University of Arkansas, Fayetteville ScholarWorks@UARK

Technical Reports

Arkansas Water Resources Center

10-1-1982

A Faunal and Seasonal Study of the Aquatic Insects in Two Water Ecosystems in South Arkansas: DeGray Reservoir and the Upper Cadda River

Robert T. Allen University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/awrctr

Overaged Peart of the Fresh Water Studies Commons, and the Water Resource Management Commons

Recommended Citation

Allen, Robert T.. 1982. A Faunal and Seasonal Study of the Aquatic Insects in Two Water Ecosystems in South Arkansas: DeGray Reservoir and the Upper Cadda River. Arkansas Water Resources Center, Fayetteville, AR. PUB088.

This Technical Report is brought to you for free and open access by the Arkansas Water Resources Center at ScholarWorks@UARK. It has been accepted for inclusion in Technical Reports by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

A FAUNAL AND SEASONAL STUDY OF THE AQUATIC INSECTS IN TWO WATER ECOSYSTEMS IN SOUTH ARKANSAS: DeGRAY RESERVOIR AND THE UPPER CADDO RIVER

by Robert T. Allen

Arkansas Water Resources Research Center

University of Arkansas Fayetteville

Publication No. 88

1982

ARKANSAS WATER RESOURCES RESEARCH CENTER

OWRT PROJECT NO. A-046-ARK

FINAL REPORT

Project Title

A Faunal and Seasonal Study of the Aquatic Insects in Two Water Ecosystems in South Arkansas: DeGray Reservoir and the Upper Caddo River

Annual Allotment Agreement No.

14-34-0001-8004

FCCSET Research Category

John Michael Kopek

Project Began: May, 1978 Completion Date: May, 1980

Final Report: October, 1982

Name and Location of University Where Project is Conducted

University of Arkansas, Fayetteville, Arkansas

Principal Investigator Degree Discipline

Robert T. Allen Ph.D. Entomology

Student Assistant

B.S.

Zoology

Abstract

The impounding of the lower Caddo River to create DeGray Reservoir radically changed the water habitats in that portion of the Caddo River. A number of new and different habitats were created by the lake. The objective of this study was to determine what, if any, differences existed between the aquatic insect biotas of DeGray Reservoir and the upper Caddo River.

Four collecting stations along the shore of DeGray Reservoir and four stations along the upper Caddo River were selected as sampling sites. Collections were made at one month (March, April, Oct., Nov.) intervals or at two week intervals (May, June, July, August, Sept.) from March to December of 1979.

The data collected indicates that the upper Caddo River is approximately three times as rich in the diversity of taxa collected and the number of individuals collected as DeGray Reservoir.

Table of Contents

			Page
Cover Page	•	•	i
Introduction	•	•	1
Methods	•	•	2
Sampling Sites		•	2
Sampling Methods	•		3
Conclusion		•	4
Table I Occurrence of Mayflies (Ephemeroptera) at Sampling Sites Along the Caddo River and DeGray Reservoir			5
Table II Occurrence of Odonata (Dragonflies at Sampling Sites Along the Caddo River and DeGray Reservoir	•	•	6
Table III Occurrence of Stoneflies (Plecoptera at Sampling Sites Along the Caddo River and DeGray Reservoir			7
Table IV Occurrence of True Bugs (Hemiptera) at Sampling Sites Along the Caddo River and DeGray Reservoir		•	8
Table V Occurrence of Dobsonflies and Alderflies (Neuroptera) at Sampling Sites Along the Caddo River and DeGray Reservoir	•	•	9
Table VI Occurrence of Beetles (Coleoptera) at Sampling Sites Along the Caddo River and DeGray Reservoir			10
Table VII Occurrence of Caddisflies (Trichoptera) at Sampling Sites Along the Caddo River and DeGray Reservoir .		•	11
Table VIII Occurrence of Flys (Diptera) at Sampling Sites Along the Caddo River and DeGray Reservoir	•	•	12
Table IX Seasonal Occurrence of Ephemeroptera Along the Caddo River and in DeGray Reservoir	•	•	13
Table X Seasonal Occurrence of Odonata Along the Caddo River and in DeGray Reservoir			14
Table XI Seasonal Occurrence of Plecoptera Along the Caddo River and in DeGray Reservoir		•	15
Table XII Seasonal Occurrence of Hemiptera Along the Caddo River and in DeGray Reservoir		•	16
Table XIII Seasonal Occurrence of Neuroptera Along the Caddo River and in DeGray Reservoir		•	17
Table XIV Seasonal Occurrence of Coleoptera Along the Caddo River and in DeGray Reservoir	•	•	18

