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Abstract 

The need for high temperature, high power density power modules for applications such as 

electric vehicles and space exploration has driven the research into wide bandgap LEDs due to 

their potential operation at elevated temperatures. Wide bandgap LEDs offer an attractive solution 

due to properties such as high temperature tolerance, strong radiation hardness and good thermal 

conductivity. In this thesis, the electrical properties of GaN-on-SiC heterojunctions are studied as 

a precursor to an LED study, and the optical characterization of an InGaN/GaN MQW is reported. 

The GaN-on-SiC study revealed that these wide bandgap LEDs have linear sensitivity at high 

temperatures. The InGaN/GaN MQW PL results revealed that as the temperature increased, the 

bandgap decreased as well, thus affecting the overall intensity of the material.  The results of this 

study indicate the feasibility of the integration of wide bandgap LEDs into high temperature power 

modules. 
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1.0 Introduction  

Wide bandgap materials, such as gallium nitride (GaN) and silicon carbide (SiC) have great 

potential for harsh environment applications due to their unique properties such as high 

temperature tolerance, strong radiation hardness and good thermal conductivity. Wide bandgap 

semiconductor power devices have been demonstrated to outperform silicon (Si)  power devices 

in many harsh environment applications [1]. However, wide bandgap optoelectronic materials and 

devices have not been fully explored yet. 

By using wide bandgap semiconductor material as a light emitting diode (LED), one can 

achieve high reliability, stable operation at high temperatures (i.e., over 150oC) and more 

compatibility with integrated circuits associated with wide bandgap materials. As a wide bandgap 

material, GaN shows great potential for high temperature LEDs.  

The work that will be done with these GaN LED structures consists of device 

characterization such as electrical and optical analysis both in normal and extreme environments 

(i.e., elevated temperature up to 800K). With this characterization data, an understanding of the 

degradations or the failure of the LED devices as well as how they can be re-designed to be 

operated at high temperatures will be gained. 

 

2.0 Background 

2.1 Motivation  

In 1965, Gordon E. Moore recognized that manufactures had been doubling the density of 

components per integrated circuit at regular intervals and would continue to do so well into the 

future. Now referred to as Moore’s law, it is viewed as a reliable method to predict future trends 

and establish the pace for innovation and advancement [2]. An increase in performance in terms 
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of power efficiency, switching speed, thermal management, and power density is actively sought 

after in the development of scaled-down, high-temperature power modules [3].  

 High-temperature power modules are in high demand for use in harsh environments such 

as electric vehicles, energy storage, power grid, space exploration, aviation, deep oil drilling, and 

gas exploration [1], [4]. If these power modules can be scaled down and made more efficient, this 

could revolutionize industries such as automotive and power distribution since these systems 

would be more compact and easier to transport.  High density, high temperature power modules 

become possible through the integration of wide bandgap semiconductor power devices due to 

their favorable properties such as high temperature tolerance, high critical field, high saturation 

velocity and low intrinsic carrier density [3].  

For these power modules to properly operate in harsh environments, a reliable isolation 

system is required to protect low-power control circuitry from the high-power portion of the 

module. Isolation transformers are commonly used to isolate high voltage and high power; 

however, isolation transformers are bulky and heavy. A promising solution to replace isolation 

transformers are optocouplers. Optocouplers use optical coupling isolation, as seen in Figure 1, 

whereas isolation transformers use magnetic coupling isolation. Compared to isolation 

transformers, optocouplers are chosen due to their reduction in size, simplicity, ease of design, and 

ability to isolate high voltage from the logic input to the power output stage [5].  In order for 

optocouplers to completely replace isolation transformers, optocouplers must demonstrate 

operation capabilities at high temperatures without significant degradation or early failure. Due to 

high temperatures in the LED p-n junction and the optocoupler packaging material, the lifetime of 

a typical optocoupler can be substantially shortened if the operating temperature exceeds 250°C. 
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Figure 1. Cross-section of an optocoupler 

 In an optocoupler, the LED simply reads and converts an input current into an optical signal 

that is detected by the photodetector and is then transformed back into an output current [6]. In 

Figure 2, a simple optocoupler circuit with common collector configuration is shown. An input 

bias current flows through the LED causing it to emit light, with its intensity changing with the 

input current level. When the photodetector detects the light, current flows through a load resistor. 

