
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2018

Improving the Efficacy of Context-Aware
Applications
Jon C. Hammer
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

Part of the Graphics and Human Computer Interfaces Commons, and the OS and Networks
Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Hammer, Jon C., "Improving the Efficacy of Context-Aware Applications" (2018). Theses and Dissertations. 2703.
https://scholarworks.uark.edu/etd/2703

https://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fetd%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.uark.edu%2Fetd%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.uark.edu%2Fetd%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/2703?utm_source=scholarworks.uark.edu%2Fetd%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


Improving the Efficacy of Context-Aware Applications

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Science

by

Jon C. Hammer
University of Arkansas

Bachelor of Science in Computer Science, 2012
University of Arkansas

Master of Science in Computer Science, 2016

May 2018
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council

Michael S. Gashler, Ph.D.
Dissertation Director

John Gauch, Ph.D. Jingxian Wu, Ph.D.
Committee Member Committee Member

Xintao Wu, Ph.D.
Committee Member



ABSTRACT

In this dissertation, we explore methods for enhancing the context-awareness capa-

bilities of modern computers, including mobile devices, tablets, wearables, and traditional

computers. Advancements include proposed methods for fusing information from multiple

logical sensors, localizing nearby objects using depth sensors, and building models to better

understand the content of 2D images.

First, we propose a system called Unagi, designed to incorporate multiple logical sen-

sors into a single framework that allows context-aware application developers to easily test

new ideas and create novel experiences. Unagi is responsible for collecting data, extract-

ing features, and building personalized models for each individual user. We demonstrate the

utility of the system with two applications: adaptive notification filtering and a network con-

tent prefetcher. We also thoroughly evaluate the system with respect to predictive accuracy,

temporal delay, and power consumption.

Next, we discuss a set of techniques that can be used to accurately determine the

location of objects near a user in 3D space using a mobile device equipped with both depth

and inertial sensors. Using a novel chaining approach, we are able to locate objects farther

away than the standard range of the depth sensor without compromising localization accu-

racy. Empirical testing shows our method is capable of localizing objects 30m from the user

with an error of less than 10cm.

Finally, we demonstrate a set of techniques that allow a multi-layer perceptron (MLP)

to learn resolution-invariant representations of 2D images, including the proposal of an

MCMC-based technique to improve the selection of pixels for mini-batches used for training.

We also show that a deep convolutional encoder could be trained to output a resolution-

independent representation in constant time, and we discuss several potential applications

of this research, including image resampling, image compression, and security.
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1 Introduction

1.1 Context

For many years, an important goal for researchers has been to create devices, such as

smartphones, tablets, and wearables, that are capable of observing and reacting to changes

in the state of a user. As opposed to simpler devices that do not take the user’s state

into account, these enhanced devices offer the ability to realize many practical applications,

including personalized content recommendation, personal fitness companions, and indoor

navigation systems. Such aspirations can be realized by creating personalized models for each

user, making use of both hardware and software sensors on the device to record important

contextual information.

Traditionally, Context has referred to three aspects of an individual: what you are

doing, where you are, and what (or who) is near you [1]. Context represents the “state”

of a person and can be decomposed into three major facets corresponding to the three

previous aspects of the definition. Physical context includes physical activities (e.g. sitting

or working), locational context includes one’s current physical location (e.g. GPS coordinates

or a label, like “home”), and proximate context includes objects that are nearby and one’s

social setting (e.g. whether you are currently communicating with a colleague).

Devices that are context-aware are able to infer one or more facets of an individual’s

context, usually by analyzing data from one or more internal sensors. For example, activity

recognition techniques are commonly used to infer a user’s physical context. These tech-

niques use information provided by inertial sensors such as the accelerometer or gyroscope

to determine the physical activity of the user, which may include sitting, standing, walking,

driving, or other similar activities [2]. Another example is determination of a user’s logical

1



location, or a high level label, such as “home” or “work”, that describes the location of the

user. These labels can be inferred based on sensory information from internal radios and

temporal information (e.g. time of day or day of week) [3].

