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Abstract 

Escherichia coli O157:H7 is one of the top five pathogens contributing to foodborne 

diseases, causing an estimated 2,138 cases of hospitalization in the US each year. The extremely 

low infectious dose demands for more rapid and sensitive methods to detect E. coli O157:H7. The 

objective of this study is to select aptamers specifically binding to E. coli O157:H7 using whole-

bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and to create a 

multivalent aptamer system by rolling circle amplification (RCA) with the selected aptamer 

sequence for sensitive detection of E. coli O157:H7 using a quartz crystal microbalance (QCM) 

sensor. Briefly, A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of 

counter selection were performed for SELEX. One sequence S1 that appeared 16 (out of 20) times 

was characterized and a dissociation constant (Kd) of 10.30 nM was obtained. Using phi29 DNA 

polymerase, RCA reaction was performed, which produced a long ssDNA strand composed of 

thousands of repetitive aptamer sequences, termed as a multivalent aptamer system, on the 

electrode. The QCM sensor based on a multivalent aptamer system was able to quantitatively 

detect E. coli O157:H7. The limit of detection (LOD) of the QCM sensor was determined to be 34 

CFU/ml, respectively, with the whole detection procedure in less than 40 min. The QCM sensor 

also showed high specificity for E. coli O157:H7 when it was cross-tested with five non-target 

bacteria. The QCM aptasensor in this study provided a common platform for detection of different 

foodborne pathogens. 

Keywords: Whole-bacterium SELEX; aptamer; E. coli O157:H7; QCM; RCA 
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Introduction 

Foodborne illness is a serious public health problem. CDC (2011) estimated that each 

year roughly 1 in 6 Americans (or 48 million people) gets sick, 128,000 are hospitalized, and 

3,000 die of foodborne diseases. Great financial loss has been caused by foodborne illness in 

terms of pain, suffering, reduced productivity, and medical costs. Among all the foodborne 

pathogens, Escherichia coli O157:H7 as the fifth leading cause of domestically acquired 

foodborne illness resulting in hospitalization, is related to 73,000 illnesses in the United States 

each year, and also a major cause of hemolytic uremic syndrome develops in children (CDC). To 

control outbreaks and disease progression in individuals infected, it is critical to rapidly identify 

the pathogen by methods with high sensitivity and selectivity, in which a recognition element 

that can specifically bind to the target is essentially required. 

Traditional methods for the detection of E. coli O157:H7, including culture, ELISA and 

PCR, are time-consuming, labor-intensive, or trained personnel-requiring. A biosensor is an 

analytical device, composed of a bio-recognition element and a transducer. QCM is an acoustic 

(mass-based) piezoelectric biosensor. The decrease in resonant frequency of the quartz is linearly 

proportional to adsorbed mass on the quartz surface based on the piezoelectric effect. QCM 

sensors possess the advantages of simplicity, cost effectiveness, label-free detection, and real-

time monitoring, and are able to detect mass change down to nanogram level (Marrazza, 2014). 

Many QCM immunosensors and DNA/RNA biosensors have been studied for the detection of E. 

coli O157:H7, but no QCM aptasensor has been developed to detect E. coli O157:H7. The only 

two QCM aptasensors for the detection of foodborne pathogens were reported by Ozalp et al. 

(2015) and Wang et al. (2017). 
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Aptamers are single-stranded DNA (ssDNA) or RNA oligonucleotides that are capable of 

specifically binding to selected targets, including whole cells, proteins, peptides and small 

molecules, through their folding into unique three-dimensional structures.  Aptamers are usually 

selected from large random nucleic acid libraries by Systematic Evolution of Ligands by 

Exponential Enrichment (SELEX), which involves three major steps - selection of 

oligonucleotides binding to the target, partitioning of bound aptamers from unbound 

oligonucleotides, and amplification of bound aptamers (Gopinath et al., 2007). Several 

advantages of aptamers over antibodies are: (i) aptamers can be quickly generated against a 

wider spectrum of targets; (ii) they can be chemically synthesized with low cost and easily 

modified, (iii) they are thermostable and can usually be reversibly denatured and have much 

longer shelf life, (iv) they are non-immunogenic and has better penetration into tissue, cell 

membrane or nuclear pore (Hyeon et al., 2012; Joshi et al., 2009; Keefe et al., 2010). Aptamers 

have been studied for the detection of pathogens or chemicals in food, environment and clinical 

samples (Bai et al,. 2012; Yildirim et al., 2012; Turek et al., 2013). But so far, only one RNA 

aptamer specifically targeting E. coli O157:H7 has been reported (Lee et al., 2012). Although 

RNA aptamers have superior binding affinity compared with DNA aptamers, they are less stable, 

harder to produce, and cost more if modified to be RNase-resistant.  

RCA is an isothermal amplification method, which is initiated by a primer hybridized to a 

small circular template in the presence of some mesophilic polymerase (e.g. phi29 DNA 

polymerase) (Mayboroda et al., 2018). The RCPs are tens of thousands of nucleotide long, 

containing tandem repetitive sequences complimentary to the circular template. RCA has been 

widely used in biosensors for signal amplification due to its high efficiency of amplification, no 

requirement for thermal cycling instrument, no significant damage to biological molecules or 



3 
 

environment, and easy modification of RCPs with fluorescence or nanoparticles labeled short 

complimentary DNA strands (Zhao et al., 2008). So far, only two biosensors based on 

multivalent aptamer system by RCA are reported, which were designed to capture and deliver 

drugs into leukemia cells (Zhao et al., 2012; Zhang et al., 2013).  

In this study, we described the selection of DNA aptamers against E. coli O157:H7 with 

high affinity and specificity using whole bacterium-SELEX and the construction of a novel 

multivalent aptamer system based on RCA, which comprises repetitive aptamer sequences 

against E. coli O157:H7. Based on the selected aptamers and the created multivalent aptamer 

system, a QCM aptasensor was developed for sensitive, specific, rapid, and label-free detection 

of E. coli O157:H7. 
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Chapter 1 Literature Review 

1.1 Aptamer and SELEX 

Aptamers are a class of small single-stranded DNA or RNA oligonucleotides that are 

capable of binding to selected targets, including whole cells, proteins, peptides and small 

molecules with high specificity and affinity, through their folding into unique three-dimensional 

(3D) structures.  Aptamers are usually selected from large random nucleic acid libraries by 

Systematic Evolution of Ligands by EXponential enrichment (SELEX), which involves four 

major steps - binding of oligonucleotides to the target, partitioning of bound aptamers from 

unbound oligonucleotides, amplification of bound aptamers, and regeneration of single-stranded 

aptamer molecules (Gopinath et al., 2007).  

The SELEX was first developed by Larry Gold and Craig Tuerk in 1990, aiming to 

elucidate the interaction between the bacteriophage T4 (gp43) and the ribosome binding site of 

the mRNA. In this process, two RNA sequences were selected from an initial RNA pool of 

estimated 65, 536 different species, which had a random region of 8 nt after four SELEX cycles. 

The results not only proposed the possibility of in vitro selection of nucleic acids to be used in 

protein recognition, but also helped answer some questions on the natural evolution (Tuerk and 

Gold, 1990). In the same year, Ellington and Szostak independently designed the same process to 

select RNA molecules bound to different organic dyes. They termed these individual RNA 

sequences “aptamers” according to the Lain “aptus” (to fit) and found out that 102-105 different 

sequences could be selected from a RNA pool with complexity of around 1013 sequences to bind 

to the target after six selection cycles. They also determined the specificity of aptamers by 

measuring their binding affinity to the other different dyes (Ellington and Szostak, 1990). With 
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rapid development of SELEX techniques for over two decades, the first aptamer-based drug, 

Pegaptanib Sodium (trade name Macugen), was approved by the US Food and Drug 

Administration (FDA) in December 2004, and by Europe, Brazil, Canada and Australia 1-2 years 

later. Pegaptanib specifically targets vascular endothelial growth factor (VEGF), and used to 

treat the vision loss associated with aberrant angiogenesis of Age-Related Macular Degeneration 

(AMD) by intravitreal injection of 0.3 mg per eye once every 6 weeks. Due to its shortage of not 

binding to all isoforms of human VEGF, the market of Macugen was later shared by Lucentis, 

which is a monoclonal antibody fragment (Fab)-based drug approved by FDA in 2006 (Keef et 

al., 2010) 

Similar to antibodies, aptamers bind to targets via van der Waals forces, hydrogen 

bonding, electrostatic and stacking interaction. However, aptamers have some advantages over 

antibodies: 1) they can be chemically synthesized with low cost and easily modified, 2) aptamers 

can be quickly generated against a wider spectrum of targets 3) they are thermostable and can 

usually be reversibly denatured and have much longer shelf life, and 4) they are non-

immunogenic and has better penetration into tissue, cell membrane or nuclear pore (Hyeon et al., 

2012; Joshi et al., 2009; Keefe et al., 2010; Sun et al., 2014; Ray et al., 2012). 
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Table 1.1 Comparison between antibodies and aptamers 

Antibodies Aptamers 

Production 

1. Production of polyclonals demands a live 

animal  

2. Production of monoclonals requires training 

for the high technology and is laborious 

3. Polyclonals have batch-to batch variability, 

monoclonals have low or no batch-to batch 

variability once a hybridoma is made 

4. Time scale is long for hybridomas 

5. Monoclonals are expensive to produce 

6. Viral or bacterial contamination can affect 

antibody quality 

Production 

1. Most aptamers are developed in vitro and 

produced chemically without the use of a live 

animal 

2. No variability between batches 

3. Automated SELEX decreased the developing 

time to within one week and greatly reduced 

labor intensity 

4. Cost effective  

5. Not subject to viral or bacterial contamination 

 

Targets 

Must provoke a strong immune response.  

Targets 

A wide range of targets, such as ions, toxin, 

peptides, proteins, bacteria, cells, and even tissues 

Storage 

Susceptible to irreversible denaturation at high 

temperature, resulting in a limited shelf life 

Storage 

Thermally stable, can usually be reversibly 

denatured, resulting in a long shelf life 

Affinity and Specificity 

1. Kd values of high affinity antibodies are 

usually in nanomolar (109) to picomolar (1012) 

range. 

2. Polyclonals are non-specific, monoclonals are 

highly specific 

Affinity and Specificity 

1. Kd values of high affinity aptamers are usually 

in nanomolar (109) to picomolar (1012) range  

2. Specificity could be improved by negative- or 

counter- selection 

In vivo application 

1. Large size (12-15 nm) limits bioavailability or 

prevents access to many biological 

compartments 

2. Large size prevents filtration 

3. Not susceptible to nuclease degradation 

4. Often immunogenic (antibodies produced 

from animals could be eliminated from human 

immune system) 

 

In vivo application 

1. Small size (3-5 nm) allows more efficient and 

faster entry into biological compartments in 

vivo 

2. Small size makes them susceptible to renal 

filtration and they therefore have a shorter 

half-life. Addition of conjugation partners can 

increase circulating half-time 

3. Susceptible to nuclease degradation. 

Chemical modifications can enhance nuclease 

resistance 

4. Non-immunogenic 
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1.1.1 The process of SELEX  

The process of SELEX is usually repeated for 5-15 times (cycles or rounds) until 

aptamers acquire high binding affinity and specificity for the target. The aptamer pool with the 

highest affinity is chosen for cloning, sequencing and further characterization.  

1.1.1.1 Initial library of random sequences 

In a typical SELEX process, an initial oligonucleotide library composed of random 

sequences is usually required to start the selection of aptamers. The library generally comprises a 

complexity of individual molecules ranging from 1013 to 1015   (~20 pmol to 2 nmol) to make 

sure the selected aptamers will have high affinity. The oligonucleotide that constitutes the library 

could be RNA or single-stranded (ss) DNA. RNA differs from ssDNA in the presence of a ribose 

2’- hydroxyl group and the lack of a methyl group on the uracil ring. As a result, RNA and 

ssDNA having the same sequence might not have the same binding affinity to one target due to 

their different conformation (Ellington and Szostak, 1992). In addition, the 2’-OH group on one 

hand allows RNA to fold into more varied secondary and tertiary dimensional structures, 

resulting in higher binding affinity than ssDNA, on the other hand, causes RNA to be more 

susceptible to nuclease hydrolysis. So far, a lot of efforts have been made to increase RNA 

stability through chemical modifications including the replacement of 2’-OH group with 2’-

fluoro, 2’-amino, or 2’-O-methoxy motifs, and the alternation of the oxygen atom to the non-

bridging sulfur atom in the phosphodiester backbone (Sun et al., 2014). The length of the random 

sequence is typically 15-45 nucleotides (nt) in size, flanked by two primer binding sites 20-25 nt 

in length for aptamer amplification so as to enrich aptamer pools.  
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1.1.1.2 Binding and partitioning  

The first step in each cycle of SELEX is the binding of the targets with the initial library 

or subsequent aptamer pools, which need to be denatured beforehand by heating at 95°C for 5 

min and cooling on ice for 10 -15 min to avoid the unwanted hybridization between diverse 

oligonucleotide sequences. Then the binding step usually takes 30 min to 1 h at 25°C or room 

temperature for the sufficient interaction between targets and oligonucleotides. The binding 

could also be carried out at 4°C instead to avoid the internalization of DNA sequences, which 

might result in production of non-specific or low-affinity aptamers (Li et al., 2014). That is 

because at 37°C the receptor-binding aptamers are more easily lost due to possible endocytosis 

during the selection process (Sefah et al., 2010). After the binding of aptamers to targets, a 

partitioning step is followed to separate bound aptamers from unbound oligonucleotides. In the 

conventional method for partitioning, purified target molecules were immobilized to a solid 

support such as a column. Then the aptamer pools were applied to affinity columns in high-salt 

buffer and columns were washed buffer to remove non-binding oligonucleotides (Ellington and 

Szostak, 1992). Current methods include centrifugation, filtration, magnetic separation and 

capillary electrophoresis (CE) (Hamula et al., 2008; Bing et al., 2010). Directly after partitioning, 

bound aptamers are normally eluted from the targets by heating at 95°C for 10 min as to be used 

as template in the next amplification step for enrichment. 

1.1.1.3 Amplification 

The amplification of a random ssDNA library by polymerase chain reaction (PCR) is a 

key step in each round of SELEX, however, its subjection to artificial by-products formed by 

primer-product or product-product hybridization may prohibit the enrichment of target-
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recognizing aptamers. He et al. (2013) found that the amount of by-products increased with the 

increase of template amount and thermal cycle number. Tolle et al. (2014) reported the formation 

of two different forms of longer by-products, termed ladder- and non-ladder-type, and proposed 

a molecular mechanism through which these by-products were built. In the cloned and sequenced 

by-products from 8th round SELEX library, they found one set of sequences possessing two 

copies of the forward primer linked by stretches of random region and another set of sequences 

having continuous multiple full-length reverse primer binding sites fused without gap. Their 

explanation was that the random region on one sequence, which was complimentary to the 

reverse primer binding site of another strand could serve as a primer and led to the elongation of 

this strand. If there was no gap between hybridization site and the primer binding site, this 

mechanism could lead to increasingly longer by-products. If the hybridization site was in the 

middle of the random region, further extensions was avoided. They tried skipping of the 

elongation step and the use of single strand binding protein (SSB), but both couldn’t eliminate 

the by-products. And they thought proper primer design could be a possible solution.  

1.1.1.4 Regeneration  

As input for the incubation with the target cells in the next cycle, ssDNA is regenerated 

from PCR products (dsDNA) though several methods, including denaturing urea-polyacrylamide 

gel electrophoresis (PAGE), asymmetric PCR, magnetic separation (using streptavidin-coated 

beads to capture antisense strands labelled with biotin) and lambda exonuclease digestion. For 

denaturing PAGE, one primer containing a spacer as terminator and an extension of 20 adenine 

nucleotides (polyA) is used in PCR to produce strands with different lengths, which could be 

separated by electrophoresis. Then the desired strand in the right band could be extracted from 

the gel. By adding uneven amounts of forward and reverse primers in asymmetric PCR, ssDNA 
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could be produced with the higher concentration of primers, but still needs to be separated and 

eluted from the small amount of dsDNA generated with both primers through PAGE and gel 

extraction. Therefore, both methods are tedious and time-consuming. For the magnetic 

separation of two strands of dsDNA, the antisense strand is biotinylated by using a biotinylated 

primer in PCR and then is immobilized onto streptavidin-coated magnetic beads. After alkaline 

treatment, the dsDNA dissociates and the antisense strands could be removed through magnetic 

separation. If 5’-phosphate group is used to label one primer in PCR, the phosphorylated strands 

of dsDNA could be removed by digestion with lambda exonuclease which selectively digests the 

5’-phosphorylated strand of dsDNA (Avci-Adali et al., 2009) 

A new method developed by He et al. is called single-primer-limited amplification 

(SPLA) that can generate ssDNA free from by-products. Briefly, minus-stranded DNA 

(msDNA) of an ssDNA library was first amplified with reverse primer of 5-fold molar quantity 

of the template, followed by the amplification of plus-stranded DNA (psDNA) of the msDNA 

with forward primer of 10-fold molar quantity of the template and recovery of psDNA by gel 

excision. By the optimization of template amount and thermal cycle, they successfully amplified 

target ssDNA without detectable by-products and produced psDNA 16.1 times as much as that 

by asymmetric PCR. (He et al., 2013)  

1.1.1.5 Selection pressure  

To enhance the binding affinity of aptamers as SELEX proceeds, selection pressure could 

be gradually increased from cycle to cycle by means of decreasing the amount of ssDNA pool, 

the incubation time, or the target cell number, and increasing the times and duration of washing 

steps. While the selectivity of aptamers could be raised through the insertion of negative or 
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counter selections into the positive selections. Developed in 1992 and 1994, respectively, 

negative and counter selections are used to eliminate aptamers that non-specifically bound to 

environmental substances, solid supports and molecules close related to the targets in SELEX 

process and these two terms are now used interchangeably (Ellington & Szostak, 1992; Torres-

Chavolla & Alocilja, 2009). The “negative” or “counter” substances or molecules introduced in 

negative and counter selections vary considerably according to different targets and diverse 

methods used in SELEX. Bing et al. employed streptavidin sepharsoe beads as solid supports in 

SELEX and used the beads as the counter-targets as well in the counter selections (Bing et al., 

2010). Li et al. took metastatic CRC LoVo cells as the target cells, and used non-metastatic 

HCT-8 cells as the negative cells (Li et al., 2014). Counter selection are performed either after all 

rounds of SELEX (Moon et al., 2013; Dwivedi et al., 2010) or before each round of SELEX. To 

further improve selection pressure, the number of counter selection could be increased before 

each cycle of SELEX (Li et al., 2014). 