At elevated temperatures, the LED injected current changes due to the increase in resistance value. 

Therefore, in order to provide constant injection current, an optocoupler with temperature 

compensation needs to be designed with the high-temperature LEDs as seen in Figure 3. 

 

Figure 2. An optocoupler circuit with common collector configuration 
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Figure 3. An optocoupler circuit with temperature compensation 

 The reliability of optocouplers is limited by the characteristics of the LED and packaging 

materials of the optocouplers [7]. Degradation of LEDs are accelerated at high operating 

temperatures which affects the temperature range of optocouplers. Limited by the operating 

temperature of the LED, current optocoupler technologies can operate at a maximum temperature 

of 100°C [6]. Therefore, LEDs with high operating temperature and long lifetime are needed to 

reliably operate optocouplers at high temperatures. As previously mentioned, wide bandgap LEDs 

are a promising choice to expand the operating range of these optocouplers due to the 

characteristics of wide bandgap semiconductors such as low performance-degradation at high 

temperatures, inherent radiation hardness, great thermal conductivity, and high breakdown field 

[4], [7].  

 
2.1 Wide Bandgap Semiconductors   

 Wide bandgap semiconductors, such as SiC, are capable of operating at much higher 

temperatures than smaller bandgap semiconductors like Si. This has therefore fueled their 

development for harsh environment applications [1]. Traditional Si-based devices are not capable 

of operating at elevated temperatures above 250°C, especially when combined with high power, 

high frequency, and high radiation environments [4]. Due to their inherent material advantages 
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like higher thermal conductivity, higher breakdown voltage, larger energy bandgap, and 

comparable carrier mobility, wide bandgap semiconductors form the most attractive alternative to 

Si-based semiconductor devices [8].  For temperatures beyond the limits of Si, due to its wide 

bandgap, SiC can be used at temperatures over 600°C [7]. The limitations of Si are the strongest 

motivation for the shift to wide bandgap semiconductors in higher temperature applications [1]. 

 There are a number of factors that limit the use of Si at high temperatures. With a bandgap 

of 1.12 eV, the Si p-n junction becomes depleted at high temperatures. The intrinsic carrier 

concentration of Si increases as the ambient temperature increases and as it approaches the doping 

concentration level, the p-n junction begins to behave as a resistor, not a diode, causing the 

transistors to lose their switching characteristics [1], [7].  From Figure 4, it is apparent that 

semiconductors with wide bandgaps (>3 eV), such as SiC and GaN, have much lower intrinsic 

carrier concentrations when compared to Si. By using wide bandgap semiconductors, conductivity 

loss from junction depletion can be avoided [1].  

 
Figure 4. Semiconductor intrinsic carrier concentration versus temperature for silicon, 6H-SiC, 

and 2H-GaN[1] 
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 Another limitation with narrow bandgap semiconductors is large leakage current. With 

increasing temperatures, there is an increase in leakage current through a reverse-biased p-n 

junction. For each 10°C rise in junction temperature, the leakage current approximately doubles. 

The increased junction leakage currents cause the power dissipation within the device to increase 

as well [7]. Power is often dissipated as heat and can significantly raise the temperature within a 

device well beyond ideal operating temperatures. Additionally, the increase in junction 

temperature can result in undesirable, unstable positive feedback loop of increasing temperature 

and power dissipation [1]. However, since wide bandgap semiconductors have low intrinsic carrier 

concentration, as seen in Figure 4, the leakage current levels are orders of magnitudes smaller than 

in Si [1]. Because of this, wide bandgap semiconductors devices are more capable of operating at 

high temperatures and could play a critical role in achieving high power electronics at temperatures 

beyond the limits of Si.  

