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ABSTRACT

This dissertation presented three logistics problems. The first problem is a parallel

machine scheduling problems that considers multiple unique characteristics including release

dates, due dates, limited machine availability and job splitting. The objective of is to min-

imize the total amount of time required to complete work. A mixed integer programming

model is presented and a heuristic is developed for solving the problem. The second problem

extends the first parallel scheduling problem to include two additional practical considera-

tions. The first is a setup time that occurs when warehouse staff change from one type of task

to another. The second is a fixed time window for employee breaks. A simulated annealing

(SA) heuristic is developed for its solution. The last problem studied in this dissertation

is a new facility location problem variant with application in disaster relief with both veri-

fied data and unverified user-generated data are available for consideration during decision

making. A total of three decision strategies that can be used by an emergency manager

faced with a POD location decision for which both verified and unverified data are available

are proposed: Consider Only Verified, Consider All and Consider Minimax Regret. The

strategies differ according to how the uncertain user-generated data is incorporated in the

planning process. A computational study to compare the performance of the three decision

strategies across a range of plausible disaster scenarios is presented.



ACKNOWLEDGEMENTS

I would like to thank all the people who helped me during my doctoral studies, many

of them have contributed to my studies and researches in their own particular way and for

that I want to give them special thanks.

I am most grateful to my advisor Dr. Ashlea Bennett Milburn, who have provided

me through guidance and support during my 5 years studies. Her criticism combined with

heart-warming support have made me become more confident as a researcher, and at the

same time made me realize that there is still a long road ahead to become a profession.

With a special mention to Dr. Scott Mason, who invested a huge amount of time in

helping and guiding me on the first two chapters of my dissertation. Also Dr.Jose Emmanuel

Ramirez-Marquez, who worked together with and mentoring me on the third chapter of my

dissertation. Without their help I cannot finished such exciting work.

I am also grateful to the following university faculties: Dr. Shengfan Zhang, Dr.

Chase rainwater, Dr. Manuel D. Rossetti, and Dr. Tish Pohl for their unfailing support and

assistance.

And finally, last but not least, I wish to thank my family and the friends that support

me during my entire studies and gives me the motivation to finsih this achievement.



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 A Heuristic for Scheduling Unrelated Parallel Machines Subject to Job Splitting . 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Scheduling Unrelated Parallel Machines Subject to Setup Times and Scheduled
Machine Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Initial Solution Generation . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Neighborhood Solution Generation . . . . . . . . . . . . . . . . . . . 54
3.4.3 Neighborhood Exploration . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.4 Simulated Annealing Process and Parameters . . . . . . . . . . . . . 61

3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Integrating Uncertain User-Generated Demand Data when Locating Facilities for
Disaster Response Commodity Distribution . . . . . . . . . . . . . . . . . . . . . 76
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Problem Description and Formulation . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.1 Individual Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.2 Comparison of Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Conclusion And Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Conclusion And Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



1 Introduction

According to the Council of Supply Chain Management Professionals (CSMCP), lo-

gistics is “the process of planning, implementing and controlling procedures for the efficient

and effective transportation and storage of goods including services and related information

from the point of origin to the point of consumption for the purpose of conforming to cus-

tomer requirements. It includes inbound, outbound, internal and external movements” [1].

The resources managed in logistics include food, materials, equipment, time and information.

A 2012 CSCMP report indicates the logistics cost as a percent of Gross Domestic Product

(GDP) reached 8.5 percent [2].

The facility location problem is a critical logistics problem that has been studied for

decades. It is a branch of operations research and computational geometry concerned with

the optimal placement of facilities to minimize possible costs while considering factors like

avoiding placing hazardous materials near housing and competitors’ facilities. Facility loca-

tion decisions are typically strategic in nature, given the operating horizon of most facilities.

The location decisions are costly and difficult to reverse. However, problem parameters that

affect location decisions, such as costs and demands, may fluctuate widely during a facil-

ity’s operating horizon. Because of this, researchers have been developing models for facility

location under uncertainty in recent years.

Facility logistics includes such problems as facility design and material handling for

manufacturing, distribution and service facilities. Questions regarding both design and the

operational aspects of material and information flow within facilities must be addressed with
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the goal of improving productivity and performance. Human labor within warehouses falls

within the scope of facility logistics and human labor costs are reported to comprise over

half (55%) of total logistics costs [2].

This dissertation discusses one facility location problem and two facility logistics

problems. The first problem is a facility location problem with application in humanitarian

logistics, and is novel in that a new class of unverified user-generated data is considered along

with verified data during the decision making process. The second and third problems are

warehouse labor scheduling problems where employees have varying productivities for the

different tasks that need to be performed.

In Chapter 2, an unrelated parallel machine scheduling problem with release dates,

due dates, limited machine availabilities and job splitting is studied. It is motivated by

a problem faced by a large medical supplier interested in decreasing human labor costs in

their warehouses through optimized employee scheduling. Specifically, an opportunity to

reduce the total amount of time required to complete work inside the DCs each day exists

by considering individual employee productivities for each task. The objective is to find

a schedule that minimizes the total amount of time to process all jobs. A mixed integer

program (MIP) is presented and a constructive heuristic with local search is developed. The

performance of the heuristic is compared to a commercial optimization solver on a wide

variety of test instances. Computational results indicate the heuristic is fast and effective in

practice.

In Chapter 3, a more complex variant of the problem presented in Chapter 2 is in-

troduced. The unrelated parallel machine scheduling problem retains the release dates, due

dates, limited machine availabilities, job splitting, and unique objective problem character-
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istics. Additionally, machine downtime must be scheduled (for employee breaks) and there

are penalties associated with switching from some types of tasks to others. A meta-heuristic

is developed for solving the problem and its performance is compared to a commercial opti-

mization solver.

The new facility location problem variant is the focus of Chapter 4 and has applica-

tion within humanitarian logistics. Humanitarian logistics is a branch of logistics specializing

in the delivery and warehousing of supplies during natural disasters or other types of emer-

gencies [3]. Specifically, in this chapter, the location of Points of Distribution (PODs) for

emergency relief supplies is considered. The problem is unique in that both verified data

and unverified user-generated data are available for consideration during decision making.

This models the recent need to integrate unverified social data (e.g., Twitter posts) with

data from more traditional sources, such as on-the-ground assessments, to make optimal

decisions during disaster relief. Integrating social data can enable identifying larger numbers

of needs in shorter amounts of time, but because the information is unverified, some of it

may be inaccurate. This paper seeks to provide a “proof of concept” illustrating how the

unverified social data may be exploited. To do so, a framework for incorporating uncertain

user-generated data when locating Points of Distribution (PODs) for disaster relief is pre-

sented. Then, three decision strategies that differ in how the uncertain data is considered are

defined. Finally, the framework and decision strategies are demonstrated via a small com-

putational study to illustrate the benefits user-generated data may afford across a variety of

disaster scenarios.
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2 A Heuristic for Scheduling Unrelated Parallel Machines Subject to Job

Splitting

2.1 Introduction

Distribution centers (DCs) form the backbone of logistics systems, serving as hubs

for storing and rerouting goods. A 2012 Council of Supply Chain Management Profes-

sionals (CSCMP) report indicates that warehousing costs in U.S. logistics systems total

approximately $143 billion annually, comprising 29.2% of total carrying costs [2]. Primary

DC activities include transferring, shipping, receiving and storing goods. Many of these

activities require human labor, which plays an important role in logistics systems. Accord-

ing to the CSCMP report, labor costs comprise over half (55%) of total logistics costs [2].

Napolitano (2011) states that to control and manage this cost, managers often rely on labor

management programs that promote and measure efficient methods for performing tasks [4].

In some cases, an employee may have higher than baseline performance for a certain task,

meaning they can complete the task faster than another employee, according to Harrington

(2008) [5]. Employee performance can be estimated, for example, through historical data.

Therefore, in a DC context, an employee who is very productive in picking, packing, and/or

receiving will finish the job efficiently and potentially save labor costs for the company.

Our research is motivated by a problem faced by a large medical product supplier.

They are interested in decreasing labor costs in their DCs through optimized employee

scheduling. Specifically, an opportunity exists to reduce the total amount of time required

to complete work inside the DCs each day by considering individual employee productivities
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for each task.

The work that must be completed within their DC includes tasks such as carting,

picking, reaching, receiving, and shipping. For every task, a set of information is known:

(i) a ready time describing when it becomes available, (ii) a cutoff time describing when it

must be completed, (iii) a standard duration indicating how long it will take to complete

the task under baseline productivity, and (iv) a vector of employee productivities describing

how much faster or slower than baseline productivity each employee can complete the task.

Tardiness is not permitted. Some tasks can be split among multiple employees, and some

cannot. For those that can be split among employees, those employees can work on the task

simultaneously. A set of employees is available for completing tasks. For each employee, the

known information includes: (i) the time their shift begins, (ii) the time their shift ends, (iii)

a vector of task eligibilities describing the set of tasks the employee is trained to complete,

and (iv) a vector of task productivities analogous to the vector of employee productivities

described above. To account for breaks, employees can be busy at most a certain percentage

of their shifts (e.g., 85%). Furthermore, employees can only work on one task at a time;

there is no preemption in this problem. All task and employee information is available to

decision makers at the beginning of each day. It is assumed that employee productivity does

not change throughout the day. The problem is to assign all tasks to employees subject to

task ready time, task cutoff time, and employee shift constraints.

The objective of our problem is to minimize the total work hours required to perform

all tasks, which is not a typical objective in scheduling problems. We are choosing this

objective due to a business consideration from the company. In the company’s DCs, work

hours are directly related to labor costs, as workers are paid hourly wages. Therefore,
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minimizing total work hours is equivalent to minimizing total labor costs. The common

scheduling problem objective of makespan is not equivalent to total work hours. Makespan

is the difference between the time the last job finishes and the time the first job started.

Total work hours, on the other hand, accounts for the fact that multiple machines (i.e.,

people) are working simultaneously and each incurs a cost for time spent working. Another

common scheduling problem objective is to minimize tardiness. This is also not appropriate

for our problem, as tardiness is generally not allowed in the company’s DC.

The contributions of this chapter are as follows. First, a new problem is intro-

duced. Specifically, the problem described above is modeled as an unrelated parallel machine

scheduling problem with release dates (ready times), due dates (task cutoff times), limited

machine availabilities (employee shift schedules) and job splitting for some of the tasks. To

the best of our knowledge, these problem characteristics have not been simultaneously con-

sidered in the personnel or machine scheduling literature. Furthermore, a unique objective

function is used. The objective is to minimize the total job processing time on all machines,

which is different than traditional scheduling problem objectives such as minimize makespan

and tardiness. Second, a constructive heuristic with local search for solving the problem

variant where all jobs can be split is developed. A computational study is conducted to com-

pare its performance with a commercial optimization solver. The study includes 480 test

instances that vary according to a number of factors such as number of machines, number

of tasks, timing of release dates and due dates, and machine productivity and availability.

Results demonstrate the heuristic is fast and effective.

The remainder of this chapter is organized as follows. In the next section, we review

related literature. In Section 2.4, a formal problem statement is provided and a mixed integer
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programming formulation (MIP) is introduced. The details of a constructive heuristic and

local search improvement scheme used to solve the problem variant where job splitting is

allowed for all jobs are presented in Section 2.5. Section 2.6 describes a computational study

used to compare the developed heuristic with a commercial optimization solver. Finally,

results and directions for future work are provided in Section 2.7.

2.2 Literature Review

We first discuss the relationship between this research and the personnel scheduling

literature. Ernst et al. (2004) classified rostering and personnel scheduling problems into

17 categories, including, for example, crew scheduling, days off scheduling, shift scheduling,

and task assignment [6]. These categories of problems generally involve allocating suitably

qualified staff to meet time-dependent demand for various services while observing industrial

workplace agreements and attempting to satisfy individual work preferences. For example,

crew scheduling, typically applied in transportation systems, involves the assignment of crew

members to duty schedules. This problem is more commonly referred to as shift scheduling

when encountered in other systems (e.g., healthcare systems). Days off scheduling requires

determining the off-work days for each worker over a planning horizon. In these problems,

employees must be assigned to a set of working shifts having predetermined begin and end

times. Furthermore, individual skillsets and work preferences are often considered when

making decisions. In contrast, the problem described in this paper is to allocate a set of

tasks between a group of workers whose work shifts are known. The category of personnel

scheduling problems defined in Ernst et al. (2004) most similar to this is task assignment,

in which a set of tasks with known start and end times must be allocated to workers [6].
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The decision variables in our problem include not only task allocation decisions, but also the

determination of task start and end times. Therefore, the similarity of this research to the

personnel scheduling literature is limited. We turn our attention to a review of the machine

scheduling literature.

By modeling the employees in this research as machines, we find related research in

the machine scheduling literature. Though the parallel machine scheduling problem with

identical machines has been studied extensively in the last few decades, the unrelated ma-

chines variant has received less attention in the literature. A survey of the unrelated parallel

machine scheduling literature is presented in Pfund, Fowler, and Gupta (2004) [7]. A total

of 44 papers are reviewed in the survey. The survey indicates that while minimization of

makespan has been fairly widely studied, problems that include processing characteristics

such as release times, sequence dependent setup times, and preemption remain largely un-

studied. Problems of minimizing total weighted tardiness have likewise not been well studied.

The survey also indicates that much more work needs to be done to solve unrelated parallel

machine problems involving due date-related performance measures. Papers that address

unrelated parallel machine scheduling with some of the additional characteristics present in

the problem studied in this paper (i.e., limited machine availability and job splitting) are

reviewed below.

The unrelated parallel machine scheduling problem with due date constraints rep-

resents an important but relatively less-studied scheduling problem in the literature. We

begin our review of the unrelated parallel machine scheduling literature with those papers

that include due dates and setup times. Ravetti et al. (2007) addresses an unrelated parallel

machine scheduling problem with sequence dependent setups and due dates, where the ob-
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jective is to minimize the sum of the makespan and weighted delays. A metaheuristic based

on greedy randomized adaptive search procedure (GRASP) is used as a solution method

[8]. Chen (2009) discusses a similar unrelated parallel machine problem with due dates and

sequence and machine-dependent setup times where the objective is to minimize total tar-

diness. Computational results indicate that the proposed heuristic is capable of obtaining

significantly better solutions than state-of-the-art algorithms on a benchmark problem set

[9]. Ying and Lin (2012) also addresses an unrelated parallel machine scheduling problem

with sequence and machine-dependent setup times under due date constraints. An artificial

bee colony (ABC) algorithm is used to minimize total tardiness. Computational results show

the ABC algorithm outperforms existing algorithms for most test instances studied [10].

Unrelated parallel machine scheduling problems having both due dates and release

dates are less studied in the literature also. Bank and Werner (2001) considers an unrelated

parallel machine problem with release dates where every job has a common due date and

the objective is to minimize the weighted sum of linear earliness and tardiness penalties.

Various constructive and iterative heuristic algorithms are compared on problems with up to

500 jobs and 20 machines [11]. Valente and Alves (2004) also studies a problem with release

dates and a common due date where the objective is to minimize the sum of deviations of

job completion times. However, the proposed algorithm can only solve problems having a

single machine [12].

Limited machine availability is used to model situations in which machines cannot

be assumed to be available 100% of the time, for example, during scheduled maintenance.

In our paper, we use it to model employee shift constraints. Other unrelated parallel ma-

chine scheduling problems in the literature with limited machine availability are as follows.
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Suresh and Ghaudhuri (1996) considers a problem were each machine has several unavail-

able periods and the objective is to minimize makespan. The problem is transformed by

treating unavailable periods as jobs that can only be performed on the associated machine

[13]. Cheng, Hsu, and Yang (2011) study an unrelated parallel machine scheduling problem

where machine availabilities model deteriorating maintenance activities and the objective

is to minimize total completion time. The length of maintenance activities (i.e., machine

unavailabilities) increases linearly with starting time [14]. In another paper, Yang (2013)

also studies similar unrelated parallel machine problems with deterioration effects and aging

effects with multi-maintenance activities [15]. Currently there are no papers in the literature

that simultaneously consider limited machine availabilities in conjunction with due dates

and release dates.

Job splitting is not a common problem characteristic treated in the unrelated parallel

machine scheduling literature, as currently there are only a few papers meeting this descrip-

tion. Logendran and Subur (2004) studies an unrelated parallel machine scheduling problem

where jobs can be split, but only into two equal or nearly equal portions. The objective is to

minimize the total weighted tardiness of all jobs. A tabu search algorithm is applied and a

factorial experiment based on a split-plot design is performed to test the heuristic on a range

of problems having between 9 and 60 jobs and 3 and 15 machines [16]. Eroglu, Ozmutlu,

and Koksal (2013) discuss an unrelated parallel machine scheduling problem with sequence-

dependent setup times and job splitting where the objective is to minimize makespan. A

genetic algorithm is proposed and computational results indicate the algorithm is capable of

solving problems with 75 machines and 111 jobs in a reasonable amount of CPU time [17].

Our treatment of job splitting is different from the above, in that jobs can be split arbitrarily
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among eligible machines, as opposed to into two equal portions.

Authors
Objective

UPM
Due Release Lim. Job

(Minimize) Dates Dates Avail. Splitting

Ravetti et al. (2007) makespan, weighted delay X X

Chen (2009) total tardiness X X

Ying and Lin (2012) total tardiness X X

Bank and Werner (2001) total tardiness X X X

Valente and Alves (2004)
sum of deviations of job

X X
completion times

Suresh and Ghaudhuri (1996) makespan X X

Cheng, Hsu, and Yang (2011) total completion time X X X

Yang (2013) total completion time X X X

Logendran and Subur (2004) total weighted tardiness X X X

Eroglu, Ozmutlu, and Koksal (2013) makespan X X

Table 2.1: Summary of reviewed unrelated parallel machine scheduling papers

Table 2.1 summarizes the papers reviewed above and indicates the problem charac-

teristics included in each paper. The abbreviation UPM is for unrelated parallel machines.

Note that none of the papers consider all five problem characteristics simultaneously. By

doing so, our paper fills a gap in the literature. Additionally, a unique problem objective

is considered in our paper. Specifically, the objective is to minimize the total amount of

time required to complete the work, which is different from makespan (the time the last job

completes) and the sum of completion times.
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2.3 Problem Description

2.4 Problem Description

The problem presented in this paper is described formally as follows. There are two

disjoint sets S and T of jobs that must be scheduled. For jobs in S splitting is allowed, but

jobs in T cannot be split. The set of all jobs is N = S
⋃
T . Each job j ∈ N can begin no

earlier than its release date rj and must be finished before its due date dj. The standard

duration of job j on a machine with baseline productivity is known and is denoted uj. There

is a set M of unrelated parallel machines available for processing jobs. The availability of

each machine i ∈ M is described by a shift begin time bi and shift end time ei; a machine

cannot process jobs before bi or after ei. Furthermore, each machine can only process jobs

for (1− α)% of the time they are available, as α% of a machine’s shift must be reserved for

break time. The binary parameter tij describes whether machine i is eligible to process job j

(1 indicates the machine is eligible; 0 indicates it is not). For every job j for which machine

i is eligible, the productivity ρij of machine i for job j is known. If ρij < 1, machine i has

faster than baseline productivity for job j; if ρij > 1, machine i has slower than baseline

productivity for job j. Therefore, the time required for machine i to complete all of job j is

ρijuj. However, it should be noted that for jobs in S job splitting is allowed and multiple

machines can work simultaneously on portions of the same job. Let Xij represent the fraction

of job j assigned to machine i. For j ∈ S, Xij ∈ {0, 1}, but for j ∈ T , Xij can take fractional

values. Then, the time machine i will spend on job j is ρijujXij. The problem is to assign

each job to an eligible machine or a set of eligible machines, such that job release date and

due date constraints and machine availability constraints are not violated. The objective is
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to minimize the total amount of time required to process all jobs.

Below we offer a mixed integer programming (MIP) formulation for the unrelated

parallel machine scheduling problem defined above, with job splitting allowed for some jobs.

Then we present a heuristic for solving the problem in the case when all jobs are splittable

and the variables Xijk are continuous. For the application we considered, the assumption

that every job can be split is reasonable. The jobs include tasks such as order picking and

pallet picking. If there are, for example, ten standard hours of order picking that must be

completed in the warehouse on a given day, the work can be divided among any number of

pick lists and then be assigned to employees (i.e. machines). All jobs in the application we

consider are of this nature.

The mixed integer programming (MIP) formulation of the problem is described in

Equations (2.1)-(2.15). Decision variable Xijk is the fraction of job j assigned to the kth

position of machine i. The index k is used to keep track of the sequence of jobs for each

machine, andK is the set of positions available on each machine. Binary decision variable Zijk

indicates whether any portion of job j is assigned to machine i in position k. Additionally,

decision variables sik and cik are used to keep track of the start and completion times of the

kth job on machine i, respectively.

min
∑
i∈M

∑
j∈N

∑
k∈K

ρijujXijk (2.1)

subject to

∑
i∈M

∑
k∈K

Xijk = 1,∀ j ∈ N (2.2)
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Zijk ≤ tij, ∀ i ∈M, j ∈ N , k ∈ K (2.3)

Xijk ≤ Zijk, ∀ i ∈M, j ∈ N , k ∈ K (2.4)

∑
j∈N

Zijk ≤ 1, ∀ i ∈M, k ∈ K (2.5)

cik = sik +
∑
j∈N

ρijujXijk, ∀ i ∈M, k ∈ K (2.6)

sik ≥ ci(k−1), ∀ i ∈M, k ∈ K(k 6= 1) (2.7)

sik ≥
∑
j∈N

(rjZijk), ∀ i ∈M, k ∈ K (2.8)

cik ≤
∑
j∈N

(djZijk) +G(1−
∑
j∈N

Zijk), ∀ i ∈M, k ∈ K (2.9)

∑
j∈N

∑
k∈N

ρijujXijk ≤ (1− α)(ei − bi) ∀ i ∈M (2.10)

sik ≥ bi, ∀ i ∈M, k ∈ K (2.11)

cik ≤ ei, ∀ i ∈M, k ∈ K (2.12)
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0 ≤ Xijk ≤ 1 ∀ i ∈M, j ∈ N , k ∈ K (2.13)

Zijk ∈ {0, 1} ∀ i ∈M, j ∈ N , k ∈ K (2.14)

sik, cik ≥ 0 ∀ i ∈M, k ∈ K (2.15)

The objective described in Equation (2.1) is to minimize the total time required to

process all jobs. Constraint set (2.2) requires that all of each job be assigned to some machine

or set of machines. Constraint set (2.3) ensures that machines only operate on jobs for which

they are eligible, and Constraint set (2.4) links the X and Z variables. Constraint set (2.5)

states that at most one job can occupy each position on each machine. Constraint set (2.6)

assures that the time the job in the kth position on machine i completes is the time it started

plus the time required for machine i to complete the assigned portion of the job. Constraint

set (2.7) ensures that the time the job in the kth position on machine i begins is no earlier

than the time the previous job ended. Constraint set (2.8) assures that machines cannot

begin working on a job before the job is ready, while constraint set (2.9) enforces the due

date for a job. The parameter G represents a large value so that when there is no job in

position k, the completion time for position k (cik) will not be constrained. Constraint set

(2.10) states that a machine can work no longer than its shift duration, excluding break

time. Constraint sets (2.11) and (2.12) ensure that a machine cannot process jobs before

its shift begins or after it ends. Constraint sets (2.13) through (2.15) are variable definition

constraints.
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A simple example with three jobs and two machines is included to illustrate this

problem. In this example, we are assuming there is no break time (α = 0). Table 2.2

provides the job details. Each job has a release date, due date, and a standard duration. For

example, job 1 can be completed between 8:00 and 14:00 and requires 5.00 standard hours.

Table 2.3 gives the machine details. The productivity information indicates how fast (or

slow) each machine is for each job. For example, machine A requires 1.1 times the standard

duration of job 1 to process job 1. Missing productivity values indicate the machine is not

eligible for the job. For example, machine B is not eligible for job 2. The machine availability

information indicates the shift begin and end time for each machine. For example, machine

A is available between 8:00 and 16:00. A feasible solution is contrasted with the optimal

solution as follows.

j Ready Time (rj) Due Date (cj) Duration (uj)

1 18.00 14.00 4.89

2 10.00 20.00 4.00

3 12.00 19.00 5.00

Table 2.2: Example: Jobs List

i
Productivity (ρij) Machine Availability

j = 1 j = 2 j = 3 bi ei

A 1.1 1.0 0.9 18:00 16:00

B 0.8 – 1.2 12:00 20:00

Table 2.3: Example: Machines List

A feasible (but not optimal) solution is described in Table 2.4 and depicted in Figure
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2.1. The time labels in Figure 2.1 have been rounded to the nearest minute. First, note that

job 2 can only be performed by machine A due to eligibility restrictions, and machine A will

require 4 hours to process all of job 2. Job 2 is not yet available at the start of machine A’s

shift, so it is assigned to the last part of machine A’s shift, from 12:00 to 16:00. This renders

machine A unable to perform any of job 3, even though A is faster than B for job 3, because

job 3 is released at time 12:00 but A is busy with job 2 at that time. Therefore, all of job 3

will be assigned to B, and 6 hours will be required (5 × 1.2). Working backwards from the

release date and due date of job 3 and shift of machine B, job 3 can be placed in machine

B’s schedule from 13:00 to 19:00. Machine B is faster than machine A for job 1, but is now

busy throughout the entire window of job 1 except for 12:00 to 13:00. Therefore, machine B

is assigned to work on job 1 from 12:00 to 13:00, and the remainder of job 1 is assigned to

machine A, which processes the job from 8:00 to 12:00. The total time required to complete

all work in this solution is 15 hours.