1.1.1.6 Characterization and truncation of aptamers 

During SELEX process, the enriched aptamer pools from different cycles are subject to 

binding affinity screening via flow cytometry, capillary electrophoresis (CE) or quartz crystal 

microbalance (QCM). With regard to flow cytometry, the aptamer pools were first fluorescently 

labeled through PCR amplification with 5′-FAM modified sense primers. Following incubation 

of aptamer pools with targets, the mixture was injected and prone to fluorescence detection. 

Large number of target cells with fluorescence or higher fluorescence intensity indicated higher 

binding affinity of aptamer pools. As SELEX is going on, the binding affinity of aptamer pools is 

usually increasing cycle by cycle. However, in the last few cycles of SELEX, deselection 

sometimes happens – the decline of the binding affinity of aptamer pools, probably due to the 
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loss of high affinity aptamers during partitioning and elution or the decrease of the aptamer pool 

complexity (Li et al., 2014; Hamula et al., 2008). After all SELEX cycles are completed, the 

aptamer pool with the highest affinity is selected to be cloned and sequenced.  

Based on the sequence information, the secondary structures of aptamer candidates and 

their free energies accordingly could be predicated using software, such as Oligo Analyser and 

DNA Mfold, which are available on the Internet. Afterwards, the distinction and repetition of 

predicted secondary structures will help distribute obtained sequences into several families or 

categories, such as tight hairpins, branched hairpins, and few or no hairpins (Hamula et al., 

2008). Meanwhile, by comparing the similarities of structures in each family, the binding motifs 

of aptamers could also be determined given that sequences with the same secondary structure 

should bind to the same target. Upon the determination of the motifs of aptamers that directly 

interact with the targets or are responsible for folding into the structure that facilitates targets 

binding, the unnecessary nucleotides in the whole sequences of aptamers may undergo 

truncation, resulting in shorter aptamers, which have larger yield and lower cost in synthesis, 

higher structural stability, less susceptibility to random degradation, and advanced tissue 

penetration compared with long sequences (Shangguan et al., 2007; Bing et al., 2010). For 

example, Li et al. (2014) truncated the sequences of aptamers to a length of approximately 50 nt 

without influencing their binding domains. However, motifs of aptamers cannot always be 

decided based on secondary structure difference. Bing et al. grouped 17 of these 28 sequences 

into 3 families based on the primary sequence homology, nonetheless, they identified a 

consensus bulge-hairpin structure segment (around 29 mer) existing in all 28 sequenced 

aptamers. To elucidate the critical nucleotides for the streptavidin binding, mutated sequences 

derived from the suspected binding motif were evaluated via competition assay. In addition, by 
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extending the terminal stem or truncating part of the sequence or replacing certain nucleotides, 

they identified the segment that is essential for maintaining the binding affinity (Bing et al., 

2010).  

The final step following the synthesis of aptamer sequences with or without truncation is 

the measurements of their equilibrium dissociation constants (Kd). By using a concentration 

range of aptamers, for example, 0-120 nM, in the incubation with targets for the same period of 

time, the binding characteristics of aptamers are evaluated via fluorescence instruments, such as 

flow cytometry, under the same condition. Making use of software, such as GraphPad Prism and 

Sigma Plot, a nonlinear regression curve can be generated for the calculation for the value of Kd 

using the equation Y = Bmax × X/(Kd + X) (Bing et al., 2010). 

1.1.2 Whole-cell SELEX 

1.1.2.1 Comparison between conventional and whole-cell SELEX 

Conventional SELEX have been applied for the selection of aptamers for a wide range of 

targets from small molecules going through protein complexes purified from cells, including 

ATP, toxins, antibiotics, cytokines, proteases, kinases, cell-surface receptors, antibodies, 

carbohydrate, lipopolysaccharide (LPS), peptidoglycan, viruses and membranes of human blood 

cells (Ferreira et al., 2014). The advantage of using purified molecules as targets is that high-

affinity aptamers can be obtained within fewer cycles of SELEX, however, some problems also 

exist, such as the binding sites of cell-surface molecules could be different from their isolated 

forms (Hamula et al., 2011) and some proteins (e.g. cell surface transmembrane proteins) 

couldn’t even be purified due to the loss of some fragments essential for the formation of native 

conformations during purification process (Cerchia et al., 2005). 
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In 1999, Homann et al. (1999) performed the first whole-cell SELEX to select RNA 

aptamers for live African trypanosomes. They used a starting pool of 1016 RNA molecules with 

an estimated complexity of 2 × 1015 unique sequences to incubate with trypanosomes at a cell 

density of 1-2 × 106 cells/ml for 60 min. After 12 rounds of SELEX, they acquired high affinity 

aptamers with Kd of 60 ± 17 nM.  Since then, the whole-cell SELEX has been extended to the 

selection of aptamers for diverse target cells: bacteria (Duan et al., 2013), spores (Bruno et al., 

2012), cancer cells (Xu et al., 2015), somatic cells (Kim et al., 2014), embryonic stem cells 

(ESCs) (Iwagawa et al., 2012), virus infected cells (Tang et al., 2009), parasites infected cells 

(Birch et al., 2015) and so on.  

The advantages of whole-cell SELEX over conventional SELEX are: 1) Complex 

purification and target-partitioning are avoided; 2) Molecules are targeted in their native 

conformations on the cell surface; 3) Pathogens or cancer cell lines are targeted or differentiated 

without previous knowledge of the characteristics of the antigenic determinants or molecular 

biomarkers present in target cells; 4) Unknown or new targets or biomarkers can be discovered 

on the surface of the cell; and 5) Multiple aptamers for both multi-functional and multi-target 

applications could be obtained via a single whole-cell SELEX, exhibiting improved selection 

efficiency. Li et al. (2014) performed Cell-SELEX to target CRC LoVo cells and generated a 

panel of seven aptamers that can specifically bind metastatic potential cancer cell lines and 

recognize distinct targets without any mutual interference. Utilizing the Cell-SELEX strategy, 

Shangguan et al. (2006) also generated a group of leukaemia cell-specific aptamers, which 

targeted multiple molecules, including membrane proteins, carbohydrates and lipids.  

The drawbacks have been observed for the use of whole-cell SELEX are as follows: 1) 

Gram negative bacteria with a negatively-charged outer membrane would resist the binding of 
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nucleic acid molecules; 2) Capsules enveloping the surface of bacteria may cover up target 

proteins or molecules; 3) The fast growing speed make cell surface molecules vary greatly 

among cultures and colonies (Hamula et al., 2011); and 4) The nonspecific adsorption of single-

stranded nucleic acids to dead cells causing severe contamination to the enriched aptamer. One 

way to overcome this problem is through the recovery of bound aptamers by chelating divalent 

cations. Divalent cations are necessary for the formation of high-order RNA structures, thus their 

elimination (by adding EDTA, etc.) would contribute to the dissociation most of the bound 

aptamers, but wouldn’t affect the non-specific adsorption of the nucleic to dead cells (Tang et al., 

2009; Ohuchi et al., 2006) 
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Table 1.2 Examples of bacterial targets of aptamers selected using whole-cell SELEX 

 

1.1.2.2 Investigation of the binding sites on target cells 

Since the target molecules in whole-cell SELEX are unknown during the selection 

process, some researchers endeavored to discover the possible binding sites of aptamers on target 

cells through cell surface protein digestion or fluorescence detection. Hamula et al. (2008) 

carried out capillary electrophoresis with laser-induced fluorescence (CE-LIF) to investigate the 

possible binding site on the surface of target L. acidophilus cells by incubating the S-layer 

Target 
Aptamer 

type 

Random 

sequence 

SELEX 

Rounds 
Kd (nM) Reference 

Escherichia coli ssDNA N45 10 12.4 Kim et al., 2013 

Escherichia coli O157:H7 RNA N60 6 110 Lee et al., 2012 

Escherichia coli K88 ssDNA N35 13 15±4 Peng et al., 2014 

Escherichia coli NSM59 ssDNA N24 5 110 Savory et al., 2014 

Salmonella spp. ssDNA N40 12 7 Kolovskaya et al., 2013 

Salmonella Typhimurium ssDNA N40 9 6.33±0.58 Duan et al., 2013 

Salmonella Typhimurium ssDNA N40 8 1.73±0.54×103 Dwivedi et al., 2013 

Salmonella Paratyphi A ssDNA N40 13 47±3 Yang et al., 2013 

Listeria spp. ssDNA N40 6 74.4±52.69 Suh et al., 2014 

Listeria monocytogenes ssDNA N35 8 48.74±3.11 Duan et al., 2013 

Listeria monocytogenes ssDNA N40 10 2.01±0.12×10-3 Lee et al., 2015 

Staphylococcus aureus ssDNA N40 17 94.61±18.82 Turek et al., 2013 

Campylobacter jejuni ssDNA N40 10 292.8±53.1 Dwivedi et al., 2010 

Lactobacillus acidophilus ssDNA N40 8 13±3 Hamula et al., 2008 

Shigella dysenteriae ssDNA N40 8 23.47±2.48 Duan et al., 2013 

Streptococcus pyogenes ssDNA N40 20 4 Hamula et al., 2011 

Vibrio parahemolyticus ssDNA N40 9 16.88±1.92 Duan et al., 2012 
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protein extracted from the cell surface with the aptamers selected through whole cell-SELEX and 

detecting the fluorescence of cells. S-layer is a common surface structure surrounding the cell 

wall, which has been found in many bacteria as well as archaea. It consists of a monomolecular 

assemblies composed of identical protein subunits, which are called S-layer proteins. Seeing an 

accelerating peak of formation of aptamer-protein complex with the increasing concentration of 

S-layer protein, they confirmed that S-protein is a likely target of the aptamer. Li et al. (2014) 

verified the aptamers’ binding sites by incubating target LoVo cells with 0.05% trypsin or 0.1 

mg/mL proteinase K at 37°C for 3 min or 10 min, respectively. After enzyme treatment, the 

binding of FITC-labeled aptamers with the treated cells was investigated using flow cytometry. 

The aptamers that showed decreased fluorescence intensity were identified to be targeting cell 

membrane protein, while the aptamers that displayed no change in fluorescence intensity 

probably was targeting carbohydrate or lipid on the membrane. To further explore if the 

aptamers can penetrate into the cells via endocytosis by binding to the receptor, LoVo cells were 

first incubated with membrane protein-binding aptamers at 37°C and then with trypsin before 

being subjected to flow cytometry analysis. All aptamers showed total fluorescence loss, except 

one displayed only a decrease in fluorescence intensity which could be caused by the ingestion 

of aptamer molecules into the cells via endocytosis. This assumption was further confirmed by 

observing the fluorescence inside the cells under fluorescence microscope. Based on the different 

binding targets, aptamers were applied as either a carrier for specifically delivering the 

anticancer drug or a probe for fluorescence imaging of target cancer cells or tissues. Other 

binding molecules that have been determined by researchers include LPS (Lee et al., 2012), RET 

receptor tyrosine kinase (transmembrane molecule) (Cerchia et al., 2005) and so on.  
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1.1.3 Other methods of SELEX 

1.1.3.1 Automated SELEX 

The selection process of conventional SELEX is repetitive and time-consuming, taking 

weeks to months to complete. Cox et al. (1998) automated a protocol for in vitro selection using 

an augmented Beckman Biomek 2000 pipetting robot, which was interfaced with three other 

devices: a PTC-200 thermal cycler (for aptamer amplification), a magnetic bead separator (for 

partitioning target bound aptamers from free nucleic acids), and a Peltier cooler (for holding 

enzyme for amplification) via a Dimension XPS H266 computer. Five rounds of selection were 

accomplished using this automated SELEX procedure and each single round took only 212 min 

in total, greatly reduced labor and time. Instead of setting up large robotic workstations, 

Hybarger et al. (2006) established a smaller and simpler chip-based automated microfluidic 

SELEX prototype, consisting of reagent-loaded microlines, pressurized reagent reservoir 

manifold, thermocycler, and actuatable valves controlled by LabView. The utilizing of 

microlines and valves made the flowing of reagents more controllable and the speed of 

thermocycling faster because of smaller reaction volumes, which altogether caused this prototype 

to be less costly and more rapid. 

1.1.3.2 Non-SELEX 

Non-SELEX is a process involving repetitive steps of partitioning of aptamers from non-

aptamers but with no amplification between them, which was first developed and named by 

Berezovski et al. in 2006. For the entire non-SELEX process, only three steps of partition by 

running non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) were 

conducted. In the first step, 150 µl mixture of 25 mM naive DNA library (2 × 1012 molecules) 
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and 0.5–500 nM target were injected into the capillary followed by incubation of 15 min. After 

the running NECEEM and a fraction was collected in the outlet vial containing 5 µl of the target 

(h-Ras protein) solution. The step was then repeated twice prior to the affinity analysis of 

aptamer pool accomplished also by NECEEM. The exemption of repetitive steps of PCR proved 

to accelerate the procedure of aptamer selection without compromising its efficiency, exclude 

quantitative errors associated with the exponential nature of PCR amplification, and avoid the 

bias related to differences in PCR efficiency with respect to different oligonucleotide sequences. 

The lowest Kd value they obtained for an individual aptamer was 0.2 μM and the entire protocol 

was completed in 1 week which is much shorter compared with conventional SELEX that takes 

several weeks or months (Berezovski et al., 2006). Kupakuwana et al. combined over-

representation together with deep sequencing and dramatically shortened the discovery process 

to one step of partitioning, which they called as acyclic identification. When the number of 

randomized sequence is very large, almost all of the molecules in the pool occur as single copies. 

By decreasing the number of randomized sequence, the representation of each different sequence 

in the library of 0.1 nmol of total strands could be increased to 56, 000 copies, referred to as 

over-representation. In addition, the use of deep sequencing in aptamer discovery allowed more 

sequences to be sampled in the partitioned pool than Sanger sequencing and thus enabled the 

distinguishing of aptamers from over-represented library after a single partitioning step 

(Kupakuwana et al., 2011).  

1.1.3.3 In vivo SELEX 

On condition that the binding of aptamers is dependent on the 3D conformation of their 

targets which varies in different environments, it won’t be so practical for aptamers selected 

against purified proteins or whole cells in vitro to be applied in cell and tissue imaging or tumor 
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treatment in vivo. To solve this problem, in vivo SELEX has been developed to generate 

aptamers with better selectivity to target cells and much less binding to non-target cells in the 

body. One example is the in vivo screen of RNA aptamers for CT26 tumor in tumor-bearing 

mice via repetitive intravenous injection of random RNA library into the mice and extraction, 

amplification of injected RNA molecules from liver tumors. By the excision of aptamer bound 

proteins followed by peptide-mass fingerprinting and MS/MS peptide fragment ion-matching, 

the target protein was identified to be mouse p68 helicase, which was further confirmed due to 

the overlapping localization of the aptamers and p68 expression in tumor tissue sections (Mi et 

al., 2010) 

1.2. Aptamer based biosensors 

1.2.1 Introduction to biosensors 

A biosensor is an analytical device, composed of a bio-recognition element and a 

transducer. A bio-receptor is a biologically derived material or biomimetic component, which 

interacts, binds, or recognizes the target for detection. A bio-receptor could be enzymes, 

antibodies, nucleic acids, cells, or phages to detect varied targets, including pathogens, proteins 

and small molecules. Aptamers bind to the targets by their 3D structures instead of base-paring. 

When nucleic acids are used in biosensors for the detection of genomic nucleic acids via 

hybridization, the biosensors are called genosensors; while if aptamers are applied in biosensors 

for the recognition of small molecules, proteins, or cells, the biosensors are called aptasensors.  

While a transducer serves to convert a biological response into electrochemical, optical, thermal, 

or mass signals which could be observed and displayed more easily. For optical biosensors, the 

detection methods include fluorescence, calorimetry, chemiluminescence, surface plasmon 
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resonance (SPR), Raman spectroscopy, and so on. Optical aptasensors have been used for the 

detection of viruses (Bai et al., 2012) and foodborne pathogens (Chang et al., 2013; Xu et al., 

2015). For electrochemical biosensors, the electroanalytical methods could be cyclic 

voltammetry (CV), amperometry, electrochemical impedance spectroscopy (EIS), and 

potentiometry. Using EIS method, the signal could be transduced as impedance, and it will be 

called an impedimetric biosensor. Electrochemical aptasensor have also been developed for the 

detection of viruses and pathogenic bacteria coupled with various nanomaterials (Wang et al., 

2015; Labib et al., 2012; Zelada-Guillén et al., 2012). Mass-based biosensors include 

magnetoelastic and piezoelectric sensors, while QCM is a piezoelectric sensor. A thermal 

biosensor measures the amount of heat released during come chemical reactions (Yao et al., 

2014; Wang et al., 2016).   
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Fig. 1.1 Components and classification of biosensors.  