 
2.2 Semiconductor Diodes  

One of the primary methods used to analyze diodes is through the analysis of its current-

voltage (I-V) curve, similar to the curve seen in Figure 5 below. The I-V curve is broken down 

into three distinct regions: forward-bias, reverse-bias, and breakdown. Each of these regions are 

separately analyzed and each offer a unique perspective to the working mechanism of the device.  
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Figure 5. Detailed diode I-V characterization curve [9] 

 The forward-bias region of operation is the region where the terminal voltage is positive as 

seen in Figure 5. In this region, the I-V relationship is closely approximated by 𝑖 = 	 𝐼%(𝑒
(
)*+ − 1), 

where VT, the thermal voltage, is defined as 𝑉0 =
10
2

 and k is Boltzmann’s constant, T is 

temperature, and q is the electric charge. IS, also known as the saturation current, is usually constant 

for a given diode at a given temperature. This saturation current is directly proportional to the 

cross-sectional area of the diode, thus the more area, the more current. However, IS has a very 

strong dependence on temperature and doubles in value every for every 5°C rise in temperature 

[9]. Since IS is a function of temperature, the forward I-V characterization curve is affected as 

temperature increases. Figure 6 below shows that at a constant current, the voltage drop decreases 

by approximately 2mV for every 1°C increase in temperature.  
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Figure 6. Temperature dependence of the diode forward characteristic curve [9] 

 The reverse-bias region is entered when the terminal voltage is negative as shown in Figure 

5. In this region, the current in the reverse region is constant and equal to -IS. A large part of this 

reverse current is due to the leakage current in the diode. The leakage currents are also proportional 

to the area, similar to the saturation current. These reverse currents also have a temperature 

dependence, however, these reverse currents double for every 10°C rise in temperature versus the 

5°C rise in temperature seen in IS [9]. 

 Finally, the breakdown region of this I-V characteristic curve can be easily identified in 

Figure 5. The breakdown region is entered when the magnitude of the reverse voltage exceeds the 

threshold value for the diode in question. This crossing of the threshold is known as the breakdown 

voltage or the “knee” of the curve (VZK in Figure 5). As seen in the figure, this current increases 

rapidly over a very small voltage drop. This breakdown voltage is common and often not 

destructive, provided the power dissipated is limited as specified on a device datasheet [9].  

 Besides being able to extract data from each region of operations, the sensitivity of the 

device can also be extracted from the I-V characterization curve. To extract the sensitivity, the 

voltage-temperature curve must first be extracted at a constant current and then plotted. The 
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sensitivity of the device is then defined by the slope of the voltage-temperature curve. Later in this 

report, the sensitivity for some devices will be shown for a variety of different currents. Analyzing 

the sensitivity of the devices gives insight as to what occurs as the device size changes.  

Overall, understanding what occurs in these regions allows the user to analyze the 

degradation or failure mechanisms that occur in these diodes.  

 
2.3 Light Emitting Diodes  

 Simply put, an LED is a p-n junction that emits light when current is applied to it.  When 

the p-n junction is forward-biased, charge carriers recombine as electrons cross from the n-region 

and recombine with the existing holes in the p-region as illustrated in Figure 7. When the 

recombination of electrons and holes occur, one of two things transpire, depending on the material. 

With direct bandgap materials, radiative recombination occurs when an electron in the conduction 

band falls into a hole found in the valence band. When this change occurs, energy is conserved by 

emission of photon, or light, as seen in Figure 8 [10]. With indirect bandgap material, non-radiative 

recombination occurs where recombination of electrons and holes does not result with the emission 

of a photon, or light, thus direct bandgap materials, such as GaN and indium gallium nitride 

(InGaN), are suitable for LEDs [10], [11]. When the p-n junction is reverse-biased, the LED does 

not emit light and can be damaged if the reverse voltage exceeds the breakdown voltage [12]. 

 

Figure 7. LED basic operation [12] 
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Figure 8. Recombination of electrons and holes within an LED [10] 

Applications such as display backlighting, communications, medical services, and general 

illumination has driven the increased demand for LEDs. LEDs provide high performance with 

ultra-fast response time, a wider range of controllable color temperatures, a wider operating 

temperature range (-20°C to 85°C), and no low temperature startup problems [13]. Despite these 

advantages, at high power, thermal and mechanical loads can degrade and even destroy the 

package of LEDs by means of delamination’s or cracks [14].  The operating temperature of LEDs 

is often limited by the melting point of the packaging material [7]. This issue is actively being 

studied and will need to be solved in order to develop these high temperature power modules.  

 For regular applications, LEDs with an operating range of -20°C to 85°C allow for 

flexibility of use, but for high-temperature power applications, an operating temperature of >350°C 

is ideal as mentioned previously. Wide bandgap semiconductors, such as GaN, can be used at 

temperatures over 600°C showing promise for the development of high temperature, high power 

LEDs. Overall, the combination of necessary material properties required to meet the high 
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temperature and high power application requirements can be found in wide bandgap 

semiconductors, thus motivating this study [1].  

