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ABSTRACT 
	

Fault diagnosis can prolong the life of machines if potential sources of failure are 

discovered and corrected before they occur. Supervised machine learning, or the use of training 

data to enable machines to discover these faults on their own, makes failure prevention much 

easier. The focus of this thesis is to investigate the feasibility of creating datasets of various 

faults at both the component and system level for a servomotor and a compatible robotic arm, 

such that this data can be used in machine learning algorithms for fault diagnosis. The faults 

induced at the component level in different servomotors include: low lubrication, no lubrication, 

two gears chipped, and four gears chipped. Each fault was also examined at 180, 135, 90, and 

45-degree swings of the servo arm. Component level data was obtained using an Arduino 

microcontroller and a feedback wire in each servomotor to obtain the actual position of the servo 

arm, which allowed for the calculation of the difference in actual and theoretical position and the 

speed of the servo arm at the various faults. System level data was obtained using OptiTrack’s 

motion tracking software, Motive, to track the position of two reflective markers on the hand of 

the robotic arm. At the component level, the low lubrication and no lubrication faults did not 

exhibit a large difference from the normal servomotor, whereas the servomotors with the gears 

chipped exhibited significant differences when compared to the normal servomotor. When 

evaluating the difference in position and speed of the servo arm at larger degree sweeps it was 

more evident that failure occurred, as opposed to the data at smaller degree sweeps. At the 

system level, the error was not as visible in the data as there wasn’t much distinction between the 

speeds of the robotic arm’s hand when the servomotors with faults were placed in it. The results 

of this work indicate that servomotors can be used to create fault behavior datasets at the 

component and system level that are usable for machine learning. 
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INTRODUCTION 
	
	 The goal of this thesis is to determine the feasibility of gathering baseline data from a 

HITEC Servo, which could be used for autonomous machine fault diagnosis in the future. Before 

getting into the depth of this thesis it is best to define some key terms that will be used 

throughout. The first basic term is failure, which is defined by Smith (2017), as “non-

conformance to some defined performance criterion.” A machine fault, however, as defined by 

Jayaswal et. al (2008) is “any change in a machinery part or component which makes it unable to 

perform its function satisfactorily.” Fault diagnosis is critical for all machines because if faults 

aren’t discovered and corrected, then machine failure can occur. Timing is also critical for fault 

diagnosis because undetected faults can upset production deadlines and cause heavy financial 

losses for companies that are dependent on these machines [3]. As such, the two main goals for 

fault diagnosis are to “prevent future failures and to ensure safety, reliability, and maintainability 

of machines” [4]. If the symptoms of the failure precede the actual failure itself, then one 

potential fix is machine learning [5]. Florez-Revuelta et. al (2016) define machine learning as a 

component of Artificial Intelligence that focuses on learning from data. Insights from data can 

permit the use of data-driven decision-making for the machine, which if applied to fault 

diagnosis, could be used to prolong machine failure [6]. There are two main categories of 

machine learning: supervised and unsupervised learning [6]. The difference between the 

categories is that supervised machine learning requires training data. There are many different 

algorithms within the two categories as well. Common supervised learning algorithms include 

Decision Trees, Naïve Bayes Classification, Least Squares Regression, Logistic Regression, 

Support Vector Machines, and Ensemble Methods [7]. Decision Trees are decision support tools, 

which are “tree like” models that narrow possible outcomes based on the answers to yes or no 
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questions [7]. Naïve Bayes Classification is a family of probabilistic classifiers based on Bayes 

Probability Theorem [7]. Least Squares Regression is a method of comparing data using an error 

metric that compares the data about a best-fit line, with the most popular type being a linear 

regression model [7]. Logistic Regression measures the relationship between a dependent 

variable and one or more independent variables by estimating probabilities using a cumulative 

logistic distribution [7]. Support Vector Machines is a binary classification algorithm that 

separates data into groups using straight lines [7]. Ensemble Methods create a set of classifiers 

and then classifies new data based on predictions [7]. Although this thesis is focused on 

examining the feasibility of obtaining training data for supervised learning, unsupervised 

learning is also beneficial. One of the most prominent types of unsupervised learning is 

clustering, where data is grouped into “clusters” based on similarity [7]. There are many different 

types of clustering such as k-means, centroid-based, connectivity-based, density-based, 

probabilistic, neural networks, and deep learning [7]. As defined by Nielsen (2017) a neural 

network is a “biologically-inspired programming paradigm, which enables a computer to learn 

from observational data” and deep learning is a set of techniques used for learning in neural 

networks. This thesis is focused more on supervised learning, or machine learning where training 

data is available. There are many machine learning dataset repositories online, such as the UC 

Irvine Machine Learning Repository, which have easily accessible training data [9]. There are 

not many existing datasets for failure data of machines at the system level, however. Though 

some do exist, such as research by Wienke et. al (2016) in which the authors created a dataset for 

a robotic system data based on various component faults. The focus of this thesis differs from 

that of the abovementioned research since the focus is on the feasibility of datasets being created 
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to look at failure data at both the component and the system level of a machine. The system is a 

robotic arm, with the faults being induced at the component level in the servomotors.  
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BACKGROUND 
 
 There does exist research on determining failure in machines at the system level with a 

variety of different approaches. Prognostic Health Management for electronics is one such 

method of assessing the life of an electronic, which uses “the integration of system state and the 

assessment of product survivability in deployed systems using non-destructive assessment of 

underlying damage” [11]. This Prognostic Health Management is a method that constantly 

evaluates the current “health” of the electronic in question in order to try to prevent failure [12]. 