 

 

1.2.2 QCM sensors 

1.2.2.1 Theoretical principles of QCM 

QCM is an acoustic (mass-based) piezoelectric biosensor. When an alternating potential 

(a sine wave) is applied to the quartz face, the quartz will oscillate (Jaiswal et al., 2008). If the 

thickness of the quartz is twice the acoustical wavelength, a standing wave can be established, 

half period of which equals to the inverse of the frequency - resonant frequency. A quartz crystal 
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has a complicated structure, and there are many ways to cut quartz crystal relative to the x, y, z, 

axes. Each cut has a different vibrational mode and is useful in particular ways. The AT-cut has 

gained the widest use for electronic instruments due to its low temperature coefficient at room 

temperature, which means the resonant frequency is not influenced much by small fluctuation in 

temperature. 

QCM was first used to monitor the growth of thin film in vacuum, and later was used in 

liquid for monitoring of molecule interaction. For a thin and rigid film, the decrease in frequency 

is linearly proportional to adsorbed mass on the quartz surface based on the piezoelectric effect.  

The linear relationship has been defined by the Sauerbrey equation (Sauerbrey, 1959; Hengerer 

et al., 1999):  
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Where ∆F (Hz) is the measured frequency change, Fo (MHz) is the resonant frequency of the 

piezoelectric quartz crystal, ∆M (g) is the mass change on the electrode surface, A (cm2) is the 

active area of the coated quartz surface (Kumar, 2000; Liss et al., 2002),  ρ is the density of the 

crystal (2.648 g/cm3), and µ is the shear modulus of the quartz (2.947 × 1011 g/cm3/s2) (Shan et 

al., 2014), t is the quartz crystal thickness (Liang et al, 2017). Obviously, ∆F is inversely 

proportional to the square of the thickness of the quartz, which indicates that thinner quartz gives 

higher sensitivity. However, thinning the oscillator will increase the inertia resistance of the 

(1-1) 

(1-2) 
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electrode layers deposited on the quartz, leading to deviation from the Sauerbrey equation. Au 

films were most commonly used as electrodes due to high biocompatibility and easy 

functionalization with thiola, but the density of Au is much larger than that of the quartz, causing 

very high inertia resistance (Ogi et al., 2008).  

Since the Sauerbrey equation only applies to rigid films, when the adsorbed film is not 

rigid, the equation becomes invalid. The viscosity effect of the deposited layer also participates 

in the frequency shift, for elastic materials such as cells, protein, or polymer layers with 

entrapped water do not following the oscillations perfectly, which leads to internal frictions 

(motional resistance) and, therefore, energy dissipation. Dissipation factor is defined as energy 

loss per stored energy during one oscillation cycle (Kasper et al., 2016). The negligence of the 

viscosity effect can be a reason for the experimentally observed deviation from a linear 

relationship of QCM resonant frequency with mass change and can limit the sensitivity of QCM 

sensors (Voinova et al., 2002). QCM with Dissipation (QCM-D) is able to provide information 

about the viscoelastic properties as well as the mass change of adsorbed films in real time. 

(Jaiswal et al., 2008). Poitras and Tufenkji (2009) developed a QCM-D biosensor for detection 

of viable E. coli O157:H7. The polyclonal antibodies were immobilized onto gold-coated QCM-

D quartz crystals via cysteamine. By conducting QCM-D measurement over a wide range of 

bacterial cell concentrations, the biosensor signal was set as the initial slope of the dissipation 

shift (Dslope). A linear response in the initial Dslope was obtained for detection of E. coli O157:H7 

from 3 × 105 to 1 × 109 cells/ml, while linearly increasing frequency shifts were only observed 

from detection of E. coli O157:H7 of 106 cells/ml to 108 cells/ml. 

As the density and viscosity of the deposited layer are greatly affected by the liquid 

environmental temperature, it is important to exclude the environmental factor in order to avoid 
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large frequency drift. One possible way to cancel out environmental factors is by arranging 

another QCM as a reference, however, separately arranged two QCM chip may receive slightly 

different environment influence, leading to un-precise cancellation. So Liang et al. (2017) 

designed the dual-channel QCM on one single quartz chip, where the two QCM resonators are 

supposed to have the same resonance characteristics. Then the frequency drift caused by the 

same environmental factors can be eliminated by taking the frequency difference between the 

two resonators. The performance of the fabricated dual-channel QCM was tested both in air and 

liquid. Highly improved frequency difference value was observed and suggested that the one 

chip dual channel QCM was very promising to be used a sensitive bio- or chemical- senor.  

1.2.2.2 QCM based aptasensors 

QCM sensors are nanogram mass sensing devices, possessing the advantages of 

simplicity, cost effectivity, label-free detection, and capability of for real-time monitoring 

(Marrazza, 2014). They have been used for studying the interactions of biomolecules, 

quantitative measurement for the binding affinity, and detection of a wide range of targets, such 

as ions, biomolecules, and cells.  

Detection of small molecules. Neves et al. (2015) developed their own electromagnetic 

piezoelectric acoustic sensor (EMPAS) for the label-free detection of cocaine based on aptamers. 

The acoustic resonance of an electrode-free quartz crystal was excited through an external 

magnetic field produced by a spiral coil underneath the crystal. This design allowed the sensor to 

operate at ultra-high frequencies (860 MHz), which led to the ultra-sensitivity of the sensor. The 

quartz disc was coated with an S-(11-trichlorosilyl-undecanyl)-benzenethiosulfonate (BTS) 

adlayer followed by the immobilization of cocaine binding DNA aptamer, composing the 
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sensing platform for cocaine. Exposed to 100 µM cocaine, an EMPAS frequency shift of -1648 ± 

260 Hz was generated. And the concentration limit of detection (CLoD) was determined to be 0.9 

µM using the regression parameters. No detectable response of the developed sensor was 

observed in contact with 100 µM of benzoylecgonine (BE) and 100 µM of ecgonine methylester 

(EME).  

Detection of viruses. A nanowell-based QCM aptasensor was developed by Wang et al. 

(2017) for rapid and sensitive detection of AIV H5N1. The nanowell-based electrode was 

fabricated by immobilizing the nanoporous gold film prepared using a metallic corrosion method 

onto the QCM gold electrode via the cross-linker 1,6-hexanedithiol (HDT). The H5N1 AIV 

ssDNA aptamers labeled with amino groups were then immobilized on the carboxyl group 

functionalized gold nanowell layer. The binding of target viruses caused big drop of the resonant 

frequency of the quartz crystal, and a linear correlation was found between the frequency shift 

and the virus titer. The developed aptasensor achieved label-free detection of 2−4 HAU/50 µl in 

10 min without interference from non-target AIV subtypes of H1N1, H2N2, H7N2 and H5N3. 

Detection of bacterial cells. To minimize the influence of food matrices on the detection 

of foodborne pathogens, Ozalp et al. (2015) created a pre-purification system of aptamer-

modified magnetic beads coupled to a QCM sensor for rapid detection of Salmonella 

Typhimurium in food samples. The magnetic p(Hydroxypropyl methacrylate (HPMA)/ 

ethyleneglycol dimetha-crylate (EGDMA) beads were functionalized with 2-bromo-2-

methylpropionyl bromide (BMP) for creating hairy polymer on the bead surfaces. The beads 

were then used for graft polymerization with p(glycidyl methacrylate) (pGMA) in order for 

amino group labeled Salmonella aptamers to immobilized on the bead surface. Upon capture by 

the aptamer-immobilized magnetic beads, Salmonella cells were pre-concentrated and eluted 
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from the beads with NaOH treatment. The eluted bacterial cells were then subjected to QCM 

sensing with aptamer immobilized QCM crystal. The QCM aptasensor showed rapid response 

(less than 10 min) with a LOD of 100 cells. For milk samples contaminated with Salmonella or 

E. coli, the aptasensor was able to distinguish Salmonella at 104 CFU/ml from E. coli at the same 

concentration. In the study of Wang et al. (2017), QCM was used for the selection of aptamers 

against Salmonella Typhimurium and development of an aptamer-based sensor for the rapid 

detection of S. Typhimurium. After the kinetic analysis of all aptamer candidates using QCM, 

the aptamer with highest binding affinity was selected and applied to the QCM sensor. The 

developed aptasensor showed good sensitivity in detecting 103 CFU/mL of S. Typhimurium with 

less than 1 h. 

Detection of human cells. Shan et al., (2014) developed a strategy to significantly amplify 

the signal of detection of target leukemia cells. Upon capture by the aptamer immobilized on the 

QCM sensor surface, the leukemia cells were labeled by aminophenylboronic acid-modified gold 

nanoparticles (APBA-AuNPs) through the formation of stable borate ester complexes between 

sialic acids on cell membranes and phenylboronic acid (PBA).  The following silver 

enhancement is achieved by the catalysis of silver ion into metallic silver by AuNPs, which 

resulted in great frequency change. A good linear relationship between the frequency shift and 

cell concentration ranging from 2 × 103–1 × 105 cells/mL was obtained, with a LOD of 1160 

cells/ml.  
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1.3 RCA 

1.3.1 Fundamentals of RCA 

In the mid-1990s, some particular DNA polymerases were found to continuously 

lengthen a short DNA strand annealed to a small circular template (13-240 nt) by a process now 

commonly called RCA (Zhao et al., 2008). This amplification technique exists naturally and is 

utilized by bacteriophage, eukaryotic viruses and bacterial plasmids (Chandler et al., 2013). A 

long ssDNA is yielded by the RCA reaction, which comprised of tens of thousands of 

nucleotides corresponding to hundreds of nanometers to hundreds of microns in length. By 

controlling RCA reaction time and dNTPs amount, the length of RCPs could be tuned 

accordingly. The RCPs contain tandem repetitive sequence units complementary to the circular 

tailor-designed DNA template, therefore they can be easily modified and applied to a RCA-based 

sensor for signal amplification in detection of a wide range of targets. 

RCA is one among isothermal amplification methods, which also include nucleic acid 

sequence based amplification (NASBA), helicase-dependent amplification (HAD), strand 

displacement amplification (SDA), and loop-mediated isothermal amplification (LAMP) 

(Mayboroda et al., 2018). RCA relies on the activity of mesophilic polymerase (such as phi29 

and Bst DNA polymerase), whose working temperature spans from 30–65°C and possessing 

strand displacement activity. As for phi29 polymerase, the optimal activity is at temperature of 

30°C, which makes it a perfect enzyme for the DNA amplification at environmental 

temperatures. Polymerase-mediated elongation produces accumulating by-products of 

pyrophosphate and protons, which results in the acidification of the reaction solution.  
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Fig. 1.2 Generation of long ssDNA by RCA reaction. Amplification initiates by a short DNA 

primer annealed to a circular DNA template in the presence of phi29 DNA polymerase and 

dNTP mix. 

 

Although the polymerase chain reaction (PCR) is a detection method of high sensitivity, 

it requires sophisticated instrument for highly precise temperature cycling, complex sample 

preparation, strict laboratory conditions, and trained personnel, which hamper its widespread use 

for routine or in-field analysis. As an isothermal amplification method, RCA possesses unique 

characteristics, such as operation at a constant temperature, no need of thermally stable DNA 

polymerase or expensive instruments, high efficiency, and compatibility with biological systems 

(Zhao et al., 2008).  

Yan et al. (2012) surveyed the effects of varied DNA circle size and varied polymerases 

on the RCA reaction. They found that T4, T7, Sequenase, Taq, Klenow, and Pol I DNA 

polymerases all produced RCPs longer than 2000 nt. There is a misconception that it is required 

for the polymerase to unwind the RCPs in front of the polymerase for efficient amplification. 

However, it is not true because a duplex is not likely to be made unstrained in a circle smaller 

than 120 nt. Circular templates ranging from 26 (smaller than the polymerase itself) to 74 nt had 

all been successfully amplified, indicating no topological issues limiting DNA strand elongation.  
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Polymerases have inherent processivity, which is the average length of DNA they synthesize 

before dissociating from the template. The smaller the circular template is, the more the copies of 

the template is completed. That is one reason that very small DNA templates are more useful. 

Phi29 polymerase, an enzyme from bacteriophage phi29, is one of the most processive 

polymerases, with a processivity of tens of thousands of nucleotides (Mohsen and Kool, 2016). 

Recent developments of RCA include the improvement of amplification efficiency by 

“hyperbranched” RCA (HRCA), multiple displacement amplification or circle to circle 

amplification; the creation of the padlock process for detection of nucleic acids and proteins; the 

exploration of limited reverse transcriptase activity of phi29 DNA polymerase (Krzywkowski et 

al., 2018).  

1.3.2 Application of RCA in biosensors 

1.3.2.1 For signal amplification 

Optical sensors. A dendrimer-aptamer based microfluidic detection platform coupled 

fluorescence signal amplification with RCA was developed. Carboxyl groups functionalized poly 

(amido amine) (PAMAM) dendrimers with ethylenediamine core were immobilized on amine 

functionalized inner surface of polydimethylsiloxane (PDMS) microchannel. PAMAM 

dendrimers were used on the one hand to prevent non-specific binding of non-target particles, 

and on the other hand to increase binding sites for NH2- aptamer immobilization. Following 

capturing of E. coli O157:H7, aptamer-primer, padlock probe, and RCA reagents were 

introduced to the microchannel subsequently. After RCA reaction, Cy3 labeled DNA probes 

were injected to hybridize with RCPs for fluorescence signal amplification. With signal 

enhancement using RCA, the LOD was reduced from 103 cell/ml to 102 cells/ml (Jiang et al., 
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2017). Yan et al. (2012) described a new approach based on nano rolling-circle amplification 

(nanoRCA) and nano hyperbranched rolling-circle amplification (nanoHRCA) for enhanced 

surface enhance Raman scattering (SERS) “hot spots” in protein microarrays. Biotinylated 

secondary antibodies were deposited on the chip, followed by the incubation with streptavidin 

conjugated AuNPs. The primer modified on the AuNPs would initiate the RCA reaction. For 

HRCA, the second primer, circle DNA, along with amplification mixture were added and reacted 

for another 30 min. AuNPs functionalized with Cy3-labeled oligonucleotide strands were then 

hybridizing with the complimentary sequences on the RCPs, and the subsequent Ag 

enhancement caused the number of hot spots to be largely increased. The enhancement factors 

(EF) for nanoHRCA-SERS and nanoRCA-SERS were approximately 1.3 × 108 and 3.7 × 107, 

respectively. 

Electrochemical sensors. A disposable aptasensor with signal amplification was 

developed for the detection of prostate-specific antigen (PSA).  PSA aptamer was immobilized 

on gold-coated magnetic NPs as the recognizing material, and then added into the sample 

solution containing artificial cDNA-primers. The designed cDNA-primer comprised a 27-mer 

sequence complementary to the PSA aptamer and a 9-mer primer sequence complementary to a 

circular RCA template. In the absence of PSA, the PSA aptamers on the magnetic NPs 

hybridized with the cDNA-primer, which would further initiate the RCA reaction. In the 

presence of PSA, the aptamer bound with PSA and less cDNA-primers, causing less RCA 

reaction. Following RCA reaction, the magnetic NPs were immobilized on a screen-printed 

electrode (SPE) modified with a DNA probe complimentary to RCA unit, and incubated with 

methylene blue (MB). MB can be bound specifically to guanine (G) in the RCPs and yield 

amplified electrochemical signal. The limit of detection (LOD) was determined to be 22.3 fM 
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and no significant interference was observed between PSA and four proteins found in human 

blood (IgE, IgG, globulin, albumin) based on the current response (Lee et al., 2018).  A novel 

label-free electrochemical biosensor for highly sensitive and specific detection of E. coli was 

developed based on RCA coupled peroxidase-mimicking DNAzyme amplification. In a 

sandwich assay platform, E. coli were first captured by the polyclonal antibody immobilized on 

the electrode surface, and then bound by an aptamer-primer probe (APP), which contained anti-

E. coli aptamer and a primer complementary to circular DNA probe. In the presence of phi29 

DNA polymerase, a long DNA molecule comprising numerous G-quadruplex units was 

produced. With the help of hemin and K+, G-quadruplex/hemin complex was formed and 

mimicked the peroxidase activity of horseradish peroxidase (HRP) to catalyze the reduction of 

H2O2, resulting in a significantly amplified current flow. A good linear relationship was 

displayed between the peak current intensity and the logarithm value of E. coli concentration 

ranging from 9.4 to 9.4 × 105 CFU/ml, with the LOD calculated to be 8 CFU/ml (Guo et al., 

2016).  An ultrasensitive electrochemical genosensor of Ebola virus cDNA was developed by 

rolling circle and circle to circle amplification (C2CA). Target Ebola cDNA was the product 

after retrotranscription of a specific L-gene sequence present in the five most common Ebola 

species. Upon hybridization of the padlock probes with the cDNA target, the probes were ligated 

with T4 ligase. Then the biotinylated cDNA was modified to the streptavidin conjugated 

magnetic particles (MPs) and RCA was performed on MPs for 60 min. After that, readout probes 

labeled with HRP were hybridized with the RCPs and produced electrochemical signal. For 

C2CA, RCPs after RCA reaction for 60 min were monomerized by the digestion of AluI 

restriction enzyme, and the monomers were religated and reamplified by RCA a second time. 

Different readout probes labeled with HRP were added and the electrochemical signals were 
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measured. The developed electrochemical genosensor exhibited ultrahigh sensitivity with a LOD 

of 33 cDNA molecules with a total assay time of less than 2.5 h (Carinelli et al., 2017).  

QCM sensors. He et al. (2014) developed a QCM aptasensor combined with RCA and 

bio-bar-coated AuNP enhancement for the detection of thrombin. Primary aptamer probes were 

initially immobilized on the QCM electrode via Au-S binding. Upon the capture of thrombin, 

aptamer-primer complex, which contains a secondary aptamer and a primer, was added to form a 

sandwich assay platform. Following the hybridization and ligation of the padlock probe, the 

RCA reaction could be initiated in the presence of phi29 DNA polymerase and dNTPs. The 

generated long ssDNA, composed of hundreds of tandem-repeat sequences, would hybridize 

with the AuNP labeled bio-bar-coded probes, resulting in significant signal amplification.  The 

developed QCM sensor exhibited an excellent specificity and ultrahigh sensitivity with a 

detection limit of 0.78 aM.  