Recent trends in context-aware computing suggest traditional techniques for context-

inference (e.g. processing information solely from internal sensors) may not be entirely

sufficient for some problems. While inertial sensors are quite useful for activity recognition,

for example, it is not immediately apparent that they would be helpful in inferring a person’s

mood or state of mind. This suggests that alternative sources of information might be needed

to satisfy the requirements of future context-aware applications.

Apart from the sources of information, the traditional methods for processing that

data may also be unsuitable for novel applications. For example, while depth sensors can

easily be applied to the problem of determining the relative location of a nearby object, novel

techniques are needed to address their limited effective range in practice. New algorithms

and techniques will have to be developed to address these problems in the future.

In this dissertation, our goal is to combine traditional context-sensing techniques

with novel ones to expand the capabilities of context-aware systems. To do so, we look

deeper into each of the three facets of context mentioned earlier (physical, locational, and

proximate). We extend physical context by incorporating logical information about the user

(e.g. how he is feeling) into the system model. Rather than simply localizing the user, we

extend locational context to include the position of objects near the user. Lastly, we extend

proximate context to include other information about nearby objects by explicitly building

models to approximate scenes present in images. In the next section, we will discuss each of

these advancements individually.
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1.2 Key Problems

Physical context is defined by the physical activity of an individual user. Previous

research has demonstrated that logical activity (for example whether or not the user is busy

or stressed) can also be important for realizing context-aware applications [4], but the lack

of development frameworks that focus on providing context sensing capabilities hinders the

ability of application developers to take advantage of those features. The first problem

we approach is that of incorporating multiple logical sensors into a framework that allows

context-aware application developers to easily test new ideas and create novel experiences.

We explore the costs associated with collecting relevant features about the user and with

creating personalized models on the device itself to minimize latency and security concerns.

Localizing nearby objects is another important context-awareness problem, as such

knowledge simplifies the process of developing novel applications that can observe and react

to their environment. Developers are currently limited in their ability to take advantage of

the locations of nearby objects due to comparatively high sensing costs. Highly accurate

solutions (e.g. vision-based methods) tend to be prohibitively expensive in terms of power

consumption, computational complexity, and sensor cost, while highly efficient solutions (e.g.

RF-based methods) tend to be prohibitively inaccurate. The primary challenge in addressing

this limitation is to create a solution that is both reasonably accurate and fairly inexpensive

that can be applied to consumer-level products. We address this issue by exploring techniques

to improve the accuracy of inexpensive depth sensors that can be embedded within certain

mobile devices, such as Google’s Project Tango tablet.

Proximal context-awareness requires an understanding on some level of the environ-

ment around an individual. Just as humans need eyes, ears, and other sensory organs to

collect data about their environments, machines need hardware sensors such as cameras or

3



microphones to accomplish the same goal. While collecting that data is generally a straight-

forward task, processing it is more difficult. As a result, there are many open problems

involved with the transformation from raw data to useful contextual information. For ex-

ample, image processing applications typically work with the discrete representations of 2D

images that are produced by digital cameras, but for certain tasks, a continuous resolution-

independent representation could be a more natural approach. We focus on the problems of

learning such representations using neural networks and applying those representations to

important tasks, such as image resampling, compression, and security.

1.3 Thesis Statement

We claim that existing methods for inferring context are insufficient for the problems

described in the previous section and that our contributions in this work will directly ad-

dress those limitations, lowering barriers that prevent context-aware applications from being

utilized to their fullest capacity.

1.4 Dissertation Overview

In this section, we summarize the remainder of the dissertation.

Chapter 2 provides the necessary background information about each of the three

primary topics: combining logical sensors to enable novel application development, improving

depth-based positioning, and learning resolution-independent image representations.