 
2.4 Characterization  

2.4.1 Current-Voltage Characterization   

In this study, GaN-on-SiC devices were tested under a vacuum using a cryostat to obtain 

their I-V characteristics. Using a vacuum with a mist eliminator, the sample was mounted on a hot 

stage with platinum resistor sensor in a temperature chamber as seen in Figure 9. These devices 

were tested on a temperature-controlled stage using a programmable SMU temperature controller, 

as shown in Figure 10, that provides accurate temperature cycling, precise and stable temperature 

ramping, and data acquisition functions over temperature ranging from 70K to 650K [15].  

 

Figure 9. Temperature chamber 
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Figure 10. Temperature controller 

 
2.4.2 Photoluminescence  

 One of the most common optical characterization techniques is photoluminescence 

(PL)[16]. This technique uses a laser to illuminate the structure with energetic photons to create 

electron-hole pairs in the structure. These excited charge carriers recombine and re-emit photons 

with the same energy as the bandgap of the LED. In other words, the light separates charge carriers 

within the band or impurity structure of a semiconductor and the recombination then produces 

characteristic emissions, giving insight to the semiconductor structure[17]. The resulting incident 

laser beam has a non-uniform, Gaussian profile [16]. 

 PL is one of the most widespread optical characterization techniques and offers enormous 

capabilities for analysis of the device in question[17]. PL measurements allows the user to 

characterize several semiconductor properties such as the lattice alloy composition, lattice stress, 

presence and type of impurity and defect, surface behavior, interface behavior, and even allows 

for homogeneity mapping [17]. This measurement can be used to determine the energy gap of a 

semiconductor sample which is useful because it allows for an accurate measurement of, in this 

case, the percentage of indium (In) in the InGaN substrate from the position of the PL peak. For 
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most applications, it is important for this percentage to be accurately known [18]. Additionally, 

PL also detects the presence of impurities and crystalline defects which affect the material 

quality and device performance of the semiconductor[18]. 

For the PL measurements in this study, an InGaN/GaN multi-quantum well (MQW) sample 

was stressed at a temperature ranging from 10K to 800K using the set up as shown in Figure 11. 

The sample was loaded into the cryostat and a continuous wave laser of 395nm with pumping 

powers ranging from 1mW to 110mW was used for these PL measurements. This PL setup has a 

capability of stressing these devices from 10K to 800K and uses a 395nm laser specifically for 

wide bandgap material study.  

 

Figure 11. PL experimental setup 

Cryostat 
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3.0 Experiment 

3.1 GaN-on-SiC Heterojunction Diodes   

GaN was grown by molecular beam epitaxy (MBE) on the Si face of a two inch, 

commercially available, n-type SiC substrate. With the thickness of the p-GaN layer being ~300 

nm, p-type doping of the GaN was achieved using atomic magnesium at a level of ~1018 cm-3. 

These heterojunction devices were fabricated using a concentric ring geometry with diameters 

ranging from 400µm to 1000µm as seen in Figure 12. Here, ohmic contacts were established on 

GaN using a Ni/Au multilayer film and on SiC using a single layer of Ni. A cross-sectional 

schematic of the fabricated GaN-on-SiC diode is shown in Figure 13. This document reports the 

characterization of three devices, a 400µm, 800µm, and a 1000µm device using the setup described 

in section 2.4.1.  

 

Figure 12. Fabricated heterojunction devices 

 

Figure 13. Cross-section schematic of fabricated GaN-on-SiC 

1        3         5          7            9        
 
 
2       4          6          8            10                                
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In high power, high temperature applications, accurate knowledge of the junction 

temperature of a power semiconductor is critical to its thermal management. Optical methods, 

physically contacting methods, and on-die temperature sensing are some of the commonly used 

direct junction temperature sensing techniques [15]. These methods, however, are not suited for 

applications that require a high bandwidth temperature sensing due to their slow response [15]. An 

alternative to these methods is the fabrication of a small p-n junction diode on the same substrate 

as the power device. These diodes quasi-linear voltage-temperature characteristics can be utilized 

for temperature sensing [19] with a significantly faster dynamic response [20]–[22].  Therefore, 

for this study, ten GaN-on-SiC heterojunction diodes were characterized at high temperatures and 

analyzed for their use as temperature sensors. 