1.3.2.2 For generating recognition elements 

Monovalent adhesion ligands, such as aptamers, extend only a few nanometers into the 

solution, fail to capture large-sized entities, such as human cells (∼10–30 μm) with a high 

capture efficiency under high shear stress. Inspired by marine creatures that are capable of 

effectively capturing flowing food particulates with long tentacles containing repetitive adhesive 

domains, Zhao et al. (2012) developed 3D DNA network comprising repeating adhesive aptamer 

domains to capture CCRF-CEM cells. The 3D DNA network was produced by RCA reaction, the 

circular template of which was designed to be complimentary to the aptamer against protein 

tyrosine kinase 7 (PTK7) incorporated with a polyT spacer. RCA reaction was carried out at 

37 °C for 30 min, which resulted in a length of tens of micrometers. They proved that target cells 
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bound more strongly to RCA-aptamers than to unit-aptamers via a peizo-controlled micropipette. 

They also demonstrated that the 3D DNA network could significantly improve the capture 

efficiency of CCRF-CEM cells over monovalent aptamers and antibodies on microfluidic test 

cell and herringbone chips. It was confirmed that a standard microscope slide (∼10 cm2) could 

harvest more than 100 target cells within 2 min of operation of the system. Having successfully 

captured leukemia cells, the next mission of the multivalent aptamer system would be to target 

and kill the cells. To solve the major problems associated with current chemotherapies, such as 

poor efficacy and off-target systemic toxicity, Zhang et al. (2013) developed a new form of 

polyvalent therapeutics by RCA, which is called “Poly-Aptamer-Drug”.  The Poly-Aptamer-

Drug system is constructed by amplification of a DNA template composed of a PTK7 aptamer 

complimentary sequence and a spacer domain, which could hybridize with complementary 

strands to form duplex, doxorubicin-loading domains. RCA was carried out at 30°C for 10 min, 

producing a long ssDNA corresponding to approximately 30-40 aptamer units. Multivalent 

binding of Poly-Aptamer-Drug system on the cell membrane intensified endocytosis compared 

to monovalent binding, which lasted approximately 1 h and more than 3 h, respectively, in terms 

of the internalization half-time (defined as half of the time to reach the plateau). As for the 

toxicity followed the release of doxorubicin, treatment of leukemia cells with Poly-Aptamer-

Drug (10 nM) for 24 h resulted in an approximately 50% loss of viability, which was 

significantly higher than that of Dox alone or Mono-Aptamer-Drug.  
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Table 1.3 Various RCA based biosensors with details of the RCA reaction. 

Type of 

biosensors 

Length of 

template (nt) 

Spot where primer is 

tagged 

RCA time 

(min) 
Reference 

Optical 61 Avidin on microfluidic cell 30 Zhao et al., 2012 

Optical  60 AuNPs 30 Yan et al., 2012  

Optical 60 Carbon nanotubes 90 Zhao et al., 2013 

Optical 72 In the cell 90 Ge et al., 2014 

Optical 79 Aptamer 120 Jiang et al., 2017  

Electrochemical 73 Magnetic particles 20 
Kühnemund and 

Nilsson, 2015 

Electrochemical 78 Aptamer 80 Guo et al., 2016 

Electrochemical 85 Magnetic particles 60 Carinelli et al., 2017 

Electrochemical 45 Aptamer on MNBs 40 Lee et al., 2018 

QCM 58 Secondary aptamer 90 He et al., 2014 

 

1.3.3 Other applications of RCA 

RCA has also been used to increase the complexity of periodic protein nanostructures 

(Cheglakov et al., 2008). Using RCA, linear DNA chains containing periodic repeats of aptamers 

for thrombin and for both thrombin and lysozyme were created. The length of these period DNA 

tapes could be controlled by the dNTPs to template ratio. The formed DNA-protein 

nanostructures were exploited for further hierarchical self-assembly by acting as anchoring sites 

for Au nanoparticles to form inorganic nanowires. These constructed nanoassemblies hold great 

promise in biosensing and enzymatic catalysis. DNA nanotubes have become increasingly 

attractive due to their great potential to be used for protein organization, as templates of 

nanowires and photonic systems, and for drug delivery. Hamblin et al. (2012) reported a strategy 

for the construction of DNA nanotubes, whose backbone was produced by RCA. The RCPs 
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produced in this study composed of two alternating regions: a binding region for attaching 

“rungs”, and an intervening spacer region for hybridizing to spacers strand.  With the addition of 

double-stranded linkers, the fully double-stranded triangular nanotube (RCA-NT) were formed. 

These nanotubes were found to be more resistant to nuclease degradation, and more capable of 

entering human cervical cancer (HeLa) cells than double-stranded DNA, which implied their 

unique potential for drug delivery and cell imaging. 

1.4 Objectives 

The overall goal of this research was to develop a QCM biosensor based on selected 

aptamers and a multivalent aptamer system for rapid and sensitive detection of E. coli O157:H7. 

Specifically the objectives of this research were:  

1. To select DNA aptamers against E. coli O157:H7 with high affinity and 

specificity using whole-bacterium SELEX. 

2. To design and construct a QCM sensor based on the selected aptamer for the 

sensitive and rapid detection of E. coli O157:H7 

3. To creat a multivalent aptamer system using RCA and then integrate it into the 

QCM sensor for the ultrasensitive and rapid detection of E. coli O157:H7. 
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Chapter 2 Whole-bacterium SELEX of DNA Aptamers for Rapid Detection of E. coli 

O157:H7 Using a QCM Sensor 

2.1 Abstract 

The rapid detection of foodborne pathogens is critical to ensure food safety. The 

objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using 

the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and 

apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive 

detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 

rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, 

and Salmonella Typhimurium, were performed. The aptamer pool from the last round was 

cloned and sequenced. One sequence S1 that appeared 16 (out of 20) times was characterized 

and a dissociation constant (Kd) of 10.30 nM was obtained. Subsequently, a QCM aptasensor 

was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the 

detection time of the aptasensor was determined to be 1.46 × 103 CFU/ml and 40 min, 

respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium 

SELEX possessed higher sensitivity than previous work on SELEX (Lee et al., 2012) and the 

potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens. 

2.2 Introduction 

Each year, approximately 48 million people become sick from foodborne diseases. In 20 

percent of these cases where a specific causative pathogen could be identified, over 90 percent 

are caused by only 15 pathogens (CDC, 2011). E. coli O157:H7 is one of them. Symptoms 

caused by E. coli O157:H7 infection include severe, acute hemorrhagic diarrhea, 
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abdominal cramps, and hemolytic uremic syndrome (HUS) particularly in children. Great 

financial loss has been caused in terms of pain, suffering, reduced productivity, and medical 

costs. To control outbreaks and disease progression in individuals infected, it is critical to rapidly 

identify the pathogen using methods with high sensitivity and selectivity, in which a recognition 

element that can specifically bind to the target is essentially required. 

Aptamers are single-stranded DNA (ssDNA) or RNA oligonucleotides that are capable of 

specifically binding to selected targets, including whole cells, proteins, peptides and small 

molecules, through their folding into unique three-dimensional structures. Compared with 

antibodies, aptamers show similarly high affinities to their targets, with dissociation constants 

(Kd) ranging from nanomolar to picomolar. They also comprise a number of advantages over 

antibodies, such as quick generation against a wider spectrum of targets, chemical synthesis with 

low cost, easy modification, thermostability and non-immunogenicity (Hyeon et al., 2012; Joshi 

et al., 2009; Keefe et al., 2010). Aptamers are usually selected through Systematic Evolution of 

Ligands by Exponential Enrichment (SELEX), which was first developed by Tuerk and Gold 

(1990). Whole-cell SELEX invented by Homann and Göringer (1999) is superior to conventional 

SELEX in that molecules are targeted in their native conformations, complex purification is 

avoided, and new biomarkers can be discovered (Hamula et al., 2011).  

So far, more than ten aptamers developed for foodborne pathogens by whole-

cell/bacterium SELEX have been reported, including E. coli (Kim et al., 2013), E. coli O157:H7 

(Lee et al., 2012), E. coli K88 (Peng et al., 2014), Salmonella spp. (Kolovskaya et al., 2013), S. 

Typhimurium (Duan et al., 2013a; Dwivedi et al., 2013), Salmonella Paratyphi A (Yang et al., 

2013), Listeria spp. (Suh et al., 2014), L. monocytogenes (Duan et al., 2013b; Lee et al., 2015), S. 

aureus (Turek et al., 2013), Campylobacter jejuni (Dwivedi et al., 2010), Shigella dysenteriae 
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(Duan et al., 2013c), Streptococcus pyogenes (Hamula et al., 2011), and Vibrio parahemolyticus 

(Duan et al., 2012). However, the RNA aptamer developed against E. coli O157:H7 by Lee et al. 

(2012) was less stable, harder to produce, and more costly if modified to be RNase-resistant 

compared to ssDNA aptamers. In addition, the equilibrium dissociation constant (Kd) of the 

developed aptamer was only 110 nM. And these aptamers have not been applied to any biosensor 

for the detection of E. coli O157:H7 yet. The ssDNA aptamers targeting E. coli selected by Kim 

et al. (2013) possessed lower Kd values ranging from 2.4 to 25.2 nM. Nevertheless, these 

aptamers were not specifically selected against E. coli O157:H7, and their binding affinity to E. 

coli O157:H7 was not characterized.  

For rapid and sensitive detection of foodborne pathogens, aptamers have been 

incorporated into various biosensing platforms, such as fluorescence (Wang and Kang, 2016), 

resonance light-scattering (Chang et al., 2013), electrochemistry (Bagheryan et al., 2016), lateral 

flow (Wu et al., 2015), and QCM (Wang et al., 2017). QCM is an acoustic (mass-based) 

piezoelectric biosensor, which allows detection of small mass change down to the nanogram 

level. Based on the piezoelectric effect, the frequency shift of the quartz oscillation is 

proportional to the mass change deposited on the quartz surface. Therefore, QCM is highly 

suitable for real-time monitoring of molecular interactions on the crystal surface, and label-free 

detection (Marrazza, 2014). To the best of our knowledge, most QCM aptasensors were 

developed to target proteins and viruses, and only three works by Ozalp et al., (2015), Shan et al. 

(2014), and Wang et al. (2017) have reported to use QCM aptasensors for the detection of 

bacterial or human cells.   

In this study, a whole-bacterium SELEX process for the selection of ssDNA aptamers 

with high affinity and specificity for live E. coli O157:H7 was described. The selection process 
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using antibody-conjugated magnetic beads for capturing target bacteria allowed the selected 

aptamer to obtain a different binding site on the bacteria surface apart from that of anti-E. coli 

antibodies. This feature of the aptamer would enable it to be employed in an aptamer-antibody 

sandwich assay, avoiding the unsuccessful labeling due to the competition of binding sites 

between ligands.  The selected aptamer was further characterized for its affinity and specificity 

and utilized in a QCM sensor for demonstrating its potential in the rapid detection of E. coli 

O157:H7 at low concentrations. 

2.3 Materials and methods 

2.3.1 Bacterial strains and culture conditions 

Stock cultures of E. coli O157:H7 (ATCC 43888), S. aureus (ATCC 27660), L. 

monocytogenes (ATCC 43251), S. Typhimurium (ATCC 14028), and E. coli K12 (ATCC 29425) 

were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). Cells 

were grown in 5 ml brain heart infusion (HBI) medium at 37°C, harvested upon reaching the log 

phase by centrifugation. Then the cells were washed twice in 1 × phosphate buffered saline 

(PBS), and finally resuspended in 1 ml of 1 × PBS. For bacterial enumeration, the bacterial 

samples were 10-fold serially diluted with 1 × PBS and were surface plated on the TSA (tryptic 

soy agar) plates and incubated overnight before counting. Colony forming units (CFU) on the 

agar plates were counted as CFU/ml.  

2.3.2 Random DNA library and primers 

A 90-nucleotide (nt) ssDNA library contained a 45-nt central random region flanked by 

two primer binding sites: 5’-CAG TCC AGG ACA GAT TCG CGA G-N45-CAC GTG GAT 
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TTC ATT CAG CGA TT-3’. The primers used for PCR amplification are: forward, 5’- CAG 

TCC AGG ACA GAT TCG CGA G - 3’ and reverse, 5’-phos-AAT CGC TGA ATG AAA TCC 

ACG TG-3’. The phosphate-labeled reverse primer was used for the digestion with lambda 

exonuclease to obtain ssDNA from amplified dsDNA PCR (polymerase chain reaction) products, 

and the biotin-labeled forward primer was used for the aptamer blotting assay (the forward 

primer was not biotinylated in the process of SELEX). For the cloning of enriched aptamer pool, 

pGEM-T Easy Vector System II was used. The M13 primers: forward, 5’-GTA AAA CGA CGG 

CCA GT-3’ and reverse, 5’-AGC GGA TAA CAA TTT CAC ACA GG-3’ were used for 

verifying the existence of the insert in the plasmid after cloning. Both the library and the primers 

were synthesized by Integrated DNA Technologies, Inc. (Coralville, IA, USA).  

2.3.3 Reagents and apparatus 

Biotin-labeled rabbit antibodies to E. coli O and K Antigenic Serotypes and the biotin-

labeled monoclonal antibodies to S. Typhimurium were purchased from Meridian (Memphis, 

TN, USA). Biotin-labeled rabbit anti-S. aureus antibodies and biotin-labeled rabbit anti-L. 

monocytogenes antibodies were obtained from Biodesign International (Saco, Maine). 

Streptavidin conjugated magnetic beads (MBs, 150 nm) were purchased from Ocean NanoTech 

(San Diego, CA, USA).  

A QCA922 quartz crystal analyzer (Princeton Applied Research, Oak Ridge, TN, USA) 

was used for the analysis of the binding affinity of aptamer pools and the developed aptamer, and 

further for the detection of the target bacteria. AT-cut quartz crystals (International Crystal 

Manufacturing Co., Oklahoma city, OK, USA), whose resonant frequency was 7.995 MHz, were 

employed in the QCM tests. The quartz crystals were 14 mm in diameter and 100 nm in 



42 
 

thickness, with polished Au electrodes (5.1 mm in diameter and 100 nm in thickness) deposited 

on both sides. A methacrylate flow cell (International Crystal Manufacturing Co) was utilized for 

holding the crystal. The crystal was sealed between two O-rings attached to the upper and lower 

pieces of the cell held together with two screws. For QCM measurements, a quartz crystal is 

connect to the oscillator and then to the frequency counter of QCA922. WinEchem software on 

the computer was used to record the frequency change. 

2.3.4 Whole-bacterium SELEX procedure 

In the process of SELEX, whole cells of bacteria E. coli O157:H7 were used. For 

magnetic separation of target bacteria, immunomagnetic beads (IMBs) were freshly prepared 

before each round of SELEX. A scheme of the preparation of IMBs and the capturing of target 

bacteria is shown in Fig. 2.1. Briefly, 20 µl of streptavidin conjugated MBs (1 mg/ml) were 

washed with 180 µl PBS in a 1.5 ml 3% BSA (bovine serum albumin) blocked tube. After 

magnetic separation for 3 min using the magnetic separator (1.3 Tesla [T]) (Aibit Biotech 

Instrument, LLC, China), the solution was pipetted out and the beads were resuspended in 180 µl 

PBS. The beads were then mixed with 20 µl biotinylated anti-E. coli antibodies (Ab) (0.5 mg/ml) 

and incubated using a rotating mixer (Grant Instruments, U.K.) at 15 rpm for 45 min (all the 

following incubation was carried out in this way). After magnetic separation, the excess 

antibodies in the solution were removed. The IMBs were then washed in 200 µl PBS and 

incubated with 200 µl of bacterial solution (108 CFU/ml) for 45 min. The IMBs-cell complexes 

were subsequently collected by magnetic separation (Xu et al., 2015).  
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Fig. 2.1 Schematic diagram of the preparation of immunomagnetic beads and the capture of 

target bacteria. 

 

A scheme of the whole-bacterium SELEX process is shown in Fig. 2.2. The process was 

initiated with 2 nmol of the ssDNA random library, and the aptamer pool of 1-100 pmol (from 

previous round) was used as the input in subsequent rounds. Before incubating with target 

bacteria, the ssDNA (0.03-2.63 µM) dissolved in 38 µl binding buffer (BB: 50 mM Tris-HCl, pH 

7.5, 25 mM NaCl, 5 mM MgCl2) were denatured by heating at 95°C for 10 min and then 

renatured to its secondary structure by cooling down at room temperature for 30 min. Then 

ssDNA dissolved in the incubation buffer (PBS with 0.05% BSA) were incubated with IMBs 

captured bacteria of 108 CFU/ml for 45 min. The unbound ssDNA in the solution were removed 

after magnetic separation. The IMBs-cell-ssDNA complexes were washed in PBS twice and 

resuspended in 20 µl PBS. To elute the bound ssDNA, the IMBs-cell-ssDNA complexes were 

heated at 95°C for 10 min and placed on ice immediately for 10 min, then the denatured ssDNA 

would dissociate from the surface of bacteria and could be collected after magnetic separation. 

To remove the ssDNA that have bound to IMBs instead of target bacteria, the elution was 
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subsequently subject to a negative selection, in which the elution was incubated with the IMBs 

for 30 min, and the unbound ssDNA in the solution after magnetic separation were retained and 

used for further PCR amplification.   

 
Fig. 2.2 The process of the whole-bacterium SELEX against E. coli O157:H7. 