In Chapter 3, we discuss our work regarding the fusion of logical activity sensors in

detail. At a high level, we propose a framework, Unagi, that collects information about the

user and uses it to build an individualized model for some user-defined task. We use the

motivating example of notification filtering on a mobile phone to demonstrate the utility of

this framework in practice. We also present a thorough evaluation of the system in terms of

4



several metrics, including power consumption and model accuracy.

Chapter 4 focuses on our work regarding depth- and inertial-based positioning. We

discuss DIPS, a novel indoor positioning method that uses depth and inertial sensor data to

localize both mobile users and objects near them. Our primary contribution is a method to

extend the effective range of the depth sensor in order to accurately localize objects farther

away than the depth sensor would natively allow. As with our work with Unagi, we present

evaluation results to demonstrate the effectiveness of the technique in practice.

In Chapter 5, we discuss our work in learning resolution-independent image represen-

tations by fitting a multi-layer perceptron (MLP) to the individual pixels of an image. We

then demonstrate that such compressed image representations can be determined in constant

time by training a deep convolutional encoder network to map from the original image to

its representation. Finally, we demonstrate the utiltiy of such representations by examining

how they can be used for image resampling, image compression, and security.

Finally, in Chapter 6 we conclude our dissertation, summarizing each of the important

contributions we have made with this work.
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2 Background

In this chapter, we will provide more information about each of the three key problems

that will be addressed by the dissertation: combining logical sensors to enable novel applica-

tion development, improving depth-based positioning, and learning resolution-independent

image representations. For each problem, we will provide background information that will

be useful for motivating our work that is explained in more detail throughout the remainder

of this dissertation.

2.1 Logical Sensor Fusion

Especially in the field of mobile computing, a significant amount of research has been

done to create novel applications of the many hardware sensors already present in modern

mobile devices [5, 6, 7, 8]. For example, accelerometers and gyroscopes have been applied

to the problem of activity recognition – identifying the physical action being performed

by the user, and GPS, Bluetooth, and Wifi sensors have all been used for localization –

determining where the user is at any given point in time, especially if the user is inside a

building where location cannot be measured directly. This research has directly led to a

multitude of practical applications ranging from medicine to travel to gaming.

However, as most mobile devices are limited in terms of their energy budgets, making

full use of hardware sensors for the purposes of physical context inference has proven to

be a difficult challenge [9, 10]. This has motivated the search for alternative data sources,

especially those for which data can be extracted in an energy-efficient manner whilst still

being practically useful.
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One such alternative is smartphone usage information, which has been shown to be

both very inexpensive to collect and highly related to several important tasks. Communica-

tion history and application usage, for example, can be used for effective mood monitoring

and prediction [11, 12]. Generally, these approaches collect a set of information from the

device of the user and apply features derived from that information to address different

problems.

We recently showed that these logical sensing techniques can be used to detect the

feelings or emotions of users [4]. This problem is interesting because it explores a signifi-

cant connection between users and their devices that has only recently begun to have been

explored, and has several practical applications, such as a mood-sensitive music recommenda-

tion system. More formally, we defined several logical statuses of the user, including isBusy,

isStressed, isAlone, and isHappy. We also demonstrated how each status can be inferred

accurately by making use of information about applications, notifications, and the state of

the screen on a mobile device.

In this dissertation, we step forward from that previous work to the problem of using

logical sensing techniques to facilitate development of novel applications. We present Unagi,

a system designed to allow developers easy access to various primitive logical sensors, such

as those mentioned in the previous paragraph, as well as higher level constructs such as

the isHappy logical status. Unagi extracts features from these raw data sources and builds

personalized machine learning models for each individual user. It then correlates the features

to personalized goals set by the user, performing all processing on the device for optimal

latency and security.
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2.2 Depth-based Positioning

Smart mobile devices, particularly wearables such as Microsoft HoloLens [13], Google

Glass [14] and other similar systems [15, 16], have recently become popular, especially for

highly context-aware applications such as Augmented Reality (AR). A core challenge of

applications like these is determining the precise location of mobile users and the objects in

their immediate vicinity.