	Page
Table XV Seasonal Occurrence of Trichoptera Along the Caddo River and in DeGray Reservoir	19
Table XVI Seasonal Occurrence of Diptera Along the Caddo River and in DeGray Reservoir	20
Table XVII The Numbers of Aquatic Insect Taxa Occurring in Each of Two Study Areas, the Upper Caddo River and DeGray Reservoir: E = Endemic, Number of Taxa Occurring ONLY in	
· · · · · · · · · · · · · · · · · · ·	21
Table XVIII Seasonal Occurrence of All Aquatic Insect Fauna Collected in the Upper Caddo River and in DeGray Reservoir	22

INTRODUCTION

In any ecosystem, aquatic or terrestrial, members of the class Insecta are by far the most numerous in species and often biomass. They are an integral part of any food chain especially those in aquatic environments. They are, however, usually studied only superficially or neglected altogether. This is because many groups are difficult or impossible to identify and the large numbers of individuals are cumbersome to deal with, especially by the general ecologist/biologist. Both of these drawbacks can be largely overcome by careful planning by an entomologist.

Many insect species have rather precise habitat requirements for survival. If a habitat is modified, the insect faunal composition will change. Thus, the insect species present in a habitat are frequently indicators of both levels and kinds of pollution, types of substrate, types of vegetation and stream flow (in aquatic habitats).

The modification of the Caddo River by the formation of DeGray Reservoir created a new habitat. This, no doubt, had an effect on the aquatic fauna. The data collected under the auspices of this study document the differences between the aquatic insect faunas in the Caddo River and in DeGray Reservoir.

OBJECTIVES

The objectives of this project will be the following:

- 1. A Survey of the aquatic insect fauna in
 - (a) The DeGray Reservoir
 - (b) The Upper Caddo River
- 2. To determine the seasonal cycles of activity and abundance of selected taxa at the DeGray Reservoir site.

METHODS

Sampling Sites

With the aid of county highway maps, eight sampling stations were chosen. These stations were selected based on their being longitudinally distributed along the Upper Caddo River - DeGray Reservoir Complex, their accessibility and the likelihood of their being diverse aquatic and semiaquatic insect habitats.

Caddo River Stations

Station 1 - Headwaters area, 7 mi. west of Black Springs, Arkansas at Ark. Hwy. 8 bridge. Montgomery County R27W-T3S.

Station 2 - Caddo Gap, 1 mi. East of Caddo Gap, Arkansas at low water bridge 200 yds. upstream of Ark. Hwy. 240 bridge. Montgomery County R24W-T4S.

Station 3 - Glenwood, Ark. Hwy. 70 bridge at Glenwood, Arkansas. Pike County R24W-T5S.

Station 4 - Amity, 3.0 miles N.E. of Amity, Arkansas, at low water bridge 200 yds. upstream of Ark. Hwy. 84 bridge. Clark County R23W-T5S. DeGray Reservoir

Station 1 - Hwy. 346 Recreation Area, North side of DeGray Reservoir where Ark. Hwy. 346 ends. Hot Springs County R23W-T5S.

Station 2 - Arlie Moore Recreation Area, primitive camping area 1 mi. S.E. of Arlie Moore Ranger Station. Pike County R20W-T5S.

Station 3 - DeGray State Park Lakeside Vista ½ mi. E. of Ark. Hwy. 7 eastern entrance to DeGray State Park. Clark County R20W-T5S.

Station 4 - Spillway Recreation Area, Cove 150 yds. E. of boat launching ramp. Clark County R20W-T6S.

Sampling Methods

At each station on the Caddo River aquatic kick net samples were taken from both riffle and pool habitats and the shoreline vegetation was swept with an insect net.

At each station on DeGray Reservoir the shoreline vegetation was swept with an insect net and stones in the littoral zone were overturned and inspected for aquatic insects.