 

Each 50 µl reaction of PCR amplification contained 5 µl 10 × AccuPrime PCR buffer, 1 

µl 2 U/µl AccuPrime Taq DNA polymerase (Life Technologies, Grand Island, NY), 1 µl 100 µM 
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forward primer, 1 µl 100 µM phosphate-labeled reverse primer, 0.1-1 µl of aptamer pool, and 

DNase-free distilled water. PCR conditions were as follows: initial denaturation at 94°C for 5 

min, followed by 20 or 25 cycles (Savory et al., 2014) of denaturation at 94°C for 30 s, annealing 

at 55°C for 20 s, and extension at 68°C for 30 s. A final extension step at 68°C for 5 min was 

carried out after the last cycle. Electrophoresis on 1.5% agarose gel at 130 V for 35 min was used 

to confirm the purity and the size of PCR products. All PCR products were purified using 

MinElute PCR Purification Kit (Qiagen, Valencia, CA).  

To obtain aptamer pool as the input for the next round, ssDNA was generated from 

dsDNA PCR products via lambda exonuclease digestion, in which the 5’-phosphorylated strand 

of dsDNA was digested. 1 unit of lambda exonuclease (5,000 U/ml) was used for digestion of 1 

µg PCR products. Lambda exonuclease, 10 lambda exonuclease buffer, purified PCR product, 

and DNase-free water made up a total reaction volume of 50 µl. The reaction was carried at 37°C 

for 30 min and the enzyme was heat-inactivated at 75°C for 10 min. The obtained ssDNA was 

finally purified by ethanol precipitation with glycogen as a carrier, and the purified ssDNA was 

dissolved in distilled water. Agarose gel electrophoresis was used to determine if the restriction 

digest was complete. The concentration of the precipitated ssDNA was measured by Synergy HT 

multi-mode microplate reader (BioTek Instruments, Inc., Winooski, VT, USA) using BioTek’s 

Take3 multi-volume plate.  

To eliminate nonspecific-binding ssDNA from the pool, four and another two counter 

selection rounds were introduced after SELEX round 9 and 14, respectively. In the counter 

selection, the aptamer pool was incubated with a mixture of non-target bacterial cells (S. aureus, 

S. Typhyimurium and L. monocytogens) at a concentration of 108 CFU/ml for 45 min. After 

magnetic separation, the cell-bound ssDNA were discarded and the unbound aptamer pool in the 
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solution was collected for subsequent PCR amplification. The details on the procedures of all 

selection and counter selection rounds are listed in Table 1.1.  

Table 2.1 Details on procedures of all selection and counter selection rounds. 

Selection (S) 

or counter 

selection (CS) 

round 

Concentratio

n of bacteria 

(CFU/ml) 

Amount of 

ssDNA 

(pmol) 

BSA in the 

incubation 

buffer (%) 

Incubation 

time of 

ssDNA (min) 

Times of 

washing 

S1 108 2000 0.05 75 2 

S2 108 7.5 0.05 45 2 

S3 108 14.65 0.05 45 3 

S4 106 8.69 0.05 45 3 

S5 106 16.97 0.05 45 3 

S6 105 5.57 0.05 30 3 

S7 104 12.12 1 30 3 

S8 104 14.79 1 30 3 

S9 103 17.86 1 30 3 

CS1 108 4.58 1 45 1 

CS2 108 9.33 1 45 1 

CS3 108 1.88 1 45 1 

CS4 108 1.27 1 45 1 

S10 103 101.22 1 20 3 

S11 103 28.62 1 20 3 

S12 103 37.78 1 20 3 

S13 103 3.25 1 20 3 

S14 103 27.88 1 20 3 

CS5 108 53.74 1 45 1 

CS6 108 6.45 1 45 1 

S15 103 33.85 1 15 3 

S16 103 7.25 1 15 3 

S17 103 33.46 1 15 4 

S18 103 17.66 1 15 4 

S19 103 42.64 1 15 4 

 

The aptamer pool from the last round was selected for cloning to obtain unique aptamer 

sequences. Briefly, the aptamer pool was ligated into pGEM®-T Easy Vector System II 

(Promega, Madison, WI), which were then transformed into JM109 High Efficiency Competent 

Cells. After growing on LB (Luria-Bertani)/ampicillin/IPTG (Isopropyl β-D-1-

thiogalactopyranoside)/X-Gal plates overnight, white colonies were randomly picked out. PCR 
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using M13 primers were used to identify the positive inserts. Then the competent cells 

transformed with the clones having positive inserts were growing in LB broth with 50 µg/ml 

ampicillin and the plasmid were purified by QIAprep® Spin Miniprep Kit. PCR was then 

conducted with biotinylated forward primer and phosphorylated reverse primer and ssDNA was 

generated by lambda exonuclease digestion. Following the screening of the binding affinity of 

around 100 clones via dot blot assay, twenty aptamer clones with the highest binding affinities 

were chosen for sequencing by Eurofins Genomics (Huntsville, AL, USA). Secondary structures 

of sequenced aptamers were predicted by web-based OligoAnalyzer 3.1 program from IDT. 

2.3.5 Analysis of the binding affinity using QCM 

Before use, the crystal was immersed in 1 M NaOH for 30 min and 1 M HCl for 5 min to 

obtain a clean Au surface. Then the crystal was rinsed with pure water and absolute ethanol for 

three times (Su and Li, 2005). After drying with a stream of nitrogen, the crystal was submerged 

in 20 mM MHDA (16-Mercaptohexadecanoic acid) for 24 h at room temperature in the dark to 

form self-assembled monolayers (SAMs) terminated with carboxyl groups via gold-thiolate 

bonds (Xue et al., 2014). The unreacted MHDA was removed by three washes with absolute 

ethanol and pure water. The functionalized electrode was then mounted in the methacrylate flow 

cell with only one side exposed to the solution and was connected to the QCA922 quartz crystal 

analyzer.  

Fig. 2.3 shows the procedure of the gold surface immobilization and the binding of 

aptamers to target bacteria: first, 200 µl of deionized water was added into the cell to obtain a 

stable baseline. Then, 300 µl of the freshly prepared EDC (N-(3-Dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride)/NHS (N-Hydroxysuccinimide) (original concentrations: 75 
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mM/30 mM, v/v, 1:1, final concentrations: 37.5 mM/15 mM) solution was added and reacted for 

10 min to convert the terminal carboxylic group to an amine-reactive NHS-ester. After that, 400 

µl of E. coli O157:H7 (106 CFU/ml) was added and incubated for 45 min to be immobilized on 

the electrode surface. Next, 200 µl of BB was used to flush the cell for four times to rinse off the 

excess bacteria. And another 200 µl BB was added to get the baseline. Afterwards, 200 µl of heat 

denatured (95˚C for 10 min) aptamer pool diluted in BB was added and incubated for 45 min. 

After flushing out the unbound aptamers, 200 µl binding buffer was added again to get the 

baseline. The frequency change (∆F) caused by aptamer binding was calculated by measuring 

the difference of the baselines before and after the incubation of aptamer pools (Wang and Li, 

2013).  

 

Fig. 2.3 Schematic diagram of the QCM electrode modification and the binding of aptamers to 

target bacteria. 

 

To determine the Kd of the aptamer candidate, 107 CFU/ml E. coli O157:H7 were 

immobilized on the electrode. Different concentrations of aptamer solution (0, 5 nM, 50 nM, 100 

nM, and 1 µM) were used in the binding assays. Regeneration of the electrode was carried out by 

reacting with 400 µl of different concentrations of NaOH (1, 2, 5, 7.5, and 10 mM) for 2 min. A 

nonlinear regression curve was fitted to the frequency shifts corresponding to the varied aptamer 
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concentration.  And the Kd value was estimated using the equation Y = Bmax × X/(Kd + X) (Bing 

et al., 2010) by GraphPad Prism 5.0 software.  

2.3.6 Analysis of the specificity using dot blot assay 

Non-target bacteria - E. coli K12, S. Typhimurium, and L. monocytogenes were used to 

examine the specificity of the aptamer candidate by dot blot assay. The procedure of the assay 

was as follows. First, 3 µl of target bacteria E. coli O157:H7 (suspended in 1× PBS) and non-

target bacteria (suspended in 1× PBS) at 108 CFU/ml were spotted onto a piece of BioRad zeta-

probe blotting nylon membrane (BioRad, Hercules, CA).  While 3 µl of 1 × PBS was spotted as a 

negative control (NC). After the spots were air dried, the membrane was immersed in KPL 

blocking buffer for 30 min and then allowed to air dry. 50 µl of 40 µM biotinylated aptamer S1 

(diluted in KPL blocking buffer) were added to cover the whole membrane and incubated for 30 

min. Subsequently, four times of washing were applied with washing buffer (1 × PBS with 0.1% 

Tween-20) for 20 min to remove the unbound aptamers. Then the membrane was incubated with 

three drops of alkaline phosphatase-labeled streptavidin (approximately 2 µg/ml) for 25 min. 

After excess enzymes were removed with the same washing step, 500 ml of phosphatase 

substrate BCIP (5-bromo-4-chloro-3-indolyl-phosphate)/NBT (nitro blue tetrazolium) (KPL, 

Gaithersburg, MD) were added to react with the phosphate for 10 min in the dark for color 

development. Finally, water was added to stop the reaction, and the membrane was kept in the 

dark overnight.  

2.3.7 A QCM aptasensor for the detection of E. coli O157:H7 

200 µl 1 mg/ml streptavidin (Rockland, Limerick, PA) were immobilized on the MHDA-

SAMs modified electrode for 30 min following the activation of carboxyl groups with 300 µl of 
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EDC/NHS (original concentrations: 400 mM/100 mM, v/v, 1:1, final concentrations: 200 mM/50 

mM) for 10 min. After washing with 300 µl of deionized water twice and 300 µl of BB, 100 µl 

of 5’-biotin - labeled aptamer S1 (20 µM in BB) was added and incubated for 45 min. Then the 

flow cell was washed with 300 µl of deionized water twice and 300 µl of PBS, and 200 µl of 0.1 

mg/mL poly (ethylene glycol) (PEG) methyl ether thiol (Brockman et al., 2013) dissolved in 

PBS was added to block the unmodified electrode gold surface for 20 min. Following the same 

washing step, 200 µl of PBS was added to get a baseline. Subsequently, 200 µl of E. coli 

O157:H7 (1 ml of 102-107 CFU/ml cells were pelleted by centrifugation and resuspended in 200 

µl PBS) was added and incubated for 30 min. After washing for the removal of unbound 

bacterial cells, 200 µl of PBS was added to get a baseline. The frequency change (∆F) caused by 

the target bacterial binding was calculated by measuring the difference of the baselines before 

and after the incubation of E. coli O157:H7. The scheme of the process of the detection of E. coli 

O157:H7 using a QCM aptasensor is shown in Fig. 2.4. For the specificity test, 200 µl of E. coli 

K12, S. Typhimurium, L. monocytogenes, or S. aureus (1 ml 107 CFU/ml cells were pelleted by 

centrifugation and resuspended in 200 µl PBS) was added and incubated for 30 min. 
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Fig. 2.4 Schematic diagram of the QCM aptasensor for the rapid detection of E. coli O157:H7. 

 

2.3.8 Scanning electron microscopy (SEM) imaging 

SEM imaging was performed to confirm the binding of target bacteria onto the aptamer 

immobilized QCM electrode using the high-resolution scanning electron microscope FEI Nova 

NanoLab 200 (FEI, Hillsboro, OR). 

2.4 Results and discussion 

2.4.1 Selection of ssDNA aptamers against E. coli O157:H7 

In the SELEX, MBs served as the solid support for the partitioning of aptamers from the 

target bacteria. Compared with other partitioning methods, such as centrifugation and filtration, 

MBs possess several advantages, including fast separation, ease of extensive washing, and 
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applicability for a wide range of targets. The capture efficiency of IMBs for E. coli O157:H7 at a 

concentration of 103 CFU/ml was over 90% (Xu et al., 2015). 

 In each round of selection, the sizes of both the PCR products and lambda exonuclease 

digested ssDNA fragments were determined by running agarose gel electrophoresis (AGE). As 

seen in Fig. 2.5, the bands of the PCR products were at around 90 bp, and those of digested 

ssDNA fragments were smeared in the range of 100 - 200 bp or were invisible. Meanwhile, two 

patterns of PCR by-products were observed: ladder-like bands over 90 bp and a single band 

slightly smaller than 90 bp (see Fig. 2.6). A molecular mechanism to explain this phenomena 

was proposed by Tolle et al. (2014) via sequence identification of the corresponding PCR 

products after PCR condition alteration. They suggested that the generated short and ladder-like 

by-products were results of primer-primer hybridization and product-product or product-primer 

base paring in the random region of ssDNA, respectively. By-product formation could be 

decreased by the reduction of the amount of DNA template and the number of thermal cycles 

(He et al., 2013) or better primer design (Tolle et al., 2014). In this study, the short by-products 

were possibly generated by the hybridization between forward primer and the central random 

region of the product instead. The right PCR products were obtained by means of DNA template 

dilution, thermocycling number decreasing, or gel extraction of the correctly sized band, so as to 

avoid the failure of aptamer selection. 
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Fig. 2.5 Agarose gel electrophoresis of A) PCR products: M is 50 bp ladder, 1 and 2 are samples, 

B is blank control; B) digested ssDNA: M is 50 bp ladder, and 1 is the sample. 

 

 

 

Fig. 2.6 Agarose gel electrophoresis of PCR by-products of two patterns: one is ladder-like and 

all above the correct band (left); the other is lower than the correct band (right). M is 50 bp 

ladder, and 1 and 2 are the PCR products. 

 

In order to select aptamers sensitively and specifically recognizing E. coli O157:H7, the 

selection pressure was progressively enhanced by: 1) decreasing the concentration of bacteria 
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from 108 to 103 CFU/ml, 2) decreasing the incubation time with the target bacteria from 45 min 

to 15 min, 3) increasing the amount of BSA in the incubation buffer from 0.05% to 1%, 4) 

increasing times of washing after the incubation from two to four, 5) increasing washing duration 

from 10 seconds to 1 min (Table 1.1). 

2.4.2 Affinity analysis of aptamer pools 

In the whole process of whole-bacterium SELEX, nineteen rounds of positive selection 

and six rounds of counter selection were conducted. To monitor the enrichment of aptamer pools 

during selection, the binding affinity of aptamer pools was evaluated by bot blot assay (data not 

shown) and QCM. The typical response course of frequency shifts for the stepwise 

immobilization of the QCM electrode and the binding of the aptamer pool is shown in Fig. 2.7. 

The frequency changes in response to the binding of the initial ssDNA library, and the aptamer 

pools from rounds 13, 14, and 19 are illustrated in Fig. 2.8. As indicated in the figure, no 

detectable signal was obtained for the original random ssDNA library. For the aptamer pools 

from round 13, 14, and 19, frequency changes of -17 Hz, -37 Hz, and -60 Hz, respectively, were 

obtained. The larger the change of frequency, the larger the amount of aptamers bound to the 

target bacteria, and the higher the binding affinity of the aptamer pool. It was also observed that 

after two rounds of counter selection following round 14, the binding affinity of the aptamer pool 

from round 17 was decreased (data not shown). This phenomenon was likely due to the removal 

of aptamer candidates non-specifically binding to the non-target bacteria from the pool. These 

eliminated aptamer candidates might have occupied different sites on the target surface and 

contributed to the total binding affinity of the aptamer pool from round 14.  
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Fig. 2.7 Frequency shifts (∆F) corresponding to each step of modification on QCM electrode for 

the affinity test of the aptamer pool from SELEX round 19. 

 

 

Fig. 2.8 Frequency changes in response to the binding of initial ssDNA library, and aptamer 

pools from rounds 13, 14, and 19 to E. coli O157:H7 measured by QCM. 
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The process of SELEX is usually repeated for 5-12 times (rounds) (Dwivedi et al., 2010, 

2013; Suh et al., 2014) in order to enrich the aptamer pool. The reason that it took as many as 19 

rounds of selection in this study is probably that the remained binding sites on the target bacteria 

for aptamers were limited after the binding of anti-E. coli antibodies on the bacteria surface. This 

SELEX format is capable of isolating aptamers sharing no competitive binding sites with 

antibodies, which can be employed in an aptamer-antibody sandwich assay. The reason why the 

selected aptamer is unlikely to share the same binding site with the antibody is that the whole 

surface of the bacterial cell was exposed and occupied with over a hundred of IMBs when the 

bacteria were captured by IMBs in the solution during SELEX (Fig. 2.9). As a result, a great 

majority of the O (somatic lipopolysaccharide) and K (capsular) antigens on the bacterial surface 

had been bound by the antibodies on IMBs, leaving negligible free epitopes for aptamers to 

interact with. Even if some aptamer candidates did bind to some free epitopes in the earlier 

rounds of SELEX, they would have been sifted out during the enrichment of the aptamer pool by 

PCR, in which the aptamer candidates that bound to more available binding sites with stronger 

affinities would dominate the pool.   
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Fig. 2.9 Schematic diagram of an E. coli O157:H7 cell captured and surrounded by IMBs. On the 

cell surface, a great majority of the O and K antigens were bound by the anti-E. coli polyclonal 

antibodies on IMBs, and the potential binding sites for aptamers could be flagellar (H7) antigen 

or other components on the outer membrane, such as lipid A. 

 

The Sauerbrey equation (Sauerbrey, 1959) is used to describe a linear relationship 

between the shift in resonant frequency of a quartz crystal and the change in mass loading to its 

surface and thus can be utilized to calculate the mass of molecules deposited to the QCM 

electrode surface. The equation (Hengerer et al., 1999; Shan et al., 2014) is as follows:  

 

∆𝐹 = −2𝐹𝑜
2

∆𝑀

𝐴√𝜌𝜇
= −2.3 × 106𝐹𝑜

2
∆𝑀

𝐴
 

 

Where ∆F (Hz) is the measured frequency change, Fo (MHz) is the resonant frequency of the 

piezoelectric quartz crystal (7.995 MHz in this case), ∆M (g) is the mass change on the electrode 

surface, and A (cm2) is the active area of the coated quartz surface (Kumar, 2000; Liss et al., 

2002), which is 0.2 cm2 in this case (Wang et al., 2017),  ρ is the density of the crystal (2.648 

(2-1) 
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g/cm3), and µ is the shear modulus of the quartz (2.947 × 1011 g/cm3/s2) (Shan et al., 2014). 