Locating mobile users and ambient objects in their environment is an active research

field in mobile computing. Odometry [17] is a classic method to realize simultaneous lo-

calization and mapping (SLAM) in a GPS-denied environment. Such systems integrate

acceleration and rotation samples in order to estimate the location of the device. Inertial

navigation systems can suffer from integration drift, however, where small errors accumulate

to cause inaccurate localization results over time [18].

RF-based localization is one widely investigated approach that is well-suited to lo-

cating locating moving objects, as well as objects attached to RF transceivers in indoor en-

vironments. The primary idea of RF-based methods is to take advantage of the unique RF

signal fingerprints at different places for localization purposes. Common RF-based methods

include WiFi localization [19], Near-field communication [20], and Ultra-wideband meth-

ods [21]. Recent RF-based methods can locate an object within 1-2 meters [22]. RF-based

methods have the immediate disadvantages of typically requiring an extensive infrastructure

and relatively poor accuracy in comparison to other methods.

Image-based indoor localization is another well-studied field [23]. Stereo vision-based

techniques [24] can compare a scene from two vantage points and extract 3D information from

the objects in the scene. Stereo vision can produce very accurate results, but implementation

on mobile platforms faces several practical challenges, including high computational and
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energy costs [25].

A popular alternative to the other approaches is an infrared projector paired with

a specialized camera tuned to the IR spectrum. These sensors (e.g.: OmniVision OV4682)

typically possess regular RGB imaging capabilities as well as a depth sensor. Compared with

pure CV-based 3D construction methods such as stereo vision, IR cameras are typically more

accurate in distance measurement and are much more energy-efficient in practice [26, 27].

Industrial systems, such as AICON 3D Systems [28] can reach an accuracy of centimeter

or even millimeter level but are difficult to integrate with mobile systems. Consumer-level

platforms, like Microsoft’s Kinect [29] and Google’s Project Tango [30], tend to be more

practical and are equipped with small form-factor IR optical sensors. Such devices have

recently begun to show the tremendous potential of optical-based localization for mobile

devices [31, 32].

In this dissertation, we wish to demonstrate that pure depth-based localization can be

effective using relatively inexpensive (and inaccurate) consumer-level IR sensors, especially

that found in Google’s Project Tango tablet. In particular, we present a thorough theoretical

analysis of the problem of assigning a location to an object in 3D space using only (potentially

noisy) depth information. Next, we discuss a set of techniques that can be used to localize

objects farther away than the stated range of the device using a multi-hop principle. We

further show that a customized optimization technique can be used to remove a significant

amount of the human error involved with such a process, achieving localization errors less

than 10cm in practice over a range of 30m.

2.3 Resolution-independent Image Representations

Inferring proximal context requires sensors capable of collecting data about the envi-

ronment around them. Depth sensors, as discussed in the previous section, are one method
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of doing so. However, while depth sensors can be very useful in localizing nearby objects,

they are not as well suited to object recognition or modeling as other sensors such as tradi-

tional cameras. This is due to the fact that a depth sensor (even a highly accurate one) only

provides information about the shape of an object, while traditional cameras can provide

information about both shape and texture. The images produced by cameras then, are a

valuable resource for a proximally context-aware application.

A signfificant amount of research has focused on the processing of images for different

goals, including feature extraction [33, 34], shape detection [35], object recognition [36, 37,

38], style transfer [39, 40], partial image completion [41, 42], and complete image generation

[43, 44, 45]. Many of these tasks will implicitly construct some model of the content of the

image in order to function. For example, one means of accomplishing image completion is

to fit a model to the pixels that are available (and perhaps to the pixels of several related

images). The model would then be used to predict the values of the missing pixels.

A common method for addressing this problem is to identify a mathematical expres-

sion that represents some part of the image. For example, the Hough Transform [34] can

be used to identify equations of lines and circles present in the image, and the Generalized

Hough Transform [35] can be used to detect arbitrary shapes. Other methods can be used

to represent the intensity values of the image instead of simply the shapes of objects in the

scene. The Fourier [46] and Cosine Transforms [47], for example, are alternative approaches

that represent the image as the summation of sinusoids of different frequencies and phases.