According to The Electronic Prognostics and Health Management Research Center at the 

University of Maryland main approaches of Prognostic Health Management implementation 

include Built-in-Testing, use of expendable devices, “monitoring and reasoning of parameters 

that are precursors to impending failure”, and “modeling of stress and damage in electronic parts 

and structures utilizing exposure conditions” [12]. Built-in-testing as defined by Vichare et. al 

(2006) is an on-board hardware-software diagnostic means to identify and locate faults, and has 

various levels including circuit, module, and system level testing. The paper by Vichare et. al 

(2006) focused on electronics, so when referring to the use of expendable devices the paper 

mentioned fuses and other easily replaceable electronic devices. A failure precursor as defined 

by Vichare et. al (2006) is “a change in a measurable variable that can be associated with 

subsequent failure,” such as monitoring motor temperature in order to determine if the motor is 

about to fail. The measuring of stress and damage to electronic parts involves monitoring 

exposure conditions including usage, temperature, vibration, and radiation. Additionally, NASA 

has their own prognostic dataset repository on failure, with 16 different datasets on failure in 

various mechanical systems [13]. However, these datasets differ from the data in this thesis in 

that the systems tested were run until failure, whereas in this thesis the failure was induced prior 
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to testing. Similar to research done by Wienke et. al (2016) I will be inducing the failures. 

However, instead of inducing the failure at the component level and evaluating system 

performance as done in the previously mentioned paper, I induced the failure at the component 

level and evaluated the data at both the component and the system level. More specifically, I 

induced failures in a servomotor and then evaluated the performance of both the servomotor and 

the robotic arm that the servomotor was a part of. In order to design the experiment, it was 

important to identify the types of failure that I was anticipating. The major failure types as 

defined by Nandi et. al (2005) include stator faults with regard to function and connection, 

broken rotor bars, static and dynamic air-gap irregularities, bent shafts, shorted rotor field 

winding, and bearing failures, and gearbox failures. 
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APPROACH 
	
 There are a variety of reasons why servomotors fail, which can be grouped into two 

larger categories: mechanical and electrical. Mechanical faults are something physically wrong 

with the motor such as wear on the gears and bearings, lack of, or contaminated, lubricant where 

the gears are, out of balance rotors, contamination in the motor, excessive vibration, improper 

installation, moisture in the motor, etc. [14,15,16]. Electrical faults include faulty wiring, 

electrical degradation, a bad power supply, a low supply voltage, faulty electronic connections, 

etc. [14, 16]. The servomotor examined in this thesis is a HITEC HS-422 Deluxe Dual Ball 

Bearing Servo. The faults that were examined in this thesis include a lower voltage, low 

lubrication, no lubrication, chipped gear teeth, and chunks of gear teeth missing. These faults 

were chosen in order to diversify the causes of failure such as failures due to maintenance and 

mechanical errors. Improper lubrication typically results from an error in the maintenance of the 

motor and chipped gear teeth typically results from a mechanical fault such as an overloaded 

motor. See Tables 1 and 2 for matrices showing all of the faults that were tested at the 

component and system level, respectively. A new servomotor was used for each fault. Data 

collected from the servomotor and the robotic arm included position versus time and the speed of 

the servomotor and hand of the robotic arm. Datasets were generated for a normal servomotor 

and for each of the aforementioned fault types at both the component and system level. The 

number of trials necessary for machine learning varies. Previous experiments like that of Wienke 

et. al (2016) had a total of 10 trials for baseline data and 33 trials of fault data. A paper by Indira 

et. al (2010) focused on determining the sample size necessary for machine learning fault 

diagnosis using power analysis and found that at a sample size of about 10, the classification 

accuracy for machine learning is already at 85% and does not vary much, even with additional 
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trials. The total number of cycles analyzed for this thesis was 19 cycles for each component level 

failure and 20 cycles for each system failure. 

 

Table 1: A matrix of all of the failure modes examined at the component level in this thesis 

Not Tested Tests 

Failure Modes 5V 3.3V 
135-degree 

cycle 
90-degree 

cycle 
45-degree 

cycle 
Normal (Control) Tested Tested Tested Tested Tested 
Low Lubrication Tested Tested Tested Tested Tested 
No Lubrication Tested Tested Tested Tested Tested 
2 Gear Teeth Chipped Tested Tested Tested Tested Tested 
4 Gear Teeth Chipped Tested Tested Tested Tested Tested 
Many Teeth Chipped Not Tested Not Tested Not Tested Not Tested Not Tested 

 

Table 2: A matrix of all of the failure modes examined at the system level in this thesis 

 
Tests 

Failure Modes 4 Second Cycle 2 Second Cycle 8 Second Cycle 
Normal (Control) Tested Tested Tested Tested Tested Tested 
Low Lubrication Tested Tested Tested Tested Tested Tested 
No Lubrication Tested Tested Tested Tested Tested Tested 
2 Gear Teeth Chipped Tested Tested Tested Tested Tested Tested 