During each trip a black light sample was taken at one or more stations on both the Caddo River and DeGray Reservoir. Black lighting appears to be the most successful method of collecting a large diversity of adult aquatic and semiaquatic insects on both the Caddo River and DeGray Reservoir. Lighted parking, picnic, and restroom areas on the shoreline of DeGray Reservoir also provided productive sites for hand collecting adult aquatic and semiaquatic insects in the evening.

Insects collected by all methods were immediately placed in labelled vials filled with 70% Ethanol as a preservative. These were then returned to the lab for sorting and identification as time permitted.

CONCLUSIONS

The two objectives set forth in this proposal were accomplished.

Tables I-VIII present a detailed record of all the aquatic insect taxa that were collected and the stations at which they were collected.

Tables IX-XVI present a detailed record of all the aquatic insect taxa that were collected and the dates on which they were collected.

The data presented in Tables I-VIII are summarized in Table XVII. From summary Table XVII we may see that 85 insect taxa were collected in the Upper Caddo River while only 27 insect taxa were collected in DeGray Reservoir. Of the 27 taxa occurring in DeGray Reservoir all but 7 taxa also occurred in the Upper Caddo River. It appears that the DeGray Reservoir has a depauperate aquatic insect fauna in relation to the Upper Caddo River.

The data presented in Tables IX-XVI relevant to seasonal occurrence are summarized in Table XVIII. From summary Table XVIII it appears that there were no distinct seasonal cycles. There did seem to be a decrease in the number of specimens and taxa collected during December. Unfortunately we were unable to continue the sampling in the succeeding month and are therefore unable to positively identify this apparent decrease in numbers as a definite trend.

From the data collected we may conclude that there is a distinct quantitative and qualitative difference between the aquatic insect fauna of the Upper Caddo River and DeGray Reservoir. We may also note that no distinct seasonal cycles of abundance and non abundance appeared during the sampling period.

TABLE I OCCURRENCE OF MAYFLIES (EPHEMEROPTERA) AT SAMPLING SITES ALONG THE CADDO RIVER AND DEGREY RESERVOIR

		CA	DDO			DEG	REY	
	1	2	3	4	1	2	3	4
Batisca sp. Baetis sp. Caenis sp. Callibaetis sp.	22 9	1 3 1	2 23 1	35			1 ,1A	
Choroterpes sp. Ephemerella dorothea Ephemerella serrata	3	7	8 1 1	1			,1/1	
Ephemerella serratoides Ephoron album Heptagenia hebe Heptagenia maculipennis	3	3		1 3	,20A			
Heptagenia sp. Heterocleon sp. Hexagenia atrocaudata	54 13	25 15	58 19	10 13 2 12				
Hexagenia limbata Hexagenia recurvata Hexagenia rigida Isonychia sp. Leptophlebia sp.	2	12 5	139	86	,15A	, 2A	,1A ,14A	, 5A
Paraleptophlebia praepedita Paraleptophlebia sp. Pentagenia vittiger Potamanthus sp. Pseudocleon dubium	10 8			1 2			,19A	, 6A
Rhithogena sp. Stenonema area Stenonema canadensis	16	49	25 17	2 5 1 15				
Stenonema femoratum Stenonema frontale Stenonema heterotarsae	1	1	2 3	5 6				1 3
Stenonema integrum Stenonema nepotellum Stenonema rubrum Stenonema tripunctatum	9	29 15 15	,5A 172 46 15	2 67 41 18		1.14	35,58A	17.7A
Stenonema sp. Tricorythodes atratus		1 5 5	2	1		- 9 - 11		

TABLE II OCCURRENCE OF ODONATA (DRAGONFLIES) AT SAMPLING SITES ALONG THE CADDO RIVER AND DEGREY RESERVOIR

		CAD	DO			DEGR	E.Y	
	1	2	3	4	1	2	3	4
Agrion sp. Argia sp. Calopteryx maculata Dromogomphus spinosus Gomphys sp. Hagenius brevistylus Hetaerina americana Ischnura sp. Lanthus albistilus Macromia taeniolata	2 2 2 4	1 3,1A 2 4 1 7	14 1 1 5	,11A 7 2 ,2A 25 2	,1A 2		,1A	,2A