 
3.2 InGaN/GaN Multi-Quantum Well 

 Within an optocoupler, it is important to be able to control the LED intensity in order to 

ensure the detector within the optocoupler can read the signal. At room temperature, this is easily 

achievable and easily controlled. However, at high temperatures, the LED performance is reduced, 

mainly due to the decrease in light intensity, thus a PL study is conducted in order to measure the 

intensity of the material as the temperature increases. Understanding how the intensity changes at 

a wide range of temperatures is important since at high temperatures, the detector still will need to 

be able to read the signal from the LED. 

Optical characterization involving PL spectroscopy was conducted on an InGaN/GaN 

MQW structure grown on sapphire (001) in order to analyze the material intensity that occur at 

high temperatures. This was done using the PL setup as described in section 2.4.2. A cross-

sectional schematic of this material is shown in Figure 14.  
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Figure 14. InGaN/GaN MQW cross section [23] 

4.0 Results 

4.1 High Temperature Current-Voltage Characterization of GaN-on-SiC 

Heterojunction Diodes    

 Before stressing these devices under high temperatures, initial I-V characteristic curves 

were taken at room temperature of all of the devices. Figure 15 below shows the initial I-V curves 

for two 400µm devices. It is observed that these two devices behave very similar to each other 

meaning that these devices can be reproduced to behave similarly. In figure 16, the initial I-V 

curves for each sized device is measured and plotted (400µm, 600µm, 800µm and 1000µm). As 

previously mention in section 2.2, as the area increases, so does IS. This initial I-V curve shows 

that as the area increases from 400µm to 1000µm, the current at 2V also increases. These initial I-

V curves at room temperature were conducted because it is important to know how a device 

behaves at room temperature in order to understand how they behave at elevated temperatures.   
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Figure 15. Initial forward and reverse I-V for two 400µm devices at room temperature 

 

Figure 16. Initial forward and reverse I-V for all four size devices at room temperature 

Figure 17 shows the measured I-V characteristics of the 400µm heterojunction diode 

stressed at temperatures ranging from 300K to 650K. The voltage was limited during these 
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measurements to avoid device degradation and damage. Figure 18 and 19 also shows the measured 

I-V characteristics of an 800µm and 1000µm device stressed at temperatures ranging from 300K 

to 500K. As shown in these I-V curves, all three devices follow a similar trend as temperature 

increases. The results obtained show that IS has a temperature dependence consistent with that of 

Figure 6 in section 2.2. As the temperature increased, the voltage drop decreased in all three of 

these devices. Additionally, from the data obtained, it was shown that as the device cross-sectional 

area increased, the leakage current increased as well. This is consistent with the theory found in 

section 2.2. From these I-V curves, data such as the sensitivity, ideality factors, and saturation 

current can be extracted for further analysis.  For this study, the sensitivity results were studied 

and analyzed for both devices and are presented below. 

 

Figure 17. Forward and reverse I-V characteristics of a 400µm device [15] 
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Figure 18. Forward and reverse I-V characteristics of an 800µm device 

  

Figure 19. Forward and reverse I-V characteristics of a 1000µm device 
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4.2 Current-Voltage Characterization of GaN LED   

 Figure 20 below shows the I-V forward characteristic curve for a commercially available 

GaN LED. This LED device was stressed from 300K to 800K. It can be observed in this figure 

that as the temperature increased, the voltage drop across the LED also decreases. This is consistent 

with the theory found in Figure 6 in section 2.2 and with the heterojunction I-V curves seen in the 

previous section. These curves indicate that there are other thermal mechanisms dominating the 

shift in forward voltage and these mechanisms should be further explored. Furthermore, this 

measurement shows good, consistent linearity as the temperature increases. It is observed that as 

the temperature increases, the voltage drop consistently changes as well. When this stress was 

conducted, the device was not properly current limited resulting in a non-uniform curve at 800K. 