4 Gear Teeth Chipped 
Not 

Tested 
Not 

Tested 
Not 

Tested 
Not 

Tested 
Not 

Tested 
Not 

Tested 

Many Teeth Chipped 
Not 

Tested 
Not 

Tested 
Not 

Tested 
Not 

Tested 
Not 

Tested 
Not 

Tested 
 

Experimental Setup 

 Before testing began on the servomotors, each servomotor needed to be modified to 

include a feedback wire that attaches to the potentiometer wire on the servomotor’s circuit board 

[18]. Following the steps from the instructables site, see reference 18, the bottom cover of the 

servomotor was removed. A voltmeter was then used to determine which wire was the 

potentiometer wire and a feedback wire was soldered onto this wire [18]. The side of the 
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servomotor was then clipped in order to allow adequate room for the feedback wire to exit the 

side of the servomotor as seen in Figure 1 below.  

 

 

Figure 1: Image of a servomotor after the feedback wire, the white wire, was attached. The 

black, red, and yellow wire is the power cable for the servomotor. 

 

 Testing of the servomotor was conducted using an Arduino MEGA 2560 Microcontroller 

as seen in Figure 4. Before testing the servomotor, Arduino code was completed that made the 

servomotor complete a sweep. The basic code for the sweep was obtained from the Arduino 

Tutorial website [18]. This code enabled the servomotor to perform a basic sweep function, 

rotating 180 degrees with two-degree increments. This code was then modified to output the 

position of the servo arm, the current time of the code in milliseconds, and a column with either a 

positive or negative “1” indicating a positive or negative swing, respectively. Code was then 
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added from Trossen Robotics Community that outputted the actual servomotor position using the 

feedback wire from the potentiometer after calibration was accomplished at the beginning of the 

code [20]. Code for a servo arm swing from 0 degrees to 180 degrees can be seen in Figures 2 

and 3 below. As seen in Table 1, each fault was tested at a 180, 135, 90, and 45-degree servo arm 

swing. Figures 15 through 20 in the Appendix show code for the 135, 90, and 45-degree swings 

that were also tested at each fault. The last test that was done at each fault was a 180 servo arm 

swing at a lower voltage of 3.3 Volts, which was achieved by simply moving a wire from the 5V 

pin to the 3.3V pin on the microcontroller seen in Figure 4.  
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Figure 2: Part 1 of the code for the 180-degree servo arm swing. 
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Figure 3: Part 2 of the code for the 180-degree servo arm swing. 

 

 

 

 



Brown 16 

 The servomotor was then attached to the breadboard and microcontroller similar to the 

setup in the Trossen Robotics Community instructions [20]. The voltage source was first divided 

using 1K and 2K-ohm resistors and is then connected to the AREF source on the microcontroller 

in order to divide the voltage by an internal 32K resistor within the microcontroller. The voltage 

division increased the range of feedback from the servomotor, which made the data acquired 

from the feedback wire more accurate [18]. As seen in Figure 4 the servomotor is connected to 

the microcontroller as follows: one end of a red wire is connected from the ground next to the 

AREF pin to column J and row 41 of the breadboard, a 1K-ohm resistor is then connected next to 

the ground wire with one end in column I and row 41 of the breadboard and the other end in 

column I and row 44. To complete the voltage divider the 2K-ohm resistor has one end in 

column H and row 44 and the other end in column H and row 49, a yellow wire is then 

connected to the AREF pin on the microcontroller and the other end in column G and row 49. A 

white wire is then connected next to the AREF wire in column F and row 49 with the other end 

connected to the 5V pin on the microcontroller. With the voltage divider connected, the 

servomotor was then connected to the microcontroller. As seen in the code above in Figure 2, the 

servomotor is “attached” to pin 2, so another yellow wire was connected to pin 2 on the 

microcontroller with the other end in column A and row 9 as seen in Figure 5 below. Above the 

yellow wire is a red wire to provide the input voltage for the servomotor with one end on the 

“Vin” pin on the microcontroller and the other end in column A and row 8 on the breadboard. 

The servomotor’s ground is then connected to the breadboard in column A and row 7 and then 

connected to the “GND” pin on the microcontroller above the “Vin” pin. The servomotor is then 

connected to the breadboard in column E in the same color arrangement as the other wires in 

column A. As seen in the code above in Figure 2 the analog pin is set equal to 1, so the feedback 
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wire from the servomotor is connected to analog pin 1 on the microcontroller as seen in Figure 4 

below.  

  

 

Figure 4: A top view of the servomotor connected to the microcontroller. 

 

Figure 5: A top view of the breadboard. 
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 In order to create the faults in the servomotors the top plate was first removed by first 

removing the four screws on the bottom of the servomotor. Figure 6 below depicts a normal 

servomotor with no faults induced. In order to achieve the low lubrication fault some of the 

lubrication was wiped away. The servomotor with no lubrication can be seen in Figure 7 below. 