Table 2.4: Fraction of Each Job Assigned to Each Machine in Feasible Solution

Job 1 Job 2 Job 3

Machine A 0.743 1.000 0.000

Machine B 0.257 0.000 1.000

The optimal solution described in Table 2.5 and depicted in Figure 2.2 is obtained

by solving the MIP presented above. In the figure, times are rounded to the nearest minute.

Job 1 is split into 2 pieces, but more of the job is given to machine B than A, since machine B

is faster for job 1 than machine A. As the previous solution presented, job 2 is still performed
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Machine B

Machine A 1 2

1 3

8:00 12:00 16:00

12:00 13:00 19:00

8:00 10:00 12:00 14:00 16:00 18:00 20:00

Figure 2.1: Example: A Feasible Schedule

by machine A in the optimal solution, since machine A is the only eligible machine. Like job

1, job 3 is also split. Machine A is faster for job 3 so machine A is assigned as much of job

3 as possible, given other constraints on machine availability and job release dates and due

dates. The total processing time associated with this solution is 14.17 hours.

Table 2.5: Fraction of Each Job Assigned to Each Machine in Optimal Solution

Job 1 Job 2 Job 3

Machine A 0.489 1.000 0.304

Machine B 0.511 0.000 0.696

Machine B

Machine A 1 2 3

1 3

8:00 10:38 14:38 16:00

12:00 14:00 18:10

8:00 10:00 12:00 14:00 16:00 18:00 20:00

Figure 2.2: Example: An Optimal Schedule
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2.5 Methods

Two methods are used to solve the problem presented in this paper. First, a com-

mercial solver is used to obtain solutions to the MIP presented in Section 2.5. Next, a

constructive heuristic is used in conjunction with a local search improvement scheme to

produce approximate solutions. The details of the constructive heuristic and local search

method are provided in this section.

The primary steps of the constructive heuristic used to generate an initial solution

are described in Algorithm 1. Let vj be the unassigned duration of job j during some step

of Algorithm 1, and V =
∑N

j=1 vj be the total unassigned durations of all jobs. Note that

in the initialization step, all jobs are unassigned, so V is the sum of the standard durations

of all jobs, V =
∑n

j=1 uj. While V > 0 and thus some unassigned job durations remain,

the function FindJob() is used to select a job for assignment to a machine. Specifically,

FindJob() finds the job ĵ ∈ N currently having maximum unassigned duration vj. Next,

the function FindMachine() identifies the eligible machine having the best productivity

for job ĵ (i.e., lowest ρiĵ). If the machine identified is not available to complete some portion

of ĵ (for example, the release date and due date may not match up with the machine

availability), the availability of the next-most productive machine for job ĵ will be inspected,

and so on. Once some machine î that can complete some portion of ĵ has been identified,

some portion Xîĵk̂ of it will be assigned to position k̂ of machine î according to function

AddSchedule(), which will be described later. If no such machine î can be identified, the

algorithm terminates with an infeasible solution. Note that some portion of job ĵ may remain

unassigned. Upon completion of AddSchedule(), the unassigned duration vĵ is updated,
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as is the total unassigned duration of all jobs V . Then the algorithm returns to step 2 to

find another job for assignment. Eventually, the algorithm terminates and returns initial

schedule S. The schedule S will then be passed to the improvement algorithm.

Algorithm 1 Constructive Heuristic for Finding Initial Solution

Require: Machines i = 1, . . . ,m and jobs j = 1, . . . , n

1: Initialize: vj = uj ∀ j ∈ N , V =
∑

j∈N uj

2: while V > 0 do

3: ĵ = FindJob(N )

4: î = FindMachine(ĵ,M)

5: S = AddSchedule(ĵ, î)

6: vĵ ← vĵ − uĵXîĵk̂; V ← vĵ − uĵXîĵk̂

7: end while

8: return S

To find the appropriate position for job ĵ in the schedule of machine î, and the

appropriate amount of the job to assign, AddSchedule() is as follows:

Step 1 Assume positions 1, 2, . . . β in the schedule of machine î have been filled. Then, there

are β + 1 possible insertion locations for job ĵ: one preceding each of the β positions,

and one following the βth position. Choosing any one of these locations will result

in a modified alternative schedule for machine î; not only will a new job fill a new

position in the schedule, but the start and completion times of other jobs already in

the schedule may change. Alternative schedules are generated where jobs are moved

around so that maximum duration “gaps” are created for inserting a new job.
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Figure 3 illustrates this idea. Suppose there is a machine for which two tasks are

currently assigned in the initial schedule: a and b, in that order. Alternative 1 is to

place the new job before a. Moving jobs a and b to begin as late as possible without

violating the due date of either generates a large “gap” of available time prior to job

a. Alternative 2 is to place the new job between a and b. Job a cannot be moved any

earlier due to its release date and the schedule begin time, but job b can be moved as

late as possible without violating its due date. This generates a large window of time

between job a and b. The final alternative is to place the new job after b. Ideally, both

jobs a and b would be moved to begin as early as possible without violating the release

date of either. However, in this example, there is actually no room to adjust the start

times of a or b. But, there is still a window of time between the completion of b and

the end of the machine’s schedule.

a ready time
machine begin time

b ready time a cutoff time b cutoff time
machine end time

Initial Schedule a b

Alternative 1 a b

Alternative 2 a b

Alternative 3 a b

Figure 2.3: Illustration of Alternative Schedules and Insertion Locations

To create the maximum duration “gap” associated with potential insertion location L

on machine i, first move all of the preceding jobs on the machine to begin as early as
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possible. That is, for job j1 in position 1, update the earliest possible start time to

σ1 = max{rj1 , bi}, the later of the release date or the machine shift begin time. Define

the modified completion time of job jl in position l as γl, computed as:

γl = σl + ρijlujlXijll. (2.16)

Then for jobs in positions l = 2, 3, . . . , L − 1, find the earliest possible start time σl

using:

σl = max{γl−1, rjl}. (2.17)

Each job in each position will begin as soon as either the job is released or the previous

job ends (when begun at its modified earliest possible start time σl−1), whichever

comes latest. Next, move all of the subsequent jobs on the machine after position L

to begin/complete as late as possible. That is, beginning with position l = β, find the

latest possible completion time γβ for the job in position β using:

γβ = min{ei, djβ}. (2.18)

Job jβ in position β will begin as late as possible without violating the end of the

shift of machine i or the due date of jβ. Note that modified start time σβ can be

determined from γβ by rearranging Equation (2.16). Then, working backwards from

positions l = β − 1 to l = L+ 1, find each latest possible completion time γl using:

γl = min{σl+1, djl}, (2.19)

22



and update the modified starting times σl accordingly. Jobs in positions L+1 through

β − 1 will begin as late as possible without violating the due date of the current job

or the modified start time of the next job.

Step 2 Update the starting times sîl and completion times cîl for all l = 1, 2, . . . , β except

l = L to the times σl and γl identified above. Then, the maximum duration “gap” gL

associated with potential insertion location L is sî,L+1− cî,L−1; the latest possible start

time of the job in the next position minus the earliest possible completion time of the

job in the previous position.

Step 3 Pick the insertion location k̂ in the schedule of machine î and the amount of job ĵ

to assign there as follows. First, the insertion location k̂ is determined by finding the

potential insertion location having the largest gap; that is, k̂ = arg minl=1,...,β gl. Next,

the amount of time the machine should spend working on this job, D∗, is computed

using:

D∗ = min

{
ρîĵvĵ, gk̂, (1− α)(eî − bî)−

β∑
ω=1

(cîω − sîω)

}
. (2.20)

Note that for job ĵ with unassigned duration vĵ, the amount of time required for

machine î to complete all of what remains of ĵ is ρîĵvĵ. Thus, Equation 3.9 compares

the remaining duration of the task, the gap of time available, and the remaining shift

availability of the machine. If the remaining duration of the task is the smallest value

of the three, then all of what remains of ĵ will be completed by machine î. Otherwise,

some portion of ĵ will remain to be assigned to a machine in a future iteration.
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After the initial solution is generated, a local search improvement algorithm, de-

scribed in Algorithm 2, is applied to schedule S. The swap neighborhood is explored in this

algorithm. Specifically, a swap neighbor of schedule S is any schedule that can be reached by

swapping job p in the yth position on machine Γ with job q in the zth position on machine Λ.

More precisely, the exact amounts of standard durations of p and q assigned to their current

machines will be swapped to the other machine. We refer to this swap using the notation

swap(p, q) from this point forward.

To determine whether swap(p, q) is feasible, the function ViolateConstraint() is

used. The function checks conditions such as whether machines Γ and Λ are eligible for jobs

q and p, respectively, and whether their machine schedules are compatible with the release

and due dates of jobs q and p. Specifically, the following conditions are required in order for

the swap to be feasible:

• tΓq = tΛp = 1 (machines eligible for jobs)

• rp < eΛ and rq < eΓ (release dates compatible with shift end times)

• dp > bΛ and dq > bΓ (due dates compatible with shift begin times)

If these preliminary feasibility conditions are met, methods such those contained in

AddSchedule() are used to determine whether “gaps” of sufficient width can be created

within the machine schedules for swapping the jobs. Specifically, steps 1 and 2 of AddSched-

ule() are applied for position y in the schedule of machine Γ and position z in the schedule

of machine Λ to move preceding start times as early as possible and subsequent start times

as late as possible. This determines the resulting gap widths gy and gz. Gap width gy must

be long enough for job q to be moved there, and gz must be long enough for job p to be
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Algorithm 2 Local Search Improvement Algorithm

Require: An initial solution S

Machines i = 1, . . . , |M| and jobs j = 1, . . . , |N |

1: hasImprovement = True

2: while hasImprovement = True do

3: hasImprovement = False

4: for Γ = 1 to |M|

5: for Λ = Γ + 1 to |M|

6: for p = 1 to βΓ (the number of positions in the schedule of Γ)

7: for q = 1 to βΛ (the number of positions in the schedule of Λ)

8: if ! ViolateConstraint(Γ, p,Λ, q)

9: hasImprovement = FindImprovement(Γ, p,Λ, q)

10: if hasImprovement = True, implement swap(p, q) in S and Go to 2

11: end for

12: end for

13: end for

14: end for

15: end for

16: end while

17: return S
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moved there. Let cΓy − sΓy denote the duration of job p in its original position y of machine

Γ’s schedule and cΛz − sΛz denote the duration of job q in its original position z of machine

Λ’s schedule. Then, the following conditions are required for swap feasibility:

• (cΓy − sΓy)
ρΛp

ρΓp
≤ gz,

• (cΛz − sΛz)
ρΓq

ρΛq
≤ gy.

Once swap(p, q) has been determined to be feasible, whether or not it improves the

solution is considered. A swap only improves the solution if it reduces the total amount of

time required to complete the work. Specifically, if Equation (2.21) is satisfied, it is faster

to complete jobs p and q on machines Λ and Γ, respectively, than vice versa:

(cΓy − sΓy)
ρΛp

ρΓp

+ (cΛz − sΛz)
ρΓq

ρΛq

≤ (cΓy − sΓy) + (cΛz − sΛz). (2.21)

The right hand side of Equation (2.21) provides the total duration of jobs p and q

in the original schedule, with job p in position y on machine Γ and job q in position z on

machine Λ. The left hand side adjusts those durations according to the machine productivity

ratios for jobs p and q. For example, if the duration of job p was 2 hours on machine Γ and

ρΓp = 0.5 and ρΛp = 1, then its duration on machine Λ will be 4 hours (2 ∗ 1
0.5

). If Equation

(2.21) is satisfied, then the swap reduces the total duration of work. The swap will be

implemented and the algorithm will return to line 2 to search for additional swaps.

Figure 2.4 illustrates a swap using a very simple example. The original schedule is

depicted in (a). Job p is the second job on machine Γ and lasts from time 1 to 3. Job q is

the third job on machine Λ and lasts from time 3 to 5. Assume the following productivity

values: ρΓ,p = 1, ρΛ,p = 1.25, ρΓ,q = 0.5, ρΛ,q = 1. Figure (b) depicts the schedule that will
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result if swap(p, q) is implemented. The duration of q will be reduced from 2 to 1 while the

duration of job p will be increased from 2 to 2.5. The reduction in q is greater than the

increase in p so the swap is improving and will be implemented, reducing the total schedule

duration by 0.5 hours.

Machine Γ pa b

0 1 3 5

Machine Λ qc d

1 30 5

(a) Original schedule

Machine Γ q

0 4

a b

0 1 2

Machine Λ p

0 5.5

c d

1 3

(b) Revised schedule after swap
1

Figure 2.4: Example of a swap between jobs p and q

2.6 Experiments and Results

The performance of the proposed heuristic is investigated using the experimental de-

sign summarized in Table 2.6. Five different factors are included in the design. Numerical

values and distributions used for each level of each factor are based on real data from a com-

pany with a large network of warehouses. The first factor, warehouse type, has three levels

representing small, medium, and large warehouses, which differ according to the number of

employees (machines, |M|), tasks (jobs, |N |), and task duration (U). A larger warehouse

implies more employees and more tasks. Arena Input Analyzer was used to fit task dura-

tion distributions for more than 1200 historical tasks from 15 work days. The distributions

fit the historical data well and the p-values from the Kolmogorov-Smirnov test are greater

than 0.05. The second factor, machine schedule, has two levels representing two different

employee work shift options. In the first level, all employees work between 8:00 am and
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4:00 pm. We refer to this as a “tight” machine schedule because there is no flexibility for

employees to complete work later in the day. Alternatively, in the “loose” schedule, 30%

of employees work this schedule, and the remaining 70% work between 12:00 pm and 8:00

pm. The third factor describes task release times, which can either be “early” with all tasks

available at 8:00 am or “late” with 50% of tasks available at 8:00 am, 20% at 10:00 am and

30% at 11:00 am. Analogously, the task due date factor can either be “late” with no tasks

due until 8:00 pm or “early” with 30% due at 6:00 pm, 20% due at 7:00 pm, and the rest

due at 8:00 pm. Therefore, the test instances with the tighest windows for task completion

are those having late release date with early due date. Furthermore, the machine eligibility

factor describes the proportion τ of machines (employees) eligible to perform each task, on

average. When τ = 0.5, the expected proportion of employees eligible for each task is 50%,

therefore eligibilities are less restrictive. Alternatively, eligibilities are more restrictive when

τ = 0.3. Finally, the distribution of machine productivities is a single-level factor that is

derived using Arena Input Analyzer. Historical data from 15 work days were used to fit the

distribution, which is normal with a mean of 0.9 hours and a variance of 0.1 hours. The

p-value from the Kolmogorov-Smirnov test is greater than 0.05.

Table 2.6: Experimental Design

Factors Level Level Description

Warehouse Type 3
(1) Small: |M| = 15, |N | = 85, U∼Weibull(0.516, 0.809), E(U) = 1.69
(2) Medium: |M| = 35, |N | = 130, U∼ 12 ·Beta(0.773, 3.47), E(U) = 2.19
(3) Large: |M| = 95, |N | = 190, U∼ Gamma(9.36, 0.687), E(U) = 6.43

Machine Schedule 2
(1) Tight: 100% employees work shift [8, 16]
(2) Loose: 30% employees work shift [8, 16], 70% employees work shift [12, 20]

Ready Time 2
(1) Early: 100% tasks available at 8
(2) Late: 50% tasks available at 8, 20% at 10, 30% at 11

Due Date 2
(1) Late: 100% tasks due at 20
(2) Early: 50% tasks du at 20, 20% at 19 and 30% at 18

Machine
2

(1) Less Restrictive: τ = 0.5
Eligibility (2) More Restrictive: τ = 0.3
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For each of the 48 factor-level combinations, 10 random replicates are generated,

yielding a total of 480 test instances. Each test instance is solved once using the heuristic

described in Section 4 and once using CPLEX with a 60 minute runtime limit imposed. All

computations are performed on a super computer with 12 CPUs and 24-GB RAM.

Table 2.7: Experimental Results

Factors
CPLEX Heuristic

Results RunTime(s) Results Gap to CPLEX RunTime(s)
(1,1,1,1,1) 46.6 31.6 47.1 1.03% 4.6
(1,1,1,1,2) 49.0 20.1 49.4 0.67% 5.0
(1,1,1,2,1) 51.7 46.7 52.3 1.14% 4.2
(1,1,1,2,2) 42.1 22.5 42.5 0.88% 5.1
(1,1,2,1,1) 51.2 165.9 51.9 1.30% 4.0
(1,1,2,1,2) 45.1 107.5 45.6 1.18% 4.5
(1,1,2,2,1) 53.9 180.2 55.8 3.36% 5.3
(1,1,2,2,2) 50.0 155.0 50.6 1.22% 4.8
(1,2,1,1,1) 43.4 38.3 44.4 1.84% 5.1
(1,2,1,1,2) 50.4 20.0 50.9 0.98% 4.9
(1,2,1,2,1) 48.6 40.9 49.1 1.10% 4.3
(1,2,1,2,2) 53.2 19.9 53.8 1.23% 4.8
(1,2,2,1,1) 46.8 158.9 47.7 1.71% 4.0
(1,2,2,1,2) 48.9 53.3 49.5 1.11% 5.3
(1,2,2,2,1) 46.8 169.7 47.5 1.32% 4.7
(1,2,2,2,2) 49.6 40.6 50.2 1.24% 5.2
(2,1,1,1,1) 86.6 314.3 87.9 1.40% 9.8
(2,1,1,1,2) 99.1 124.4 100.5 1.41% 11.8
(2,1,1,2,1) 85.6 308.0 86.9 1.46% 11.8
(2,1,1,2,2) 100.1 180.4 101.3 1.27% 11.7
(2,1,2,1,1) 87.9 326.5 89.2 1.48% 11.5
(2,1,2,1,2) 94.9 344.1 96.1 1.26% 12.2
(2,1,2,2,1) 91.2 358.4 92.0 0.90% 10.7
(2,1,2,2,2) 97.2 283.9 98.2 1.01% 11.0
(2,2,1,1,1) 84.7 291.4 86.2 1.76% 12.0
(2,2,1,1,2) 97.1 149.0 98.8 1.69% 10.8
(2,2,1,2,1) 88.2 293.7 89.9 1.91% 11.4
(2,2,1,2,2) 97.9 210.9 99.8 1.90% 10.8
(2,2,2,1,1) 86.7 305.6 88.3 1.89% 11.7
(2,2,2,1,2) 100.0 300.3 101.9 1.90% 12.0
(2,2,2,2,1) 84.3 405.4 85.7 1.57% 11.0
(2,2,2,2,2) 93.2 402.5 94.7 1.70% 11.9
(3,1,1,1,1) 580.0 1077.9 600.1 3.47% 14.5
(3,1,1,1,2) 595.6 355.7 616.8 3.56% 14.7
(3,1,1,2,1) 582.2 1078.6 602.3 3.45% 13.8
(3,1,1,2,2) 593.8 361.3 613.8 3.37% 14.7
(3,1,2,1,1) 584.5 1078.0 605.0 3.52% 14.1
(3,1,2,1,2) 594.5 360.1 614.8 3.41% 13.3
(3,1,2,2,1) ∗581.4 2595.6 601.8 3.84% 15.2
(3,1,2,2,2) 592.9 360.5 613.6 3.49% 12.9
(3,2,1,1,1) 582.3 1076.6 602.1 3.39% 13.5
(3,2,1,1,2) 592.5 359.5 613.3 3.50% 14.4
(3,2,1,2,1) 579.8 1078.2 600.3 3.53% 15.3
(3,2,1,2,2) 596.5 361.0 618.1 3.62% 14.3
(3,2,2,1,1) 576.4 1075.4 597.2 3.61% 14.4
(3,2,2,1,2) 592.7 358.4 613.2 3.46% 14.2
(3,2,2,2,1) 579.0 1078.1 598.9 3.44% 14.9
(3,2,2,2,2) 594.7 360.0 616.2 3.61% 15.6

The full set of computational results are given in Table 2.7. The first column denotes
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the factor levels used to create the instance. For example, instance (1,1,1,1,1) in the first row

is for a small warehouse with a tight machine schedule, early release dates, late due dates,

and less restrictive machine eligibility. Remaining columns report the objective values of the

best solutions obtained by CPLEX and the heuristic, the percent gap between the heuristic

solution and the best lower bound from CPLEX, and the runtime for each. Note that each

value reported is an average across 10 replicates of the indicated instance type. The heuristic

performance gaps range from 0.67% to 3.62%. The average runtime of CPLEX per instance

is 393.1 seconds while average runtime is 10.1 seconds per instance for the heuristic. One row

of the table, corresponding to instance type (3,1,2,2,1), has an asterisk next to the CPLEX

solution value to denote that optimal solutions were not obtained within a 60 minute runtime

limit for some of the 10 replicates of this instance type. For all other replicates of all other

instances, optimal solutions were obtained. Therefore, the values in the Gap to CPLEX

column are optimality gaps for every row except (3,1,2,2,1); in that case, the gap is to the

best lower bound obtained by CPLEX.

Table 2.8 provides additional details regarding the instances that CPLEX failed to

solve to optimality within a 60 minute runtime limit. The first column provides the replicate

number. It can be observed that optimal solutions were only found for 4 of the 10 replicates.

However, for those instances that CPLEX did not solve to optimality, the optimality gaps are

at most 1.01%. These instances represent large warehouses with tight machine schedules, late

release dates, early due dates, and less restrictive machine eligibilities. Therefore, with the

exception of the machine eligibility factor, they are the most constrained instances overall.

Average, minimum, and maximum heuristic performance gaps are provided per in-

stance class in Table 2.9. An instance class refers to a set of instances for which one of the
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Table 2.8: Experimental Results for Instance Class (3,1,2,2,1)

Factors CPLEX Result Lower Bound Gap CPLEX RunTime(s)

(3,1,2,2,1-1) 580.64 580.64 0.00% 1084.1

(3,1,2,2,1-2) 583.25 582.08 0.20% 3600.0

(3,1,2,2,1-3) 583.45 583.45 0.00% 1081.4

(3,1,2,2,1-4) 583.09 583.09 0.01% 3600.0

(3,1,2,2,1-5) 568.88 566.60 0.40% 3600.0

(3,1,2,2,1-6) 587.65 587.65 0.00% 1076.5

(3,1,2,2,1-7) 578.47 575.00 0.60% 3600.0

(3,1,2,2,1-8) 580.40 580.40 0.00% 1076.6

(3,1,2,2,1-9) 589.49 584.19 0.91% 3600.0

(3,1,2,2,1-10) 578.71 572.92 1.01% 3600.0

factors in the experimental design is fixed at a particular level. For example, the first row

(1,*,*,*,*) provides results averaged across all instances where the warehouse type is fixed

to level 1 (small). The performance gap is computed as the difference between the heuristic

solution the best solution obtained by CPLEX within a 60 minute runtime limit. Recall from

the previous paragraph that the best solution obtained by CPLEX is also an optimal solution

for 474 out of 480 test instances. Using Table 10, it can be observed that the heuristic per-

formance degrades as warehouse size increases, with the average gap increasing from 1.45%

in instances with small warehouses to 3.52% in instances with large warehouses. However,

the average gap remains relatively stable at approximately 2% across all other experimental

design factors. Thus, we can conclude that warehouse type has a larger impact than other

factors on heuristic performance.

Average, minimum, and maximum computation times for both CPLEX and the

heuristic are provided in Table 2.10 by instance class. We can observe a drastic increase
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Table 2.9: Heuristic Performance Gaps (% deviation from best known lower bound) per
Instance Class

Factors Avg. Gap Max Gap Min Gap
Warehouse (1,*,*,*,*) 1.45 4.78 0.10
Types (2,*,*,*,*) 1.53 3.40 0.10

(3,*,*,*,*) 3.52 6.52 0.10

Machine (*,1,*,*,*) 2.12 4.78 0.10
Schedule (*,2,*,*,*) 2.21 6.52 0.10

Ready (*,*,1,*,*) 2.06 6.52 0.10
Times (*,*,2,*,*) 2.27 4.78 0.10

Cutoff (*,*,*,1,*) 2.10 6.52 0.10
Times (*,*,*,2,*) 2.23 4.78 0.10

Eligibility
(*,*,*,*,1) 2.31 4.78 0.10
(*,*,*,*,2) 2.03 6.52 0.10

Overall (*,*,*,*,*) 2.17 5.11 0.10

in CPLEX average solution time as warehouse size increases, from an average of 79.4 sec-

onds in instances with small warehouses to 286.5 seconds in instances with large warehouses.