TABLE III OCCURRENCE OF STONEFLIES (PLECOPTERA) AT SAMPLING SITES ALONG THE CADDO RIVER AND DEGREY RESERVOIR

		CA	DD0			DEGRE	Υ	
	1	2	3	4	1	2	3	4
Acroneura abnormis Acroneura arida Acroneura sp. Hastaperla sp. Isoperla sp. Neoperla clymene Nemoura sp. Neophasganiphora capito Perlest placida Perlinella drtmo Taenionema sp. Taeniopteryx sp.	4 10 10 38 30 1	2 2 18 50 12	2,1A 27 188 3 2 4	,2A 23,5A 25 8 279 9	,2A 15,17A		, 5A	

TABLE IV OCCURRENCE OF TRUE BUGS (HEMIPTERA) AT SAMPLING SITES ALONG THE CADDO RIVER AND DEGREY RESERVOIR

		CADD	0			DEGRE	Υ	
	1	2	3	4	1	2	3	4
Gerris marginatus Gerris rerigis Ragovelia obesa Ranatra sp. Trepobates knighti	,2A ,3A ,12A ,1A ,3A		,1A	,3A ,3A	,3A		,1A	

TABLE V OCCURRENCE OF DOBSONFLIES AND ALDERFLIES (NEUROPTERA) AT SAMPLING SITES ALONG THE CADDO RIVER AND DEGREY RESERVOIR

		CADDO)			DEGREY	1	
	1	2	3	4	1	2	3	4
Corydalus cornutus Nigronia sp. Sialis sp.	9	8	50	35,1A 4		7	,3A	,1A

TABLE VI OCCURRENCE OF BEETLES (COLEOPTERA) AT SAMPLING SITES ALONG THE CADDO RIVER AND DEGREY RESERVOIR

		CADE	00		DEGREY						
	1	2	3	4	1	2	3	4			
Bidessus sp. Dineutus assimilis Dineutus discolor Dineutus sp. Enochrus sp. Gyrinus sp. Heterocerus sp. Helichus lithophilus Psephenus sp. Stenelmis sp. Tropisternus lateralis	,1A 50,5A 17,7A ,2A	,1A 4 10,18A	,1A 10 3,9A 2A	,6A ,2A 1 ,4A 5 5,21A	1 52 21	13	1	3			

TABLE VII OCCURRENCE OF CADDISFLIES (TRICHOPTERA) AT SAMPLING SITES ALONG THE CADDO RIVER AND DEGREY RESERVOIR

	CADDO DEGREY										
	1	2	3	4	1	2	3	4			
Agapetus sp. Cheumatopsyche sp. Chimara sp. Helicopsyche sp. Hydropsyche sp. Leptocelua exquisita Oecetis cinerarcens Polycentropus sp. Psychomyia sp. Pycnopsyche sp. Rhyacophila sp. Triaenodes tarda	14 35 4 27 3 ,30A 3 5	1 8 2 2 2	48 29 4 39 4	59 21 3 29 ,50A ,75A			,26A ,28A				

TABLE VIII OCCURRENCE OF FLYS (DEPTERA) AT SAMPLING SITES ALONG THE CADDO RIVER AND DEGREY RESERVOIR

		CADD	0			DEG	REY	
	1	× 2	3	4	1	2	3	4
Atherix sp. Chironomus sp. Ericera fultonensis Simulium sp. Stratomys sp. Tabanus sp. Tipula abdominalis	9	2 2 2 1	2 3 6 3	7 8 33 2 4	12	27	1	200.0