Figures 8, 9, and 10 show servomotors with 2 gear teeth, 4 gear teeth, and many gear teeth 

chipped off, respectively, with the red arrows indicating the teeth that were chipped off. As seen 

in Tables 1 and 2 the servomotor with many gear teeth chipped off was not tested at the 

component or system level because it was too damaged to run.  

 

 

Figure 6: A normal servomotor with the top plate removed. 
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Figure 7: The servomotor with no lubrication. 

 

Figure 8: The servomotor with 2 gear teeth chipped. 
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Figure 9: The servomotor with 4 gear teeth chipped. 

 

Figure 10: The servomotor with many gear teeth chipped. 
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 The HS-422 Servomotor is in control of the “hand” of the robotic arm. In order to test 

whether a fault has occurred the speed of the hand at the various faults mentioned in Table 2 was 

determined. In order to track the position of the hand, OptiTrack Motion Capturing Software was 

used with six Prime 13W cameras positioned above the robotic arm. Before testing could begin 

calibration was necessary. In order to calibrate, the aim assist was first turned on and then each 

camera was switched into a gray scale video type and the gain, exposure, and LED settings were 

adjusted so the cameras had the best focus [21]. After each camera was adjusted, the cameras 

were switched back to object mode and all markers were removed and then any remaining 

extraneous reflections were “masked”, or removed, using the mask visible button in the Motive 

program [22]. The calibration options then were adjusted to ensure the correct OptiWand was 

selected and the “Start Wanding” button was clicked, and then the wand was waved in front of 

the cameras until enough samples were acquired to complete the wanding process. The final part 

of calibration was setting the ground plane, which was done by placing the calibration square on 

the ground selecting all of the markers of the calibration square and clicking the “Set Ground 

Plane” button [22]. After calibration was complete, the layout was switched to capture, and a 

reflective marker was placed on each “claw” on the hand of the robotic arm, as seen in Figure 11 

below. Figure 12 is a screen capture of the Motive software with the two markers on the robotic 

arm. The robotic arm was then connected to a laptop computer and the Program SSC-32 Servo 

Sequencer was used to control the robotic arm, with each servomotor having the ability to be 

individually adjusted before adding a new frame. Figure 13 below shows the robotic arm 

connected to a laptop with the SSC-32 Servo Sequencer Program open.  
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Figure 11: The robotic arm with reflective markers seen on the “hand”. 

 

Figure 12: The Motive software with the two markers in the middle. 
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Figure 13: The robotic arm connected to a laptop with the SSC-32 Servo Sequencer Program. 
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ANALYSIS 
	
 At the component level the Arduino outputted four columns: one with the theoretical 

position, one with the actual position, one with the direction of the swing (either positive or 

negative “1”), and one with the time in milliseconds. The code ran for a total of 3 minutes. A 

column was added at the beginning to depict the current cycle, which is defined as the servo arm 

completing its sweep and then returning to its original position. Another column added was the 

difference in position between the theoretical and actual columns. The column after this is the 

adjusted difference in position, which is simply used to eliminate the “noisy” data, or data that is 

an outlier. If the difference in position is greater than 7, then an “if statement” function in excel 

was used to set the value equal to 7. The number of data points modified was monitored and can 

be seen in Table 10. Two more columns were added to display the time in seconds and minutes. 

The average difference in position, standard deviation of the difference in position, sample size, 

and number of adjusted cells for each test can be seen in Tables 3 through 7. The next column, J, 

is the difference between the current actual position and the previous actual position in order to 

obtain the total distance traveled by adding up all of the values in this column. However, due to 

“noisy” data in the actual position column, column J was also adjusted as seen in column K, 

where any difference between the current and previous actual position over 7 is reduced to a 

difference of 2, which corresponds to a normal difference in position, since the degrees 

increment by 2 degrees. Table 8 shows the speed of the servomotor in degrees per second when 

comparing the various faults at the different servo arm sweeps. Table 8 is the average speed of 

the 19 cycles that were completed for each fault; the values of the speed for each cycle can be 

found in the attached excel sheet with the dataset. Table 11 in the Appendix has the number of 

cells that were adjusted for each of the faults.  
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Table 3: The results for the difference in theoretical and actual position for each fault 

undergoing a 180-degree cycle 

5 Volt - 180 Degree Cycle Normal 
No 

Lubrication 
Low 

Lubrication 
2 

Gear 
4 

Gear 
Average Difference in 
Position: 2.970 3.201 2.989 5.764 5.898 
Standard Deviation, sigma: 1.299 1.293 1.255 1.910 1.841 
Sample Size, n: 3439 3439 3439 3439 3439 
Number of Adjusted Cells: 149 206 184 2254 2371 

 

Table 4: The results for the difference in theoretical and actual position for each fault 

undergoing a 180-degree cycle at 3.3V 

3.3 Volt - 180 Degree Cycle Normal 
No 

Lubrication 
Low 

Lubrication 
2 

Gear 
4 

Gear 
Average Difference in 
Position: 2.979 3.219 2.990 5.868 5.899 
Standard Deviation, sigma: 1.125 1.260 1.171 1.824 1.830 
Sample Size, n: 3439 3439 3439 3439 3439 
Number of Adjusted Cells: 130 212 170 2300 2366 

 