We can also observe a maximum CPLEX solution time of 3600 seconds for instance class

(3,*,*,*,*), indicating the 60-minute runtime limit was reached without finding an optimal

solution for some of the instances within this class. The heuristic computation times also

increase as warehouse size increases, from an average of 4.7 seconds to 14.4 seconds. This is

reasonable, as both CPLEX and the heuristic must address a larger number of variables as

warehouse size increases. Furthermore, CPLEX needs approximately twice as much time to

solve instances in class (*,*,*,*,1) than in class (*,*,*,*,2). For two problems with the same

warehouse type, machine schedule, release dates and due dates but different eligibilities, the

one with less restrictive eligibility has a larger feasible region. The heuristic, on the other

hand, still shows no significant difference between these two classes of problems.

In Table 2.11, computation times are compared for instance classes describing three

factors at a time instead of one. For example, class (*,1,2,2,*) represents all instances for

which the machine schedule is tight (at level 1), release dates are late (level 2) and due
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Table 2.10: Computation Time for Experiments

Factors
CPLEX Solving Time (s) Heuristic Solving Time (s)
Avg. Max Min Avg. Max Min

Warehouse (1,*,*,*,*) 79.4 286.4 13.6 4.7 8.1 1.2
Types (2,*,*,*,*) 286.5 493.1 95.5 11.4 17.8 5.5

(3,*,*,*,*) 813.4 3600.0 301.4 14.4 19.4 9.8

Machine (*,1,*,*,*) 426.5 3600.0 13.6 10.1 18.8 1.3
Schedule (*,2,*,*,*) 359.7 1084.9 15.4 10.3 19.4 1.2

Ready (*,*,1,*,*) 326.9 1089.0 13.6 10.1 18.8 1.2
Times (*,*,2,*,*) 459.3 3600.0 18.4 10.2 19.4 1.3

Cutoff (*,*,*,1,*) 353.0 1089.0 13.6 10.1 18.8 2.3
Times (*,*,*,2,*) 433.6 3600.0 15.4 10.3 19.4 1.2

Eligibility
(*,*,*,*,1) 566.7 3600.0 25.8 10.1 18.4 1.2
(*,*,*,*,2) 221.0 493.1 13.6 10.3 19.4 1.3

Overall (*,*,*,*,*) 393.1 3600.0 13.6 10.2 19.4 1.2

dates are early (level 2). It can be observed that instances in this class require the most

time to solve optimally, with an average of 655 seconds. This is approximately 200 seconds

more than other groups. However, the heuristic computation time and performance are not

impacted by this group of factor levels.

Table 2.11: Computation Time for Experiments

Groups Avg. CPLEX (s) Avg. Heuristic (s) Avg. Solution Gap

(*,1,1,1,*) 320.7 10.1 1.9%

(*,1,1,2,*) 332.9 10.2 1.9%

(*,1,2,1,*) 397.0 9.9 2.0%

(*,1,2,2,*) 655.6 10.0 2.3%

(*,2,1,1,*) 319.6 10.1 2.2%

(*,2,1,2,*) 334.8 10.1 2.2%

(*,2,2,1,*) 375.3 10.3 2.3%

(*,2,2,2,*) 409.4 10.5 2.1%

33



2.7 Conclusions

In this chapter, we introduced an unrelated parallel machine scheduling problem with

release dates, due dates, limited machine availabilities and job splitting for some jobs. To the

best of our knowledge, these problem characteristics have not been simultaneously considered

in the literature. We also introduced a new objective function to minimize the total job

processing time on all machines, which is different than minimizing makespan or tardiness.

In order to solve the problem variant where all jobs can be split, both a constructive heuristic

with local search improvement and a commercial optimization solver are used.

The commercial solver found optimal solutions for 474 out of 480 test instances within

a 60 minute runtime limit. The six instances for which an optimal solution was not identified

all fall within the most constrained class of instances, with tight machine schedules, late

release dates and early due dates. The heuristic provides solutions within an average gap

of 2.17% to the best solutions obtained by CPLEX. Though heuristic performance degrades

as warehouse size increases, it is not impacted by how tightly constrained an instance is.

Overall, the heuristic is shown to be fast and effective.

One limitation of our research is the estimation of employee performance. This work

assumes that employees, like machines, have non-degrading performance throughout the day.

This is unlikely to be true, as factors such as fatigue are likely to influence productivity levels.

Furthermore, the performance vector values used in our computational study represent a

three-week average of historical data. This potentially masks impacts such as employee

learning curves for new tasks. However, our modeling of employee productivity mirrors

actual practice at the company DC and is therefore deemed sufficient for the purposes of
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this application.

Future work could include addressing additional practical considerations for this prob-

lem. For example, employee lunch breaks (machine downtime) could be pre-scheduled instead

of just reserving α% of the schedule. This will split each employee schedule into two parts.

In that case, not only the shift begin/end times, but also the break begin/end times need to

be considered when assigning tasks. Furthermore, a transfer time between two tasks could

be considered. Employees potentially need to make preparations (for example, walk to the

area, pick up tools) before shifting work to a different type of task. This would require

modeling and solving a problem that includes setup times.
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3 Scheduling Unrelated Parallel Machines Subject to Setup Times and

Scheduled Machine Availability

3.1 Introduction

Similar to Chapter 2, this chapter is motivated by a large medical product supplier

seeking to optimize labor costs within their warehouses. The unrelated parallel machine

scheduling problem from Chapter 2 is extended to account for two additional practical con-

siderations faced by the company. First, a delay is introduced to model the preparatory

work that occurs when warehouse staff shift from one type of task to another. The medical

product supplier groups warehouse tasks based on type, such as order picking, pallet pick-

ing, sorting and replenishment. Switching from a task in one group to another may require

specialized equipment. For example, a lift truck is required for pallet picking but not for

order picking. The warehouse staff will require time to retrieve the necessary equipment.

Switching from a task in one group to another may also require traveling to a different part

of the warehouse. Therefore, delays are introduced between tasks from different groups but

not between tasks within the same group.

The second extension in this chapter is the explicit consideration of employee breaks.

The problem in Chapter 2 reserved α% of an employee’s schedule for breaks, effectively

reducing each employee’s effective shift duration. Alternatively in this chapter, the break

time is introduced as a fixed time window during an employee’s schedule during which they

are unavailable to complete tasks. For example, an employee that works from 8:00 am to 5:00

pm may take a lunch break from 12:00 pm to 1:00 pm. This employee would not be available
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to complete tasks during the lunch break. This concept appears in the machine scheduling

literature as limited machine availability [18]. Instead of machines operating continuously,

their availability is described by a set of time intervals. In this problem, preemption is

allowed. If an employee does not have enough time to complete an entire task before their

break, the task can be resumed by the employee after break, or by a different employee at

any time. We also assume that an employee will encounter no setup time for their first task

after break. The problem is to minimize the labor required to complete all work within the

warehouse, including setup times. Thus, the sum of all task processing times plus setup

times is minimized.

The contributions of this chapter are as follows. We formally introduce a new problem

to the scheduling literature; its primary novelties are its unique objective function and its

simultaneous consideration of release dates, due dates, setup times and limited machine

availabilities in an unrelated parallel machine scheduling environment. Next we provide a

MIP formulation for it. Then, a simulated annealing (SA) metaheuristic is developed for

its solution. A computational study compares the performance of the SA approach to the

MIP via commercial optimization software. The study is comprised of 480 test instances

that vary according to the number of machines, tasks, timing of release and due dates, and

machine productivity and availability.

The remainder of this chapter is organized as follows. In the next section, we review

related literature. In Section 3.3, a formal problem statement is provided and a mixed

integer programming formulation (MIP) is introduced. The details of the simulated annealing

metaheuristic used to solve the problem are presented in Section 3.4. Section 3.5 describes a

computational study used to compare the developed heuristic with a commercial optimization
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solver. Finally, results and directions for future work are provided in Section 3.6.

3.2 Literature Review

Chapter 2 provides a review of the unrelated parallel machine scheduling literature,

with emphasis on papers that address due dates, release dates, limited machine availability

and job splitting. In this chapter, we include additional information about setup times and

limited machine availability in the context of unrelated parallel machine scheduling problems.

We also discuss the use of metaheuristics for solving parallel machine scheduling problems.

Allahverdi (2015) provides a recent review of scheduling problems with setup times

[19]. Combined with two other surveys, Allahverdi et al. (1999) and Allahverdi et al. (2008),

over 500 papers on this topic from 1960 to 2014 are reviewed [20, 21]. Here we focus on

those papers from the reviews that address unrelated parallel machine scheduling problems

with setup times. That is, we include papers on R|STsd|γ problems, where R denotes

unrelated parallel machines and STsd indicates sequence-dependent setup times, the latter

as denoted in Allahverdi et al. (2015) [19]. Pereira Lopes and de Carvalho (2007) propose

a branch-and-price algorithm for a R|STsd, ak, rj|
∑
wjTj problem, where ak indicates that

machines have limited availabilities, rj indicates the presence of job release dates and
∑
wjTj

denotes a total weighted tardiness objective [22]. Lin and Hsieh (2014) solve a related

R|STsd, rj|
∑
wjTj problem with the same weighted tardiness objective; the difference is

their problem does not include limited machine availabilities [23]. To solve the problem

they propose an iterated hybrid metaheuristic which integrates an electromagnetism-like

algorithm (EMA) with local search. Chen (2009) discusses a R|STsd, dj|
∑
Tj problem with

a tardiness objective and job due dates dj [9]. A SA algorithm and two additional heuristics
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are presented for its solution. A few additional papers in the literature address unrelated

parallel machine scheduling problems with setup times and total completion time (
∑
Cj)

objectives. For example, Joo (2015) uses a hybrid genetic algorithm with three dispatching

rules to solve a R|STsd, rj|
∑
Cj problem that additionally has machine-dependent processing

times [24]. Avalos (2015) and Wang (2016) also study a R|STsd, rj|
∑
Cj problem [25,

26]. The former proposes a metaheuristic based on a multi-start algorithm with variable

neighborhood descent while the latter uses a hybrid algorithm with iterated greedy search.

The R|STsd, ak, rj|
∑
Cj problem studied by Afazalirad (2016) additionally includes machine

eligibility and precedence constraints. Both a genetic algorithm (GA) and artificial immune

system (AIS) are proposed for finding optimal or near optimal solutions [27]. Finally, Yilmaz

(2014) studies a R|STsd|Cmax problem with a makespan objective and proposes a genetic

algorithm (GA) with local search for its solution [28].

Like scheduling problems with setup times, those with machine availability constraints

have also been discussed for decades. Schmidt (2002) reviews deterministic scheduling prob-

lems where machines are not continuously available for processing [18]. The paper also pro-

vides an update for the machine availability portion of the three-field notation to describe

the availability pattern of machines, which may be constant, zigzag, decreasing, increas-

ing, staircase and arbitrary. Ma (2010) provides another survey of deterministic machine

scheduling problems with machine availability constraints, with an emphasis on discussing

algorithmic advances and complexity results [29]. There are a few papers in the literature

that address machine availability specifically in the context of parallel machine schedul-

ing environments. Logendran et al. (2004) solves a R|ak|
∑
wjTj problem with machine

availability constraints ak and a weighted tardiness objective [16]. This problem has an arbi-
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trary machine availability pattern, as the machine availabilities are generated from a Poisson

distribution. Hu (2010) uses a heuristic to solve a R|ak|Cmax problem with precedence con-

straints and a makespan objective, motivated by shipyard operations [30]. This problem also

has an arbitrary machine availability pattern. Zhao (2011) solves a P |ak|
∑
wjCj problem

where machines will not be available in a specified time period in identical parallel machines.

This problem has randomly generated availability pattern [31]. Hashemian (2014) considers

an identical parallel machines scheduling problem minimizing the makespan with multiple

planned nonavailability periods in the case of resumable jobs (P |ak|Cmax). The machine

availability pattern is zigzag, as each machine has a single unavailable period starting at

time 0 for odd index and time 15 for even index machines [32].

Table 3.1 summarizes the papers reviewed above and indicates the objectives and

problem characteristics included in each paper. Of the papers included, two are most similar

to our work, as release dates, setup times and machine availabilities are considered simulta-

neously in the context of unrelated parallel machine scheduling in both Pereira Lopes and

de Carvalho (2007) [22] and Afazalirad (2016) [27]. Our work includes four distinguishing

features: (i) due dates, (ii) job splitting, (iii) machine-task eligibility restrictions, and (iv) a

unique objective function which minimizes the total time required to complete all work in

the warehouse (i.e. total labor hours).

Simulated annealing (SA) is a metaheuristic that has shown promise for parallel ma-

chine scheduling problems. Here we review a number of papers that apply SA to such

problems. Koulamas (1997) uses SA in an identical parallel machine scheduling problem

[33]. His SA is used to exchange jobs assigned to machines using a polynomial decom-

position heuristic. Kim (2002) uses SA to solve an unrelated parallel machine problem
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Table 3.1: Summary of reviewed unrelated parallel machine scheduling papers with setup

time times and machine availability

Authors R STsd ak Objective Other

Pereira Lopes and de Carvalho (2007) X X X
∑

wjTj rj

Chen (2009) X X
∑

Tj dj

Lin and Hsieh (2014) X X
∑

wjTj

Joo (2015) X X
∑

C

Yilmaz (2014) X X Cmax

Avalos (2015) X X Cmax rj

Afazalirad (2016) X X
∑

Cj rj , eligibility

Wang (2016) X X
∑

Cj rj

Logendran et al. (2004) X X
∑

wjTj

Hu (2010) X X Cmax

Zhao (2011) X
∑

wjCj

Hashemian (2014) X Cmax

minimizing total tardiness with sequence-dependent setup times [34]. Neighborhood solu-

tions are generated using six job or item rearranging techniques in the proposed SA. Lee

(2006) studies an identical parallel machine scheduling problem minimizing the makespan

[35]. The SA he proposed generates near-optimal solution. Damodaran (2012) solves an-

other identical parallel machine scheduling problem minimizing the makespan [36] involving

arbitrary job processing times, non-identical job sizes, and non-zero ready times. His devel-

oped SA is less computationally costly and the solution quality is comparable to the greedy
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randomized adaptive search procedure (GRASP) [37]. Lin (2015) considers a multi-objective

multi-point simulated annealing algorithm to solve an unrelated parallel machine scheduling

problem minimizing makespan, total weighted completion time and total weighted tardiness

simultaneously [38]. Our SA considers historical performance when selecting operators for

improvement. Operators that are frequently successful in finding improving solutions are

more likely to be selected.

3.3 Problem Description

There are a set of N jobs that must be scheduled. Each job j ∈ N can begin no

earlier than its release date rj and must be finished before its due date dj. The standard

duration of job j on a machine with baseline productivity is known and is denoted uj. There

is a set M of unrelated parallel machines available for processing jobs. The availability of

each machine i ∈ M is described by a shift start time bi and shift end time ei; a machine

cannot process jobs before bi or after ei. Each machine also has scheduled downtime from fi

to hi, where [fi, hi] is an interval of time within [bi, ei]. The parameter tij describes whether

machine i is eligible to process job j. For every job j for which machine i is available, the

productivity ρij of machine i for job j is known. If ρij < 1, machine i has faster than baseline

productivity for job j; if ρij > 1, machine i has slower than baseline productivity for job

j. Therefore, the time required for machine i to complete all of job j is ρijuj. However, it

should be noted that job splitting is allowed and multiple machines can work simultaneously

on portions of the same job. Some pairs of jobs require a setup time if they appear in

consecutive positions in a machine’s schedule. This is indicated by the binary parameter pqr,

which takes value 1 if a setup is required between jobs q and r and 0 otherwise. The duration
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of the setup time is a fixed value P . We assume that setup times are never required before

the job in the first position of a machine’s schedule, nor before the first job in the machine’s

schedule following its break. Let Xij represent the fraction of job j assigned to machine i.

Then, the time machine i will spend on job j is ρijujXij. The problem is to assign each

job to an eligible machine, such that job release date and due date constraints and machine

availability constraints are not violated. The objective is to minimize the total amount of

time required to process all jobs, including required setup times.

Using the α|β|γ classification scheme for scheduling problems, this is classified as

follows. In the α field, there is Rm for m unrelated parallel machines and NCwin, which refers

to the machines having an arbitrary availability pattern (i.e., not increasing, decreasing,

zigzag, etc. as defined in [18]). In the β field, there is rj and dj for release dates and due

dates, pmtn to indicate the schedule is preemptive and ST to indicate setup times as in

[21]. In the γ field, which indicates the performance criterion, the objective function of our

problem does not fit with the predefined options in the literature. Letting Yik be a binary

variable indicating whether a setup is incurred for the job in position k of machine schedule

i, the objective is to minimize
∑

ijk ρijujXijk +
∑

ik YijP .

Here we include a simple example to illustrate the impact of setup times on the total

duration of a schedule. For simplicity, we assume a single machine is available and is eligible

to process jobs 1-3. Setup time is required between jobs 1 and 3 and 2 and 3, but not

between jobs 1 and 2. That is, p13 = p23 = 1 and p12 = 0. Figure 3.1 shows two possible

machine schedules for these three jobs. The job sequence in schedule 1 requires only 1 setup

time while the sequence in schedule 2 requires 2 setup times; therefore schedule 2 is P time

units longer than schedule 1 and schedule 1 is preferred.
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3 2
P

schedule 1

schedule 2

Figure 3.1: Different job sequences when considering job preparation times

A second example is included here to demonstrate the impact of the machine schedule

(fixed employee break), and also the interrelationship between breaks and setup times. There

is a single machine available to process two jobs, j = 1 and j = 2. A setup is required between

jobs 1 and 2, i.e., p12 = 1. However, recall that setup times are not required for the first job

following a machine’s break. In schedule 1, the start time of job 1 is such that it cannot be

finished prior to the scheduled break. It is preempted, and the machine resumes working on

job 1 after the break. Then, there is a setup time before job 2 begins. In schedule 2, the

start time of job 1 is such that it can be finished prior to the break. After break, the machine

can immediately begin working on job 2 with no setup time. Thus, the total duration of

schedule 1 is P units longer than schedule 2, so schedule 2 is preferred.

1 11

P

2

break

1 2
break

schedule 1

schedule 2

Figure 3.2: Different job sequences when considering fixed breaks

Before presenting the MIP for this problem, we first discuss two methods for han-

dling the fixed break time within the model. The first is to introduce m new jobs to be

scheduled; one for each machine (i.e. employee). The only machine eligible to complete the
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job corresponding to its break is itself. That is, if job n + 1 is introduced to model the

break for machine 1, then the eligibility parameter t1,n+1 = 1 and ti,n+1 = 0 for all i 6= 1.

Furthermore, the release date of a machine’s break “job” is set to the beginning of the break

interval and the due date is set to the end of the break interval. That is, for break job n+ 1

for machine 1, rn+1 = f1 and dn+1 = h1. Finally, the binary parameters indicating whether

setup times are required between a break job and other jobs are set to zero (pn+1,j = 0 ∀ j).

This method requires the introduction of |M| new jobs and is illustrated in the second row

of Figure 3.3. The second method is to split one machine into two: one representing the

portion of availability before the break, and the other representing the remaining availability

after break. To accomplish this, machine i with shift [bi, ei] and break [fi, hi] is replaced

with two machines i′ and i′′. The schedule for machine i′ becomes [bi, fi] and for machine

i′′ becomes [hi, ei]. Machines i′ and i′′ are both eligible for every job for which i is eligible,

with the same productivity as i. Neither machine i′ nor i′′ will require a scheduled break.

This method requires the introduction of |M| new machines and is illustrated in the third

row of Figure 3.3. We choose the former method because it results in fewer added decision

variables. Decision variables X and Z are indexed across jobs, machines and positions but

Y is indexed only across machines and positions.

The MIP formulation for the problem in Chapter 2 can be modified for the problem

in this chapter. Recall that Xijk indicates the fraction of job j assigned to machine i in

position k, Zijk is a binary variable indicating whether or not any portion of job j is assigned

to machine i in position k, and Yik is a binary variable indicating whether a setup time is

required for the job in position k of machine i’s schedule. Instead of providing the full MIP

model here, much of which would duplicate what is already given in Chapter 2, we discuss
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Original machine i

Break

Break modeled as job

Fixed Job

Machine split into two

machine i′ machine i′′

Figure 3.3: Two Methods for Introducing the Fixed Break Time

only the changes required to the MIP. We define the set N ′ to indicate the expanded job

set that now includes the fixed “break job” for each machine. Any set that is indexed over

N in the MIP in chapter 2 should be indexed over N ′ in the new model. Constraint set

(2.10) is not needed in the new model and should be removed. The remaining changes are

as follows. Any constraint sets that are not mentioned are left unchanged. The objective

function below replaces objective 2.1:

min
∑
i∈M

∑
j∈N ′

∑
k∈K

ρijujXijk +
∑
i∈M

∑
k∈K

YikP, (3.1)

where P is the constant setup time. This objective minimizes the total time required to

process all jobs, including any required setups. Constraint (3.2) replaces constraint set (2.7)

to ensure job j in the kth position on machine i begins no earlier than the time the previous

job ended, plus a setup time, if necessary:

sik ≥ ci(k−1) + YikP, ∀ i ∈M, k ∈ K (k 6= 1). (3.2)

Constraint set (2.8) and constraint set (2.9) are set remained the same. Constraint

set (3.3) is added to ensure a penalty is considered when jobs between position k and k − 1
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require penalty (k > 1). Where pj,h in this constraint is a binary parameter shows whether

there is a setup time between job j and h. If there requires a setup time, then pj,h = 1.

Yik ≥ pjh
(
Zih(k−1) + Zijk − 1

)
, ∀ i ∈M, j, h ∈ N , k ∈ N (k 6= 1) (3.3)

Constraint (3.4) is introduced to ensure that no setup time occurs before the first job

of each machine:

Yi1 = 0,∀ i ∈M. (3.4)

Constraint set (3.5) is used to ensure positions in a machine’s schedule are filled

consecutively and no positions are skipped. For example, for a schedule containing 3 jobs,

this constraint would not allow the jobs to appear in positions 1, 3 and 5, but instead would

require them to be placed in positions 1, 2 and 3:

∑
j∈N ′

Zijk ≥
∑
j∈N ′

Zij(k+1), ∀ i ∈M, k ∈ K. (3.5)

Finally, constraint set (3.6) enforces binary restrictions on the Y variables:

Yik ∈ {0, 1} ∀ i ∈M, k ∈ K. (3.6)

A simple illustrative example including 3 jobs and 2 machines is presented. Table 3.2

provides the job details. Each job has a release date, due date, and a standard duration. For

example, job 1 is released at 8:00, is due at 14:00 and requires 5.00 standard hours. There is

a setup between jobs 1 and 2 and between jobs 2 and 3 but not between jobs 1 and 3. The

value of setup time, when required, is P = 0.25 hours in this example. Table 3.3 gives the
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machine details. The productivity information indicates how fast (or slow) each machine is

for each job. For example, machine A requires 1.1 times the standard duration of job 1 to

process job 1. Missing productivity values indicate the machine is not eligible for the job. For

example, machine B is not eligible for job 2. The machine availability information indicates

the shift begin and end time for each machine. For example, machine A is available between

8:00 and 17:00. The break time indicates jobs cannot be performed during that time. For

example, machine A has a break from 12:00 to 13:00.

Setup Times pjl

j rj cj uj l = 1 l = 2 l = 3

1 18.00 14.00 5.00 - 1 0

2 10.00 20.00 4.00 1 - 1

3 12.00 20.00 5.00 0 1 -

Table 3.2: Example Job Information

i
Productivity(ρij) Machine Availability Break Time

j = 1 j = 2 j = 3 bi ei fi hi

A 1.1 1.0 0.9 18:00 17:00 12:00 13:00

B 0.8 – 1.2 12:00 21:00 17:00 18:00

Table 3.3: Example Machine Information

The optimal solution is described in Table 3.4 and depicted in Figure 3.4. It is

obtained by solving the MIP presented above. Job 1 is split into 2 equal pieces between

machines A and B. However, machine A spends more time than machine B completing its

assigned portion of job 1 because it is less productive. Job 2 is performed by machine A since

it is the only eligible machine. A setup time of 15 minutes occurs between jobs 1 and 2 on

machine A. Also, job 2 is preempted from 12:00 to 13:00 during the break of machine A. Job
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3 is split between machines A and B as well. There is a setup time before job 3 on machine

A because job 2 precedes it. There is no setup time before job 3 on machine B because job

1 precedes it. Job 3 is preempted from 17:00 to 18:00 during the break of machine B. The

total job processing time and setup time associated with this solution is 15 hours.

Job 1 Job 2 Job 3

Machine A 0.5 1 0.17

Machine B 0.5 0 0.83

Table 3.4: Fraction of Each Job Assigned to Each Machine in Optimal Solution

Machine B

Machine A 1 2 2 3

1 3 3

8:00 10:45 12:00 13:00 16:00 17:00

12:00 14:00 17:00 18:00 20:00

8:00 10:00 12:00 14:00 16:00 18:00 20:00

Work Durations Setup Times Break Time

Figure 3.4: Example: The Optimal Schedule Considering Setup Times

3.4 Methods

The Simulated Annealing (SA) metaheuristic was first introduced in Kirkpatrick et

al. (1983) to solve combinatorial optimization problems [39]. The algorithm iteratively

moves from current feasible solutions to generated neighborhood solutions until stopping

criteria are met. Moves to neighborhood solutions with improved objective values are always

allowed, while moves to non-improving solutions are only allowed according to a probability

that decreases as the algorithm progresses. Section 3.4.1 describes a method for obtaining
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an initial solution, which is required by SA. Section 3.4.2 describes the move operators

used to explore solution neighborhoods, and Section 3.4.3 presents the details of the SA

metaheuristic, as implemented in this research.

