwolscine-sensitive
α2-adrenoceptors and GR127935-sensitive 5-HT1B/1D recep-
tors which, most likely, correlate with α2A/2C-adrenoceptors
[18] and 5-HT1B receptors [19], respectively. These findings
may shed further light on the vascular side effects produced
by DHE, namely: DHE-induced inhibition of the perivascu-
lar sensory CGRPergic outflow may facilitate DHE’s vaso-
constrictor properties resulting in an increased vascular
resistance.

Additional file

Additional file 1: Figure S1. Effect per se of i.v. bolus injections of: (a)
saline (1 ml/kg); (b) rauwolscine (310 μg/kg); (c) GR127935 (31 μg/kg); or
(d) haloperidol (310 μg/kg) given separately; as well as the combinations
(e) rauwolscine plus GR127935 (310 and 31 μg/kg, respectively); (f)
rauwolscine plus haloperidol (310 μg/kg each); or (g) GR127935 plus
haloperidol (31 and 310 μg/kg, respectively) on the electrically-
induced vasodepressor responses produced during an i.v. continuous
infusion of methoxamine (20 μg/kg. min) (n = 5 for each group). No
significant effects were produced after administration of compounds
(P > 0.05). (PDF 881 kb)
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