Table 5: The results for the difference in theoretical and actual position for each fault 

undergoing a 135-degree cycle 

5 Volt - 135 Degree Cycle Normal 
No 

Lubrication 
Low 

Lubrication 
2 

Gear 
4 

Gear 
Average Difference in 
Position: 2.686 2.818 2.725 3.752 3.968 
Standard Deviation, sigma: 1.166 1.212 1.222 1.904 1.921 
Sample Size, n: 2539 2539 2539 2539 2539 
Number of Adjusted Cells: 96 128 112 394 488 
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Table 6: The results for the difference in theoretical and actual position for each fault 

undergoing a 90-degree cycle 

5 Volt - 90 Degree Cycle Normal 
No 

Lubrication 
Low 

Lubrication 
2 

Gear 
4 

Gear 
Average Difference in 
Position: 2.314 2.474 2.426 2.933 3.113 
Standard Deviation, sigma: 1.074 1.250 1.237 1.809 1.760 
Sample Size, n: 1639 1639 1639 1639 1639 
Number of Adjusted Cells: 52 76 67 108 152 

 

Table 7: The results for the difference in theoretical and actual position for each fault 

undergoing a 45-degree cycle 

5 Volt - 45 Degree Cycle Normal 
No 

Lubrication 
Low 

Lubrication 
2 

Gear 
4 

Gear 
Average Difference in 
Position: 2.003 2.080 2.016 2.537 2.637 
Standard Deviation, sigma: 0.909 0.820 0.831 1.422 1.701 
Sample Size, n: 739 739 739 739 739 
Number of Adjusted Cells: 1 3 3 35 47 

 

Table 8: The speed of the servomotor in degrees per second for each fault 

 
Normal 

No 
Lubrication 

Low 
Lubrication 2 Gear 4 Gear 

Average Speed at 5V (180 Degree 
Cycle): 40.156 39.478 40.149 25.540 19.581 

Average Speed at 3.3V (180 Degree 
Cycle): 40.041 39.955 39.966 25.419 17.849 

Average Speed for a 135 Degree 
Cycle: 31.476 30.353 31.162 32.181 30.481 

Average Speed for a 90 Degree 
Cycle: 20.563 20.065 20.372 18.744 18.664 

Average Speed for a 45 Degree 
Cycle: 9.905 9.887 9.858 9.340 8.648 
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 Figure 11 shows the actual position of the normal servomotor versus the theoretical 

position for a 180-degree cycle at 5V for only the first cycle. Figures 21 through 25, in the 

Appendix, compare the actual position versus time for each of the faults at each of the 180-

degree cycle 3.3V, 135-degree cycle, 90-degree cycle, and 45-degree cycle. The actual position 

is averaged across each cycle for each of these Figures. Figures 21 and 22 show that the 2 gear 

and 4 gear fault’s actual position varied greatly from the normal servomotor in the 180-degree 

cycle. Figures 23 through 25 show that there is still some variability of the actual position 

between the chipped gear faults for the 135, 90, and 45-degree cycles, with a few spikes in 

position, but the chipped gears actual position is much closer to that of the normal servomotor 

when compared to the 180-degree cycles seen in Figures 21 and 22. In the Appendix, Figures 26 

through 30 show the average difference in position versus time for one cycle for the 180-degree 

cycle at 5V,180-degree cycle at 3.3V, 135-degree cycle, 90-degree cycle, and 45-degree cycle. 

 

 
 

Figure 14: A graph of actual position versus the theoretical for the 180-degree cycle at 5V. 
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 The dataset from the robotic arm consists of the frame, the current running time for the 

arm in seconds, the current cycle number, and the x, y, and z coordinates of each marker on the 

“hand” of the arm. The total distance between the markers was then computed using the distance 

formula [23]:  

 
   ! !!,!! = (!! − !!)! + (!! − !!)! + (!! − !!)!  (1) 

 
 The speed was then computed for each cycle by dividing the total distance traveled 

throughout the cycle in meters by the total time for each cycle. This was repeated at three 

different speeds for each fault as described in Table 2 above. In the Appendix, Tables 12 through 

15 consist of data on the speeds of the normal, low lubricant, no lubricant, and 2 gear chipped 

servomotors. Table 9 below has the average speed of the hand at each of the faults. The 4 gear 

chipped servomotor data did not output well from the Motive software and thus the speed wasn’t 

computed. 

 

Table 9: The speed of the hand with each servomotor in the robotic arm 

	
Normal	

Low	
Lubrication	

No	
Lubrication	

2	
Gear	

Average	Speed	(m/s)	of	4	
Second	Cycle:	 1.151	 1.160	 1.108	 1.122	
Average	Speed	(m/s)	of	2	
Second	Cycle:	 1.142	 1.160	 1.115	 1.094	
Average	Speed	(m/s)	of	8	
Second	Cycle:	 1.154	 1.157	 1.106	 1.116	
Average	Speed	(m/s):	 1.149	 1.159	 1.110	 1.111	
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RESULTS 
 