3.4.1 Initial Solution Generation

To construct an initial solution to pass as input to SA, the greedy constructive heuris-

tic from Chapter 2 is updated to account for the limited machine availabilities and setup

times present in this variant of the problem. In the updated algorithm, functions Find-

Jobs() and FindMachine() remain unchanged from their descriptions in Chapter 2. They

are used to find a job ĵ to insert and to identify a machine î to explore for feasible insertion

locations for job ĵ. The function AddSchedule() is used to find an insertion location for ĵ

in the machine schedule of î and decide the appropriate amount of ĵ to place in the selected

position in the schedule of machine î. The primary updates to AddSchedule() required in

this chapter to Steps 1-3 are presented below.

Step 1 Assume positions 1, 2, . . . β in the schedule of machine î have been filled. Then, there

are β + 1 possible insertion locations for job ĵ: one preceding each of the β positions,

and one following the βth position. Choosing any one of these locations will result in a

modified alternative schedule for machine î. The alternative schedule results when job

start times are shifted, without changing the job sequence, so that maximum duration

“gaps” are created between jobs in two consecutive positions. This frees up as much

time as possible for inserting a new job. Therefore, when a new job is inserted into a

machine schedule, not only will a new job fill a new position in the schedule, but the

start and completion times of other jobs already in the schedule may change.
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Figure 3.5 illustrates this idea. Suppose there is a machine for which two tasks are

currently assigned in the initial schedule: a and b, in that order. No setup time is

required between a and b, but setup times are required between the new job and both

a and b. Alternative 1 is to place the new job before a. Moving jobs a and b to begin

as late as possible without violating the due date of either generates a large “gap” of

available time prior to job a, but a setup time (indicated in black) must occupy part

of that time. Alternative 2 is to place the new job between a and b. Job a cannot be

moved any earlier due to its release date and the schedule begin time, but job b can be

moved as late as possible without violating its due date. This generates a large window

of time between job a and b, but setup times must be introduced twice in this gap:

after a and before b. The final alternative is to place the new job after b. Ideally, both

jobs a and b would be moved to begin as early as possible without violating the release

date of either. In this example, there is actually no room to move the start times of a

or b to be earlier. However, there is still a window of time between the completion of b

and the end of the machine’s schedule. A setup time will occupy part of the window.

a release date
and shift begin time

b release date a due date b due date
and shift end time

Initial Schedule a b

Alternative 1 a b

Alternative 2 a b

Alternative 3 a b

Figure 3.5: Illustration of Alternative Schedules and Insertion Locations
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To create the maximum duration “gap” associated with potential insertion location L

on machine î, equations 2.16 and 2.17 in Chapter 2 describe how to update modified

completion times and start times for all jobs in positions that precede L. In this

chapter, the break is treated as a job with a fixed start and completion time; it cannot

be modified. Therefore, when inspecting jobs that precede L, it must be considered

whether L comes before of after the break. If L comes before the break, then start and

completion times for jobs in positions 1, 2, . . . , L−1 must be inspected for modification.

However, if L comes after the break, then only positions τ, τ + 1, . . . , L − 1 can be

inspected for modification, where τ indicates the first position after the fixed break.

Then, an additional update to Step 1 is required for the inclusion of setup times when

finding the earliest possible start times for jobs. Equation 2.17 must be replaced with:

σl = max{γl−1 + pjl,jl−1
P, rjl}. (3.7)

This sets the earliest possible start time for the job in position l to the maximum of

its release date and the modified completion time of the job in the previous position,

plus a setup time if required.

Equations 2.18 and 2.19 in Chapter 2 describe how to update modified start and

completion times for all jobs in positions that come after L, up through the last occu-

pied position β in the machine’s schedule, to begin and complete as late as possible.

Again, it must be considered whether L is before or after the fixed break. If it is after

the fixed break, positions L + 1, L + 2, . . . , β are inspected, whereas only positions

L+ 1, L+ 2, . . . , τ −1 are inspected if it is before the break. Then, Equation 2.19 must
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be replaced with:

γl = min{σl+1 − pjl,jl+1
P, djl}. (3.8)

This sets the latest possible completion time for the job in position l to the minimum

of its due date and the modified start time of the job in the next position, minus a

setup time if required.

Step 2 Update the starting times sîl and completion times cîl for all l = 1, 2, . . . , β except l = L

and l = τ to the times σl and γl identified above. Then, the maximum duration “gap”

gL associated with potential insertion location L is sî,L+1− cî,L−1− pjL−1,ĵ
P − pĵ,jL+1

P ;

the latest possible start time of the job in the next position minus the earliest possible

completion time of the job in the previous position, minus any setup times that are

required (between the job in position L− 1 and job ĵ, or between job ĵ and the job in

position L+ 1, or both).

Step 3 Step 3 uses information from Steps 1 and 2 to pick the insertion location k̂ for job ĵ

in the schedule of machine î and then determine how much time the machine should

spend working on job ĵ, denoted D∗. In this chapter, no changes are required to how

the location k̂ is selected. The feasible location with maximum duration gap is still

chosen. However, D∗ is computed differently than in Chapter 2. Equation 2.20 limits

D∗ according to the amount of job ĵ that still needs to be processed, the gap duration

associated with position k̂, and the total amount of work in the schedule of machine î,

which cannot exceed (1 − α)% of its shift duration. The fixed breaks in this chapter
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replace the need to limit a machine’s work hours to (1− α)% of its shift duration, so

that term is dropped and Equation 2.20 is replaced with:

D∗ = min
{
ρîĵvĵ, gk̂

}
. (3.9)

The amount of job ĵ to assign to position k̂ of machine î is the minimum of the

remaining duration of ĵ to be assigned and the maximum gap length for position k̂.

3.4.2 Neighborhood Solution Generation

Neighborhood solutions are generated via three different operators in our algorithm.

The first operator is job insertion. It searches for improving solutions that involve two

different machines. Specifically, it attempts to move a job on one machine (or a portion of

it) to another machine. Figure 3.6 depicts an example of this operation. Let p be a job on

on machine s and q be a job on machine t. Machine t is twice as productive as machine s

for job p, so some of job p is moved from machine s to machine t. Specifically, 1 hour of

job p is moved from s to t, and machine t only requires 0.5 hours to process this amount of

job p. The total duration of work on machines s and t improves from 10 hours to 9.5 hours

with this move. We refer to this operator as Insert(p,q,t), which indicates job p is moved

to the position before q in machine t. Let Ds(p) represent the duration of job p on machine

s and denote the position before task q in the schedule of machine t as l. Let γl be the latest

possible completion time of p if inserted in position l, and let σl be the earliest possible

start time of p. The productivities of machines s and t for p are ρps and ρpt, respectively.

Then the amount of p that will be moved from s to the lth position of machine t (Ds(∆p))
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is determined by:

Ds(∆p) = min

{
Ds(p), (γl − σl)

ρps
ρpt

}
. (3.10)

This equation indicates that if the available space in position l of machine t is large enough

to insert all of job p there, then p will be moved to machine t in its entirety. Otherwise,

the amount of p that will be moved to t is the difference between the latest time p can be

completed and the earliest time it can be started, adjusted for machine productivities.

Machine s p

0 1 3 5

Machine t q

1 30 5

(a) Original Schedule

Machine s p

0 40 1 2

Machine t p q

0 5.51 3 3.5

(b) Improved Schedule

Figure 3.6: Example of job insert

The second operator is job interchange. It searches for two jobs from two different

machines and attempts to swap them (or portions of them). Figure 3.7 depicts an example

of this operation. Let p be a job on machine s and q be a job on machine t. Machine t

is twice as productive as machine s for both jobs p and q. Moving 1 hour of job p from s

to t adds 0.5 hours of work to t. Moving 0.25 hours of job q from t to s adds 0.5 hours of

work to machine s. Therefore, the net decrease in total work across both schedules is 0.25

hours. This operator is denoted Interchange(p,s,q,t), which indicates job p from machine

s and job q from machine t are entirely or partially interchanged. In this operator, if a job

is partially removed from a machine schedule, then the positions immediately preceding it
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and following it will be considered for inserting the new job. For example, in Figure 3.7, a

portion of p is removed from machine s. Some of p remains in s so the positions before and

after what remains of p will be considered as potential insertion locations for job q. If a job

is fully removed from a machine schedule, then the other job involved in the interchange will

be considered for insertion only in the position vacated by the job that was removed. Two

temporary schedules are generated to decide how much of jobs p and q will be interchanged.

Temporary schedule 1 is generated by first removing q from t and then inserting as much of p

as possible into the position vacated by q. Note that, if only some of p was moved to t, then

some of p will remain in s. Next, as much of q as possible is inserted to s. If some portion of q

remains, it is inserted back to q. If this is not possible, the temporary schedule is considered

infeasible. Temporary schedule 2 is generated by following the converse process of that used

to generate temporary schedule 1. That is, it begins with the entire removal of p from s. If

both temporary schedules are feasible, the one with lesser total duration is returned. If only

one is feasible, it is returned. Otherwise if neither are feasible, the interchange returns the

original schedule with no change.

Machine s pa b

0 1 3 5

Machine t qc d

1 30 5

(a) Original Schedule

Machine s p q

0 4.5

a b

0 1 2 2.5

Machine t p q

0 5.25

c d

1 3 3.5

(b) Improved Schedule

Figure 3.7: Example of job interchange
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The last operator is job combination. It searches for improving solutions that involve

only a single machine. Specifically, it inspects a machine schedule and determines whether

it contains the same job in more than one position. If so, it attempts to combine them into

a single position (with longer duration) without violating any constraints. This also has the

potential to reduce setup time. See the two alternative schedules for machine s in Figure

3.8 for example. In the original schedule, job b appears in the schedule twice and there is

a setup time between b and d. In the revised schedule, the two portions of job b have been

combined, and the setup time between b and d has been eliminated because they are no

longer adjacent in the schedule. We refer to this operator as Combine(s) moving forward,

where the function is applied on a machine s.

Machine schedule s a b b dc

1 2 3 4 5

Revised schedule a b c d

1 2 3 4

Figure 3.8: Example of a job combination

3.4.3 Neighborhood Exploration

The following steps describe how the neighborhood of a current solution is explored

via the move operators defined in the previous section. The functions SelectOperator(),

StopCriteria(), AcceptWorseSolution() that are referred to in these steps vary accord-

ing to which stage the SA is in at a particular point in time. These details are explained in

Section 3.4.4.

Let R be a list of all job-machine pairs that appear in the current schedule, sorted in
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order from the worst productivity to the best productivity of the job-machine pairs. Define λ

as an inspection range parameter and let λ=0. Mark all job-machine pairs in R as unavailable

for inspection. Let i be the iteration number and set i = 1, and let U(s) denote the duration

of a machine schedule s.

1. Mark the job-machine pairs (p, s) in the top 10λ% to 10(λ+ 1)% of list R as available

for inspection.

2. Randomly select a job-machine pair (p, s) from R that is available for inspection.

a. If no job-machine pair can be selected (no pair is available in R), increase the

inspection range by letting λ = λ+ 1.

i. If λ <= 4, go back to Step 1.

ii. Else, go to Step 3.

b. Else if job-machine pair (p, s) has been selected, construct a list Qp of machines

that are eligible for job p, sorted in order from the best productivity for p to the

worst. Let Q′p be a sorted list that only contains the top 20% of Qp. Mark all

machines in Q′p as available for inspection.

c. Select the machine available for inspection that is highest in list Q′p.

i. If no machine can be selected (all machines have been marked as unavailable),

mark this job-machine pair (p, s) as unavailable. Return to Step 2.

ii. Else if a machine has been successfully selected from Q′p, denote it t and mark

it as unavailable for future inspection. Use SelectOperator() to select an

operator.
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iii. Search machine t for a feasible move (of the selected type) for job p.

· If the selected operator is Interchange(), inspect the jobs in machine

schedule t in sequential order for the first job q that can feasibly be

interchanged with pair (p, s).

· If no feasible move is found with the selected operator, select the other

operator and return to 2.c.iii.

· If no feasible move is found with either operator, go to Step 2.

· If a feasible move is found for p in t, use the selected operator to generate

temporary schedules s′ and t′.

· If U(s) +U(t)−U(s′)−U(t′) > 0 (this is a feasible and improving move)

then implement the move by replacing s with s′ and t with t′. Then call

Combine(s) and Combine(t). Update “Successful Operator Counter”

and go to Step 3.

· Else if U(s) +U(t)−U(s′)−U(t′) ≤ 0 and AcceptWorseSolution() is

true (this is a feasible non-improving move but the SA criterion indicates

it should be accepted), then implement the move by replacing s with

s′ and t with t′. Then call Combine(s) and Combine(t). Update

“Successful Operator Counter” and go to Step 3.

· Else do not implement the move. Retain schedules s and t. Go to Step

(2.c).

3 Let i = i + 1. Call StopCriteria() (this can potentially result in terminating the

SA or lowering the temperature). Regenerate sorted list R and let λ = 0. Mark all
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job-machine pairs in R as unavailable for inspection. Return to Step 1.

Note that in the above, Combine() is applied anytime an insert or interchange move

is implemented. Consider first an insert move. After an insert move, a job is removed

(entirely or partially) from machine s and inserted into machine t. A combine move can be

required for either of these machines. For example, by removing some or all of job p, machine

schedule s becomes less “tight”. A job combination that was previously infeasible due to the

schedule’s “tightness” might be feasible now. Figure 3.9 depicts this situation. For machine

schedule s with job sequence b − a − b, job b is split because the release date of a is later

than the release date of job b and a also has an earlier due date than b. Let neighborhood

schedule s′ be the schedule generated after half of job a is removed from s. Revised schedule

s′ can now accommodate a combination for job b, where its two portions become adjacent.

Consider now machine schedule t, into which p is being inserted. A pre-processing step

is used within the combine operator to inspect whether schedule t contains any jobs that

appear in more than one position. This requires traversing the job array (go through every

job in the schedule and use a count array to record) with a complexity of O(n), where n is

the number of jobs in the schedule. If the pre-processing step reveals repeating jobs in t,

Combine(t) will seek the opportunity to improve t. Otherwise, Combine(t) will stop. For

an interchange, both machines involved in the move experience the removal of some or all

of one job and the insertion of some or all of another. Therefore, Combine() is required for

both s and t after an interchange.
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Machine schedule s

Neighborhood schedule s′

Revised schedule s′

b

b

b

a

a

a

b

b

b

rb dbdara

Figure 3.9: Example of Combine(s′) when a job portion is removed from a schedule s′

3.4.4 Simulated Annealing Process and Parameters

There are a total of two stages in the SA: a warm-up stage and a simulated annealing

stage. The warm-up stage randomly selects move operators for consideration and only

implements feasible moves that improve the current solution. The simulated annealing stage

randomly selects between the two operators according to a probability that is based on their

historical performance and uses the simulated annealing criterion to determine whether to

accept a feasible move that does not improve the current solution. Figure 3.10 the overall

flow of the SA.

The warm-up stage begins with the initial solution generated using the process out-

lined in Section 3.4.1. Then in each iteration, SelectOperator() randomly selects either

insert or interchange with equal probability. If the first selected operator fails to find im-

provement, the other operator will be selected and tried. An operator counter “Successful

Operator Counter” is used to record the number of times each operator finds an improving

solution. In this stage, AcceptWorseSolution() is always set to false to avoid implement-
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ing a non-improving move. The StopCriteria() function will terminate the SA during this

stage if no improving solutions are found in 1000 consecutive iterations or if λ > 4.

The simulated annealing stage begins with the final solution from the warm-up stage.

Instead of selecting between the move operators with equal probability, SelectOperator()

uses historical performance of the operators to influence their selection. Specifically, the

probability of picking an operator is the ratio of the success counter for that operator to

the total success counter for both operators. If the first selected operator fails to find a

feasible move, the other operator is subsequently selected. Updates to “Successful Operator

Counter” continue during this stage anytime an improving solution is found.

The initial temperature T0 for the simulated annealing stage is 100. The probability

of accepting a non-improving solution is:

p = e−∆· 100
T , (3.11)

where ∆ is the difference between the new and old objective values. This probability p is

used in AcceptWorseSolution() to decide if a non-improving solution will be accepted.

For example, in the initial temperature stage, if the difference between a current solution

and a candidate solution is 0.5 hours, then the probability of accepting the (worse) candidate

solution is p = e−0.5 = 0.60. This probability decreases as the temperature stages progress.

In the literature, epoch length is often proportional to the number of neighborhood

solutions. For example, in Kim et al. (2002), epoch length (L)= number of jobs (N)

× number of machines (M) × beta (β) [34]. In this research we experiment with β ∈

{.25, 0.50, 0.75, 1.00, 1.25} for each instance and use the value for each instance that provides

the best performance. The cooling down ratio Tk in this algorithm is calculated using a
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geometric ratio:

Tk = αTk−1, k = 0, 1, 2, . . . , 0 < α < 1, (3.12)

where k is the temperature stage number and α is the cooling down ratio parameter. The

value of k is increased by 1 whenever the temperature drops. We have selected α = 0.9

after tests and experiments, which encourages slow convergence. Let i′ record the number of

iterations in each temperature stage. The StopCriteria() in the simulated annealing stage

includes two parts: (i) If λ > 4 or i′ ≥ L, move to the next temperature stage and set i′ = 0;

(ii) If no improvement is found in this temperature stage or if T < 1, STOP.

Initial	
Solution

improved
Solution

Insert
Search	

neighbors

T0=100	
L	=	1,000	

Successful	Operator	
Counter

Simulated	Annealing
Stage

Select	task	j on	
machine		i

Update	solution

Good	improvements
Update	The	count

Insert

Interchange

Possible	Positive	
Improvements

Interchange

• Select	task	j on	machine	i

p	=	e-Delta*100/T
For	worse	improvement

Stop	until	no	
improvement

Warm	Up
Stage

Figure 3.10: Illustration of the simulated annealing algorithm
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3.5 Performance Evaluation

The performance of the proposed SA is investigated in two primary ways. First, it

is employed with some minor modifications to solve the problem instances from Chapter 2.

Recall that the problem variant in Chapter 2 did not have setup times or limited machine

availabilities. The SA is compared to a commercial optimization software and the heuristic

introduced in Chapter 2 on the basis of the quality of solutions produced for the instances

from Chapter 2. Second, a new set of instances including setup times and fixed machine

break times is developed for the problem defined in this chapter. The performance of the SA

heuristic and a commercial optimization software are compared for this new set of instances.

Figure 3.5 provides a summary of the experimental design used in Chapter 2. It

consists of five factors, including warehouse size, machine schedule, task ready time, task

due date and machine eligibility. Because these instances do not include setup times or fixed

machine breaks, changes to the methodology presented in this chapter are required before

it can be used to solve them. Specifically, P from Equation 3.1 is set to zero as no setup

time will be considered, and the parameter ρij, which indicates if a setup is required between

consecutive jobs (i, j), is set to 0 for all job pairs. The maximum shift duration is set to 6.8

hours so that no employee will be busy more than 85% of their entire shift. Furthermore, in

function AddSchedule(), the consideration of fixed break position τ is ignored, so that all

positions between 1 and L will be considered in the search for the “gap” of longest duration.

The computational results are given in Table 3.6. The first column denotes the factor

levels used to create the instance. The next two columns present the percent gap between

Heur-1 (the heuristic from Chapter 2) and Heur-2 (the SA heuristic from the current chapter)
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Table 3.5: Experimental Design from Chapter 2

Factors Level Level Description

Warehouse Type 3

(1) Small: |M| = 15, |N | = 85, U∼Weibull(0.516, 0.809), E(U) = 1.69

(2) Medium: |M| = 35, |N | = 130, U∼ 12 ·Beta(0.773, 3.47), E(U) = 2.19

(3) Large: |M| = 95, |N | = 190, U∼ Gamma(9.36, 0.687), E(U) = 6.43

Machine Schedule 2
(1) Tight: 100% employees work shift [8, 16]

(2) Loose: 30% employees work shift [8, 16], 70% employees work shift [12, 20]

Ready Time 2
(1) Early: 100% tasks available at 8

(2) Late: 50% tasks available at 8, 20% at 10, 30% at 11

Due Date 2
(1) Late: 100% tasks due at 20

(2) Early: 50% tasks du at 20, 20% at 19 and 30% at 18

Machine
2

(1) Less Restrictive: τ = 0.5

Eligibility (2) More Restrictive: τ = 0.3

and the best lower bound (LB) obtained from CPLEX with a 30 minute runtime limit.

Note that CPLEX was able to find optimal solutions for all but six of the instances in this

experimental design; therefore the LB is equivalent to the optimal solution in most cases

(details are available in Table 2.8). The fourth column presents the percent gap between

Heur-1 and Heur-2 and the fifth provides the runtimes of the two heuristics. The results

indicate that Heur-2 (the SA) produces slightly better solutions than Heur-1 in most of the

groups, but with much longer runtimes. The solutions from Heur-2 are 0.11% to 1.58%

better, on average, than from Heur-1. But, the average runtime for Heur-2 is approximately

10 minutes compared with 1 to 5 seconds for Heur-2. To examine the significance of the

performance difference between Heur-1 and Heur-2, two-sided paired t-tests were conducted

for each instance group (the sample size for each group is 10). The null hypothesis for each

test is that the mean objective values produced by Heur-1 are equal to the mean objective
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values produced by Heur-2 for the instance group in question. At a significance level of 0.05,

the null hypothesis is rejected for all of the medium and large instance groups, indicating a

significant difference in performance between the two heuristics. For the 16 small instance

groups, the null hypothesis is rejected for 9 of them (indicating a significant difference in

performance) and accepted for 7 (indicating no significant difference in performance).

Table 3.6: Results comparison for instances from Chapter 2

Factors
Average Percent Difference Between Methods Run Time (s)

Heur-1,LB Heur-2,LB Heur-1,Heur-2 Heur-1 Heur-2

(1,*,*,*,*) 1.11% 0.43% 1.58% 1.43 322.66

(2,*,*,*,*) 0.87% 0.62% 0.40% 1.82 625.16

(3,*,*,*,*) 1.28% 4.90 868.79

(*,1,*,*,*) 0.75% 0.50% 0.51% 2.81 605.80

(*,2,*,*,*) 0.98% 0.79% 0.24% 2.62 605.28

(*,*,1,*,*) 0.83% 0.79% 0.05% 2.88 606.13

(*,*,2,*,*) 0.90% 0.50% 0.80% 2.55 604.94

(*,*,*,1,*) 0.90% 0.81% 0.11% 2.82 606.36

(*,*,*,2,*) 0.83% 0.48% 0.72% 2.61 604.71

(*,*,*,*,1) 0.93% 0.47% 0.97% 2.74 605.49

(*,*,*,*,2) 0.80% 0.72% 0.12% 2.69 605.58

A new set of experiments including setup times and fixed machine breaks time is

developed to investigate the performance of the SA for the problem variant introduced in

this chapter. The experiments are based on 20 days of historical data from 5 warehouses of

the partner company. The problems in this chapter are more realistic and complex, according

to the company. For example, jobs are released throughout a 24-hour period, compared with

a 16 hour period (from 08:00 to 24:00) in the previous chapter. Additionally, employee

(machine) schedules are more flexible and diverse. The experimental design is summarized

in Table 3.8. Seven factors are included. Warehouse type has three levels representing

small, medium, and large warehouses, which differ according to the number of employees
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(machines, M) and tasks (jobs, N). A larger warehouse implies more employees and more

tasks. The sizes selected are representative of real warehouses in the partner company’s

network. Machine schedule has two levels representing employee shift alternatives. Details

of the shift alternatives are provided in Table 3.7. For example, following the tight schedule

alternative in a small warehouse, 25% of the employees work a shift from 00:00 to 08:00,

60% work from 08:00 to 16:00, and the remaining 15% work from 16:00 to 24:00. These are

denoted “tight” because the shift changes do not contain any overlapping time. The break

always occurs during the fifth hour of the schedule (e.g., 12:00 to 13:00 for a shift from 08:00

to 16:00). The third factor, ready time, describes the job release time. A distribution for

ready time was developed using Arena Input Analyzer. The p-value from the Kolmogorov-

Smirnov test for this distribution is greater than 0.05. Task due dates are decided by task

ready times plus time window durations, which are captured by the the fourth factor. It

has two levels: “normal” and “tight”, for which time windows are shorter, on average, when

the level is “tight”. Machine eligibility is the fifth factor and describes the proportion τ

of machines (employees) eligible to perform each task, on average. When τ = 0.3, the

expected proportion of employees eligible for each task is 30%. The sixth factor, setup time,

describes the proportion p of task pairs that will require a setup time. When p = 0.75, the

expected proportion of task pairs requiring a setup time is 75%. A distribution for the final

factor, task duration, was determined using Arena Input Analyzer. The p-value from the

Kolmogorov-Smirnov test is greater than 0.05 for this distribution.