According to the equation above, the binding amount of aptamers - ∆M (g) was calculated based 

on the measured value of ∆F (Hz) for each specific round. The results of the calculation are 

shown in Table 2.2. As SELEX proceeded, increasing amounts of aptamers were bound to the 

target bacteria, as an indication of the improvement of the binding affinity of aptamer pools.  

Table 2.2 The calculations of the amount of aptamers bound to target bacteria by Sauerbrey 

equation using the frequency change measured in QCM tests. The concentrations of the aptamers 

from all rounds used for QCM tests were constantly 11.4 ng/µl. 

Aptamer pool ∆F (Hz) ∆M (g) Binding amount (pmol) 

Library 0 0 0 

Round 13 -17 2.31 × 10-8 0.82 

Round 14 -37 5.00 × 10-8 1.79 

Round 19 -60 8.16 × 10-8 2.91 
The molecular weight of the aptamer is 2.80 × 10-8 g/pmol.  

 

2.4.3 Cloning and sequence analysis  

Twenty clones presenting the highest binding affinities by dot blot assay (data not shown) 

were sequenced. Table 2.3 shows the three different sequences obtained from these twenty 

clones, among which 16 clones had the identical sequence S1, 3 clones had the identical 

sequence S2, and the one clone had the sequence S3. The large percentage of identical sequences 

in 20 clones might have resulted from the high enrichment of the aptamer pool via 19 rounds of 

selection, which proved that the enrichment was accomplished successfully.  
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Table 2.3 A list of the three sequences identified from the 45-nt randomized region of the library 

after nineteen rounds of whole-cell SELEX against E. coli O157:H7. 

Name 
Occur

rence 
Sequences of N

45
 random region (5' to 3') 

ΔG 

(kcal/m

ol) 

T
m

  

(°C) 

S1a 16X TGGTCGTGGTGAGGTGCGTGTATGGGTGGTGGATGAGTGTGTGGC -4.72 42.6 

S2 3X 
GCGGGAATAGGATGCGGCTGGAAGGAGAGGTGTTGGTGGGTGGT

G 
-4.76 41.3 

S3 1X GTGCGGTGACGTGAGGGGGAGAGGCGTTGGTGTAGGCTGTTGGTG -6.00 42.1 
a 

The sequence used for binding analysis was shown in red.  

The secondary structures of all sequenced aptamers were predicted by web-based IDT 

OligoAnalyzer 3.1, which was based on free energy minimization algorithm. The structures of 

S1, S2, and S3 possess one external loop, one interior loop (except S3), and several hairpin loops 

(shown in Fig. 2.10). It has been known that aptamers bind to the target through molecular 

structure compatibility, precise stacking of flat moieties, electrostatic and van der Waals 

interactions, and hydrogen bonding (Hermann and Patel, 2000). So the stem-loop structures of 

aptamers must have played an important role as binding motifs in the target recognition (Kim et 

al., 2013). 
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Fig. 2.10 Predicted secondary structures of aptamers S1, S2 and S3 using IDT OligoAnalyzer 

3.1. 

 

2.4.4 Determination of Kd and specificity of aptamer S1 

Considering that the most frequently repeated sequence has been found to have the 

highest binding affinity (Hamula et al., 2008), sequence S1 with repetition of 16 times was 

chosen to be synthesized for further characterization. Fig. 2.11 shows the binding saturation 

curve from QCM-based assay of aptamer S1 and the target E. coli O157:H7 cells. A nonlinear 

regression curve was fit to the data using GraphPad Prism 5.0 based on the equation Y = Bmax × 

X/(Kd + X). The Kd value of aptamer S1 was determined to be 10.30 nM.  
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Fig. 2.11 Binding characteristics of aptamer S1 as determined by QCM. The data were fitted to a 

non-interacting binding sites model, which yielded a dissociation constant of 10.30 nM. Error 

bars are standard diviations from triplicate analyses. 

 

During the tests characterizing the binding affinity of aptamer S1, the reusability of the 

QCM electrode was investigated. A previous research by our group found out that the 

regeneration of a QCM immunosensor by applying 10 mM NaOH for 10 min could cause 20% 

loss of activity (Li et al., 2011). According to that, we investigated the regeneration efficiency by 

using NaOH starting from a low concentration of 1 mM to 10 mM with a regeneration time from 

2 min to 4 min. As in the test using 100 nM aptamers, the first and second regeneration was 

carried out by incubation with 400 µl 5 mM NaOH for 3 min and with 400 µl 7.5 mM NaOH for 

2 min, resulting in a binding signal variation of 7.1 % and 35.7%, respectively. It was also found 

that it became difficult to regenerate the electrode for a 3rd time on all tested concentrations of 

aptamers. Thus, each electrode was only regenerated twice and the first three data were recorded. 

The specificity of aptamer S1 in recognizing E. coli O157:H7 was examined using dot 

blot assay. Non-target bacteria E. coli K12 (gram-negative non-pathogenic), S. Typhimurium 
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(gram-negative pathogenic), and L. monocytogenes (gram-positive pathogenic) were tested to 

check any cross-reactivity. Fig. 2.12 shows that aptamer S1 had the best binding affinity to target 

E. coli O157:H7, while no notable binding to two non-target pathogenic bacteria.  Some degree 

of cross-reactivity with E. coli K12 was observed, which is probably due to the similar cell 

surface structure between E. coli K12 and E. coli O157:H7. And as we know, E. coli K12 was 

not included in counter selection in the whole-bacterium SELEX process. Nevertheless, the high 

binding affinity and specificity of aptamer S1 to E. coli O157:H7 over other two pathogenic 

bacteria still prove its great potential to be applied in distinguishing E. coli O157:H7 from other 

foodborne pathogens. 

 

Fig. 2.12 The binding specificity of selected aptamer S1 for E. coli O157:H7 over three other 

bacteria evaluated by dot blot assay. 

 

In comparison with the RNA aptamer developed by Lee et al. (2012) (Kd = 110 nM), the 

selected ssDNA aptamer in this study possessed stronger binding affinity against E. coli 

O157:H7. The aptamers for E. coli selected by Kim et al. (2013) showed similar affinities (Kd = 

2.4 ~ 25.2 nM), but were not specific for E. coli O157:H7. And the affinity of the aptamer to 

E.coli O157:H7 was not evaluated. Besides, in the SELEX process, the aptamer was only 

counter-selected against four non-foodborne pathogens - Klebsiella pneumoniae, Citrobacter 
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freundii, Enterobacter aerogenes, and Staphylococcus epidermidis. Thus, a potential problem 

lies in the application of these aptamers to the discrimination of E. coli in food samples. It may 

also indicates that these aptamers were not developed for the purpose of detecting foodborne 

pathogens. 

Some researchers have endeavored to discover possible binding sites of aptamers on 

target cells through binding affinity analysis of aptamers with either extracted cell surface 

protein (Hamula et al., 2008) or intact or enzyme-pretreated cell membranes (Li et al., 2014). 

According to the SELEX procedure in this study, before the incubation of the aptamer pools, a 

great majority of the O and K antigens on the cell surface had already been bound by the anti-E. 

coli polyclonal antibodies on IMBs for the capture of target bacteria. And some aptamer 

candidates that did bind to the limited free epitopes in the earlier rounds of SELEX would be 

sifted out during the enrichment of the aptamer pool by PCR. So it is not very likely that the 

aptamer we selected shared the binding sites (O and K antigens) with the antibodies. The 

potential binding sites for aptamers could be H (flagellar) antigen or other components on the 

outer membrane, such as lipid A (Fig. 2.9). Based on that the developed QCM aptasensor had 

some cross-reaction with E. coli K12 (Fig. 2.14), it could be implied that the epitope that the 

selected aptamer binds to is more abundant on the E. coli O157:H7 surface than on E. coli K12 

surface.  

2.4.5 Application of aptamer S1 to E. coli O157:H7 detection 

To demonstrate the potential application of the selected aptamer to the detection of live 

E.coli O157:H7, a QCM-based aptasensor was fabricated by the successive immobilization of 

streptavidin and biotinylated aptamer S1 on the QCM electrode surface. E. coli O157:H7 



64 
 

cultures of 10-fold serial dilution from 102 to 107 CFU/ml were detected by incubating with the 

immobilized aptamers for 30 min. The decrease of frequency caused by the binding of various 

concentrations of E. coli O157:H7 was shown in Fig. 2.13 A. The standard deviations (S.D.) 

calculated from triplicate tests are shown as error bars in the figure. Good linear relationships 

were found between the frequency change and the logarithm of the cell concentration from 102 to 

105 CFU/ml and from 105 to 107 CFU/ml. The corresponding regression equations were y = -

1.65x + 2.22 (R² = 0.96) and y = -9.19x + 43.80 (R² = 0.99), respectively. PBS without target 

bacteria was detected as a negative control (NC), which resulted in frequency change of 0 ± 1 

Hz. The LOD (as 3 times the S. D. of the NC) was thus determined to be 1.46 × 103 CFU/ml 

based on the regression equation.  The total detection time was 40 min including the baseline 

stabilization after the incubation with target bacteria. SEM imaging was used to check the 

binding of E. coli O157:H7 cells onto the aptamer - immobilized gold surface of the QCM 

electrode (Fig. 2.13 B).  
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Fig. 2.13 (A) The calibration curves of frequency changes verses E. coli O157:H7 concentrations 

from 102 to 107 CFU/ml detected by QCM-based aptasensor. Each value is presented as mean ± 

S. D. (n=3). (B) SEM images of the QCM gold surface immobilized with streptavidin and 

biotinylated aptamers before (top), and after (bottom) the detection of E. coli O157:H7.  

 

The capability of the QCM-based aptasensor to discriminate E. coli O157:H7 from other 

non-target bacteria were investigated under the same experimental conditions as those for E. coli 

O157:H7. Frequency shifts after incubation with 107 CFU/ml E. coli K12, S. Typhimurium, L. 

monocytogenes, and S. aureus for 30 min were measured and the S.D. calculated from triplicate 

tests are shown as error bars in Fig. 2.14. The results showed that the aptasensor had some 

affinity to E.coli K12, and negligible or no cross-reactivity to S. Typhimurium, S. aureus, and L. 

monocytogenes. The frequency change corresponding to the LOD of 1.46 × 103 CFU/ml is -3 Hz, 

which is larger than the detection signal for E.coli K12 at 107 CFU/ml (-7 Hz). It was a pity that 

E.coli K12 was not used for counter-selection of SELEX because of the lack of anti- E.coli 

antibody, which should be used to coat the magnetic beads for the capture of E.coli K12 cells. 

Since the species of E.coli share similar epitopes more than with other genus of bacteria, it’s 



66 
 

possible that the selected aptamer will have some degree of affinity to other strains of E.coli. 

Thus, the QCM aptasensor is not capable of discriminating E. coli O157:H7 from 107 CFU/ml 

E.coli K12, but has good specificity for E. coli O157:H7 against the other three pathogenic 

bacteria.  

 

Fig. 2.14 Specificity of the QCM-based aptasensor for the detection of E. coli O157:H7 at 

concentration of 107 CFU/ml. Each value is presented as mean ± S. D. (n=3). 

 

There are some published studies of label-free QCM sensors using the Ab or the aptamer 

as the recognition element for the detection of bacterial cells. The LOD for immunosensors was 

from 103-107 CFU/ml (Buchatip et al., 2010; Liu et al., 2007; Su and Li, 2005), and that for 

aptasensors was from 102-103 CFU/ml (Ozalp et al., 2015; Wang et al., 2017). It has been 

reported that the average height of Ab is 7.1 nm (Dong and Shannon, 2000), and the diameter of 

the folded aptamer is around 3 nm (White and Plaxco, 2009). As the Sauerbrey equation is only 
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applicable to uniform, rigid, thin-film deposits (Buttry, 1989), the relatively thicker layer of 

immobilized Ab might not have caused as large a signal as the thinner layer of aptamers for the 

detection of target bacteria. The sensitivity of the QCM-based immunosensor decreased 

especially when the immobilization layer was further increased by using protein A as a 

crosslinker. 

The sensitivities of the QCM instrument and the quartz crystal themselves now need to be 

considered. The resolution of the QCA922 instrument is down to 1 Hz, which corresponds to 1.3 

ng of mass change on the quartz surface of 0.2 cm2. Since a single E. coli cell has a mass of 

approximate 1 pg (Milo and Phillips, 2015), the detection limit of the label-free QCM sensor will 

be  around 1.3 × 103 E. coli cells, that is 1.3 × 103 CFU/ml (1 ml). From the Sauerbrey equation 

(2-1), we can see that the sensitivity of QCM can be improved by increasing the primary 

resonant frequency of the quartz crystal Fo (MHz). When Fo is doubled, ∆F (Hz) – the signal will 

be increased by a factor of four (Afzal et al., 2017). For example, if the Fo of the quartz utilized 

in this study were 15.99 MHz instead of 7.995 MHz, the LOD would have been lowered to 3.65 

× 102 CFU/ml. However, crystals with high fundamental frequencies will be thin and fragile 

(Vashist and Vashist, 2011). When both the QCM instrument and the quartz crystal are fixed, 

one way to amplify the signal is by labeling the target with antibody conjugated magnetic beads 

or gold nanoparticles (AuNPs) (Jiang et al., 2011; Masdor et al., 2016; Salam et al., 2013). For 

example, in the ultra-sensitive QCM-based immunosensor developed for the detection of E. coli 

O157:H7 (Shen et al., 2014), the amplification was carried out by 3 times labeling of biotinylated 

IMBs, streptavidin conjugated gold nanoparticles (AuNPs), and gold growth on the AuNPs. The 

LOD of the developed immunosensor was lowered to 23 CFU/ml, but the detection time was 
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increased to 4 h and the detection procedure was much more complex, which made this sensor 

inappropriate for the rapid and in-field detection of E. coli O157:H7 (Table 2.4).  

Table 2.4 Reported studies of labeled and label-free QCM sensors for the detection of E. coli 

O157:H7. 

Recognition 

element 
Label 

Immobilization 

method 

LOD 

(CFU/ml) 

Detection 

time 
Reference 

Antibody 

Label-free 
Polyclonal Ab to 

protein A 
107 ~50 min 

Liu et al., 

2007 

Label-free Ab to protein A 106 ~50 min 
Jiang et 

al., 2011 

Label-free 
Polyclonal Ab to 

protein A 
105 1 h 

Su and Li, 

2005 

Label-free Ab 102 50 min 
Ngo et al., 

2014 

Ab-conjugated magnetic 

nanoparticles 

Polyclonal Ab to 

protein A 
102 ~90 min 

Liu et al., 

2007 

Ab-modified 

magnetic/silica/polymer beads 
Ab to protein A 103 ~90 min 

Jiang et 

al., 2011 

3 times mass enhancement of 

BIMPs, streptavidin-gold, and 

growth solution. 
Monoclonal Ab 23 4 h 

Shen et al., 

2011 

Ab-functionalized AuNPs 
Ab for enriched 

bacterial culture 
1-10 24 h 

Guo et al., 

2012 

DNA probe 

Label-free 

Thiolated ssDNA 

probe for eaeA gene 

(PCR amplified) 

1 × 106 > 120 min 
Wu et al., 

2007 

Streptavidin-coated ferrofluid 

nanoparticles 

Thiolated ssDNA 

probe for eaeA gene 

(PCR amplified) 

2.67 × 102 > 130 min 
Mao et al., 

2006 

Thiolated ssDNA probe-

conjugated AuNPs 

Thiolated ssDNA 

probe for eaeA gene 

(PCR amplified) 

1.2 × 102 ~170 min 
Chen et 

al., 2008 

Avidin-coated AuNPs 

Thiolated ssDNA 

probe for amplified 

eaeA gene to AuNPs  

2 × 103 ~220 min 
Wang et 

al., 2008 

Aptamer Label-free 
Biotinylated aptamer 

to streptavidin 
1.46 × 103 40 min This work 

 

 

In the present study, E. coli O157:H7 cells were suspended in 1× PBS to be detected by 

the developed QCM-based aptasensor. But for real application of the aptasensor, food sample 

pretreatment will be conducted before the detection of the target bacteria, such as magnetic 

separation. By using magnetic separation, only target bacteria will be isolated and concentrated 
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from the complicated impurities, such as biomaterials. Then, the isolated E. coli cells will be 

resuspended in 1× PBS and the detection procedure will be the same as what was provided in 

this study. 