 As seen in Tables 3 through 7 above, at the component level, the normal servomotor had 

the lowest difference in position followed by the low lubrication, no lubrication, 2 gear and 4 

gear. At the lower cycles, such as the 45-degree cycle, the normal and improperly lubricated 

servomotors had very small differences between the average differences in position; however, 

the gear teeth faults still had a significant difference in position. As seen in Table 8, the speed 

differences were also apparent between normal servomotor and the chipped gear teeth 

servomotors at the 180-degree and 135-degree swings. However, at lower degree swings, the 

speed differences were not as pronounced. The majority of the error in the 2 gear and 4 gear 

servomotors can be attributed to the gears getting stuck in a certain position and not being able to 

continue rotating. Another indication of failure as mentioned in the introduction is a higher 

temperature, and both chipped gear servomotors were warm to the touch after running. At the 

system level the speed at the different faults did not vary much, with the normal servomotor 

having a speed of about 1.15 meters per second, and the servomotor with low lubrication having 

a slightly higher speed of 1.16 meters per second. The servomotor with no lubrication and the 

servomotor with 2 gear teeth chipped both had a slower average speed than the normal 

servomotor of 1.110 and 1.111 meters per second, respectively. The 180-degree cycle at the 

lower voltage of 3.3V exhibited similar values in terms of speed and difference in position to that 

of the 5V test, as seen in Tables 3, 4, and 8, indicating that the 3.3V wasn’t a low enough voltage 

to induce any failure. 

 The number of cells that were adjusted as seen in Tables 10 and 11, in the Appendix, 

indicates that the normal servomotor had the least amount of adjusted cells with the low 

lubrication and no lubrication not being too far behind, but the 2 and 4 gear tooth chipped 
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servomotors had many more cells adjusted for both the difference in position and the difference 

between current and previous position, which was likely due to the servo arm getting stuck in 

certain positions.  
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DISCUSSION 
	
 While the faults did not show a large error at the system level, it was evident that at the 

component level the faults examined in this thesis showed a sign of some error in both the speed 

and the difference in position. If this topic was further researched, many improvements could be 

made to get better data. One improvement would be to repeat the experiment multiple times to 

ensure the data is precise and consistent. This would include soldering more servomotors in 

order to create multiple servomotors with the same fault and being able to test each of these 

servomotors to ensure the data from each fault is consistent. Another improvement would be to 

test more faults such as a higher voltage, moisture in the servomotor, contaminants in the motor, 

chipping a different gear, and a faulty ball bearing. Alterations could also be made in the 

Arduino code such as different degree increments, bigger servo arm swings, and more time for 

the servomotor to complete more cycles. Better motion tracking would also be better for testing 

at the system level since the OptiTrack cameras were not able to focus well at the markers on the 

robotic arm. Another improvement would be to test a different type of servomotor, such as one 

that is on a joint of the arm that moves more often, such as the “elbow” of the arm. The HS-422 

was only used in the hand of the arm, whereas, a different model HITEC Servo would be 

compatible with another area of the arm.  
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CONCLUSION 
 

The datasets attached to this thesis include both the raw data and the formatted data used 

to compare the faults to the normal servomotor. At the component level, the lower voltage, low 

lubrication, and no lubrication faults were not significantly different from the normal 

servomotor. The servomotors with the gear teeth chipped exhibited failure when compared to the 

normal servomotor at higher servo arm cycles. At the system level, however, the faults were not 

visible in the data because the speed of the robotic arm’s hand when the servomotors with faults 

were placed in the robotic arm did not have any significant difference when compared to the 

speed with the normal servomotor in the hand. As a result of this experiment, inducing faults in 

the servomotors could be used to create datasets for evaluating component level faults, which 

could be incorporated into machine learning algorithms. However, due to the lack of variability 

in the data for the system level failures, the faults examined in this thesis would not be easily 

detected using machine learning algorithms at a system level. If further testing were to be done, 

such as testing new faults, then the servomotors could be used to create datasets that would 

evaluate the system level faults. 
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APPENDIX 
 

 
 

Figure 15: Part 1 of the code for the 135-degree servo arm swing. 
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Figure 16: Part 2 of the code for the 135-degree servo arm swing. 
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Figure 17: Part 1 of the code for the 90-degree servo arm swing. 
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Figure 18: Part 2 of the code for the 90-degree servo arm swing. 
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Figure 19: Part 1 of the code for the 45-degree servo arm swing. 
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Figure 20: Part 2 of the code for the 45-degree servo arm swing. 
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Table 10: The number of adjusted cells in the difference in position for each fault due to the data 

being “noisy”. 

	
Normal	

No	
Lubrication	

Low	
Lubrication	

2	
Gear	

4	
Gear	

Number	of	Adjusted	Cells	at	5V	(180	
Degree	Cycle):	 149	 206	 184	 2254	 2371	
Number	of	Adjusted	Cells	at	3.3V	(180	
Degree	Cycle):	 130	 212	 170	 2300	 2366	
Number	of	Adjusted	Cells	for	a	135	Degree	
Cycle:	 96	 128	 112	 394	 488	
Number	of	Adjusted	Cells	for	a	90	Degree	
Cycle:	 52	 76	 67	 108	 152	
Number	of	Adjusted	Cells	for	a	45	Degree	
Cycle:	 1	 3	 3	 149	 149	

 

Table 11: The number of adjusted cells in the difference between the current and previous 

position to compute the total degrees traveled for each fault due to the data being “noisy”. 