For each of the 48 factor-level combinations, 10 random replicates are generated,

yielding a total of 480 test instances. Each test instance is solved once using the SA and

once using CPLEX with a 60 minute runtime limit imposed. All computations are performed
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Table 3.7: Machine Schedule Design Detail

Warehouse Type Tight Schedule Loose Schedule

Small

25%: 0:00 - 8:00 25%: 0:00 - 8:00

60%: 8:00 - 16:00 45%: 8:00 - 16:00

15%: 16:00 - 24:00 15%: 12:00 - 20:00

15%: 16:00 - 24:00

Medium

20%: 4:00 - 12:00

80%: 8:00 - 16:00 40%: 12:00 - 20:00

20%: 16:00 - 24:00 20%: 16:00 - 24:00

5%: 20:00 - 24:00

Large

5%: 0:00 - 8:00 5%: 0:00 - 8:00; 5%: 4:00 - 12:00,

30%: 8:00 - 16:00 20%: 8:00 - 16:00; 15%: 12:00 - 20:00

65%: 16:00 - 24:00 40%: 16:00 - 24:00; 15%: 16:00 - 24:00

Table 3.8: Experimental Design

Factors Level Level Description

Warehouse Type 3

(1) Small: M = 30, N = 80

(2) Medium: M = 50, N = 130

(3) Large: M = 70, N = 190

Machine Schedule 2
(1) Tight: Tight schedule from Table 3.7

(2) Loose: Loose schedule from Table 3.7

Ready Time 1
10% Uniform Distribution (0,4)

90% 4.5+19*Beta(2.16,2.23)

Time Windows 2
(1) Normal: 40% 4 hours, 50% 12 hours, 10% 22 hours

(2) Tight: 60% 4 hours, 30% 12 hours, 10% 22 hours

Machine
2

(1) Less Restrictive: τ = 0.3

Eligibility (2) More Restrictive: τ = 0.15

Setup Time 2
(1) More Restrictive: p = 0.75

(2) Less Restrictive: p = 0.5

Task Duration 1 Weib(129,0.729)
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on a super computer with 12 CPUs and 24-GB RAM. Computational results for the instances

with small warehouses are given in Table 3.9. The first column denotes the factor levels used

to create the instance. The second column provides the average value for K (number of

positions on each machine) used for the instances in each set. The value of K is determined

via two passes through the binary search algorithm [40]. The first pass through the binary

search algorithm establishes a range of values for K for which CPLEX does not terminate

with an out-of-memory result before producing a feasible solution. The second pass finds

the minimum value of K, within the established range, required for the instance to solve

optimally. The third column provides the number of instances per set for which CPLEX is

successful in finding a feasible solution. The next four columns provide the objective values,

runtimes, percentage gaps to the best lower bounds, and the best lower bounds, all from

CPLEX. The third column represents the number of solutions that CPLEX successfully

find feasible solutions in this model. The next four columns present the CPLEX objective

values, runtimes, percent gaps to the best lower bounds from CPLEX, and the lower bounds

values from CPLEX. The final three columns present the analogous information for the SA.

CPLEX successfully solved all 10 instances for small instances. Each value reported in the

small instances is an average across 10 replicates of the indicated instance type. On average,

SA produces solutions that are close to the ones that produced by CPLEX. The average

runtime of CPLEX across all instances is around 3600 seconds while average runtime is

672.1 seconds for SA. Furthermore, CPLEX can only solve some of the medium warehouses

instances. Each value reported in the medium instances is an average across the solved

replicates of the indicated instance type. SA produces solutions that have an average of

2.35% gap to the CPLEX lower bounds. The average runtime of CPLEX across all instances
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is still 3600 seconds while average runtime is 787.15 seconds for SA. Finally, CPLEX failed to

find feasible solutions within the 60-minute runtime limit for the large instances. However,

SA finds solutions in the large instances with an average runtime of 909.98 seconds.

Table 3.10 compares SA and CPLEX for specific levels of each design factor. Here each

row refers to a set of instances for which one of the factors in the experimental design is fixed

at a particular level. The gap referred to in this table is the percent difference between the

SA solution and the best lower bound from CPLEX within a 60-minute runtime limit. From

these results it is apparent the SA performs better on instances with tighter parameters. The

average gap of group (*,1,*,*,*) is less than the average gap of group (*,2,*,*,*), as group

(*,1,*,*,*) has a tight machine schedule. Similarly, the performance of group (*,*,2,*,*) is

better than group (*,*,1,*,*) because group (*,*,2,*,*) is tight in the time window parameter.

Group (*,*,*,2,*) performs better than (*,*,*,1,*) as group (*,*,*,2,*) has a more restrictive

machine eligibility. And finally, group (*,*,*,*,1) has a better performance because group

(*,*,*,*,1) has a more restrictive setup time than group (*,*,*,*,2). This may be because

neighborhoods that must be explored are smaller for these instances.

Computation times for SA are summarized in Table 3.11 by instance size and in

Table 3.12 by temperature stage. In Table 3.11, it can be observed that the time spent in

warm-up is relatively low; only approximately 5% of total runtime. During warm-up, the

time spent on Insert() is only slightly higher than on Interchange(). The majority of the

runtime is spent in the SA stage (91% of total runtime). This is by design, to allow plenty

of time for neighborhood exploration at each temperature stage. In the SA stage, the time

spent on Insert() is approximately 6% higher than the time spent on Interchange(). One

possible explanation is that Insert() is being called more frequently as it more often results
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Table 3.9: Experiment Results

Factors
Avg. # CPLEX

CPLEX Heuristic

Total Runing Gap CPLEX Total Runing Gap

|K| solved Work (hrs) Time(s) to LB (%) LB Work (hrs) Time(s) to LB (%)

(1,1,1,1,1) 16.8 10 103.13 544.82 0.00 103.13 103.43 650.46 0.29

(1,1,1,1,2) 14.9 10 117.02 3631.95 1.42 115.38 117.26 603.30 1.63

(1,1,1,2,1) 16.6 10 108.87 549.72 0.00 108.87 109.66 768.30 0.73

(1,1,1,2,2) 16.6 10 114.97 3600.00 1.58 113.18 113.58 736.56 0.35

(1,1,2,1,1) 16.5 10 114.56 3600.00 3.25 110.95 113.06 695.75 1.90

(1,1,2,1,2) 15.1 10 109.46 3600.00 2.73 106.55 108.39 732.78 1.73

(1,1,2,2,1) 17.1 10 114.09 3600.00 1.85 112.02 112.98 608.68 0.86

(1,1,2,2,2) 17.7 10 112.47 3600.00 2.38 109.86 111.17 626.22 1.20

(1,2,1,1,1) 16.7 10 113.72 3600.00 2.31 111.15 112.54 745.95 1.25

(1,2,1,1,2) 14.9 10 114.14 3600.00 1.93 111.98 112.61 658.29 0.56

(1,2,1,2,1) 14.7 10 111.80 3600.00 2.95 108.60 110.49 737.88 1.74

(1,2,1,2,2) 16.1 10 112.95 3600.00 2.87 109.80 111.40 632.58 1.46

(1,2,2,1,1) 18.5 10 112.71 3600.00 2.48 109.98 111.25 614.52 1.15

(1,2,2,1,2) 16.0 10 113.21 3600.00 2.25 110.72 112.33 625.98 1.46

(1,2,2,2,1) 14.1 10 113.68 3600.00 1.97 111.48 112.70 603.36 1.09

(1,2,2,2,2) 14.5 10 112.75 3600.00 2.97 109.50 111.20 723.54 1.55

(2,1,1,1,1) 32.6 9 209.89 3600.00 2.53 204.71 210.53 879.25 2.84

(2,1,1,1,2) 36.2 6 217.70 3600.00 1.97 213.49 218.09 783.77 2.16

(2,1,1,2,1) 25.2 5 242.17 3600.00 2.71 235.79 240.60 861.26 2.04

(2,1,1,2,2) 21.2 9 255.30 3600.00 2.06 250.16 256.27 893.55 2.45

(2,1,2,1,1) 13.9 3 211.38 3600.00 1.92 207.39 211.72 788.93 2.08

(2,1,2,1,2) 38.7 5 243.26 3600.00 1.53 239.59 244.68 748.92 2.12

(2,1,2,2,1) 25.3 7 235.15 3600.00 3.06 228.17 234.41 800.20 2.73

(2,1,2,2,2) 23.4 5 231.06 3600.00 2.26 225.96 232.57 755.20 2.93

(2,2,1,1,1) 37.5 3 199.92 3600.00 3.37 193.39 198.55 886.28 2.67

(2,2,1,1,2) 36.0 3 196.32 3600.00 2.03 192.41 196.72 749.00 2.24

(2,2,1,2,1) 23.4 9 246.34 3600.00 3.02 239.11 245.54 850.24 2.69

(2,2,1,2,2) 15.0 9 234.05 3600.00 1.69 230.16 234.82 899.60 2.03

(2,2,2,1,1) 20.6 8 223.49 3600.00 1.93 219.26 225.13 797.46 2.68

(2,2,2,1,2) 26.9 7 186.63 3600.00 2.84 181.47 185.78 719.94 2.38

(2,2,2,2,1) 18.1 3 246.26 3600.00 2.15 241.08 246.59 896.09 2.29

(2,2,2,2,2) 28.9 8 191.48 3600.00 2.38 187.02 191.91 884.36 2.61

(3,1,1,1,1) - 0 370.23 952.73

(3,1,1,1,2) - 0 323.26 866.65

(3,1,1,2,1) - 0 381.61 890.53

(3,1,1,2,2) - 0 322.63 995.93

(3,1,2,1,1) - 0 393.80 891.71

(3,1,2,1,2) - 0 313.77 883.42

(3,1,2,2,1) - 0 313.17 902.81

(3,1,2,2,2) - 0 358.38 845.35

(3,2,1,1,1) - 0 399.39 832.09

(3,2,1,1,2) - 0 349.13 908.56

(3,2,1,2,1) - 0 334.79 889.43

(3,2,1,2,2) - 0 366.87 913.94

(3,2,2,1,1) - 0 326.71 814.42

(3,2,2,1,2) - 0 298.18 878.73

(3,2,2,2,1) - 0 313.47 948.34

(3,2,2,2,2) - 0 328.24 826.42
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Table 3.10: Heuristic Performance Gaps (% deviation from best known lower bound) per

Instance Class

Factors Avg. Gap Max Gap Min Gap

Warehouse
(1,*,*,*,*) 1.12 2.71 0.10

Types

Machine (*,1,*,*,*) 1.03 2.71 0.10

Schedule (*,2,*,*,*) 1.21 2.02 0.34

Time (*,*,1,*,*) 1.23 2.71 0.23

Windows (*,*,2,*,*) 1.01 2.14 0.10

Machine (*,*,*,1,*) 1.26 2.71 0.23

Eligibility (*,*,*,2,*) 0.98 2.14 0.10

Setup Time
(*,*,*,*,1) 1.24 2.71 0.10

(*,*,*,*,2) 1.00 2.52 0.34

Overall (*,*,*,*,*) 1.12 2.71 0.10

in improving solutions than does Interchange().

Table 3.11: Heuristic Solving Time for Stages and Operators

Model Size
Total Avg. Init. Sol. Warm Up Stage (s) (%) Simulated Annealing Stage (s) (%)

Time (s) Time (s) Insert Interchange Insert Interchange

Small (1,*,*,*,*) 672.76 21.03 (3.13) 20.13 (2.99) 16.60 (2.47) 338.04 (50.25) 276.96 (41.17)

Medium (2,*,*,*,*) 787.15 23.01 (2.92) 22.27 (2.83) 18.10 (2.30) 375.69 (47.73) 348.09 (44.22)

Large (3,*,*,*,*) 909.98 29.12 (3.20) 25.17 (2.77) 21.79 (2.39) 443.45 (48.72) 390.46 (42.91)

* Percentage value in the brackets is percentage of total average running time.

Table 3.12 provides the runtimes attributed to various temperature stages. For all

instance sizes (i.e. columns), it can be observed that, in general, as temperature decreases,

runtime per temperature stage also decreases. This occurs because as the temperature

is reduced, the probability of accepting a non-improving solution is also reduced. Fewer
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solution updates occur, leading to less time spent in the temperature stage. An example of

the convergence plot is illustrated in Figure 3.11. From this plot, it can be observed that

many non-improving solutions are explored when the temperature is high, and the algorithm

converges to a good solution once the temperature drops.

Table 3.12: Heuristic Solving Time for Temperature Stages

Temperature Stage Avg. Time for Avg. Time for Avg. Time for

(T =) Small (1,*,*,*,*)(s) (%) Medium (2,*,*,*,*)(s) (%) Large (3,*,*,*,*)(s) (%)

100.00 31.11 (4.62) 36.11 (4.59) 42.37 (4.66)

90.00 33.47 (4.98) 36.57 (4.65) 42.24 (4.64)

81.00 33.40 (4.96) 37.37 (4.75) 41.43 (4.55)

72.90 33.18 (4.93) 35.72 (4.54) 40.37 (4.44)

65.61 29.24 (4.35) 33.39 (4.24) 41.19 (4.53)

59.05 30.52 (4.54) 36.39 (4.62) 41.10 (4.52)

53.14 31.48 (4.68) 33.76 (4.29) 39.49 (4.34)

47.83 27.87 (4.14) 35.09 (4.46) 41.12 (4.52)

43.05 26.61 (3.96) 33.36 (4.24) 40.67 (4.47)

38.74 26.23 (3.90) 33.22 (4.22) 36.79 (4.04)

34.87 26.55 (3.95) 31.40 (3.99) 39.26 (4.31)

31.38 29.40 (4.37) 34.20 (4.34) 34.58 (3.80)

28.24 27.35 (4.07) 29.28 (3.72) 38.37 (4.22)

25.42 27.24 (4.05) 28.83 (3.66) 35.45 (3.90)

22.88 27.40 (4.07) 32.30 (4.10) 34.41 (3.78)

20.59 22.51 (3.35) 30.97 (3.93) 34.23 (3.76)

18.53 23.83 (3.54) 28.08 (3.57) 32.28 (3.55)

16.68 24.43 (3.63) 27.30 (3.47) 35.68 (3.92)

15.01 22.46 (3.34) 26.11 (3.32) 32.61 (3.58)

13.51 23.00 (3.42) 26.94 (3.42) 35.20 (3.87)

12.16 22.13 (3.29) 28.36 (3.60) 31.66 (3.48)

10.94 20.82 (3.09) 26.54 (3.37) 31.84 (3.50)

≤10 14.78 (2.19) 22.49 (2.85) 11.57 (1.27)

* Percentage value in the brackets is percentage of total average running time.
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Figure 3.11: Convergence Plot of Instance (1,1,1,1,1-4) from Experiment Design

3.6 Conclusion

This chapter continues the exploration of the unrelated parallel machine scheduling

problem from Chapter 2 with two additional practical considerations: setup time and limited

machine availability. Similar to Chapter 2, these problem characteristics have not been

simultaneously considered in the literature. The setup time discussed in our problem is

sequence dependent. A few mathematical model modifications have been made for the

problem of this chapter. The limited machine availability is introduced as fixed employee

breaks and can be handled by introducing m new jobs to be scheduled (for m employees);

one for each machine (i.e. employee), where the only machine eligible to complete the job

corresponding to its break is itself.

CPLEX has limited ability in solving the instances we created: for a computer server

with 12 CPUs and 24 GB RAM, only the small instances (with 30 machines and 80 jobs) could
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be solved within 1 hour running time. For the medium and large instances, CPLEX fails to

find any feasible solution before running out of memory. Therefore, a simulated annealing

heuristic is developed to solve the problem more efficiently. For the small instances, the

heuristic provides solutions that are, on average, 1.12% worse than the lower bound obtained

by CPLEX. For the medium and large instances, the heuristic was able to solve them in a

relatively reasonable time while CPLEX was not.

Our work has limitations. First of all, some of the machine schedules generated from

the heuristic contain many jobs with short durations. This is a result of the job splitting

allowed in the problem; move operators can arbitrarily split tasks into smaller and smaller

portions. It is not clear whether schedules like this are desirable from a practical perspective.

The operator Combine(s) at least partially alleviates this problem. A second limitation is

that there is a lack of evidence regarding the performance of the SA for medium and large

instances. The SA can be better evaluated if other heuristic methods are introduced and

compared.

One area for future work includes possible improvements to the SA. First, operators

involving more than two machines could be introduced (e.g., an interchange operator between

three different machines). Second, the neighborhood exploration may be more efficient if a

tabu list is introduced. Currently the SA selects job-machine pairs for inspection randomly,

without considering whether that job-machine pair has been explored in recent iterations.
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4 Integrating Uncertain User-Generated Demand Data when Locating

Facilities for Disaster Response Commodity Distribution

This chapter presents a new facility location problem variant with application in

disaster relief. The problem is unique in that both verified data and unverified user-generated

data are available for consideration during decision making. The problem is motivated by

the recent need of integrating unverified social data (e.g., Twitter posts) with data from more

traditional sources, such as on-the-ground assessments and aerial flyovers, to make optimal

decisions during disaster relief. Integrating social data can enable identifying larger numbers

of needs in shorter amounts of time, but because the information is unverified, some of it may

be inaccurate. This paper seeks to provide a “proof of concept” illustrating how the unverified

social data may be exploited. To do so, a framework for incorporating uncertain user-

generated data when locating Points of Distribution (PODs) for disaster relief is presented.

Then, three decision strategies that differ in how the uncertain data is considered are defined.

Finally, the framework and decision strategies are demonstrated via a small computational

study to illustrate the benefits user-generated data may afford across a variety of disaster

scenarios.

4.1 Introduction

Disasters are prevalent today and the rapid delivery of food, water and medical atten-

tion is critical in minimizing suffering for those impacted. Over 6900 disasters were reported

during the ten year period from 2002 to 2011, causing over 1.2 million total deaths and

affecting almost 2.7 billion people worldwide [41]. Mega-disasters resulting in massive death
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tolls occurred both in 2010 with the earthquake in Haiti and in 2011 with the earthquake

and tsunami in Japan [42]. Disasters leave impacted populations in need of food, water,

shelter, and medical attention, among other things. Major relief organizations such as the

International Federation of Red Cross and Red Crescent Societies recognize the critical roles

of logistics and the optimized use of scarce resources in saving lives in disasters [43]. The

academic community is also aware of the importance of logistics in disaster operations. The

authors of a 2011 survey paper on disaster relief routing state “much of successful and rapid

relief relies on the logistics operations of supply delivery” [44].

The Federal Emergency Management Association (FEMA) describes three primary

methods of issuing supplies after a disaster [45]. Using mobile delivery, vehicles deliver

supplies directly to drop locations and points where needs have been identified. This method

is useful in rural areas and where transportation infrastructure damage has occurred. Using

direct delivery, supplies are delivered to a specific location such as a shelter or hospital.

The types of supplies to be delivered and quantities of each are predetermined. Lastly, in

the Points of Distribution (POD) method, commodities are delivered to centralized points

(i.e., PODs) and impacted populations come to the PODs to pick them up. The available

commodities typically include food and water and may also include ice, tarps and blankets

[45]. To summarize, supplies are taken to the end users in the mobile and direct delivery

methods, while the end users travel to the supplies when PODs are used. POD location

decisions are the focus of this paper; specifically, those that must be made after a disaster

occurs.

The timeline for POD operation depends on the scope of the disaster and is rela-

tively short when compared with facilities in commercial settings. For example, the timeline
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outlined in one POD location paper suggests PODs will be established within four days

post-disaster and operate until approximately one week post-disaster when there is a tran-

sition from response to recovery operations [46]. Within this context, required decisions in

practice may include where and when to open PODs, when to close and/or relocate them,

and what demand each will serve. The type of each POD may also need to be determined.

The United States Army Corps of Engineers identifies three POD types, distinguishable pri-

marily by their size and the number of persons they are intended to serve [45]. In this paper,

we restrict our focus to only a subset of these POD-related decisions. Specifically, we study

where to open uncapacitated PODs at a single point in time and what demand each will

serve. By doing so, we are able to build preliminary insights regarding the incorporation of

social data during the planning process.

In order to make good POD location decisions, information regarding the locations

and needs of impacted groups is essential. Situational awareness refers to possessing an

understanding of the situation at hand in order to inform better decisions. It is critical in

planning logistics activities to support disaster response. Traditionally this information has

become available as on the ground assessments – time consuming efforts – are completed.

However, social media usage during emergencies is accelerating the pace at which informa-

tion becomes available to emergency managers [47]. Surveys conducted by the American

Red Cross in 2011 and 2012 concluded individuals within the U.S. are increasingly using

social media to post information relevant to emergencies [48]. Social data that enhance sit-

uational awareness provide “tactical, actionable information that can aid people in making

decisions” [49]. To inform location planning, a specific need and precise location should

be communicated. Consider for example the Twitter post from Hurricane Sandy depicted
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in Figure 4.1. It provides an address, states that a house is flooding and alerts the Fire

Department of New York (FDNY) to the need. A response from FDNY demonstrates they

were monitoring social data for this type of information. While the flooding example in this

figure may not influence the placement of PODs, it is clear how social data does have the

potential to inform such decisions. For example, if a large group of persons reports having

no access to food and water, it may be reasonable to locate a POD near them. If emergency

managers had no knowledge of these individuals, the individuals may need to travel farther

to reach the nearest POD, or they may not be able to reach a POD at all.

Figure 4.1: Twitter post during Hurricane Sandy [50].

The emergency management community is beginning to adapt to the new demand for

social data integrated response activities. Three-quarters of emergency agencies participat-

ing in a 2012 survey conducted by CNA Analysis & Solutions and The National Emergency

Management Association (NEMA) indicated their agencies use social media in some capacity

[47]. The American Red Cross launched the first social-media monitoring platform dedicated

to disaster relief in 2012 [51]. But despite movement in the emergency management commu-

nity to adopt social data usage, two primary barriers to seamlessly integrating social data

with large-scale logistics response planning are evidenced. One such barrier is limited ana-

79



lytics infrastructure. Less than 12% of respondents to the CNA/NEMA survey indicate the

social media capability at their agency includes data collection, aggregation, and analysis

that are robust for large-scale events [47]. Concerns regarding the accuracy of social data

constitute another barrier. Because the data is user-generated, it is initially not verified.

A majority of respondents report trusting social media less than traditional sources, and

indicate their agency would take action on social data only after verifying it [47]. It is true

social data has the potential to be inaccurate. For example, a Twitter user in New York

City intentionally spread alarming misinformation about Hurricane Sandy [52]. However,

not all social data is inaccurate, and waiting to take action until it is verified contradicts one

of its primary advantages – timeliness. Thus integrating unverified user-generated data in

emergency planning yields a key tradeoff:

• serve more people in a shorter amount of time by allocating resources to needs that

may otherwise be discovered later or not at all, or

• waste precious resources by allocating them to false needs.

In the context of POD location decisions, the specific tradeoff is between locating facilities

such that more demand (both verified and unverified) can reach them in a short amount of

time, versus potentially placing PODs farther away from the verified points than necessary.

This paper presents a framework for evaluating this tradeoff.

The primary research question addressed in this chapter is whether there is value in

acting on user-generated data prior to its absolute verification in the context of POD location

decisions. Given the limited analytics infrastructure in place at the majority of the agencies

surveyed in 2012, the value of a social-data integrated approach must be demonstrated
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in order to spur technology development and diffusion throughout the disaster response

enterprise. This paper makes a pivotal, albeit simple, first step towards answering this

question. The rationale is as follows: each element of user-generated content (e.g., a Tweet,

a youTube video) can be viewed as potentially admissible information in the planning process.

The user-generated content specifies information about a demand point (e.g, the location

and quantity of people in need of the supply or service). Based on this rationale, emergency

managers need to choose a strategy regarding how the uncertain data will be incorporated

into the planning process. For example, they may choose to ignore it completely, give it

equal weight to the verified data, or pursue a compromise policy (where they, for instance,

only consider a subset of the user-generated content). Through the models and a small

computational study presented in this paper, the performance of such strategies across a

range of disaster situations is evaluated. Specifically, the following three research questions

are addressed: how do decision strategies that (i) ignore all unverified data, (ii) include all

unverified data, and (iii) use scenario planning to account for unverified data perform across

a range of disaster situations?

The contributions of this chapter are as follows. A framework for incorporating

uncertain user-generated data in disaster relief POD location decisions is presented. To the

best of our knowledge, this is the first paper to simultaneously consider two classes of verified

and unverified demand when placing facilities. Section 4.2 will describe how this is different

from other literature on facility location under uncertainty and multi-commodity facility

location. Second, the paper proposes three strategies that can be used by an emergency

manager faced with a POD location decision for which both verified and unverified data are

available. One of these reflects current practice, in which only verified data is considered,
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and the other two reflect ways in which the unverified data can additionally be considered.

Third, the framework and strategies are demonstrated via a computational study comprised

of (i) a traditional facility location data set from the literature and (ii) a realistic case study

based on a large-magnitude earthquake scenario with an existing transportation network

infrastructure. The results suggest that POD location planning strategies that incorporate

uncertain user-generated data, even in a näıve way, provide competitive results across a

broad range of test instances studied. This provides initial insights into the usefulness of

user-generated data for POD location planning.