2.5 Conclusions 

In this study, ssDNA aptamers were selected the first time by a whole-bacterium SELEX 

technique against E. coli O157:H7 with high affinity (Kd =10.30 nM) and specificity. The 

selected aptamer was further applied to the development of a QCM aptasensor for the detection 

of E. coli O157:H7. The LOD of the aptasensor was as low as 1.46 × 103 CFU/ml, superior to 

most QCM-based immunosensors for pathogen detection. In addition, the fast response time of 

40 min demonstrated the potential of the selected aptamer to be incorporated into various formats 

of biosensors for rapid detection and investigation of E. coli O157:H7 outbreaks.  
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Chapter 3 Sensitive and Rapid Detection of E. coli O157:H7 Using a QCM Sensor based on 

a Multivalent Aptamer System 

3.1 Abstract  

E. coli O157:H7 is one of the top foodborne pathogens that cause illnesses more likely to 

lead to hospitalization. For rapid and sensitive detection of foodborne pathogens, some aptamers 

have been developed and incorporated into various biosensing systems. With advantages such as 

high affinity, low cost of chemical synthesis, and thermo-stability, however, aptamers suffer 

from monovalency and small size, which limit their binding efficiency of bacterial cells. The 

objective of this study is to create a multivalent aptamer system based on rolling circle 

amplification (RCA), which comprises repetitive aptamer sequences that are against E. coli 

O157:H7. The system is then applied to a quartz crystal microbalance (QCM) sensor for 

sensitive and rapid detection of E. coli O157:H7. The single-stranded (ss) 105-nt DNA template 

was circularized by ligation and then was immobilized on the electrode surface via streptavidin-

biotin interaction. RCA reaction was then initiated with the catalysis of phi29 DNA polymerase 

using a biotinylated primer, generating a very long ssDNA product. Following the incubation 

with E. coli O157:H7 for 30 min, the frequency shift was measured. The ligation process and the 

RCA reaction were performed at 16°C for 8 h and at room temperature (RT) for 1 h, 

respectively. The RCA products (RCPs) were analyzed by agarose gel electrophoresis, indicating 

that the size of the RCPs was larger than 48.5 kb. After immobilization on the QCM electrode, 

the RCPs at the concentration of 8.33 µM (concentration of the DNA template) were able to 

produce much larger signals than the aptamers at 20 µM for the detection of E. coli O157:H7 

cells at the same concentration. The limit of detection (LOD) of the aptasensor was determined 

to be 34 CFU/ml. The whole detection procedure was completed in 40 min. The developed QCM 
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sensor showed negligible cross-activity to Listeria monocytogenes, Listeria innocua, E. coli K12, 

Salmonella Typhimurium, or Staphylococcus aureus. It is the first time that RCA was utilized to 

produce a multivalent aptamer system for the detection of E. coli O157:H7 using a QCM sensor. 

The RCPs-based aptamer sensor developed in this study manifested a much better sensitivity 

than a regular aptasensor. 

3.2 Introduction 

As one of the top foodborne pathogens, E. coli O157:H7 is related to 73,000 illnesses in 

the US each year. E. coli O157:H7 produces Shiga toxins (Stxs) and can cause hemorrhagic 

colitis (HC) and the life-threatening hemolytic uremic syndrome (HUS) in humans. The annual 

cost of illness due to E. coli O157:H7 infections was 405 million dollars, including lost 

productivity, medical care, and premature death (CDC).  

Conventional detection methods for foodborne pathogens, being time-consuming, labor-

intensive, or complex sample preparation required, failed to meet the urgent need of rapid and 

sensitive detection of E. coli O157:H7 to monitor and control outbreaks. A biosensor is an 

analytical device, composed of a bio-recognition element and a transducer, which is able to 

realize fast and sensitive detection of targets. A bio-recognition element or a bioreceptor that acts 

as the sensor could be enzymes, antibodies, nucleic acids, cells, or phages, while a transducer 

serves to convert a biological response into electrochemical, optical, thermal, or mass signals 

which could be observed and displayed more easily. QCM is an acoustic (mass-based) 

piezoelectric biosensor. The decrease in resonant frequency of the quartz is linearly proportional 

to adsorbed mass on the quartz surface based on the piezoelectric effect. QCM sensors possess 
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the advantages of simplicity, cost effectiveness, label-free detection, and real-time monitoring, 

and are able to detect mass change down to nanogram level (Marrazza, 2014). 

Aptamers are a class of small single-stranded DNA or RNA oligonucleotides that are 

capable of binding to selected targets, including whole cells, proteins, peptides and small 

molecules with high specificity and affinity, through their folding into unique three-dimensional 

(3D) structures.  As substitute of antibodies, aptamers have advantages such as high affinity, low 

cost of chemical synthesis, easy modification, and thermo-stability. However, aptamers suffer 

from monovalency and small size, which limit their binding efficiency to large entities. RCA is 

an isothermal amplification method, which is initiated by a primer hybridized to a small circular 

template in the presence of some polymerase with strand-displacement activity (e.g. phi29 DNA 

polymerase) (Mayboroda et al., 2018). The RCPs are tens of thousands of nucleotide long, 

containing tandem repetitive sequences complimentary to the circular template. RCA has been 

widely used in biosensors for signal amplification due to its high efficiency of amplification, no 

requirement for thermal cycling instrument, no significant damage to biological molecules or 

environment, and easy modification of RCPs with fluorescence or nanoparticles labeled short 

complimentary DNA strands (Zhao et al., 2008).  

So far, only two biosensors based on multivalent aptamer system by RCA have been 

reported, which are used to capture and deliver drugs into leukemia cells (Zhao et al., 2012; 

Zhang et al., 2013). The circular templates were designed to include a complimentary sequence 

to the aptamer against protein tyrosine kinase 7 (PTK7) for the recognition of leukemia cells, a 

polyT spacer for separating two aptamer sequences, and/or with a short DNA domain for drug 

loading. The established 3D DNA network and Poly-Aptamer-Drug system were demonstrated 
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to have much higher capture efficiency of leukemia cells under high shear stress and notably 

enhanced endocytosis and drug release efficiency than monovalent aptamers.  

Herein, a novel multivalent aptamer system was constructed based on RCA, which 

comprises repetitive aptamer sequences against E. coli O157:H7. The system is then applied to a 

QCM sensor for sensitive, rapid, and label-free detection of E. coli O157:H7. 

3.3 Materials and methods 

3.3.1 Bacterial cell preparation 

Stock cultures of E. coli O157:H7 (ATCC 43888), S. aureus (ATCC 27660), L. 

monocytogenes (ATCC 43251), L. innocua (ATCC 33090), S. Typhimurium (ATCC 14028), and 

E. coli K12 (ATCC 29425) were obtained from the American Type Culture Collection (ATCC, 

Manassas, VA, USA). Pure cultures were maintained at -80°C with glycerol, then were grown in 

5 ml HBI medium at 37°C and harvested upon reaching the log phase (usually 3-4 h) by 

centrifugation. Subsequently the cells were washed in 1 × PBS, and finally resuspended in the 

same volume of 1 × PBS. For bacterial enumeration, the bacterial samples were 10-fold serially 

diluted with 1 × PBS and were surface plated on the TSA plates and incubated overnight before 

counting. Colony forming units (CFU) on the agar plates were counted as CFU/ml.  

3.3.2 Materials 

Deoxynucleotide (dNTP) solution mix, phi 29 DNA polymerase, DNA T4 ligase, 50 bp 

DNA ladder, and Quick-Load® 1 kb extend DNA ladder were purchased from New England 

BioLabs (Ipswich, MA). Streptavidin was purchased from Rockland Immunochemical Inc. 

(Limerick, PA). 16-Mercaptohexadecanoic acid (MHDA), poly(ethylene glycol) methyl ether 
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thiol, N-Hydroxysuccinimide (NHS), and  ethidium bromide  were obtained from Sigma (St. 

Louis, MO). N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC·HCl) was 

purchased from Merck KGaA (Darmstadt, Germany). Certified molecular biology agarose was 

purchased from BioRad (Hercules, CA), and 10 × Tris/Boric Acid/EDTA (TBE) buffer was 

purchased from Life Technologies (Grand Island, NY). Milli-Q water purified by the system 

from MillliporeSigam (Burlington, MA) was used in all experiments. All DNA (names and 

sequences in Table 3.1) were synthesized by Integrated DNA Technologies. 

Table 3.1 Oligonucleotide sequences of ssDNA aptamer, circular template, and primera.  

a The red sequence in the circular template was designed to be complimentary to the sequence of 

the aptamer to E. coli O157:H7. The blue sequence in the circular template was spacer. And the 

underlined and bold sequences of both ends of the circular template were designed to be 

complementary to the sequence of the primer.  

 

3.3.3 QCM system 

A QCA922 quartz crystal analyzer (Princeton Applied Research, Oak Ridge, TN) was 

used for the detection of target bacteria. AT-cut quartz crystals with resonant frequency of 7.995 

MHz were obtained from CH Instruments, Inc. (Austin, TX). The size of the quartz crystal was 

13.7 mm in diameter and 208 µm in thickness. The polished Au electrodes deposited on both 

sides of the crystal were 5.1 mm in diameter and 100 nm in thickness. A methacrylate flow cell 

 

Name Sequences (5’ – 3’) 

Aptamer 
CAG TCC AGG ACA GAT TCG CGA GTG GTC GTG GTG AGG TGC GTG TAT 

GGG TGG TGG ATG AGT GTG TGG CCA CGT GGA TTT CAT TCA GCG ATT 

Circular Template 

Phosphate – AAT CGC TGA ATG AAA TCC ACG TGG CCA CAC ACT CAT CCA 

CCA CCC ATA CAC GCA CCT CAC CAC GAC CAC TCG CGA ATC TGT CCT GGA 

CTG ATG AGG ATC CGA TCG 

Primer Biotin – ATT CGA TCG GAT CCT CAT CA 
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(International Crystal Manufacturing Co, Oklahoma City, OK) was utilized for mounting the 

crystal. The crystal was sealed between two O-rings attached to the upper and lower pieces of the 

flow cell held together with two screws. Two sides of the QCM electrode created the base of a 

cylindrical well and the base of a 70-µl flow-through detection chamber, respectively (see Fig. 

3.1).  

 

  

Fig. 3.1 (A) Princeton Applied Research QCA922 quartz crystal analyzer; (B) The dimensions of 

the AT-cut quartz crystals (7.995 MHz); (C) The front view of the methacrylate flow cell; (D) 

The top view of the flow cell 

 

3.3.4 RCA reaction in the solution and gel electrophoresis characterization 

Phosphorylated linear DNA template (100 µM, 2.5 µl) and biotinylated primer (100 µM, 

2.5 µl) dissolved in Milli-Q water were mixed, denatured at 95°C for 10 min, and annealed at 

54 °C for 5 min. After that, T4 DNA ligase (400 units/µl, 1 µl), 10 × T4 ligase reaction buffer (2 

µl), and Milli-Q water (12 µl) were added to make a 20 µl ligation system. The ligation reaction 
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was carried out at 16°C for 8 h, and the enzyme was heat inactivated at 65°C for 10 min. The 

ligated circular DNA templates hybridized with primers were then purified by standard ethanol 

precipitation and the pellet after centrifugation was dissolved in 29 µl Milli-Q water and stored at 

4°C for later use. For RCA reaction in the solution, the ligated circular template hybridized with 

the primer (29 µl) was mixed with phi29 DNA polymerase (10 units/µl, 2 μl), 10 × phi29 DNA 

polymerase reaction buffer (7 μl), 10 × bovine serum albumin (BSA, 7 μl), and dNTPs (10 mM, 

7 μl). RCA reaction was performed at RT for 1 h, and the resulting RCPs were purified by 

standard ethanol precipitation. The size of the RCPs were characterized by 0.5% agarose gel 

electrophoresis which was stained by ethidium bromide and imaged using ultraviolet light.  

3.3.5 Preparation of QCM electrodes 

The crystal was cleaned by immersing in 1 M NaOH for 30 min and 1 M HCl for 5 min 

to remove inorganic contaminants, and then the crystal was rinsed with Milli-Q water and 95% 

ethanol for three times to remove organic residues (Su and Li, 2005). After drying with a stream 

of nitrogen, the crystal was submerged in 20 mM MHDA at room temperature in the dark for 24 

h to functionalize the gold surface with carboxyl groups via gold-thiolate bonds (Xue et al., 

2014). The unreacted MHDA was rinsed off with 95% ethanol and Milli-Q water for three times. 

After drying, the crystal was placed horizontally on the countertop with a clamp for 

immobilization at RT. 100 µl mixture of 75 mM EDC and 30 mM NHS at a volume ration of 1:1 

was dropped on the electrode surface to active the carboxyl groups for 10 min. After that, 100 µl 

1 mg/ml streptavidin were dropped on the electrode surface and incubated for 30 min. After each 

incubation step, the electrode was rinsed with Milli-Q water and dried.  
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3.3.6 RCA reaction on the electrode surface 

The ligated circular template hybridized with biotinylated primer was immobilized on the 

gold electrode via biotin-streptavidin interaction at RT for 45 min. Rinsed with water and dried, 

the electrode then incubated with 50 µl RCA reaction mixture, containing phi29 DNA 

polymerase (10 units/µl, 2 μl), 10 × phi29 DNA polymerase reaction buffer (7 μl), 10 × BSA (7 

μl), dNTPs (10 mM, 7 μl), and Milli-Q water (29 μl). After RCA reaction at RT for 1 h, the 

electrode was rinsed with water and dried.  

3.3.7 Detection of E. coli O157:H7 cells using QCM sensors based on a multivalent aptamer 

system 

The multivalent aptamer system for QCM sensing was fabricated by immobilizing RCPs 

using two different methods (as seen Fig. 3.2). In the first method, the reactions of ligation and 

RCA were both carried out in the solution inside a centrifuge tube. The produced long ssDNA 

RCPs were directly immobilized on the electrode surface via biotin-streptavidin interaction. In 

the second method, the ligated circular template with biotinylated primer was first immobilized 

on the electrode surface, and then the RCA reaction mixture was added to the electrode surface, 

initiating the primer-induced ssDNA elongation in situ.  

Following the creation of the multivalent aptamer system by RCA, the electrode was 

rinsed by Milli-Q water (heated to 95°C) for the denaturation and reformation into proper 3D 

structure of RCPs. To block the remaining binding sites on the surface of the gold electrode, 500 

µl of 0.1 mg/mL PEG methyl ether thiol (Brockman et al., 2013) dissolved in PBS was added 

and incubates for 20 min. After rinsing with water, the electrode was subjected to the detection 

of E. coli O157:H7.  
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By mounting the electrode into the flow cell, the immobilized side of the electrode was 

made exposed to the 70-µl flow-through chamber, whose inlet fluid channel was connected to a 

1 ml syringe. 1 ml PBS was injected into the liquid chamber by the syringe manually and a 

baseline in PBS was obtained in 10 min. Subsequently, 0.1 ml of E. coli O157:H7 at different 

concentrations (101 – 107 CFU/ml) was injected into the chamber and incubated for 30 min. 

Next, the liquid chamber was flushed with 1 ml PBS again to remove the unbound E. coli cells 

and a baseline in PBS was obtained in 10 min. The frequency change (∆F) caused by the binding 

of target bacteria was calculated by measuring the difference of the baselines before and after the 

incubation of E. coli O157:H7. 
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Fig. 3.2 Detection of E. coli O157:H7 cells using QCM sensors based on RCA on the electrode 

surface (A) and RCPs produced in the solution (B).  

 

3.3.8 Specificity tests 

For the specificity test, 0.1 ml of E. coli K12, S. Typhimurium, L. monocytogenes, L. 

innocua or S. aureus (106 CFU/ml in PBS) was injected into the liquid chamber and incubated 

for 30 min. The frequency change (∆F) of the baselines before and after the incubation of the 

non-target bacteria was measured.  
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3.3.9 Atomic force microscopy (AFM) characterization 

Atomic force microscope is one of the scanning probe microscopes, which is based on 

the invention of the scanning tunneling microscope (Rugar and Hansma, 1990). It is a technique 

that is capable of investigating the surface on a nanoscale and mapping the topography. The 

AFM is composed of a cantilever with a sharp tip (probe). The cantilever is made with a spring 

constant weaker than the equivalent spring between atoms, and the sharp tip can be used to 

image conducting and nonconducting samples at atomic resolution. Micas with atomically 

smooth surface and stable properties are ideal for studying the DNA confirmation and 

interaction. However, negatively charged DNA molecules repulse with the same negatively 

charged mica surfaces. So addition of divalent cations has become a common way to improve the 

adsorption of DNA on a mica surface (Kan et al., 2015).  

Thin iron disks for the attachment of micas were first polished by sand paper, immersed 

in acetone for 7 min, rinsed with excessive distilled and Milli-Q water, and then dried. Micas 

were attached to the iron disks via double-sided adhesive tapes. The top few layers on the surface 

of micas were removed by tapes.10 µl of 12.5 µM ligated template and primer mix and 10 µl of 

12.5 µM RCPs after RCA reaction at RT for 1 h dissolved in 10 mM MgCl2 and 10 mM HEPES 

were deposited on the mica surface for DNA adsorption. After an incubation of 20 min, micas 

were rinsed with Milli-Q to remove unbound DNA molecules. Finally, the micas were left for air 

dry in a chemical hood overnight.  

AFM observations were carried out using an AFM (Agilent SPM 5500) in contact mode 

with a silicon probe (BudgetSensors, Sofia, Bulgaria), whose resonant frequency is 190 kHz. The 

mica was installed on a sample holder. Applied experimental parameters were driving frequency 
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(162 kHz), driving amplitude (1 V), and set point (0.78 V). A 10 µm × 10 µm sample area was 

observed with a 256 × 256 pixel resolution. The AFM images were processed by software 

Gwyddion.  

3.4 Results and discussion 

3.4.1 Design of circular DNA template and primer 

The size of the circular DNA template was 105 nt, containing an aptamer-complementary 

sequence and a spacer region. Concerning the length design of the template, it was found that 

circular templates ranging from 26 to 74 nt could all be successfully amplified, even when the 

polymerase was larger than the template (26 nt). Besides, with a smaller circular template, more 

copies of the template could be amplified due to the inherent processivity of polymerases. The 

inherent processivity of polymerase is the average length of DNA they synthesize before 

dissociating from the template (Mohsen and Kool, 2016). Some researchers have designed the 

circular template to include two identical or different aptamer-complimentary sequences 

(Cheglakov et al., 2008). But in our case, if two aptamer-complimentary sequences and two 

spacers were incorporated into the template, the size of the template would exceed 200 nt, which 

cannot be easily chemically synthesized based on current techniques. However, very small 

circular templates (2-10 nt) are also unsuitable for RCA (Mohsen and Kool, 2016). RCA showed 

a sinusoidal template length-dependent amplification bias. Joffroy et al. (2017) examined the 

amplification efficiency of a pool of 29 oligonucleotides with a total size of 67–95 nt. Their 

results confirmed the low sequence-dependent amplification bias of RCA, and suggested that an 

increased strain-promoted fraying probability could improve the polymerization rate compared to 

a relaxed template.  
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The 20-nt primer was designed to be complimentary to the both ends of the circular 

template. The primer was labeled with biotin in order to bind to streptavidin immobilized on the 

electrode surface. The reason why primer was not labeled with thiol group to directly be 

immobilized on the gold surface is that the streptavidin-biotin crosslinker can help the template-

primer duplex more flexible for DNA strand elongation by the polymerase and cause the 

resulting RCPs to be more flexible in the solution for the capturing of target bacteria.  