	
Normal	

No	
Lubrication	

Low	
Lubrication	

2	
Gear	

4	
Gear	

Number	of	Adjusted	Cells	at	
5V	(180	Degree	Cycle):	 330	 425	 374	 465	 522	
Number	of	Adjusted	Cells	at	
3.3V	(180	Degree	Cycle):	 336	 425	 353	 374	 559	
Number	of	Adjusted	Cells	for	a	
135	Degree	Cycle:	 176	 264	 202	 474	 515	
Number	of	Adjusted	Cells	for	a	
90	Degree	Cycle:	 70	 118	 97	 124	 145	
Number	of	Adjusted	Cells	for	a	
45	Degree	Cycle:	 2	 6	 8	 42	 51	
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Figure 21: A graph of the actual position versus time with each of the faults for the 180-degree 

cycle at 5V. 

 

Figure 22: A graph of the actual position versus time with each of the faults for the 180-degree 

cycle at 3.3V. 
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Figure 23: A graph of the actual position versus time with each of the faults for the 135-degree 

cycle at 5V. 

 

Figure 24: A graph of the actual position versus time with each of the faults for the 90-degree 

cycle at 5V. 
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Figure 25: A graph of the actual position versus time with each of the faults for the 45-degree 

cycle at 5V. 

 

 

Figure 26: A graph of average difference in position versus time for the 180-degree cycle at 5V. 
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Figure 27: A graph of average difference in position versus time for the 180-degree cycle at 

3.3V. 

 

Figure 28: A graph of average difference in position versus time for the 135-degree cycle at 5V. 
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Figure 29: A graph of average difference in position versus time for the 90-degree cycle at 5V. 

 

Figure 30: A graph of average difference in position versus time for the 45-degree cycle at 5V. 
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Table 12: The speed of the hand with the normal servomotor in the robotic arm. 

 
4 Second Cycle 2 Second Cycle 8 Second Cycle 

Cycle 
Time 

(s) 
Distance 

(m) 
Speed 
(m/s) Time(s) 

Distance 
(m) 

Speed 
(m/s) Time(s) 

Distance 
(m) 

Speed 
(m/s) 

1 4 4.620 1.155 2 2.288 1.144 8 9.208 1.151 
2 4 4.604 1.151 2 2.279 1.140 8 9.294 1.162 
3 4 4.612 1.153 2 2.280 1.140 8 9.213 1.152 
4 4 4.596 1.149 2 2.273 1.136 8 9.222 1.153 
5 4 4.636 1.159 2 2.288 1.144 8 9.235 1.154 
6 4 4.607 1.152 2 2.296 1.148 8 9.230 1.154 
7 4 4.597 1.149 2 2.280 1.140 8 9.228 1.154 
8 4 4.590 1.147 2 2.288 1.144 8 9.231 1.154 
9 4 4.596 1.149 2 2.280 1.140 8 9.238 1.155 
10 4 4.613 1.153 2 2.280 1.140 8 9.239 1.155 
11 4 4.611 1.153 2 2.280 1.140 8 9.235 1.154 
12 4 4.597 1.149 2 2.296 1.148 8 9.222 1.153 
13 4 4.607 1.152 2 2.288 1.144 8 9.247 1.156 
14 4 4.597 1.149 2 2.280 1.140 8 9.189 1.149 
15 4 4.587 1.147 2 2.280 1.140 8 9.223 1.153 
16 4 4.610 1.153 2 2.280 1.140 8 9.183 1.148 
17 4 4.597 1.149 2 2.280 1.140 8 9.244 1.156 
18 4 4.610 1.152 2 2.303 1.152 8 9.236 1.154 
19 4 4.607 1.152 2 2.288 1.144 8 9.239 1.155 
20 4 4.620 1.155 2 2.287 1.144 8 9.264 1.158 

  
Average: 1.151 

 
Average: 1.142 

 
Average: 1.154 
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Table 13: The speed of the hand with the low lubricant servomotor in the robotic arm. 

 
4 Second Cycle 2 Second Cycle 8 Second Cycle 

Cycle 
Time 

(s) 
Distance 

(m) 
Speed 
(m/s) Time(s) 

Distance 
(m) 

Speed 
(m/s) Time(s) 

Distance 
(m) 

Speed 
(m/s) 

1 4 4.639 1.160 2 2.300 1.150 8 9.251 1.156 
2 4 4.653 1.163 2 2.331 1.165 8 9.297 1.162 
3 4 4.661 1.165 2 2.300 1.150 8 9.269 1.159 
4 4 4.661 1.165 2 2.329 1.165 8 9.268 1.158 
5 4 4.614 1.154 2 2.263 1.132 8 9.255 1.157 
6 4 4.651 1.163 2 2.315 1.157 8 9.279 1.160 
7 4 4.622 1.156 2 2.366 1.183 8 9.272 1.159 
8 4 4.642 1.161 2 2.358 1.179 8 9.234 1.154 
9 4 4.628 1.157 2 2.320 1.160 8 9.271 1.159 
10 4 4.656 1.164 2 2.271 1.135 8 9.243 1.155 
11 4 4.641 1.160 2 2.338 1.169 8 9.242 1.155 
12 4 4.639 1.160 2 2.323 1.161 8 9.242 1.155 
13 4 4.641 1.160 2 2.330 1.165 8 9.263 1.158 
14 4 4.633 1.158 2 2.350 1.175 8 9.233 1.154 
15 4 4.641 1.160 2 2.300 1.150 8 9.240 1.155 
16 4 4.640 1.160 2 2.291 1.146 8 9.238 1.155 
17 4 4.628 1.157 2 2.337 1.169 8 9.284 1.160 
18 4 4.653 1.163 2 2.300 1.150 8 9.268 1.158 
19 4 4.624 1.156 2 2.360 1.180 8 9.230 1.154 
20 4 4.648 1.162 2 2.316 1.158 8 9.282 1.160 