The remainder of the chapter is organized as follows. Section 4.2 provides a literature

review. In Section 4.3, the problem addressed in this chapter is defined and its formulation

presented. Section 4.4 describes the computational study design and results are given in

Section 4.5. Finally, conclusions are provided in Section ??.

4.2 Literature Review

This section provides brief reviews of the literature addressing disaster logistics, POD

location problems, facility location problems under uncertainty, multi-commodity facility

location problems and the use of user-generated content in disaster relief.

Disaster relief supply chains are characterized by unpredictable, suddenly occurring,

large-magnitude demands and high stakes associated with timely delivery [53]. Disaster lo-

gistics problems can be classified according to whether the decisions considered occur before

or after the disaster. Those operations carried out prior to disaster occurrence are preparation

activities and they play an instrumental role in strategic planning (e.g., stock pre-positioning)

[54]. The operations that take place after a disaster include immediate response and recon-
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struction [54]. Immediate response involves activities such as relief distribution, evacuation

of displaced people, and transportation and treatment of disaster victims. Reconstruction

includes activities carried out across a longer horizon post-disaster, such as debris removal.

The scope of this paper lies within immediate response. More specifically, we focus on the

location of disaster relief facilities to be used for the distribution of relief commodities in

the immediate response phase, like the PODs described in Section ??. We only review pa-

pers with this same focus. Thus, papers addressing facility location for pre-positioning (e.g.,

[53, 55, 56]) and the location of emergency medical services for large-scale emergencies and

disasters (e.g., [57, 58]) are not reviewed because operationally, those problems are quite

different from commodity distribution during immediate response.

The literature addressing facility location problems for commodity distribution during

the immediate response phase of disaster relief includes only a few known papers at the time

of this writing. Jaller and Holgúın-Veras (2011) develop a model that considers facility con-

gestion in determining how many PODs should be located and what their capacities should

be [59]. Widener and Horner (2011) employ a hierarchical capacitated median problem to

place distinct facilities providing different levels of assistance [60]. Gormez et al. (2011)

study both pre-positioning and immediate response facility location decisions as part of a

two-tier distribution system for disaster response [61]. The facilities located for immediate

response are conceptualized as temporary shelters for refugees. A variant of the p-median

model is used to determine these locations. The primary difference between these papers and

the work described here is that none of the papers in the literature consider user-generated

data to describe uncertainty in situational awareness when making POD location decisions.

While POD location planning is not well studied the literature, POD location prob-
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lems can be modeled as variants of the classic facility location problem, for which the liter-

ature is rich. Owen and Daskin (1998) review the literature addressing static, dynamic and

stochastic location models [62]. Snyder (2006) provides a more recent review of these topics

and discusses robust formulations as well [63]. Dynamic models assume demand is known or

varies deterministically over time. In contrast, randomness in problem characteristics such as

demand, cost and travel times exists in uncertainty situations. In the Snyder review paper,

facility location problems with randomness in problem input are classified into two types:

those for which probability distributions are available for the uncertain parameters and thus

stochastic models are used, versus those for which probabilistic information is not available

and thus robust optimization models are employed [63]. As will be shown in the next section,

one of the decision approaches presented in this paper is modeled using a form of robust

optimization. Thus, our formulation of a facility location problem using robust optimization

is not novel. The contribution lies in the unique application, and in how the problem input

is divided into two distinct classes (verified and unverified). Individual decision makers will

have some freedom in determining how to use the unverified information. That is, a decision

maker can choose to consider only one or both classes of demand when locating facilities.

From a modeling perspective, this is distinct from the multi-commodity facility location lit-

erature that also considers multiple classes of demand. Warszawski (1973) was one of the

first papers to introduce the multi-commodity location problem. In it, each warehouse can

be assigned at most one commodity [64]. Later papers relax this restriction, such as Shen

(2005), but still require all of the demand of each customer for each commodity to be assigned

to a facility [65]. In this paper, a facility can serve demand from more than one commodity

(both verified and unverified demand). And, a decision maker can choose to make location
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decisions without considering demand for a commodity (i.e., without considering unverified

data).

Social data that contain actionable information can benefit emergency response. But,

500,000 Instragram photos and 20 million tweets were generated during Hurricane Sandy

alone [66]. Finding this type of information among the huge volumes of data posted to social

media during disasters has been compared to finding the proverbial needle in the haystack.

However, tools and technology are being introduced to rectify this need. Capabilities for

filtering, categorizing, displaying and verifying social data for disaster response are being

developed. For example, the Artificial Intelligence for Disaster Response (AIDR) engine

leverages both human participation and machine learning to collect and classify messages

posted to Twitter during disasters in real-time into categories such as infrastructure damage

and needs of those affected [67]. AIDR is part of the MicroMappers platform, created with

the vision to “combine human computing (smart crowdsourcing) with machine computing

(artificial intelligence) to filter, fuse and map a variety of different data types such as text,

photo, video, and satellite/aerial imagery” [68]. MicroMappers is comprised of web-based

crowdsourcing apps people can use to filter and geo-tag various data types which will then be

displayed on maps or in spreadsheets. Other examples of systems for leveraging and visual-

izing crowdsourced disaster data include the Arizona State University Coordination Tracker

(ACT) and TweetTracker [69]. Furthermore, researchers are actively designing methods for

effective extraction and classification of microblogged data. Tweak the Tweet, an effort orig-

inating from within Project EPIC, is in this domain. It asks users to format tweets with

specific hashtags so computers can easily extract relevant information [70]. More recently,

machine learning techniques such as Bayes classifiers and Support Vector Machines have been
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used to automate social data extraction and classification (e.g, [71, 72, 73, 74, 75]). Finally,

tools for social data verification include humanitarian platforms such as Verily and Peta-

Jakarta and journalist platforms such as BBC’s User-Generated Content Hub [76, 77, 66].

Pheme is a related research project, aimed at identifying lies on Twitter in real-time [78].

This paper does not advance knowledge in the areas of social data extraction, classifica-

tion and verification. Instead, the contribution of this work is to demonstrate how decision

support systems for disaster response facility location based on such technologies may be

useful.

4.3 Problem Description and Formulation

The problem under consideration is as follows. There is a set of demand locations

I, each associated with a request for disaster relief supplies. At the time of planning, the

demand locations are partitioned into two sets: (i) verified data from traditional sources V ,

and (ii) unverified user-generated data U . Each request in I specifies a demand magnitude

(di) and location. This information is known with certainty for requests in V ⊆ I but not

in U ⊆ I. For those requests in U , both the demand and location are taken from a post to

a social platform. Either demand exists at the stated location in the stated magnitude, and

thus the request is true, or it does not, and it is false. The classification of requests in U

as true or false is not known at the time of planning. Furthermore, there is no probabilistic

information to describe the likelihood a request in U is true. Requests in V are true by

default because they are verified. There is a set of potential facility locations J and the

facilities to be opened have unlimited capacity. The distance cij between each demand point

i ∈ I and candidate facility location j ∈ J is known. The problem is to determine how many
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and which facilities to open and assign all true demand to them, such that the total demand

weighted distance between true demand points and their assigned facilities is minimized.

Note that this objective cannot be fully evaluated until the unverified demand locations, U ,

can be partitioned into two sets T (true) and F (false). It is assumed that this partitioning

takes place some time after the facilities have been located. This assumption is plausible

given the application. PODs are opened, and then affected persons begin visiting them,

regardless of whether those persons’ needs were discovered through traditional or social data

sources.

Figures 4.2a and 4.2b depict the demand information available at two different points

in time for this planning problem, using data from Swain (1971) for illustrative purposes

[79]. Each circle in the two figures represents a demand element. The coordinate of the

circle represents its location and the size of the circle represents its magnitude (a larger

circle has higher demand than a smaller circle). The two figures are comprised of the same

set of demand elements. Figure 4.2a illustrates the information available at the time of

planning. Each circle is classified as either verified (black) or unverified (green). The decision

maker must decide where to place PODs using only the information in Figure 4.2a. Figure

4.2b represents the information that becomes available some time after facilities have been

placed. The set of unverified demands have been partitioned into false (yellow) and true

(blue) demands. The set of verified demands has not changed.

Two-stage programming is proposed for the study of this problem. Whereas deter-

ministic optimization problems are formulated with known parameters, real world problems

often include parameters which are not known at the time when decisions should be made.

Two-stage programs are used to model these situations in which a decision maker takes
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Figure 4.2: Illustration of information available before and after planning

some action in the first stage (prior to uncertainty being resolved) and then a random event

affecting the first-stage decisions occurs. In a second stage, a recourse decision is chosen by

the decision maker to compensate for the effects of the random event [80]. The basic idea of

two-stage programming is that optimal decisions should be based on data available at the

time of making the decision and should not depend on future observations. During the first

stage one needs to make a “here-and-now” decision before the realization of the uncertain

data. During the second stage, after the true scenario is realized, one performs a subsequent

optimization which describes the optimal behavior when the uncertain data is revealed [80].

A two-stage model can be conceptualized for this problem as follows. Following dis-

aster occurrence, verified traditional and unverified user-generated data describing demand

becomes available. In the first stage, an emergency manager chooses POD locations and

allocates demand points to them before the accuracy of the unverified data can be investi-

gated. The location-allocation decisions are made so as to optimize an objective function

for a set of demand points the manager selects. For example, if the objective is to minimize
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demand-weighted distance, the manager may decide to optimize this distance only for the

verified locations, or for all verified and unverified locations. As the true scenario is realized,

each unverified data element is classified as true or false. The second stage is an observa-

tional stage. We assume that demand not accounted for in the first stage will appear at the

nearest open facility. Similarly, false demand that was accounted for in the first stage will

not appear at its designated (or any other) facility. Thus, the second stage in our model is

not a decision making stage; the decision maker does make reallocation decisions after learn-

ing which demands are true and false. Instead, it is an evaluation stage. The total demand

weighted distance is computed under the assumption that each true demand point will visit

the nearest facility that was opened in stage one, and false demands will not visit a facility.

While factors such as facility congestion and damaged transportation network infrastructure

may influence behavior in practice, those extensions are saved for future work.

The two-stage model for this problem is more formally described as follows. The first

stage problem is to determine how many and which facilities to locate and how to allocate

demand to them. Based on their decision making preference, the emergency manager selects

the subset of demand points I ′ ⊆ I to consider. For example, if the emergency manager

would like to focus only on the verified demand, they will choose the subset I ′ = V . If

instead they prefer to focus on both the verified and unverified demand, they will select

the subset I ′ = V ∪ U . This problem is different from a two-stage stochastic programming

problem because in our problem the probability of whether a demand is accurate or not is

unknown before decisions are made. Let Yj be a binary variable indicating whether facility j

is opened, Xij be a binary variable indicating whether demand point i is assigned to facility

j, di be the demand of i and cij be the distance between demand point i and potential facility
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location j. A P -median problem is solved, denoted Problem 1a:

Problem 1a:

Min
∑
i∈I′

∑
j∈J

dicijXij, (4.1)

Subject to
∑
j∈J

Xij = 1 ∀ i ∈ I ′, (4.2)

Xij ≤ Yj ∀ i ∈ I ′, j ∈ J , (4.3)∑
j∈J

Yj = P, (4.4)

Xij ∈ {0, 1} ∀ i ∈ I ′, j ∈ J , (4.5)

Yj ∈ {0, 1} ∀ i ∈ J . (4.6)

Objective function (4.1) minimizes total demand-weighted distance between the subset of

considered demand locations and their assigned facilities. Constraint set (4.2) ensures each

demand point in the subset of considered locations is assigned to a facility. Constraint set

(4.3) ensures those demand points are assigned only to open facilities. Constraint (4.4)

requires that exactly P facilities are opened. Finally, constraint sets (4.5) and (4.6) describe

the binary nature of the decision variables. Note that depending on the strategy adopted by

the emergency manager, some demand points may not be allocated to facilities during stage

one (i.e., those demand points in I\I ′).

The second stage problem is to determine the total distance from all true demand

points to their nearest facilities once the uncertainty has been resolved and the set of unver-

ified social data requests U is partitioned into true (T ) and false (F) requests (recall that by
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default, verified requests in V are also true). Let Zij be a binary decision variable indicating

whether demand point i is assigned to facility j in the second-stage problem. Then, the

following Problem 2 is solved. Note that Y , the vector of aggregated Yj values, is now an

input parameter instead of a decision variable, and the requirement that exactly P facilities

be opened is no longer needed because these decisions carry over from stage one:

Problem 2:

Min
∑
i∈V∪T

∑
j∈J

dicijZij, (4.7)

Subject to:
∑
j∈J

Zij = 1 ∀ i ∈ V ∪ T , (4.8)

Zij ≤ Yj ∀ i ∈ V ∪ T , j ∈ J , (4.9)

Zij ∈ {0, 1} ∀ i ∈ V ∪ T , j ∈ J . (4.10)

Objective function (4.7) minimizes total demand-weighted distance between the subset of

true demand locations and their assigned facilities. Constraint set (4.8) ensures each true

demand point is assigned to a facility. Constraint set (4.9) ensures those demand points are

assigned only to facilities opened during stage one. Finally, constraint set (4.10) describes

the binary nature of the allocation decision variables. A facility could potentially exist at

a false demand point, if that demand point were included in the set J and selected as a

facility in stage one.

This two-stage framework can be used to represent and evaluate decision maker strate-

gies. A decision maker strategy is defined as a rule describing the subset of demand points
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to consider during stage one. Two plausible strategies to consider in this initial case study

include one representing a decision manager who is optimistic regarding the potential of un-

verified social data, and another representing a decision manager who is pessimistic. Strate-

gies Consider All and Consider Only Verified model these two perspectives. These strategies

are detailed below, along with a description of how their performance can be evaluated in

the context of the two-stage problem.

1. Consider All (CA): Consider all verified and unverified data when making location

decisions in stage one. That is, solve Problem 1a with I ′ = (V ∪ U). Then, solve

Problem 2 using the Y decision variables from the optimal solution to Problem 1a

as input. The impact of stage two decisions will be to de-allocate unverified demand

points that are now known to be false (F) from their assigned facilities. While this

strategy will benefit from accounting for the true unverified demand in stage one, a

downside is that the location decisions made during stage one are affected by false

demand.

2. Consider Only Verified (COV): Consider only the verified data when making location

decisions in stage one. Solve Problem 1a with I ′ = V . Then, solve Problem 2 using the

Y decision variables from the optimal solution to Problem 1a as input. The impact of

stage two decisions will be to allocate unverified demand points now known to be true

(T ) to the nearest facility that is already open. An advantage of this strategy is that

false demand does not impact stage one location decisions. However, the disadvantage

is that true unverified demands, which were not considered, may need to travel longer

distances to reach the nearest facility.
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Note that for both CA and COV, the determination of stage two allocation decisions

does not require solving the integer program denoted Problem 2. According to both strate-

gies, the true (T ) and verified (V) demand points must be allocated to the PODs opened in

stage one. Each of these demand points will always be assigned to the nearest open POD

because there are no capacity constraints on facilities and the objective is to minimize total

weighted distance. However, we include the generalized model here because it allows for

explicitly noting the information considered in stages one and two. Also, the generalized

model provides the building blocks needed for the study of future problem variants, such as

capacitated facilities.

Figures 4.3 and 4.4 illustrate the CA and COV strategies for an example instance

where the number of facilities to be located is five. Each circle in each figure is a demand,

and the demand at each location is proportional to the size of the circle. The total weighted

distance associated with the facility assignments in each figure is provided in brackets in the

figure caption. For this example instance, the set of potential facility locations was chosen

as the demand points under consideration during Stage 1 (that is, J = I for each strategy).

Consider first Figure 4.3a depicting stage one for the CA strategy. Five facilities are located.

In this example, verified black locations are chosen for all five facilities (locations 13, 14,

24, 41, 43), but this will not necessarily always be true for the CA strategy. All verified

and unverified demand points are allocated to the selected facilities. Then, in the second

stage in Figure 4.3b, the selected facilities are evaluated against the demand realization.

The uncertain demands are now classified as either true (blue) or false (yellow), and the

false demand points have been de-allocated from their assigned facilities. The total weighted

distance is lower in stage two than stage one because it is computed across fewer demand
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points. Now consider Figure 4.4a, corresponding to stage one of the COV strategy. All

five facilities are opened at verified demand locations (13, 14, 18, 23, 24) and only verified

demands are allocated to them. In stage two depicted in Figure 4.4b, the unverified demands

newly classified as true (blue) are now assigned to their nearest facility. In this case the total

weighted distance is higher in stage two than in stage one because more demand points are

included in the computation. Comparing CA and COV, the former offers better performance

for this particular instance, as noted by the smaller stage two distance (2467.0 versus 2471.3).

In summary, under both strategies, the facility location decisions and the facility assignments

for the verified demand points do not change between stage one and stage two. However,

total weighted distance changes between the stages because some unverified demand points

are either newly allocated to or de-allocated from facilities in stage two. Therefore, strategies

should be compared on the basis of stage two distance, not stage one.
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(b) Stage two [2467.0]

Figure 4.3: Illustration of two-stage model for CA strategy

In addition to the optimistic and pessimistic decision maker strategies described
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20

40

60

10 20 30 40 50
X Coordinate

Y
 C

oo
rd

in
at

e

Weight
20
40
60

Type
unverified−false
unverified−true
verified

(b) Stage two [2471.3]

Figure 4.4: Illustration of two-stage model for COV strategy

above, a third plausible strategy to consider utilizes scenario planning. In this case, a decision

maker seeks to hedge against multiple possible demand realizations when placing facilities.

Here, a scenario r is a demand realization comprised of all verified demand points in V , plus

a subset Ur ⊆ U of unverified demand points. The subset Ur is constructed by randomly

sampling from the unverified set U , where each demand point in U is either true in scenario r

and thus included in Ur, or false and thus not included. Using a set R of potential scenarios,

a minimize maximum regret model can be formulated. Regret is the difference between the

objective value of the optimal solution for a realized scenario and the objective value of a

compromise. The minimax regret measure is attractive because it does not require the esti-

mation of scenario probabilities. Without probabilistic information describing the potential

for each unverified location to be true (or false), scenario probabilities cannot be computed.

The minimax regret formulation from Owen and Daskin (1998) is adapted below [62]. Here,

the distance between locations cij does not vary by scenario. We refer to this as Problem
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1b, as it must be solved during stage one. Let Xijr be a binary variable indicating whether

demand point i is assigned to facility j in scenario r and define W ∗
r as the objective value of

the optimal P -median solution for scenario r (i.e., the objective value of the optimal solu-

tion to Problem 1a when I ′ is comprised of V∪Ur). Then, the minimax regret formulation is:

Problem 1b:

Minimize max
r∈R

∑
i∈V∪Ur

∑
j∈J

dicijXijr −W∗r (4.11)

subject to
∑
j∈J

Xijr = 1 ∀ i ∈ I, r ∈ R, (4.12)

Xijr ≤ Yj ∀ i ∈ I, j ∈ J , r ∈ R, (4.13)∑
j∈J

Yj = P, (4.14)

Xijr ∈ {0, 1} ∀ i ∈ I, j ∈ J , r ∈ R, (4.15)

Yj ∈ {0, 1} ∀ j ∈ J . (4.16)

Objective function (4.11) minimizes the maximum regret across all scenarios. Constraint

sets (4.12) and (4.13) control the assignment of demand points to open facilities. Constraint

(4.14) requires that exactly P facilities are opened. Finally, constraint sets (4.15) and (4.16)

describe the binary nature of the decision variables. Using this formulation, the Consider

Minimax Regret strategy is evaluated as follows.

3. Consider Minimax Regret (CMR): First determine the optimal solution for each sce-

nario r ∈ R by solving Problem 1a with I ′ = V ∪ Ur. Next, solve the minimize

maximum regret problem (Problem 1b), using W ∗
r for each r ∈ R as input. Evaluate
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Table 4.1: POD locations selected by each strategy in example instance derived from Swain
[79]

Strategy Facilities opened Tot. weighted dist. from Problem 2

COV 13 14 18 23 24 2422.3
CA 13 14 24 41 43 2467.0
CMR 13 14 24 31 42 2471.3

the quality of the minimax regret solution by using the optimal location variables Y

from Problem 1b as input parameters when solving Problem 2. The impact of stage

two decisions may include (i) de-allocating false demand points (F) from their assigned

facilities, and/or (ii) allocating user-generated demand points newly classified as true

(T ) to the nearest facility that is already open.

Figure 4.5 illustrates the CMR strategy. As depicted in Figure 4.5a for a scenario r,

all of the verified demand points (black) are allocated to facilities in stage one, and a subset

of the unverified demand points (green) are also. The unverified demand points that are

allocated to facilities in stage one are those comprising the set Ur. Then in stage two the

true demand realization is revealed and the solution is depicted in Figure 4.5b. Green points

that had facility assignments in stage one and are now blue (Ur∩T ) retain those assignments,

while green points that had facility assignments in stage one and are now yellow (Ur ∩ F)

are de-allocated. Green points that did not have facility assignments in stage one (U\Ur)

and are now blue are newly allocated to facilities. The total weighted distance of 2422.3 in

stage two is lower than the distances from the CA and COV strategies for the same instance

(2467.0 and 2471.3, respectively).

Table 4.1 summarizes which PODs were opened according to each strategy for the

example instance, in order to highlight differences in Stage 1 decisions among the three
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(b) Stage two [2422.3]

Figure 4.5: Illustration of two-stage model for CMR strategy

approaches. Note that PODs were opened at demand locations 13, 14 and 24 in each

strategy, but the additional two POD locations chosen vary.

The next section describes a computational study designed to illustrate the framework

presented in this paper and evaluate the performance of the three strategies discussed above

for a variety of test instances.

4.4 Computational Study

The test instances designed to illustrate and evaluate the CA, COV and CMR decision

strategies are described in this section. A case study is derived from a real Arkansas disaster

scenario, and other test instances are derived from the Swain dataset. The Swain data set

is one of the standard datasets used in the literature for analyzing and comparing location

algorithms [79]. It includes 55 demand points of varying magnitudes. For all test instances

based on the Swain data set, we assume the set of potential facility locations is identical to
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the set of demand points considered by a particular strategy during Stage 1 (that is, J = I ′).

The case study we develop reflects a large-magnitude earthquake along the New

Madrid fault line and focuses specifically on damages projected to occur in the state of

Arkansas [46]. A list of subdivisions in a nineteen county region in Northeast Arkansas was

developed based on a census report that divided each county into numerous subdivisions [81].

The latitude-longitude coordinates and population of the centroid of each subdivision were

collected from census 2000 U.S Gazetteer files. Demand estimates were generated for case

study instances using the shelter seeking population by county, as identified in the Gazetteer

report [82]. The shelter seeking population estimates were chosen as the basis for demand

instead of total population because perhaps not all households in the at risk population would

seek mass care commodities from a POD. Ratios of shelter seeking population estimates

to total population estimates were computed to approximate the percentage of people in

each county presenting demand for mass care commodities at PODs. All demand of each

subdivision is assumed to be located at the centroid [82]. Demand locations and magnitudes

are summarized in Tables A.1 - A.4 in the Appendix. Given that many schools in Arkansas

have facilities that are centrally located and include large stable structures, the schools in

the impacted counties comprise the set of candidate POD locations. A list of 127 schools

is developed based on EducationBug, a complete listing of educational resources available

online [83]. The list of POD locations is provided in Table A.5 and Table A.6 in the Appendix.

The road network for the case study region is created using “StreetMap North America -

Detailed Streets” in ArcGIS software. Travel distances between locations are also obtained

from ArcGIS [84].

Test instances are created from the Swain and Arkansas data sets as follows. First, it
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is reasonable to suppose the performance of each decision strategy will depend on the relative

proportions of verified and unverified data, and within the unverified data set, the relative

proportions of true and false data. For example, a strategy that ignores user-generated data

(like COV) may not perform well when most of the data is unverified, and is later discovered

to be true. In that situation, only a very small number of demand points that will actually

be visiting the facilities are considered when choosing the locations of those facilities. In

order to capture the differences in decision strategy performance across a broad range of

disaster situations, test instances are created such that the relative proportions of verified

versus unverified and true versus false data vary. To do so, a Bernoulli random variable with

parameter α is first associated with each demand point in I. The parameter α represents

the probability a demand point will be designated as verified (conversely, a demand point is

designated as unverified with probability 1 − α). To create a test instance, the probability

distributions for each demand point are sampled, effectively partitioning the set I into the

verified and unverified sets V and U , respectively. Next, an additional Bernoulli random

variable with parameter ω is associated with each demand point in U . The parameter ω

represents the probability an unverified demand point will be classified as true (and 1 − ω

the probability it will be classified as false). The probability distributions for each unverified

demand point are then sampled, partitioning the set U into the true and false sets T and

F , respectively. Using this method, the expected numbers of verified demand points in the

Swain and Arkansas data sets are 55α and 335α, respectively, while the expected numbers of

true unverified demand points are 55ω(1− α) and 335ω(1− α), respectively. Both α and ω

are varied within the set {0.25,0.50,0.75} in the computational study; thus, 9 combinations

of (α, ω) are considered. Instance groups from the Swain data set and the Arkansas data
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set are indexed from S1 to S9 and A1 to A9 respectively based on increasing values of α

and ω. For each of the nine instance groups in each data set, ten random replicates are

generated. Within each instance group, replicates are numbered 1 through 10, for example,

S1-1 through S1-10 represent the ten replicates of instance group S1.