Despite this, linearity is observed. While this GaN LED was stressed to a much higher temperature 

than the heterojunctions, it can be observed that the they both behave similar to one another which 

show great potential for its overall use into high temperature optoelectronics. In order to 

fundamentally understand what occurs within the material and how it behaves at elevated 

temperatures, PL spectroscopy is conducted at the material level to analyze the intensity change in 

these harsh environments. 
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Figure 20. Commercially available GaN LED I-V characteristics curve 

 
4.3 Sensitivity Characterization of GaN-on-SiC Heterojunction Diodes    

 Consistent with that of Figure 6 in section 2.2, the voltage drop across diode is linearly 

proportional to the temperature of the device when operated under constant current, similar to the 

operation of these heterojunctions and that of the GaN LED.  The Shockley ideal diode equation 

expresses the ideal behavior of a diode assuming that all of the recombination does not occur in 

the junction. However, it is known that recombination occurs through many pathways and regions 

throughout the device, thus a non-unity ideality factor is introduced into the Shockley ideal diode 

equation to describe this recombination [15]. As a function of the applied bias-voltage, V, the 

expression for the diode current, ID, is given by, 

𝐼3 = 	 𝐼% 4𝑒
2)
510 − 16 (1) 
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where q is the electric charge, k is the Boltzmann constant, T is the absolute temperature, and n is 

the ideality factor [15]. As expressed in this report, IS, the reverse saturation current, is also 

temperature dependent and can be expressed as [24] 

𝐼 = 	𝐶𝑇9𝑒:
2);
10  (2) 

where C is a constant that depends on the geometric factors of the p-n junction diode, r is a process 

dependent parameter, and Vg is the bandgap equivalent voltage, with a temperature given by [15], 

[25] 

𝑉< = 	𝑉<(0) −	
𝛼𝑇?

𝛽 + 𝑇	 
(3) 

Where Vg (0) is the bandgap equivalent voltage at 0K and a and b are empirical constants. For ID 

>> IS, (1) can be simplified to  

𝐼3 = 	 𝐼% 4𝑒
2)
5106 (4) 

By then substituting (2) into (4), solving for V yields 

 
𝑉 =	𝑉< +	

𝑛𝑘𝑇
𝑞 (𝑙𝑛𝐼3 − 𝑟𝑙𝑛𝑇 − 𝑙𝑛𝐶)	 (5) 

Equation (5) shows that at a given current, the forward voltage drop is almost a linear function of 

temperature [15]. At very high temperatures, the effects of the nonlinear part of (5), rlnT, are very 

small as expressed in [15], [24]. The sensitivity results presented below, show the validity in these 

equations, showing a highly linear, non-varying sensitivity over a wide temperature range.  

Figure 21 below shows the profiles of voltage versus temperature at 10µA, 50µA, 100µA, 

500µA, and 1000µA that was extracted from the I-V curves for the 400µm device. Similarly, 

figures 22 and 23 show the profiles of voltage versus temperature at specific currents (10µA, 

100µA, and 1000µA) that were also extracted from the 800µm and 1000µm device I-V curves and 
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plotted. Defined by the slope of the voltage-temperature curve, the sensitivity is displayed in the 

figure and in the table below the curve. As shown, the sensitivity slightly varies between 1.9 mV/K 

and 2.5 mV/K for a variety of current levels for the 800µm whereas the sensitivity slightly varied 

from 1 mV/K and 1.6 mV/K for the 1000µm device.  The smaller 400µm device sensitivity also 

varied slightly from 2.19 mV/K to 2.25 mV/K. From the experimental results, the sensitivity 

displays a high degree of linearity which indicates great potential for their use as high temperature 

sensors to at least 500K [15]. Highly linear devices are important for their use as high temperature 

sensors and their applications into high power devices because due to their linearity, it is easy to 

predict their behaviors at a certain temperature without risking damaging the device.  

 

Figure 21. Forward voltage versus temperature characterization at different currents for a 400µm 
device. The table shows the sensitivity of each forward current [15]. 
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Figure 22. Forward voltage versus temperature characterization at different currents for an 
800µm device. The table shows the sensitivity of each forward current. 

 

Figure 23. Forward voltage versus temperature characterization at different currents for a 
1000µm device. The table shows the sensitivity of each forward current. 

Similarly to the extraction of the sensitivity curves, the profiles of the forward voltage 

versus temperature for the 400µm, 600µm, 800µm and 1000µm devices were extracted from the 
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I-V curves for ID = 10µA. In Figure 24 below, the dots represent the measured data with a fitted 

linear line.  As can be seen, as the device area decreases, the sensitivity of the devices increases. 