Of particular interest in this dissertation is an image model that is invariant to any

particular sampling resolution. Such a model would allow a context-aware application more

flexibility with its processing, since images could be resampled arbitrarily. In order to do

so, we will fit some nonlinear function to the pixels of the original image. The parameters

of that function will constitute a resolution-independent representation of the image. In our
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work, we will use a multi-layer perceptron (MLP) as the mapping function, as they have

been shown to be capable of approximating any arbitrary function [48].

In this dissertation, we will first propose a set of techniques that simplify the process

of learning a resolution-independent image representation using an MLP. We will then show

that it is possible to train a separate network (called an encoder) to map between the pixels

of the original image and its resolution-independent representation. The encoder produces

the weights of the mapping function as its output. As a result, resolution-independent

representations can be generated in constant time, avoiding a lengthy optimization process

at runtime. Next, we will discuss several potential applications of a resolution-independent

image representation, including image resampling, compression, and security.
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3 Unagi

Cognitive mobile applications have surged in recent years. As people spend more

time on mobile devices, usage information has become a critical contextual source for them.

Compared to hardware sensors, usage information is significantly less expensive to retrieve

and process, and provides new contextual information dimensions. Despite such unique ad-

vantages, developing usage pattern-based cognitive mobile applications faces several daunt-

ing challenges, in particular managing the overwhelming amount of information stemming

from various data sources and mining meaningful patterns to meet application goals. In

this paper, we present Unagi, a novel data analytics and inference framework that aims to

simplify the development of usage-based cognitive applications. Unagi provides high-level

abstractions to a plethora of usage data sources and provides an energy-efficient runtime

that supports efficient data acquisition and online pattern learning methods. We implement

two novel cognitive mobile applications on top of Unagi: an adaptive notification filter and a

network content prefetching module. We find that Unagi applications require two orders of

magnitude less code than standalone counterparts, and the runtime incurs negligible system

overhead for continuous usage, data acquisition, and pattern inference.

3.1 Introduction

Recent years have seen the rise of cognitive mobile systems [49]. As current smart-

phones and wearable devices have evolved to include sophisticated sensing and computation

capabilities, future mobile devices are poised to become an intelligent platform, capable of

understanding and adapting to the usage patterns of mobile users and providing personalized

user experiences.
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As mobile systems evolve to be more application-centric, usage data has become a

noticeable source of user-specific, contextual data. Recent market surveys have reported

that average mobile users not only spend significant amounts of time on smartphones on

a daily basis, but more importantly, they have greatly broadened the scope of smartphone

usage from traditional applications, such as telephony and games, to other territories such as

mobile payments and airline check-ins. Compared to hardware sensors such as the GPS and

microphone, usage information is significantly less expensive to retrieve and process. More

importantly, usage information has a direct correlation to user preferences and behavior

patterns. For example, recent studies have shown clear personalized patterns on how mobile

applications are used [50]. Even amongst similar mobile applications, the way people use

them can be dramatically different. Furthermore, usage patterns are closely correlated to

the context of the mobile users, especially location, time, social, and even emotional factors.

Despite the unique advantages of usage information as a data source, developing usage

pattern-based cognitive mobile applications faces daunting challenges. Mobile operating

systems provide a massive amount of system usage information. However, it is impractical

to leverage all of this information due to formidable energy and storage costs. It poses a

significant challenge to application developers to choose an appropriate set of usage data

sources and to extract and process data from them without consuming excessive system

resources. In addition, in order to enable pattern inference, there must exist a universal

interface to query these OS context sources. However, usage data sources are heterogeneous,

and so no such interface currently exists. Moreover, practical cognitive applications typically

require online pattern inference, and the cost of enabling such pattern inference on resource-

constrained devices can be prohibitive.