Table 4.2 summarizes the test instances. For each instance, the table provides the

values of α and ω and the expected numbers of verified, unverified true and unverified false

demand points. Figure 4.6 provides a graphical representation of instance groups S1-S9.

Each graph corresponds to the first replicate of each instance group. The header for a

graph provides the instance group number and value of α and ω. To visually highlight the

differences among the instance groups, consider for example the first column in the figure.

The proportion of verified data (α) increases moving from top to bottom within the column.

This can be seen from the increasing proportion of black points.

Table 4.2: Test instance summary

(α, ω) Instance Veri. Unv. true Unv. false Instance Ver. Unv. true Unv. false

group V T F group V T F

(0.25,0.25) S1 13.75 10.31 30.95 A1 83.75 62.81 188.44

(0.25,0.50) S2 13.75 20.62 20.62 A2 83.75 125.62 125.62

(0.25,0.75) S3 13.75 30.95 10.31 A3 83.75 188.44 62.81

(0.50,0.25) S4 27.50 6.88 20.62 A4 167.50 41.88 125.63

(0.50,0.50) S5 27.50 13.75 13.75 A5 167.50 83.75 83.75

(0.50,0.75) S6 27.50 20.62 6.88 A6 167.50 125.63 41.88

(0.75,0.25) S7 41.25 3.44 10.31 A7 251.25 20.94 62.81

(0.75,0.50) S8 41.25 6.88 6.88 A8 251.25 41.88 41.88

(0.75,0.75) S9 41.25 10.13 3.44 A9 251.25 62.81 20.94

Each of the three strategies presented in Section 4.3 are applied to obtain solutions

for each test instance for each possible value of P (number of facilities). Note that the range
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Figure 4.6: Graphical representation of Swain data set instances. Grid labels: instance, α
and ω.

of possible values for P in the Swain data set depends on the strategy employed, because

the set of candidate facility locations differs for each strategy. The set of candidate facility

locations for a particular strategy is the set of demand points considered by the strategy

in stage one (i.e., J = I ′). For example, using the CA strategy, in the Swain dataset,

since all 55 demand points serve as candidate facility locations (I ′ = I), the range for P is

{1, 2, . . . , 55}. Using the COV strategy, the maximal size of the candidate location set is |V|,

so the range of P is {1, 2, . . . , |V|}. Finally, in the CMR case, the range of P for a particular

scenario r is {1, 2, . . . , |V ∪ Ur|}. However, the range of P is always {1, . . . , 127} in the

Arkansas case study instances because the set of potential facility locations is distinct from

the set of demand locations. That is, the set J includes the same 127 locations regardless

of which strategy is being employed.
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It should also be noted that for the CMR strategy, the total number of distinct

scenarios in a problem instance with unverified demand set U is 2|U|. When the size of

U is large, it is more tractable to carry out scenario planning using a subset of potential

demand realizations, instead of all possible demand realizations. In this study, the ten

random replicates associated with each (α,ω) pair comprise the subset of potential demand

realizations used to evaluate the CMR strategy. While ten replicates is small compared to

the total number of possible scenarios (i.e., 255 in the Swain data set, 2335 in the Arkansas

data set), it is deemed sufficient for the purpose of this study, which is simply to demonstrate

the framework presented in this paper.

Solutions for all optimization problems (i.e., Problems 1a, 1b and 2) are obtained

using ILOG CPLEX 12.6 via C libraries. The experiments were performed on a server with

24 GB RAM and 12 CPUs. On average, one instance (a single replicate for fixed values of α,

ω and P ) is solved in less than five seconds for instance groups S1-S9 and in approximately

two minutes for instance groups A1-A9.

4.5 Results

This section presents the results of the computational study. First, the results are

discussed for each strategy individually. Then, comparisons among the solutions obtained

for the different strategies are made.

4.5.1 Individual Strategies

Figures 4.7 through 4.9 present the results for the Swain and Arkansas data sets for

the strategies CA, COV and CMR, respectively. Each contains nine subfigures representing

103



the instance groups (the nine (α, ω) combinations). In each subfigure, the header gives the

instance group and value of α and ω, the horizontal axis gives the number of facilities opened

and the y-axis gives the weighted distance. The values reported are the average weighted

distances over ten replications. Note that for the Swain data set, the range of P , the number

of facilities opened, varies among the subfigures. This occurs because the cardinality of the

set of potential facility locations I ′ in Problem 1a varies according to parameters α and ω

and the decision strategy selected. That is, the set of potential facility locations contains

V ∪ U for CA, V for COV, and V ∪ Ur for CMR. The parameter α controls the size of

V , as α is the proportion of demand points that are verified, and the parameters α and ω

together control the size of Ur, the proportion of unverified demand points that are accurate

in scenario r. The range of the horizontal axis does not vary among the subfigures for the

Arkansas data set because in this case, the sets of potential facility locations and demand

points are disjoint; the number of unverified demand points in a given instance does not

influence the number of potential facility locations.

A number of observations can be made from these figures. First, for a given proportion

of certain data (α) and number of facilities (P ), the demand-weighted distance increases as

the proportion of true uncertain data (ω) increases for all three strategies. To see this,

compare for example the column for P = 1 in each of the three subfigures in row 1 of

Figure 4.7a. This behavior occurs because as ω increases, there are more demand points

that actually need to visit facilities in stage two. Second, suppose ω and P are now held

constant and α is varied. That is, the number of facilities and the the relative “goodness”

or accuracy of the uncertain data stay constant, but the amount of verified data increases.

In this case, slight increases in demand-weighted distance can be observed. To see this,
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compare for example the column for P = 1 in each of the three subfigures in column 1 of

Figure 4.7a. This also occurs because the total number of true demand points (verified and

unverified true) needing facilities in stage two increases as α increases. A third observation

that pertains only to the Arkansas data set is that for most instances, after approximately

100 facilities have been opened by any of the three strategies, there is no incremental benefit

to opening additional facilities. The nearest facility to every demand point will have already

been opened. In fact, beyond P = 50, the incremental benefit is very modest.
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Figure 4.7: Solutions obtained via CA. Subfigure headers: instance group, α, ω.

4.5.2 Comparison of Strategies

We begin this section with an illustration depicting how the solutions obtained by

each strategy differ for an example instance from the Arkansas data set. We then provide a

more comprehensive comparison among the strategies over all test instances from both the

Swain and Arkansas data sets.

To illustrate the differences among the solutions produced by the three strategies

for a single instance, consider instance A1-1 (α = 0.25, ω = 0.25) from the Arkansas data
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(b) Arkansas data set

Figure 4.8: Solutions obtained via COV. Subfigure headers: instance group, α, ω.
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(b) Arkansas data set

Figure 4.9: Solutions obtained via CMR. Subfigure headers: instance group, α, ω.

set. In this test instance, there are approximately 84 verified demand points, 63 unverified

true demand points, and 188 unverified false demand points. Table 4.3 gives the facility

locations opened by each of the three strategies for P = 5 and the total weighted distance

of each of the three solutions. CMR performs best in this example with a total weighted

distance of 4.6 × 107. Next is CA with total weighted distance 4.8 × 107. It is interesting

that even with so much unverified data (1 − α = 0.75) and a large proportion of it false
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Table 4.3: POD locations selected by each strategy in example instance A1-1 from the
Arkansas case study

Strategy Facilities opened Tot. weighted dist. from Problem 2

COV 14 28 72 109 111 5.1× 107

CA 16 28 67 72 118 4.8× 107

CMR 14 28 72 109 118 4.6× 107

(1 − ω = 0.75), CA still outperforms COV. That is, considering the social data, even with

a low accuracy rate, produced a better solution than ignoring it did. Figure 4.10 depicts

the three solutions. The green squares with the green flags attached represent the facilities.

Blue circles are verified demands, green are unverified true demands and red are unverified

false demands. Connections follow the actual road network in the region and are shown

for stage two allocations (explaining why no red false points are connected to facilities). It

can be observed that POD locations 28 and 72 are opened by all three strategies (these

are the right-most facilities in the figures), while the other three locations selected vary.

Note that COV and CMR have four facilities in common, differing only according to the

left-most facility (111 for COV, 118 for CMR) shown in the COV and CMR subfigures. It

is reasonable to expect more similarity in facility placement between COV and CMR than

with CA in this instance because the information considered during stage one is more similar

between COV and CMR than with CA. During stage one, only the 84 verified demand points

(blue) would have been considered by COV. Strategy CMR would have considered these 84

verified demand points (blue), plus 10 different scenarios including a random sampling of

approximately 25% of the 251 unverified points (presumably, a mix of green and red), for a

total of approximately 146 demand points in each of 10 scenarios. On the other hand, CA

would have considered all 335 demand points (all blue, green and red) during stage one.

Figure 4.11 and Figure 4.12 provide comparisons of the average demand weighted
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Figure 4.10: Solutions from each strategy for instance A1 (α = 0.25, ω = 0.25) with P = 5.

distance among the three strategies for all Swain data set and Arkansas data set instances,

respectively. Each contains nine subfigures representing the instance groups (the nine (α, ω)

combinations). In each subfigure, the header gives the instance group and value of α and

ω, the horizontal axis gives the number of facilities opened and the y-axis gives the total

weighted distance. The color of each bar represents a decision strategy as indicated in the

legend. The values reported are the average weighted distances over ten replications. For

each instance, the bar corresponding to the best performing strategy is brought forward. For

example, see the subfigure for instance group S3 in Figure 4.11. For P = 2, the pink bar

indicates the CMR solution provides the lowest average weighted distance. The taller black

bar behind it indicates how much higher the average weighted distance is for COV. Then for

P = 8, the green bar indicates the CA solution provides the lowest average distance for 8

facilities. The fact that a pink bar isn’t visible for P = 8 indicates CMR is nearly equivalent

to one of the other two approaches in this case (the pink bar is underneath either the green

108



S7, 0.75, 0.25 S8, 0.75, 0.50 S9, 0.75, 0.75

S4, 0.50, 0.25 S5, 0.50, 0.50 S6, 0.50, 0.75

S1, 0.25, 0.25 S2, 0.25, 0.50 S3, 0.25, 0.75

0 20 40 0 20 40 0 20 40

0

2000

4000

0

2000

4000

0

2000

4000

Number of Facilities

D
is

ta
nc

e

Strategy CA CMR COV

Figure 4.11: Comparison of solutions in Swain data set for the three different strategies.
Subfigure headers: instance group, α ω.

or black bar). With this convention we can’t be certain which one, but inspecting the trend

in the subfigure would suggest it is more similar to CMR (pink) than COV (black). This

graphing convention allows for a quick visual determination of the dominant approach across

all instance groups. It is easily seen that CMR provides the best solution the majority of

the time. This is true for both the Swain and Arkansas data sets. Because this is clear, we

temporarily turn our attention to some of the minority cases where COV and CA are the

top performing approaches.

When the size of the verified set is smallest (α = 0.25), the COV strategy performs

worse (or at least no better) than the other two decision strategies for most values of ω and
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Figure 4.12: Comparison of solutions in Arkansas case study for the three different strate-
gies. Subfigure headers: instance group, α ω.
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numbers of facilities. In fact, it can be observed from the top rows of Figures 4.11 and 4.12

that the only time the black bar for COV is dominant when α = 0.25 is for some values of

P within instance group A1. In this instance group, ω = 0.25, indicating that a majority

of the unverified data is false. In this group, COV is the best approach for P = 1, . . . , 9,

P = 14, . . . , 25 and P = 29. The weighted distance of the CMR solutions is 3.7% higher

than COV, on average for these values of P in group A1. According to a paired t-test and a

level of significance of 0.05, these differences are significant except for P = 1. For all other

instance groups with α = 0.25, CMR is the best approach for almost all P values. There

are a few numbers of facilities for which CA is best (see, for example, P = 10, . . . , 13 in S3).

When the size of the verified set is largest (α = 0.75), the absolute differences between the

approaches tend to be less pronounced than when the verified set is small (α = 0.25). This

is likely because the information sets the three approaches are considering are most similar

for these groups of instances. There are more values of P for which CA and COV produce

lower weighted distances within groups with α = 0.75 than other groups.

When the proportion of true data within the unverified set is smallest (ω = 0.25),

we rarely see CA be the top performing approach. In fact, it happens only once, for P = 2

in group A7. The size of the unverified set is small in this group (α = 0.75), so a large

proportion of false data has a lower impact than when there is more uncertain data to begin

with. When the proportion of true data within the unverified set is largest (ω = 0.75), we

see CA be the top performing approach for at least some values of P for every applicable

instance group (S7-S9 and A7-A9). In general, the absolute difference between COV and

the other approaches is more pronounced for ω = 0.75 than when ω = 0.25 and the converse

is true for CA.
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Tables 4.4 and 4.5 provide summaries of the performance of each approach for each

instance group. For both the Swain and Arkansas data sets, the best strategy (and therefore

best solution) is identified for every instance. Then, the percent deviation in objective value

is computed between each strategy and the best one for each instance. The middle group of

columns in both tables reports the average percent deviation of each strategy from the best

one, for each instance group. The best strategy for each instance group is indicated in bold.

Additionally, for every instance group and value of P , a paired t-test is conducted over the

10 replicates to detect whether differences between the solutions produced by each pair of

strategies are significant at the 0.05 level. The last set of columns in the two tables reports

the percent of instances with significant differences between pairs of strategies. From these

tables, it is again clear that CMR is the best approach in the majority of instances studied.

It has the lowest average percent deviation from the best strategy in 17 out of 18 instances

groups; the exception is S2. In 13 out of 18 instance groups, this average percent deviation

is less than 1%. CA can only claim an average percent deviation under 1% in two instance

groups (S3 and A9); COV cannot claim it for any instance group. Thus, a decision manager

seeking a strategy that is robust across a wide variety of instance groups should adopt CMR.

While CA and COV are not robust strategies across all instance groups as is CMR,

we still find it interesting to compare and contrast CA and COV with each other, as they

represent the two “extreme” strategies (consider all of the unverified data or none of it).

The results of this computational study suggest that among the two, COV should be used

when the accuracy proportion of the unverified data is ω = 0.25 and CA should be used

when ω = 0.50 and 0.75. That is, COV is preferred for S1, A1, S4, A4, S7 and A7, while

CA is preferred for the remaining 12 instance groups. While it is no surprise that COV
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Table 4.4: Summary of percent deviation from best strategy for instance groups S1-S9

Avg % dev. from best strategy % of differences that are significant
Instance group # α ω |V | COV CA CMR COV,CA COV,CMR CA,CMR

S1 0.25 0.25 15 24.66% 30.24% 0.85% 27% 93% 87%
S2 0.25 0.50 15 13.97% 7.14% 0.18% 60% 93% 73%
S3 0.25 0.75 15 25.26% 0.49% 0.85% 93% 93% 0%
S4 0.50 0.25 32 12.80% 46.85% 6.07% 69% 9% 94%
S5 0.50 0.50 32 32.45% 10.93% 1.04% 53% 97% 69%
S6 0.50 0.75 32 45.04% 3.86% 0.43% 94% 100% 63%
S7 0.75 0.25 42 7.46% 31.53% 5.33% 83% 5% 90%
S8 0.75 0.50 42 16.94% 3.90% 0.36% 52% 86% 69%
S9 0.75 0.75 42 31.51% 1.84% 0.77% 90% 90% 17%

performs better than CA when ω is small, we do find it interesting how tolerant the CA

strategy is to inaccuracy of the uncertain data. These results suggest that as long as half

of the data is accurate, it should be considered during stage one planning. And in fact, the

threshold ω value for CA being the preferred approach may be less than 0.5; we did not test

any values between 0.25 and 0.50. It is counterintuitive that the CA approach is not more

highly dependent on data accuracy. In practical terms, there is less of a penalty for including

the uncertain data up front, even if the majority of it turns out to be false, than there is

for ignoring it altogether. It should be noted that the basis for recommending CA or COV

in this discussion is knowledge of the value of ω. Realistically, the emergency manager will

likely not have information regarding how much of the uncertain data is accurate (knowing

this would probably require knowing precisely which data is true and false, negating the need

for the approaches outlined in this paper). But, even though the manager may not know

the precise value of ω, they may have some intuition regarding whether at least one-quarter

of the data is accurate. Or, they may be able to investigate the accuracy of a small random

sample of the uncertain data to approximate ω. For example, a platform such as Verily could

be deployed to access the power and speed of crowdsourcing the verification process [85].
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Table 4.5: Summary of percent deviation from best strategy for instance groups A1-A9

Avg % dev. from best strategy % of differences that are significant
Instance group # α ω COV CA CMR COV,CA COV,CMR CA,CMR

A1 0.25 0.25 10.42% 21.88% 1.98% 84% 92% 93%
A2 0.25 0.50 26.82% 8.40% 0.69% 98% 97% 84%
A3 0.25 0.75 32.80% 4.44% 0.24% 100% 100% 90%
A4 0.50 0.25 8.43% 10.88% 1.37% 75% 26% 90%
A5 0.50 0.50 10.41% 9.61% 0.73% 83% 72% 90%
A6 0.50 0.75 17.46% 2.05% 0.21% 97% 97% 56%
A7 0.75 0.25 2.20% 10.28% 0.96% 43% 83% 98%
A8 0.75 0.50 6.54% 2.59% 0.26% 90% 56% 83%
A9 0.75 0.75 7.46% 0.79% 0.14% 94% 92% 40%

4.6 Conclusion And Future Work

This forth chapter presented a framework for incorporating a new type of uncertainty

in POD location decisions. Specifically, the framework enables evaluating whether there

is value in acting on user-generated data prior to its absolute verification when locating

facilities for disaster relief. Three decision strategies that can be used by an emergency

manager faced with a POD location decision for which both verified and unverified data are

available were proposed. The strategies differ according to how the uncertain user-generated

data is incorporated in the planning process.

The framework was illustrated via a computational study that compared the perfor-

mance of the three decision strategies across a range of plausible disaster scenarios. The

study yielded the following insights. First, as expected, the Consider Only Verified strategy

is outperformed by the other strategies when the proportion of uncertain data is high, and/or

the proportion of uncertain data that is true is high. Ignoring the uncertain data during

the planning stage results in sub-optimal facility locations in these cases. Second, also as

expected, the performance of the Consider All strategy suffers when a large proportion of

the uncertain data is false. Considering the uncertain data in this case results in placing

facilities further from the verified and true points than necessary. Finally, the Consider Min-
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imax Regret strategy offers a tradeoff between the two extremes of considering none of the

unverified data or all of it, and performs reasonably well across the test instances studied.

None of the decision strategies presented in this paper require knowledge of the like-

lihood that the uncertain data is true. In fact, a primary assumption in this study is that

probabilistic information is not available for the uncertain data. Because of this, parameter

ω used to describe the instances in the computational study, representing the proportion

of uncertain data is true, will also not be available to the decision maker at the time of

planning. The decision maker will only have knowledge of α, the proportion of the total

demand set that is unverified. If the parameter ω were available, then strategy Consider

All may be preferred in some situations (i.e., when ω is large, and in this study, greater

than 0.75). However, only having knowledge of α, the Consider Minimax Regret strategy is

recommended, with robust performance across all test instances studied.

It should be noted that the insights summarized here are not intended to comprise

the basis of one-size-fits-all recommendations for user-generated data in emergency decision

making. The computational study was included here primarily for demonstration purposes.

The quality of insights the framework is able to provide will increase as larger studies,

preferably with real disaster data sets, are conducted. We recommend such studies as an area

for future work. Additionally, the use of scenario-based modeling for other types of emergency

logistics planning decisions is recommended. For example, dynamic and capacitated variants

of POD location problems could be studied.
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5 Conclusion And Future Work

This paper presented three logistics problems. The first problem is a parallel machine

scheduling problem with release dates, due dates, limited machine avibility and splitting jobs

is discussed. It is an inbound continuous aid work humanitarian logistics problem. This prob-

lem is motivated by a problem faced by a large medical product supplier. They are interested

in decreasing human labor costs in their warehouses through optimized employee scheduling.

Specifically, an opportunity to reduce the total amount of time required to complete work

inside the DCs each day exists by considering individual employee productivities for each

task. The warehouse decision makers then expects to find a shchedule engine so that each

day the total job processing time is minimized. The problem is unique as that it considers

multiple factors at the same time when making decisions. Currently no paper has discussed

all the factors at the same time.

To solve the problem, a mixed integer programming model is described. And two

methods: the commerical server and a constructive heuristic are proposed to find solutions.

480 instances considering 5 different factors based on historical data are developed to ver-

ified these two methods. From the results, the commerical solver could solve the problem

optimally most of the time while the heuristic only provides approximate solving that have

an approximate 2% - 4% gaps compared with the optimal solutions. On the other hand, the

heuristic runs much faster than the commerical server - an average of 10 seconds for heuristic

to solve one instance compared with an average of 10 minutes for the commerical solver.

The second problem is a variant problem from Chapter ?? that is also motivated by
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a large medical product supplier seeking to optimize labor costs within their warehouses.

This problem extended to account for two additional practical considerations faced by the

company: a delay that occurs when warehouse staff shift from one type of task to another and

a fixed time window employee breaks during the employee’s schedule. Other characteristics

including release dates, due dates, limited machine avibility and splitting jobs is also involved

in this discussed.

To solve this problem, a updated mixed integer programming model from chatper

2 is illustrated. A simulated anneal heuristic are proposed to find solutions. This SA

heuristic includes two operators and by using the historical performance of our operators, the

algorithm provide guidance on which move operators are applied in future iterations, where

the more successful at finding improving solutions operators in the past are more likely to

be selected. A total of 480 instances considering 7 different factors based on historical data

are developed and tested. For the small instances, the heuristic provides solutions within an

average 1.12% worse than the lower bound obtained by CPLEX. For the medium and large

instances, the heuristic was able to solve them in a relatively reasonable time.

From the results, the commerical solver could solve the problem optimally most of

the time while the heuristic only provides approximate solving that have an approximate

2% - 4% gaps compared with the optimal solutions. On the other hand, the heuristic runs

much faster than the commerical server - an average of 10 seconds for heuristic to solve one

instance compared with an average of 10 minutes for the commerical solver.

The last problem is a new facility location problem variant. In this problem, both

verified data and unverified user-generated data are available for consideration during de-

cision making. Three decision strategies that can be used by an emergency manager faced
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with a POD location decision for which both verified and unverified data are available were

proposed. The strategies differ according to how the uncertain user-generated data is incor-

porated in the planning process. A computational study and a case study that compared

the performance of the three decision strategies across a range of plausible disaster scenarios

is proposed. The study yielded the following insights. First, as expected, the Consider Only

Verified strategy is outperformed by the other strategies when the proportion of uncertain

data is high, and/or the proportion of uncertain data that is true is high. Ignoring the un-

certain data during the planning stage results in sub-optimal facility locations in these cases.

Second, also as expected, the performance of the Consider All strategy suffers when a large

proportion of the uncertain data is false. Considering the uncertain data in this case results

in placing facilities further from the verified and true points than necessary. Finally, the

Consider Minimax Regret strategy offers a tradeoff between the two extremes of considering

none of the unverified data or all of it, and performs reasonably well across the test instances

studied.

A primary assumption in this study is that probabilistic information is not available

for the uncertain data. Because of this, parameter ω used to describe the instances in the

computational study, representing the proportion of uncertain data is true, will also not be

available to the decision maker at the time of planning. The decision maker will only have

knowledge of α, the proportion of the total demand set that is unverified. If the parameter

ω were available, then strategy Consider All may be preferred in some situations (i.e., when

ω is large, and in this study, greater than 0.75). However, only having knowledge of α, the

Consider Minimax Regret strategy is recommended, with robust performance across all test

instances studied.
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It should be noted that the insights summarized here are not intended to comprise

the basis of one-size-fits-all recommendations for user-generated data in emergency decision

making. The computational study was included here primarily for demonstration purposes.

The quality of insights the framework is able to provide will increase as larger studies,

preferably with real disaster data sets, are conducted. We recommend such studies as an area

for future work. Additionally, the use of scenario-based modeling for other types of emergency

logistics planning decisions is recommended. For example, dynamic and capacitated variants

of POD location problems could be studied.

119



Bibliography

[1] K. Vitasek, “Supply chain management terms and glossary, february 2010, published
on pages of cscmp (council of supply chain management professionals).”

[2] R. A. Wilson, 21st Annual State of Logistics Report®: The Great Freight Recession.
CSCMP, 2010.

[3] E. E. Blanco and J. Goentzel, “Humanitarian supply chains: a review,” MIT Center for
Transportation & Logistics, POMS, 2006.

[4] “Labor management systems to improve efficiency,” http://www.logisticsmgmt.com/
article/workforce metamorphosis, accessed: 2015-11-20.

[5] “How do i measure employee productivity performance?” http://smallbusiness.chron.
com/measure-employee-productivity-performance-1896.html, accessed: 2015-11-20.