TABLE IX SEASONAL OCCURRENCE OF EPHEMEROPTERA ALONG THE CADDO RIVER AND IN DEGREY RESERVOIR

EPHEMEROPTERA	: 3/7	4/6	5/7	5/16	5/31	6/1	6/15	6/ 2 9	7/7	7/13	7/27	8/16	9/8	9/30	10/26	12/29
ântisca sp.	2	1														
Baetis sp.	ļ	2		15	13			9		6	18	12		4	4	
Caenis sp.		3		6	2				1							
Callibaetis			<u></u>							1A						
Choroterpes sp.				1_	3		7	4			2	5				
Sphemerella dorothea		1														
Ephemerella serrata		1		1												
Ephemerella serratoides				1												
Ephoron album								1		2						
Peptagenia hebe				3												
Heptagenia maculipennis					3						0					
Heptagenia sp.		4		16	21		8	25		8	22	27		15	1	
Heterocleon sp.	17	2		23	1		6	1			5	_ 4		1		
Hexagenia atrocaudata					1		1	-								
Fexagenia limbata				4		Ш	9	1								1
Hexagenia recurvata										1A						
Hexagenia rigida			8		2A			15A		14A	5A					
Isonychia sp.	18	30		12	1		8	29		20	30	37		24	20	10
Leptophlebia sp.	1	10			5											
Paraleptophlebia praepedita				10	5											
Paraleptophlebia sp.								3								
Pentagenia vittigeri								20A		21A	4A					
Potamanthus sp.					1											
Pseudocleon dubium	2															
Shithogena sp.		8		15	7								30			
Stenonema area							1									
Stemonema canademsis	2	1		17	16		17	2		6	8	7		1	2	
Stenonema femoratum												5		1	1	
Stenonema frontale				1	8							3				
Stenonema heterotursae												3			Co.	
Stenonema Integrum			į	1				5 A		1						
Stempnema mepotellum	23	24		35	6		5	42		51	36	31		9	25	6
Stenonema rubrum	1	2		15	12		2	4		9	11	32		6		5
Stenonema tripunctatum	7	6		1	1		2	16A 1		50A 2	3	60			18	5
Stenonema sp.				1			2	3		1						

ODONATA	3/7	4/6	5/7	5/16	5/31	6/1	6/15	6/29	7/7	7/13	7/27	8/16	9/8	9/30	10/26	12/29
Agrion sp.				2												
Argia sp.		1		2A	2A 3	3	1A 2				3A 2	1			6	
Calopteryx maculata											1A					
Dromogomphus spinosus		2		2	1		2									2
Gomphus sp.	1				1											
Hagenius brevistylus					6		2									
Hetaerina americana					2A						1A					
Ischnura sp.	1			17	11							1		1		
Lanthus albistylus	2	1	1	3			1A	1		4	2	1				
Macromia taeniolata							2									

14

TABLE XI SEASONAL OCCURRENCE OF PLECOPTERA ALONG THE CADDO RIVER AND IN DEGREY RESERVOIR

PLECOPTERA	3/7	4/6	5/7	5/16	5/31	6/1	6/15	6/29	7/7	7/13	7/27	8/16	9/8	9/30	10/26	12/29
Acroneuria abnormis							2A									
Acroneuria arida	6			4												
Acroneuria sp.	1	3		5	3A 2		3A 2			1					1	1
Hastaperla sp.	1	2		9												3
Isoperla sp.	7	75		1												8
Neoperla clymene	9	10		69	48		190A 45	67		36	1A 45	64	4A	1A 9	10	8
Nemoura sp.	16															
Neophasganophora capito				11												
Perlesta placida				4												
Perlinella drymo				1												
Taenionema sp.	12															
Taeniopteryx																3

TABLE XII

SEASONAL OCCURRENCE OF HEMIPTERA ALONG THE CADDO RIVER AND IN DEGREY RESERVOIR

HEMIPTERA	3/7	4/6	5/7	5/16	5/31	6/1	6/15	6/29	7/7	7/13	7/27	8/16	9/8	9/30	10/26	12/29
Gerris marginatus				6A												
Gerris remigis	2A					1A		1A		1A	1A	1A				
Ragovelia obesa						6A				1A	4A			4A		
Ranata sp.				1												
Trepobates knighti						-		7A			1A	3A				

TABLE XIII SEASONAL OCCURRENCE OF NEUROPTERA ALONG THE CADDO RIVER AND IN DEGREY RESERVOIR

NEUROPTERA	3/7	4/6	5/7	5/16	5/31	6/1	6/15	6/29	7/7	7/13	7/27	8/16	9/8	9/30	10/26	12/29
Corydalus cornutus	2		3	16	3	3	10	4		4	12	1A 29		9	8	
Nigronia sp.			1			,					i					
Sialis sp.				11A	4											