3.4.2 Optimization of ligation and RCA reaction 

3.4.2.1 Optimization of ligation time  

DNA ligases are critical to in vivo genome integrity, in that they catalyze the formation of 

a phosphodiester bond between adjacent 3’-hydroxyl and 5’-phosphate termini at single-strand 

nicks, as well as cohesive or blunt ends at dsDNA.  The process of nick-sealing by DNA ligases 

involves three nucleotidyl-transfer chemical steps: first, the formation of an adenylylated ligase 

intermediate (an open form); second, the binding of the adenylylated ligase to the 5’-

phosphorylated nick site (a closed form); third, the formation of a phosphodiester bond. After 

dissociating from the phosphodiester bond and the product AMP, ligases are free to start next 

reaction (Bauer et al., 2017; Crut et al., 2008). For different ends, the best temperature for 

ligation is different. As recommended by NEB, the ligation in our study was performed at 16°C. 

Under the condition that the amounts of T4 DNA ligase and DNA were fixed, the ligation 

efficiency of different ligation time was investigated through agarose gel electrophoresis. The 

circular template ligated for 4 h or 8 h was used for RCA reaction at 30°C for 24 h, and the RCPs 

were verified by the agarose (1%) gel electrophoresis. As seen from Fig. 3.3, the two bands (lane 

1 and 2) represented the RCPs remained in the gel wells were very bright, indicating the 
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successful reaction of RCA and ligation. The bands around 100 bp (enclosed by the blue square) 

represented the templates that were not ligated nor amplified. Compared to the bands of the 

template in Fig. 3.3 A, the bands in Fig. 3.3 B were much darker, which implied that the 

efficiency of ligation was greatly improved after increasing the ligation time from 4 h to 8 h. 

Thus, 8 h was chosen for ligation in the future experiments.  

3.4.2.2 Optimization of concentration of dNTPs 

dNTPs are the building blocks added one at a time to the elongated ssDNA strand by the 

DNA polymerase. The amount of dNTPs in the RCA reaction mixture plays an important role in 

the elongation of the RCPs. To obtain the largest output of RCPs within a fixed reaction time, the 

concentration of dNTPs were optimized by verifying the size of RCPs on agarose gel (0.5%). 

Two different concentrations of dNTPs - 250 µM and 10 mM - were examined, and the 

corresponding RCPs after RCA reaction at 30°C of 24 h were characterized as shown in Fig. 3.3 

C. The band stuck in the gel well (lane 2) representing the RCPs produced with 10 mM dNTPs 

was much brighter than that (lane 1) representing the RCPs produced with 250 µM dNTPs. It 

suggested that in the presence of 10 mM dNTPs, longer RCPs could be produced in a reaction 

time of 24 h. Therefore, 10 mM was chosen as the concentration of dNTPs in later RCA 

reactions.  
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Fig. 3.3 Agarose gel (1%) electrophoresis of 50 bp marker (M) and RCPs of RCA reaction 

(concentration of dNTPs was 200 µM ) was 200 at 30°C of 24 h after ligation of circular 

template at 16°C for 4 h (lane 1 and 2) (A) and 8 h (lane 1 and 2) (B); Agarose gel (0.5%) 

electrophoresis of 1 kb extended marker (M) and RCPs of RCA reaction at 30°C of 24 h in the 

presence of 250 µM dNTPs (lane 1) and 10 mM dNTPs (lane 2) (C).  

 

3.4.3 Optimization of fabrication of the multivalent aptamer system by RCA  

2.4.3.1 Immobilization in the flow cell (RCA at 30°C) 

 To monitor the immobilization of the QCM electrode in real time, the step-wise 

immobilization was conducted inside the flow cell. After the electrode was cleaned and modified 

by 20 mM MHDA for 24 h, the electrode was mounted between the two parts of the flow cell 

and connected to the QCA, with the side for immobilization facing the cylindrical well.  300 µl 

mixture of 75 mM EDC and 30 mM NHS at a volume ration of 1:1 was added for the activation 

of carboxyl groups for 10 min, followed by the addition of 200 µl 1 mg/ml streptavidin to 

incubate with the electrode for 30 min.  
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The optimal activity of phi29 polymerase is at temperature of 30°C. For RCA in the 

solution, the RCPs produced by RCA reaction in the solution within in a tube at 30°C for 

different time periods were dissolved in 100 µl Milli-Q water, and added to the flow cell 

followed by incubation for 45 min. The unbound RCPs were rinsed off by 400 µl PBS for three 

times. For RCA on the electrode, 100 µl of the ligated circular template with biotinylated primer 

were first immobilized on the electrode surface, and then 50 µl of the RCA reaction mixture 

were added to the electrode surface. To prevent the RCA solution from evaporation, the opening 

of the cylindrical well was sealed by parafilm and then the flow cell was left in the incubator for 

reaction at 30°C. A small amount of Milli-Q was added into the cell every now and then to 

replenish the water that was evaporated.  

After the creating of a multivalent aptamer system, the flow cell was flushed with PBS at 

RT and PBS heated to 95°C. Then 200 µl of 0.1 mg/mL PEG methyl ether thiol was added to 

block the unmodified electrode gold surface for 20 min. Following the washing step with 400 µl 

PBS for six times, 200 µl of PBS was added to get a baseline. Subsequently, 200 µl of E. coli 

O157:H7 of 107 CFU/ml was added and incubated for 30 min. After the removal of unbound 

bacterial cells, 200 µl of PBS was added to get a baseline. The frequency change (∆F) caused by 

the target bacterial binding was calculated by measuring the difference of the baselines before 

and after the incubation of E. coli O157:H7. 

As seen from Fig. 3. 4 A, the detection signals of E. coli O157:H7 at 107 CFU/ml by 

RCA either in the solution or on the electrode for various hours were between -11 to -16 Hz. 

There was no significant difference between these two methods. Furthermore, when RCA 

reaction was directly performed on the electrode in the cell, the baselines during QCM sensing 
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became very unstable typified by the large fluctuation of the frequency. The possible reason for 

this phenomenon was that the dNTPs, polymerases, and BSA in the RCA reaction mixture non-

specifically bound to the wall of the cylindrical well, causing interference with the oscillation of 

the quartz by wavering in the liquid upon the electrode. The reason why the detection signals 

with RCA in the solution were not large either could be that the RCPs added to the flow cell also 

bound to the wall of the cylindrical well non-specifically, resulting in the huge drop of the 

amount of RCPs immobilized on the electrode surface.  

 

Fig. 3.4 (A) Frequency shifts after the detection of 107 CFU/ml E. coli O157:H7 using RCPs 

from RCA reaction at 30°C of different hours in the solution or on the electrode; (B) Frequency 

shifts after the detection of 106 CFU/ml E. coli O157:H7 using RCPs from RCA reaction at RT 

of different hours in the solution or on the electrode.  
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2.4.3.2 Immobilization outside the flow cell (RCA at RT) 

To determine which method - RCA in solution or RCA on the electrode - is more 

superior, the multivalent aptamer system established by each of them was used for the detection 

of E. coli O157:H7 at 106 CFU/ml. As seen from Fig. 3.4 B, the detection signal acquired by the 

method of performing RCA on the electrode was much larger than that acquired by the method 

of conducting RCA in the solution, which were -239 Hz (1 h) and -59 Hz (1 H), respectively. 

The possible reason could be that long ssDNA strands of RCPs produced in the solution were 

self-folding into coils and the biotin molecules at the end of the stands might have been 

embedded inside the coils. Without enough interaction between biotin and streptavidin, the 

amount of RCPs immobilized on the electrode surface was greatly reduced. Therefore, RCA on 

the electrode at RT was selected to be used for further QCM sensing of E. coli O157:H7 at 

various concentrations.  

By extending the time of RCA in solution from 1 h to 5 h, no significant change in 

detection signal was observed.  As the time of RCA on the electrode was increased from 1 h to 8 

h, the concentrated solution formed a white stain in the center of the quartz, which could hardly 

be rinsed off by Milli-Q water (at RT or 95°C) or PBS. That might have been the reason for the 

extremely low detection signal. Long RCPs produced with long reaction time may contain more 

intra- and inter-molecular interactions, which could inverse limit the accessibility of aptamers to 

the target (Zhao et al., 2012). Based on the reported various biosensors based on RCA (Yan et 

al., 2012; Zhao et al., 2013; Ge et al., 2014; Kühnemund and Nilsson, 2015; Guo et al., 2016; 

Carinelli et al., 2017; He et al., 2014), the RCA reaction for no more than 1 h was enough for 

signal enhancement. Therefore, in this study, 1 h was chosen for RCA reaction. 
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In order to check the size of the RCA products, the agarose gel electrophoresis was 

performed under 120 V for 45 min. As seen from Fig. 3.5, clear bands stuck in the gel wells 

represented the RCPs produced at RT or 30°C for 1 h or 5 h. However, the size of RCPs cannot 

be estimated by the location of the bands, because the RCPs might not have been able to migrate 

in the gel due to the intra- and inter-molecular interactions. 

Although the preferred temperature for RCA reaction was 30°C, the RCA reaction 

mixture dropped on the electrode surface could be quickly evaporated at 30°C in an incubator, 

which would largely influence the amplification efficiency. So for the convenience of the whole 

immobilization process of the electrode, RCA was conducted at RT (~23°C) as other steps of 

modification and blocking. Compared with the band of RCPs generated at 30°C for 1 h (or 5 h), 

the band of the RCPs generated at RT for 1 h (or 5 h) showed slightly lower intensity, indicating 

that the amplification efficiency of the polymerase was not significantly affected by performing 

RCA at RT.  
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Fig. 3.5 Agarose gel (0.5%) electrophoresis of 1 kb extended marker (M) and RCPs of RCA 

reaction at RT and 30°C for 1 h (A) or 5 h (B).  

 

To be noted, there was a problem related to performing RCA on the electrode, which was 

that the RCA reaction solution appeared to have better “affinity” to the electrode surface than 

other solutions and would spread to the edge of the quartz and even flow to the other side of the 

quartz when the quartz was not placed entirely horizontally. Once that happened, the 

polymerization efficiency was decreased and the other side of the electrode was also 

contaminated. Thus, it was critical to make sure the electrode is completely dry before the 

addition of RCA reaction mixture and to adjust the position of the electrode from any tilt.  

3.4.4 Highly sensitive and specific QCM sensor based on the multivalent aptamer system 

After the optimization of RCA reaction, RCA on the electrode at RT for 1 h was used as 

the approach for building the multivalent aptamer system, which was incorporated into the QCM 
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sensor for sensitive, rapid, and label-free detection of E. coli O157:H7. The frequency shifts 

caused by the incubation of E. coli O157:H7 with the QCM sensor for 30 min are plotted versus 

the logarithm of the bacterial concentrations (Fig. 3.6 A). The standard deviations (S.D.) 

calculated from triplicate tests are shown as error bars in the figure. Good linear relationships 

were found between the frequency shift (∆F) and the logarithm of the bacterial concentrations 

from 102 to 105 CFU/ml and from 105 to 107 CFU/ml, respectively. The corresponding regression 

equations were y = -13.711x + 12 (R² = 0.998) and y = -305.27x + 1696.7 (R² = 0.9677), 

respectively. PBS without target bacteria was detected as a negative control (NC), which resulted 

in frequency change of -3 ± 2 Hz. The LOD (as 3 times of the S. D. of the NC) was thus 

determined to be 34 CFU/ml based on the regression equation. Compared to the QCM sensor 

based on monovalent aptamers developed in Chapter 2 for the detection of E. coli O157:H7, the 

sensitivity of the multivalent aptamer system based QCM sensor was approximately 8-fold 

higher at low concentrations and 33-fold higher at high concentrations of E. coli O157:H7 (the 

sensitivity corresponds at the slope of the calibration curve). The LOD was also lowered from 

1.46 × 103 CFU/ml to 34 CFU/ml by 2 orders of the magnitude (Yu et al., 2018).  

The specificity of the proposed QCM sensor was demonstrated by using five different 

strains of non-pathogenic or pathogenic bacteria, which were E. coli K12, S. Typhimurium, L. 

monocytogenes, L. innocua and S. aureus. Frequency shifts after incubation with 106 CFU/ml 

non-target bacteria for 30 min were measured. The mean and S.D. calculated from triplicate tests 

are shown in Fig. 3.6 B. The detection signals for the non-target bacteria at a concentration of 

106 CFU/ml were much smaller than that for E. coli O157:H7 at a concentration of 104 CFU/ml, 

suggesting that the developed QCM sensor has a high selectivity for E. coli O157:H7. 
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The regeneration of the QCM sensor was carried out by injecting 0.1 ml 1, 10, or 100 

mM NaOH solution into the chamber and reacted for 1-10 min to remove the bound bacterial 

cells. The regeneration solution was then flushed out by PBS. The recovery of the baseline in 

PBS to its original frequency before the binding of bacteria indicated successful regeneration 

process. One side of the QCM electrode could usually be used for 3-5 measurements.  

 

Fig. 3.6 (A) The two linear calibration curves of frequency changes verses the logarithm of E. 

coli O157:H7 concentrations from 101 to 105 CFU/ml and from 105 to 107 CFU/ml detected by 

the QCM based on a multivalent aptamer system by RCA on the electrode. Each value is 

presented as mean ± S. D. (n=3). The figure at the left corner compares the detection signals of 

E. coli O157:H7 at lower concentrations by QCM based multivalent and regular aptasensors.  (B) 

Specificity of the multivalent aptamer system based QCM sensor for the detection of E. coli 

O157:H7. The values presented corresponded to E. coli O157:H7 at 104 CFU/ml, and the non-

target bacteria at 106 CFU/ml.  

 

3.4.5 AFM imaging 

The RCPs produced at RT for 1 h were also characterized by AFM. The bright dots as 

seen in Fig. 3.7 A were around 3 nm in height. The dots possibly represent the ligated template 
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hybridized with primer, the ligases, or some contaminates. In comparison with the image of 

circular template-primer, the images of RCPs showed long stands, which were about 0.8 nm in 

height (data didn’t show) and a few microns in length (Fig. 3.7 C and E). The long strands of 

RCPs were broken at some points probably due to the strong charge of the buffer solution and 

the drying process of the samples. The lumps shown in Fig. 3.7 C and E are 20 - 30 nm in height, 

which might have be caused by the incomplete drying of the surface of micas.  The preparation 

of the AFM samples needs to be further optimized.  
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Fig. 3.7 AFM measurements of different DNA samples: (A) circular template-primer and its 3D 

image (B); (C) and (E) RCPs produced at RT for 1 h in the solution and their 3D images (D) and 

(F), respectively. 

 

3.5 Conclusions 

It is the first time that RCA was utilized to produce a multivalent aptamer system for the 

detection of E. coli O157:H7 using a QCM sensor. The RCP-based aptamer sensor developed in 
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this study manifested a much better sensitivity than a regular aptasensor with the LOD of 34 

CFU/ml. By tailor designing the unit aptamer, the multivalent aptamer system can be 

incorporated into different biosensors for sensitive detection of a variety of bacterial or human 

cells.  
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Conclusions 

In this study, ssDNA aptamers were selected the first time by a whole-bacterium SELEX 

technique against E. coli O157:H7 with high affinity (Kd =10.30 nM) and specificity. The 

selected aptamer was further applied to the development of a QCM aptasensor for the detection 

of E. coli O157:H7. The LOD of the aptasensor was as low as 1.46 × 103 CFU/ml, superior to 

most QCM-based immunosensors for pathogen detection. The sequence complementary to the 

selected aptamer was used as the circular template for RCA to create a multivalent aptamer 

system, which was intergrated with the QCM sensor, for the detection of E. coli O157:H7. The 

RCP-based aptamer sensor developed in this study manifested a much better sensitivity than a 

regular aptasensor with the LOD of 34 CFU/ml. By tailor designing the unit aptamer, the 

multivalent aptamer system can be incorporated into different biosensors for sensitive and 

selective detection of a variety of bacterial pathogens.  
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Recommendations for future research 

1. More related bacteria strains, such as E. coli K12, can be used in counter selection in 

order to increase the specificity of aptamer pools. Also, the binding of the aptamer 

pools to other bacteria should be evaluated after counter selection, so that the number 

of counter selection rounds could be determined.  

2. The dissociation constants (Kd) for all three sequences of aptamers could be determined. 

The binding motifs of aptamers can also be determined by various ways of truncation.  

3. The binding sites on the target bacteria could be investigated by purifying proteins and 

other molecules, such as flagella antigens and lipid A, and their binding affinity with 

selected aptamers could be characterized. 

4. In order to increase the capture efficiency of aptamers immobilized on the electrode, a 

panel of aptamers with different binding sites can be used to capture the target bacteria 

in the aptasenor.  

5. The RCPs could be verified by the digestion of BamH1 digestion, the restriction site of 

which is at the spacer. The ladder-like bands on the agarose gel will prove the 

successful amplification of the template.  

6. The 3D structure of RCPs could be simulated via the software called oxDNA. We can 

also check if the hybridization of the RCPs with spacers will improve the correct 

folding of RCPs into tandem aptamer structures.   

7. The circular template can be tailor designed for detection of different targets. By 

incorporating different multivalent aptamer systems specific for different bacteria, 

multiplex detection could be achieved by the labeling of reporters in electrochemical 

or optical sensors.  
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