[6] A. T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier, “An annotated
bibliography of personnel scheduling and rostering,” Annals of Operations Research,
vol. 127, no. 1-4, pp. 21–144, 2004.

[7] M. Pfund, J. W. Fowler, and J. N. Gupta, “A survey of algorithms for single and multi-
objective unrelated parallel-machine deterministic scheduling problems,” Journal of the
Chinese Institute of Industrial Engineers, vol. 21, no. 3, pp. 230–241, 2004.

[8] M. G. Ravetti, G. R. Mateus, P. L. Rocha, and P. M. Pardalos, “A scheduling problem
with unrelated parallel machines and sequence dependent setups,” International Journal
of Operational Research, vol. 2, no. 4, pp. 380–399, 2007.

[9] J.-F. Chen, “Scheduling on unrelated parallel machines with sequence-and machine-
dependent setup times and due-date constraints,” The International Journal of
Advanced Manufacturing Technology, vol. 44, no. 11, pp. 1204–1212, 2009.

[10] K.-C. Ying and S.-W. Lin, “Unrelated parallel machines scheduling with sequence-and
machine-dependent setup times and due date constraints,” International Journal of
Innovative Computing, Information and Control, vol. 8, no. 5, pp. 3279–3297, 2012.

[11] J. Bank and F. Werner, “Heuristic algorithms for unrelated parallel machine scheduling
with a common due date, release dates, and linear earliness and tardiness penalties,”
Mathematical and Computer Modelling, vol. 33, no. 4, pp. 363–383, 2001.

[12] J. Valente and R. A. Alves, “A note on polynomially-solvable cases of common due date
early-tardy scheduling with release dates,” Investigação Operacional, vol. 24, no. 1, pp.
63–71, 2004.

120



[13] V. Suresh and D. Ghaudhuri, “Scheduling of unrelated parallel machines when machine
availability is specified,” Production Planning & Control, vol. 7, no. 4, pp. 393–400,
1996.

[14] T. E. Cheng, C.-J. Hsu, and D.-L. Yang, “Unrelated parallel-machine scheduling with
deteriorating maintenance activities,” Computers & Industrial Engineering, vol. 60,
no. 4, pp. 602–605, 2011.

[15] S.-J. Yang, “Unrelated parallel-machine scheduling with deterioration effects and deteri-
orating multi-maintenance activities for minimizing the total completion time,” Applied
Mathematical Modelling, vol. 37, no. 5, pp. 2995–3005, 2013.

[16] R. Logendran and F. Subur, “Unrelated parallel machine scheduling with job splitting,”
IIE Transactions, vol. 36, no. 4, pp. 359–372, 2004.
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A Appendix

Table A.1: Demand locations and magnitudes for Arkansas case study

Twonship Demand Lat. Long. Twonship Demand Lat. Long.

Arkansas 67 34.06 -91.36 Lester 11901 35.91 -90.46

Barton 204 34.35 -91.66 Little Texas 11901 35.77 -90.94

Bayou Meto 179 34.21 -91.48 Maumelle 2192 35.75 -90.55

Brewer 45 34.26 -91.61 Nettleton 493 35.81 -90.59

Chester 263 34.06 -91.23 Powell 244 35.93 -90.65

Crockett 126 34.42 -91.23 Prairie 2289 35.77 -90.44

Garland 131 34.33 -91.51 Promised Land 8158 35.84 -90.98

Gum Pond 8264 34.53 -91.54 Taylor 2060 35.73 -90.48

Henton 541 34.43 -91.67 Texas 140 35.81 -90.93

Keaton 864 34.46 -91.33 Black Oak 218 35.39 -90.42

La Grue 4134 34.28 -91.34 Bob Ward 259 35.07 -90.34

McFall 113 34.53 -91.43 Fogleman 359 35.39 -90.22

Mill Bayou 485 34.42 -91.46 Jackson 489 35.21 -90.33

Morris 556 34.43 -91.57 Jasper 1182 35.22 -90.22

Point Deluce 211 34.20 -91.28 Lucas 1535 34.90 -90.33

Prairie 571 34.27 -91.16 Mississippi 1368 35.14 -90.18

Stanley 722 34.16 -91.40 Mound City 11934 35.22 -90.14

Bennett-Lemmons 659 36.42 -90.41 Proctor 827 35.09 -90.24

Bradshaw-Haywood 187 36.34 -90.27 Tyronza 13846 35.25 -90.45

Brown-Carpenter 235 36.46 -90.70 Wappanocca 13846 35.31 -90.26

Cache-Wilson 505 36.32 -90.58 Bedford 318 35.22 -90.86

Chalk Bluff-Liddell 258 36.46 -90.20 Brushy Lake 882 35.30 -90.96

Clark 285 36.29 -90.70 Coldwater 3771 35.39 -90.63

Cleveland-North Kilgore 597 36.45 -90.55 Ellis 830 35.20 -90.93

East Oak Bluff-Blue Cane 232 36.25 -90.23 Fair Oaks 535 35.20 -91.01

Gleghorn-South Kilgore 163 36.38 -90.60 Hickory Ridge 445 35.40 -90.96

Johnson 530 36.32 -90.39 Mitchell 462 35.40 -90.78

Knob 245 36.29 -90.44 Searcy 520 35.33 -90.77

Nelson 263 36.36 -90.73 Smith 225 35.20 -90.67

North St. Francis 2611 36.40 -90.18 Twist 658 35.40 -90.52

Payne-Swain 105 36.31 -90.12 Tyronza 1251 35.25 -90.56

Pollard 579 36.44 -90.28 Wynne 1453 35.21 -90.79

South St. Francis 1709 36.36 -90.18 Blue Cane 2061 36.17 -90.26

West Oak Bluff 2710 36.27 -90.31 Breckenridge 38 36.23 -90.51

Big Creek 4303 35.92 -90.80 Bryan 1969 36.08 -90.76

Black Oak 2531 35.78 -90.35 Cache 9804 36.06 -90.66

Brookland 2528 35.92 -90.54 Clark 70 36.07 -90.47
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Table A.2: Demand locations and magnitudes for Arkansas case study (cont.)

Twonship Demand Lat. Long. Twonship Demand Lat. Long.

Buffalo 1989 35.93 -90.35 Collier 1238 36.00 -90.50

Gilkerson 3277 35.77 -90.80 Crowley 241 36.21 -90.62

Greenfield 2191 35.74 -90.66 Evening Shade 1112 36.14 -90.71

Herndon 1202 35.94 -90.72 Friendship 8481 36.14 -90.44

Jonesboro 11901 35.85 -90.69 Hays 8481 36.04 -90.38

Lake City 11901 35.82 -90.45 Hopewell 439 36.24 -90.38

Hurricane 306 36.20 -90.43 Cow Lake 46 35.42 -91.10

Jones 70 36.22 -90.74 Glaize 2186 35.48 -91.41

Lake 768 36.10 -90.34 Glass 526 35.84 -91.11

Main Shore 146 36.00 -90.42 Grubbs 93 35.66 -91.10

Poland 311 36.00 -90.62 Jefferson 295 35.68 -91.28

Reynolds 1699 36.17 -90.35 Richwoods 442 35.55 -91.08

St. Francis 504 35.99 -90.56 Union 795 35.59 -91.26

Salem 283 36.00 -90.71 Village 1179 35.64 -91.18

Shady Grove 283 36.00 -90.80 Annieville 616 36.15 -91.25

Spring Grove 1144 36.05 -90.56 Ashland 1035 35.96 -91.02

Sugar Creek 84 36.11 -90.63 Black River 366 36.05 91.15

Union 977 36.14 -90.54 Black Rock 7789 36.13 -91.13

Walnut Corner 984 36.04 -90.79 Boas 1637 36.03 -90.98

Ashley 199 35.85 -91.63 Cache 344 36.11 -90.84

Barren 6031 35.90 -91.54 Campbell 258 36.10 -90.93

Big Bottom-Wycough-Logan 697 35.71 -91.39 Dent 506 36.18 -91.20

Black River-Marshell 2467 35.84 -91.30 Dowell 1136 35.92 -90.93

Cushman-Union 125 35.87 -91.76 Duty 2774 36.07 -91.07

Departee 1103 35.56 -91.43 Eaton 148 36.04 -91.21

Dota 1009 35.83 -91.41 Flat Creek 5093 36.11 -91.22

Fairview 1097 35.57 -91.64 Jesup 883 36.03 -91.32

Gainsboro 175 35.82 -91.52 Lawrence 320 35.99 -91.11

Greenbrier 791 35.74 -91.75 Marion 519 35.92 -91.11

Hill 215 35.55 -91.52 Morgan 258 35.96 -91.23

Huff 641 35.65 -91.62 Promised Land 117 36.00 -90.88

Jefferson 1140 35.91 -91.67 Reeds Creek 148 35.94 -91.31

Liberty 780 35.58 -91.75 Richwoods 248 36.13 -91.00

McHue 1312 35.71 -91.65 Spring River 350 36.19 -91.30

Magness 288 35.70 -91.49 Strawberry 555 36.10 -91.30

Moorefield 508 35.77 -91.57 Thacker 502 36.24 -91.26

Oil Trough 183 35.61 -91.47 Big Creek 818 34.69 -90.99

Relief 632 35.65 -91.73 Council 120 34.82 -90.48

Rosie 3082 35.64 -91.56 Fleener 380 34.86 -91.01

Ruddell 358 35.79 -91.68 Hampton 323 34.78 -91.02

Salado 1814 35.72 -91.60 Hardy 432 34.71 -90.58

Washington 536 35.80 -91.81 Independence 87 34.76 -90.71
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Table A.3: Demand locations and magnitudes for Arkansas case study (cont.)

Twonship Demand Lat. Long. Twonship Demand Lat. Long.

White River 315 35.74 -91.51 Oak Forest 83 34.78 -90.89

Barren 461 35.49 -91.54 Richland 366 34.68 -90.76

Bateman 7775 35.59 -91.33 St. Francis 886 34.79 -90.56

Bird 792 35.76 -91.18 Spring Creek 4 34.70 -90.89

Breckenridge 763 35.44 -91.22 Texas 6360 34.85 -90.86

Bryan 724 35.50 -91.29 Union 412 34.87 -90.74

Cache 824 35.52 -91.17 Big Lake 864 35.85 -90.20

Bowen 1904 35.97 -90.05 Spring Creek 190 34.53 -90.77

Burdette 610 35.81 -89.96 Tappan 9306 34.34 -90.88

Canadian 472 35.92 -89.74 Bolivar 64 35.66 -90.99

Carson 413 35.61 -90.02 Dobson 626 35.66 -90.99

Chickasawba 4156 35.91 -89.89 Greenfield 372 35.66 -90.72

Dyess 4630 35.59 -90.23 Greenwood 5382 35.62 -90.37

Fletcher 324 35.78 -89.90 Little River 1660 35.51 -90.47

Golden Lake 484 35.52 -90.06 Lunsford 1759 35.57 -90.55

Half Moon Lake 335 35.91 -90.05 Owen 4429 35.51 -90.93

Hector 10121 35.84 -90.06 Scott 225 35.49 -90.72

Little River 10121 35.72 -90.20 Tyronza 1243 35.48 -90.34

McGavock 933 35.48 -90.13 West Prairie 2828 35.63 -90.91

Monroe 1754 35.69 -90.02 Willis 4232 35.66 -90.52

Neal 1085 35.95 -90.22 Belcher 404 34.54 -91.63

Scott 660 35.53 -90.15 Bullard 746 34.97 -91.63

Whitton 837 35.49 -90.25 Calhoun 1106 34.98 -91.44

Brinkley 1169 34.87 -91.23 Center 1168 34.85 -91.64

Brown 728 34.90 -91.31 Des Arc 947 35.05 -91.50

Cache 10034 34.72 -91.31 Hazen 8263 34.78 -91.59

Cleburne 2607 34.56 -91.10 Hickory Plain 83 34.99 -91.75

Cypress Ridge 645 34.75 -91.13 Lower Surrounded Hill 152 34.81 -91.41

Dixon 385 34.86 -91.14 Roc Roe 292 34.64 -91.47

Duncan 3722 34.60 -91.23 Tyler 396 34.68 -91.62

Greenfield 4 34.96 -91.18 Union 227 34.91 -91.65

Hindman 1875 34.66 -91.08 Upper Surrounded Hill 1691 34.89 -91.41

Jackson 112 34.52 -91.18 Watensaw 482 34.76 -91.47

Keevil 309 34.78 -91.24 White River 623 34.94 -91.54

Montgomery-Smalley 241 34.42 -91.08 Baker 361 36.46 -91.13

Pine Ridge 938 34.69 -91.18 Bristow 210 36.18 -91.00

Raymond 240 34.63 -91.12 Butler 73 36.17 -91.11

Richland 94 34.95 -91.24 Columbia 74 36.37 -90.93

Roc Roe 189 34.62 -91.35 Current River 1195 36.30 -90.84

Big Creek 217 34.48 -90.89 Dalton 2119 36.43 -91.18

Cleburne 156 34.61 -90.69 Demun 45 36.26 -90.98

Cleveland 91 34.48 -90.97 East Roanoke 234 36.19 -91.05

Cypress 76 34.48 -91.02 Eleven Point 39 36.36 -91.07

Hickory Ridge 160 34.59 -90.94 Foster 750 36.34 -90.98
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Table A.4: Demand locations and magnitudes for Arkansas case study (cont.)

Twonship Demand Lat. Long. Twonship Demand Lat. Long.

Hicksville 322 34.59 -91.02 Ingram 428 36.42 -90.99

Hornor 473 34.54 -90.68 Jackson 238 36.42 -91.09

Lake 632 34.41 -90.68 Janes Creek 6435 36.33 -91.22

Marion 194 34.60 -90.87 Little Black 419 36.45 -90.82

Mooney 175 34.19 -90.97 O’Kean 248 36.20 -90.84

St. Francis 1535 34.54 -90.60 Reyno 471 36.35 -90.77

Richardson 207 36.40 -90.87 Francure 424 35.14 -91.49

Running Lake 226 36.31 -90.88 Garner 387 35.10 -91.75

Shiloh 582 36.30 -91.06 Gravel Hill 177 35.25 -91.98

Siloam 520 36.47 -90.92 Gray 427 35.27 -91.80

Spring River 274 36.24 -91.17 Gum Springs 628 35.22 -91.76

Union 478 36.45 -91.30 Guthrie 411 35.39 -91.67

Warm Springs 635 36.47 -91.05 Harrison 542 35.30 -91.65

Water Valley 75 36.32 -91.12 Hartsell 206 35.47 -91.68

West Roanoke 851 36.23 -91.09 Higginson 407 35.18 -91.72

Wiley 353 36.19 -90.91 Jackson 233 35.49 -91.75

Black Fish 279 34.94 -90.56 Jefferson 7917 35.19 -92.08

Franks 103 34.95 -90.73 Joy 7917 35.30 -91.96

Garland 225 34.95 -90.46 Kensett 2540 35.22 -91.67

Goodwin 280 34.97 -90.99 Kentucky 732 35.32 -92.06

Griggs 762 35.07 -90.61 Liberty 4306 35.41 -91.45

Heth 104 35.06 -90.46 McRae 430 35.10 -91.81

Johnson 131 35.11 -90.71 Marion 777 35.35 -91.86

L’Anguille 884 35.09 -90.96 Marshall 293 35.24 -92.06

Madison 2140 35.01 -90.80 Mount Pisgah 282 35.32 -91.85

Prairie 593 34.96 -90.90 Red River 351 35.19 -91.60

Telico 957 35.10 -90.82 Royal 1716 35.10 -92.03

Wheatley 762 34.95 -91.10 Russell 841 35.37 -91.48

Albion 1858 35.34 -91.80 Union 1368 35.07 -91.89

Antioch 772 35.14 -91.94 Velvet Ridge 956 35.41 -91.57

Bald Knob 8465 35.29 -91.56 Walker 285 35.11 -91.70

Big Creek 8465 35.42 -91.80 Augusta 656 35.28 -91.33

Cadron 1354 35.34 -91.95 Barnes 76 35.32 -91.16

Cane 2211 35.19 -91.86 Cache 384 35.16 -91.22

Chrisp 431 35.12 -91.88 Caney 503 35.04 -91.13

Clay 223 35.38 -91.75 Cotton Plant 448 35.04 -91.26

Cleveland 368 35.16 -92.04 Dent 5145 35.23 -91.09

Coffey 3383 35.19 -91.97 De View 656 35.22 -91.18

Coldwell 1087 35.41 -91.61 Franks 156 35.13 -91.09

Crosby 289 35.30 -91.85 Freeman 3018 34.97 -91.33

Cypert 953 35.26 -91.46 Garden 222 35.08 -91.40

Denmark 606 35.48 -91.62 Point 167 35.15 -91.36

Des Arc 480 35.27 -91.90 Pumpkin Bend 299 35.30 -91.09

Dogwood 68 35.10 -91.61 White River 1108 35.40 -91.31
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Table A.5: POD locations in Arkansas case study

School Lat. Long. School Lat. Long.

Dewitt Middle School 34.30 -91.34 Marmaduke High School 36.19 -90.39

Gillett High School 34.12 -91.38 Oak Grove Middle School 36.06 -90.50

Stuttgart Junior High School 34.48 -91.56 Paragould Junior High 36.06 -90.51

Dewitt High School 34.28 -91.35 Green Co. Tech Jr. High School 36.07 -90.56

Humphrey High School 34.42 -91.71 Paragould High School 36.06 -90.51

Meekins Middle School 34.50 -91.55 Batesville High School 35.76 -91.62

Stuttgart High School 34.48 -91.56 Batesville Middle School 35.78 -91.65

Piggott High School 36.38 -90.18 Southside High School 35.70 -91.63

Rector High School 36.26 -90.30 Batesville Junior High School 35.75 -91.62

Corning High School 36.42 -90.58 Cord-Charlotte High School 35.82 -91.44

Annie Camp Jr. High School 35.83 -90.73 Cushman High School 35.87 -91.76

Bay High School 35.75 -90.57 Midland High School 35.55 -91.62

Brookland High School 35.91 -90.58 Newark High School 35.72 -91.45

Nettleton High School 35.84 -90.70 Southside Middle School 35.70 -91.63

Nettleton Junior High School 35.84 -90.70 Sulphur Rock High School 35.75 -91.50

Riverside High School 35.82 -90.44 Newport High School 35.60 -91.27

Westside High School 35.84 -90.70 Mccrory High School 35.26 -91.20

Buffalo Is. Central HS 35.89 -90.34 Newport Junior High School 35.60 -91.27

Douglas Macarthur Jhs 35.82 -90.69 Swifton High School 35.82 -91.13

Jonesboro High School 35.82 -90.71 Tuckerman High School 35.74 -91.20

Riverside Jr. High School 35.76 -90.34 Lynn High School 36.01 -91.25

Westside Middle School 35.84 -90.70 River Valley High School 35.97 -91.32

Valley View High School 35.78 -90.74 Sloan-Hendrix High School 36.20 -91.19

East Junior High School 35.16 -90.17 Walnut Ridge High School 36.06 -90.95

Marion Middle School 35.20 -90.20 Black Rock High School 36.11 -91.10

Turrell High School 35.38 -90.26 Hoxie High School 36.05 -90.98

West Memphis High School 35.15 -90.20 Lee High School 34.77 -90.76

Wonder Junior High School 35.15 -90.18 Anna Strong Middle School 34.77 -90.76

Crawfordsville High School 35.23 -90.33 Academic Center Of Excellence 35.70 -89.97

Earle High School 35.28 -90.47 Armorel High School 35.92 -89.80

Marion High School 35.20 -90.20 Blytheville High School 35.93 -89.91

Marion Junior High School 35.20 -90.20 Blytheville Middle School 35.93 -89.91

West Junior High School 35.15 -90.19 Buffalo Is. Central Jhs 35.94 -90.26

Parkin High School 35.26 -90.55 Osceola Junior High School 35.70 -89.98

Wynne High School 35.23 -90.78 Gosnell High School 35.96 -89.97

Wynne Junior High School 35.23 -90.78 Manila High School 35.88 -90.16

Cross County High School 35.40 -90.81 Osceola High School 35.71 -90.01

Wynne Intermediate School 35.23 -90.78 Rivercrest High School 35.57 -90.04

Delaplaine High School 36.23 -90.73 Brinkley High School 34.89 -91.19

Greene Co. Tech High School 36.06 -90.52 Clarendon High School 34.70 -91.31

131



Table A.6: POD locations in Arkansas case study(cont.)

School Lat. Long. School Lat. Long.

Holly Grove High School 34.60 -91.20 Hughes High School 34.95 -90.47

Central High School 34.54 -90.63 Palestine-Wheatley Junior High 34.92 -91.11

Marvell High School 34.56 -90.91 Palestine-Wheatley Senior High 34.97 -90.90

Miller Junior High School 34.56 -90.66 Forrest City Jr. High 35.02 -90.79

Barton High School 34.60 -90.75 Palestine-Wheatley Middle Sch. 34.91 -91.11

C.v. White High School 34.42 -90.80 Lincoln Middle School 35.01 -90.79

Elaine High School 34.31 -90.85 Ahlf Junior High School 35.25 -91.74

Kipp:delta College Prep School 34.52 -90.59 Bald Knob High School 35.31 -91.57

East Poinsett Co. High School 35.61 -90.34 Beebe Middle School 35.07 -91.90

Harrisburg High School 35.56 -90.73 Judsonia Middle School 35.28 -91.64

Marked Tree High School 35.53 -90.42 Kensett Middle School 35.23 -91.67

Weiner High Schoo 35.62 -90.91 Riverview High School 35.25 -91.69

Harrisburg Middle School 35.56 -90.72 Rose Bud High School 35.33 -92.07

Trumann High School 35.67 -90.52 White Co. Central High School 35.40 -91.68

Des Arc High School 34.98 -91.52 Bald Knob Middle School 35.31 -91.57

Devalls Bluff High School 34.78 -91.46 Beebe High School 35.07 -91.90

Hazen High School 34.78 -91.58 Beebe Junior High School 35.07 -91.90

Biggers-Reyno High School 36.34 -90.80 Bradford High School 35.43 -91.46

Maynard High School 36.42 -90.90 Mcrae High School 35.12 -91.82

Oak Ridge Central High School 36.37 -91.21 Pangburn High School 35.43 -91.84

Pocahontas Junior High School 36.28 -90.98 Searcy High School 35.25 -91.76

Pocahontas High School 36.28 -90.98 Southwest Middle School 35.25 -91.75

Forrest City High School 35.02 -90.79 Augusta High School 35.28 -91.37

Cotton Plant High School 35.01 -91.25
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Figure A.1: Evaluation of solutions obtained via Consider All. Grid labels: instance, α
and ω.
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Figure A.2: Evaluation of solutions obtained via Consider Only Verified. Grid labels:
instance, α and ω.
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Figure A.3: Evaluation of solutions obtained via Consider Minimax Regret. Grid labels:
instance, α and ω.
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Figure A.4: Comparison of solutions obtained via the three strategies. Grid labels: in-
stance, α and ω.
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Figure A.5: Evaluation of solutions obtained via Consider All. Grid labels: instance, α
and ω.
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Figure A.6: Evaluation of solutions obtained via Consider Only Verified. Grid labels:
instance, α and ω.
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Figure A.7: Evaluation of solutions obtained via Consider Minimax Regret. Grid labels:
instance, α and ω.

139



A1−1, 0.25, 0.25 A1−2, 0.25, 0.25 A1−3, 0.25, 0.25 A1−4, 0.25, 0.25 A1−5, 0.25, 0.25

A2−1, 0.25, 0.50 A2−2, 0.25, 0.50 A2−3, 0.25, 0.50 A2−4, 0.25, 0.50 A2−5, 0.25, 0.50

A3−1, 0.25, 0.75 A3−2, 0.25, 0.75 A3−3, 0.25, 0.75 A3−4, 0.25, 0.75 A3−5, 0.25, 0.75

A4−1, 0.50, 0.25 A4−2, 0.50, 0.25 A4−3, 0.50, 0.25 A4−4, 0.50, 0.25 A4−5, 0.50, 0.25

A5−1, 0.50, 0.50 A5−2, 0.50, 0.50 A5−3, 0.50, 0.50 A5−4, 0.50, 0.50 A5−5, 0.50, 0.50

A6−1, 0.50, 0.75 A6−2, 0.50, 0.75 A6−3, 0.50, 0.75 A6−4, 0.50, 0.75 A6−5, 0.50, 0.75

A7−1, 0.75, 0.25 A7−2, 0.75, 0.25 A7−3, 0.75, 0.25 A7−4, 0.75, 0.25 A7−5, 0.75, 0.25

A8−1, 0.75, 0.50 A8−2, 0.75, 0.50 A8−3, 0.75, 0.50 A8−4, 0.75, 0.50 A8−5, 0.75, 0.50

A9−1, 0.75, 0.75 A9−2, 0.75, 0.75 A9−3, 0.75, 0.75 A9−4, 0.75, 0.75 A9−5, 0.75, 0.75

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
Number of Facilities

D
is

ta
nc

e

Strategy CA CMR COV

Figure A.8: Comparison of solutions obtained via the three strategies. Grid labels: in-
stance, α and ω.
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