This can be due to the lower material quality of the GaN grown on a commercially available, non-

native SiC [15]. Overall, these devices have demonstrated excellent potential for high temperature 

sensors and applications. 

 

Figure 24. Forward voltage versus the temperature for the devices with different diameters. The 
table shows the sensitivity of different devices [15]. 

 
4.4 Optical Characterization of InGaN/GaN Multi-Quantum Well 

 Figure 25 shows the PL spectrum obtained when the sample was stimulated at temperatures 

ranging from 10K to 800K. It is observed that as the temperature increases, the peak decreases and 

shifts towards the right. This is known as redshift. This redshift shows that there is a reduction in 

bandgap as the temperature increases. From the peak positions in this spectrum, the bandgap 

energy can be calculated. While the material remains the same, the bandgap has been reduced. 

This shift in bandgap also changes the intensity of the material. As previously mentioned, it is 

important to know how the intensity of the material varies since the LED needs to be able to emit 

a strong enough signal for the detector to read within the optocoupler. Ultimately, the quantum 



 31 

efficiency versus temperature will be studied. If there is a significant drop in quantum efficiency 

of the sample, then that shows that the sample in question is not appropriate for these applications. 

It is reported that the quantum efficiency of these InGaN/GaN MQW is to be around 44% quantum 

efficiency, indicating this MQW has great potential for high temperature optoelectronics [23].  

 

Figure 25. Temperature-dependent PL spectra of InGaN/GaN MQW [21] 

 

5.0 Conclusion 

5.1 GaN-on-SiC Heterojunction Diodes   

 The similarity of the I-V curves between 300K and 500K for all three devices in this study 

show that these GaN-on-SiC heterojunction diodes are highly linear and show great potential for 

their integration into high temperature power modules. As the operating temperature was increased 

from 300K to 500K, the saturation current increased by a relatively small amount. Similarly, the 

leakage current at a 5 V reverse bias increased with the cross-sectional area of the device, going 

from 96.5 µA in the 800 µm device to 143.1 µA in the 1000 µm device. The sensitivity of these 

devices was also analyzed, and it was found that the sensitivity of both devices was highly linear 
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across a current change of 2 orders of magnitude. Additionally, the GaN LED I-V curve also 

showed high linearity in its forward voltage as the temperature increased, similar to that of the 

heterojunction I-V curves. All of these results point to the application of heterojunctions for high 

power optocoupler applications as well as their use as temperature sensors in harsh environments. 

 
5.2 Optical Characterization of InGaN/GaN Multi-Quantum Well  

 The MQW InGaN/GaN structure subject to PL spectroscopy showed great potential for its 

integration into high temperature optoelectronics. It was observed that as the temperature 

increased, there was redshift indicating the decrease in bandgap. The intensity of this MQW device 

is analyzed at temperatures ranging from 10K to 800K. Since this structure showed a small, gradual 

decrease in bandgap, it shows promise for its use in high temperature applications. Additionally, 

this InGaN/GaN MQW structure has been reported to have a 44% quantum efficiency at 800K 

[23], further emphasizing its potential for high temperature applications. 

 
5.3 Future Work      

 Now that these wide bandgap heterostructures and MQW structures have shown their 

capability of operating at elevated temperatures, further analyzing their PL measurements, 

studying its detector response, and the reliability and lifetime of these wide bandgap LEDs are 

important to know and understand in order for them to be fully integrated into these high power, 

high temperature power modules.  

To further characterize this material, this InGaN/GaN MQW structure can also be 

characterized through PL spectroscopy using different pumping powers to analyze its effects on 

the light intensity over a wide range of temperature. Furthermore, other samples with wider and 

narrower bandgaps can be subjected to these PL measurements. By doing so, it can be observed 
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how the bandgap changes at elevated temperatures with wider and narrower room temperature 

bandgaps. To compliment these results, analyzing the quantum efficiency versus temperature of 

these structures will give insight into which materials are able to potentially operate at these 

elevated temperatures.  

Additionally, further studies need to be conducted into the packaging of these LED devices 

and optocoupler, pushing their melting point limits beyond those of operation. Once these 

parameters and goals are understood and met, the integration of these LEDs will be possible. 
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