  
Average: 1.160 

 
Average: 1.160 

 
Average: 1.157 
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Table 14: The speed of the hand with the no lubricant servomotor in the robotic arm. 

 
4 Second Cycle 2 Second Cycle 8 Second Cycle 

Cycle 
Time 

(s) 
Distance 

(m) 
Speed 
(m/s) Time(s) 

Distance 
(m) 

Speed 
(m/s) Time(s) 

Distance 
(m) 

Speed 
(m/s) 

1 4 4.447 1.112 2 2.238 1.119 8 8.862 1.108 
2 4 4.415 1.104 2 2.231 1.115 8 8.860 1.107 
3 4 4.396 1.099 2 2.240 1.120 8 8.837 1.105 
4 4 4.451 1.113 2 2.227 1.113 8 8.836 1.104 
5 4 4.443 1.111 2 2.232 1.116 8 8.835 1.104 
6 4 4.439 1.110 2 2.207 1.104 8 8.841 1.105 
7 4 4.432 1.108 2 2.278 1.139 8 8.839 1.105 
8 4 4.377 1.094 2 2.246 1.123 8 8.836 1.104 
9 4 4.459 1.115 2 2.239 1.119 8 8.882 1.110 
10 4 4.418 1.105 2 2.207 1.103 8 8.838 1.105 
11 4 4.386 1.096 2 2.231 1.115 8 8.837 1.105 
12 4 4.426 1.106 2 2.232 1.116 8 8.867 1.108 
13 4 4.449 1.112 2 2.230 1.115 8 8.832 1.104 
14 4 4.418 1.104 2 2.231 1.116 8 8.862 1.108 
15 4 4.440 1.110 2 2.182 1.091 8 8.862 1.108 
16 4 4.441 1.110 2 2.231 1.115 8 8.850 1.106 
17 4 4.472 1.118 2 2.272 1.136 8 8.838 1.105 
18 4 4.457 1.114 2 2.222 1.111 8 8.840 1.105 
19 4 4.448 1.112 2 2.208 1.104 8 8.827 1.103 
20 4 4.417 1.104 2 2.232 1.116 8 8.840 1.105 

  
Average: 1.108 

 
Average: 1.115 

 
Average: 1.106 
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Table 15: The speed of the hand with the 2-gear tooth servomotor in the robotic arm. 

 
4 Second Cycle 2 Second Cycle 8 Second Cycle 

Cycle 
Time 

(s) 
Distance 

(m) 
Speed 
(m/s) Time(s) 

Distance 
(m) 

Speed 
(m/s) Time(s) 

Distance 
(m) 

Speed 
(m/s) 

1 4 4.511 1.128 2 2.221 1.111 8 8.925 1.116 
2 4 4.484 1.121 2 2.139 1.069 8 8.978 1.122 
3 4 4.498 1.124 2 2.220 1.110 8 8.903 1.113 
4 4 4.502 1.126 2 2.204 1.102 8 8.960 1.120 
5 4 4.484 1.121 2 2.180 1.090 8 8.932 1.116 
6 4 4.484 1.121 2 2.165 1.083 8 8.879 1.110 
7 4 4.483 1.121 2 2.171 1.086 8 8.957 1.120 
8 4 4.491 1.123 2 2.212 1.106 8 8.947 1.118 
9 4 4.479 1.120 2 2.213 1.107 8 8.873 1.109 
10 4 4.468 1.117 2 2.171 1.085 8 8.952 1.119 
11 4 4.490 1.122 2 2.195 1.098 8 8.879 1.110 
12 4 4.474 1.118 2 2.204 1.102 8 8.872 1.109 
13 4 4.478 1.119 2 2.180 1.090 8 8.877 1.110 
14 4 4.474 1.119 2 2.183 1.092 8 8.875 1.109 
15 4 4.490 1.123 2 2.205 1.103 8 8.948 1.119 
16 4 4.496 1.124 2 2.156 1.078 8 8.953 1.119 
17 4 4.495 1.124 2 2.212 1.106 8 8.957 1.120 
18 4 4.472 1.118 2 2.198 1.099 8 8.960 1.120 
19 4 4.495 1.124 2 2.139 1.070 8 8.960 1.120 
20 4 4.476 1.119 2 2.205 1.102 8 8.911 1.114 

  
Average: 1.122 

 
Average: 1.094 

 
Average: 1.116 
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