TABLE XIV SEASONAL OCCURRENCE OF COLEOPTERA ALONG THE CADDO RIVER AND IN DEGREY RESERVOIR

COLEOPTERA	3/7	4/6	5/7	5/16	5/31	6/1	6/15	6/29	7/7	7/13	7/27	8/16	9/8	9/30	10/26	12/29
Bidessus				_										IA		
Dineutus assimilis				3A	1A		2A	2A								
Dineutus discolor	1									2A						П
Dineutus sp.				1		8										Sé.
Enochrus sp.														52A		
Gyrinus sp.				4A												
Heterocerus sp.														21A		
Helichus lithophilus				1A	1A					1A	1A	1A	1A			
Psephenus sp.	4	4A 4		15	20		1	1A 9			10			4		1
Stenelmis sp.	14			6A 7	12A 5		1A	9A 4		10A 1	9A	9A 2		1		1
Tropisternus lateralis								1A		1A	13A	3A	2A			

19

TABLE XV
SEASONAL OCCURRENCE OF TRICHOPTERA ALONG THE CADDO RIVER AND IN DEGREY RESERVOIR

TRICHOPTERA	3/7	4/6	5/7	5/16	5/31	6/1	6/15	6/29	7/7	7/13	7/27	8/16	9/8	9/30	10/26	12/29
Agapetus sp.	9			3	3								i			
Sheumatopsyche sp.	18	1		1	22		12	44		25	22	10		2		3
Chimara sp.	2	3		7	1		2	7		10	5	14	,	4		1
Helicopsyche sp.	2			2	12			4			6	5				1
Hydropsyche sp.				8	-1		21	13		18	7	9				
Leptocelia exquisita					30A		50A									
Oecetis cinerarcens				26			75A						_			
Polycentropus sp.				4	1			1			1					
Psychomyia sp.					5											
Pycnopsyche sp.	9	1														
Rhyacophila sp.																1

TABLE XVI SEASONAL OCCURRENCE OF DIPTERA ALONG THE CADDO RIVER AND IN DEGREY RESERVOIR

DIPTERA	3/7	4/6	5/7	5/16	5/31	6/1	6/15	6/29	7/7	7/13	7/27	8/16	9/8	9/30	10/26	12/29
Atherix sp.	2									2						
Chironomus sp.	2	8		18	13		2	3	11		2	6		-		
Eriocera fultonensis				3	1		1	4		1	5	1				
Simulium sp.	9	1					1									30
Stratomys sp.									1							
Tabanus sp.		1		1			1			2		1			1	
Tipula abdominalis	4	10		5								1				2

TABLE XVII

THE NUMBERS OF AQUATIC INSECT TAXA OCCURRING IN EACH OF TWO STUDY AREAS, THE UPPER CADDO RIVER AND DEGRAY RESERVOIR:

E = ENDEMIC, NUMBER OF TAXA OCCURRING ONLY IN ONE STUDY AREA

		CADD	O RIV			D	EGRAY		RVOIR		
	No. Genera	No. E	Add Sp.	No. E.	TOTAL	No. Genera	No. E.	Add Sp.	No.	TOTAL	
Ephemeroptera	18	15	13	12	31	6	1	4	4	10	
Odonata	10	0	0	0	10	4	0	0	0	4	
Plecoptera	10	8	2	1	12	2	0	0	0	2	
Hemiptera	5	4	0	0	5	1	0	0	0	1	
Neuroptera	3	2	0	0	3	1	0	0	0	1	
Coleoptera	5	4	2	2	7	1	4	0	0	5	
Trichoptera	11	10	0	0	11	2	1	0	0	2	
Diptera	6	5	0	0	6	2	1	0	0	2	

TABLE XVIII SEASONAL OCCURRENCE OF ALL AQUATIC INSECT FAUNA COLLECTED IN THE UPPER CADDO RIVER AND IN DEGRAY RESERVOIR

3/7	4/6	5/7	5/16	5/31	6/1	6/15	6/29	7/7	7/13	7/27	8/16	9/8	9/30	10/26	12/29
83		95	178	2A 106		68	56A 125		87A 105	9A 135	226		61	71	27
4	4	1	2A 24	4A 22	3	2A 8	1		4	5A 4	3		1	6	2
52	40		104	3A 50	0	195A 47	67		37	1A 45	64	4A	1A 9	11	23
2A			6A 1		7A		8A		2A	6A	4A		4A		
2		4	11A 16	7	3	10	4		4	12	1A 24		9	8	
18	4A 4		14A 23	14A 25		3A 1	13A 13		14A 1	23A 10	13A 2	3A	74A 5		2
40	5		51	30A 44		125A 35	69		48	41	38		6		6
17	2		27	14		5	7	12	5	7	9			1	32
	83 4 52 2A 2 18	83 4 4 52 40 2A 2 18 4A 40 5	83 95 4 4 1 52 40 2A 2 4 18 4A 40 5	83 95 178 4 4 1 24 52 40 104 2A 6A 1 2 4 16 4A 14A 23 40 5 51	83 95 178 106 4 4 1 24 22 52 40 104 50 2A 6A 1 2 4 16 7 18 4A 14A 23 25 40 5 51 30A 44	83 95 178 106 4 4 1 24 22 3 52 40 104 50 0 2A 6A 7A 1 2 4 16 7 3 18 4 23 25 40 5 51 30A 44	83 95 178 106 68 4 4 1 2A 4A 2A 52 40 104 50 0 47 2A 6A 7A 1 2 4 16 7 3 10 4A 14A 14A 14A 3A 18 4 23 25 1 40 5 51 44 35 35	83 95 178 106 68 125 4 4 1 24 22 3 8 1 52 40 104 50 0 47 67 2A 6A 7A 8A 1 11A 7 3 10 4 2 4A 14A 14A 3A 13A 18 4 23 25 1 13 40 5 51 44 35 69	83 95 178 106 68 125 4 4 1 2A 4A 2A 2A 1 52 40 104 50 0 47 67 2A 6A 7A 8A 11A 7 3 10 4 2 4A 14A 14A 3A 13A 18 4 23 25 1 13 40 5 51 44 35 69	83 95 178 106 68 56A 125 87A 105 4 4 1 2A 24 22 3 8 1 4 2A 8 1 4 4 52 40 104 50 0 47 67 37 37 2A 6A 1 7A 8A 2A 1 2A 8A 2A 1 2 4 16 7 3 10 4 4 4 4B 4 14A 14A 23 25 1 13 13 1 14A 13 14A	83 95 178 2A 106 68 56A 125 87A 105 135 4 4 1 2A 24 22 3 8 1 4 4 52 40 104 50 0 47 67 37 45 2A 6A 1 7A 8A 2A 6A 2 4 16 7 3 10 4 4 12 4A 18 4A 23 25 1 13 14A 23A 10 40 5 51 30A 44 125A 35 69 48 41	83 95 178 106 68 125 87A 9A 4 4 1 2A 4A 2A 2A 4A 3 52 40 104 50 0 47 67 37 45 64 2A 6A 7A 8A 2A 6A 4A 2 4 16 7 3 10 4 4 12 24 4A 14A 14A 3A 13A 14A 23A 13A 18 4 23 25 1 13 1 10 2 40 5 51 44 35 69 48 41 38	83 95 178 106 68 125 87A 105 135 226 4 4 1 24 22 3 8 1 4 4 3 52 40 104 50 0 47 67 37 45 64 2A 6A 1 7A 8A 2A 6A 4A 2 4 16 7 3 10 4 4 12 24 4A 14A 14A 3A 13A 14A 23A 13A 3A 18 4 23 25 1 13 1 10 2 40 5 51 44 35 69 48 41 38	83 95 178 106 68 56A 125 87A 105 9A 135 226 61 4 4 1 2A 24 4A 22 2A 3 8 1 4 4 4 3 1 52 40 104 50 0 47 67 37 45 64 9 2A 6A 1 7A 8A 2A 6A 4A 4A 2 4 11A 16 7 3 10 4 4 12 24 9 4A 18 4A 4 14A 23 13A 25 1 13 14A 10 23A 25 13A 13A 10 14A 23 23A 25 15A 25A 35 69 48 41 38 6	83 95 178 106 68 56A 125 87A 105 135 226 61 71 4 4 1 2A 4A 22 2A 8 1 4 4 4 3 1 6 52 40 104 50 0 47 67 37 45 64 4A 1A 1A 9 11 2A 6A 1 7A 8A 2A 6A 4A