This paper presents the Unagi (meaning “complete awareness”) framework to address

the aforementioned challenges. The fundamental goal of Unagi is to enable fast prototyping
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of cognitive mobile applications with low system overhead. To achieve this goal, we systemat-

ically investigate heterogeneous usage information from three major data sources: broadcast

events, OS services, and OS logs. Unagi also contains a virtual sensor manager to enable uni-

versal access to these data sources with negligible system overhead and introduces a generic

learning framework to enable online usage pattern inference with low system overhead. This

learning framework includes a set of descriptive features, application-specific feature ranking

and selection methods, and online learning and model updating schemes. Based on the sens-

ing and inference frameworks, Unagi further introduces a set of programming APIs to allow

fast prototyping of cognitive applications that exploit these usage statistics. To evaluate the

performance of Unagi, two cognitive applications were created: a adaptive notification filter

and a network content prefetching module.

The key contributions of this paper are as follows:

• We propose the design and implementation of Unagi, a cognitive framework based on

usage information of mobile systems.

• We present a virtual sensing framework that transforms system usage information into

a set of software sensors that are highly correlated to usage patterns and are accessible

through a universal interface. Our evaluation results indicate that the continuous use

of our virtual sensing framework incurs less than 1% battery life degradation, which is

imperceivable to most mobile users.

• We design a generic learning framework that converts contextual information from the

OS into descriptive features, automatically selects a customized subset of features for

specific applications, and incorporates a lightweight pattern learner suitable for multi-

ple applications at the same time. Our evaluation results on two sample applications

indicate that our learning framework incurs negligible energy overhead to enable online
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learning and model updating, achieving an average of more than 90% accuracy for both

applications.

• We design a programming interface for fast prototyping of cognitive applications based

on usage information. We show that the Unagi framework can significantly ease the

difficulty of writing cognitive apps.

The rest of this paper is organized as follows. We first discuss cognitive mobile systems

and the process of using system usage as a contextual data source in Section 3.2. We then

present the overall architecture and the architecture of the sensing and inference components

in Sections 3.3, 3.4, and 3.5, respectively. Two case study applications are introduced in

Section 3.6. After that, we present the system implementation of Unagi in Section 3.7 and

evaluate its performance in Section 3.8. We conclude this paper with a discussion of future

work in Section 3.9.

3.2 Related Work

Cognitive phones, as coined by Campell et al in [49], emphasize the capability of

understanding user behavior under different contexts and adapting the system accordingly.

Decades of research has been conducted towards this vision by taking advantage of the

rich set of onboard sensors within mobile devices. Examples include motion[2, 51, 52, 53],

proximity[54, 55, 56], location[57, 58, 59, 60], and vision sensors[61, 62, 63]. Sensor-based

approaches have two intrinsic limitations. First, continuous sensing incurs formidable en-

ergy and computation expenses. Recent research indicates that using motion, proximity,

and location sensors can cause over 30% degradation of battery life[9, 64]. Complex signal

processing methods, such as FFT[52], MFCC[65], and SIFT[63], incur further computational

costs, which can degrade responsiveness[7]. Second and more importantly, hardware sensors
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are effective for recognizing physical contexts such as activity and mobility patterns, but are

not directly correlated to resource usage and user interaction patterns. For example, a user

sitting alone in a coffee shop could be misclassified as “in a group” if only ambient noise

were considered[55].

Mobile operating systems provide a large amount of usage information through data

sources such as OS logs, services, and callbacks. This information is collectively referred to

as the OS context, which contrasts the physical context obtained from sensors. There are

two unique advantages of the OS context. First, as the usage of smartphones increases, so

too does the salience of OS context sources because a rich set of system usage information

is provided. Second, retrieving the OS context incurs much lower cost than retrieving the

physical context through hardware sensors[66, 67]. In recent years, many cognitive mobile

systems based on OS context have emerged. Examples include logical status inference[68],

mood and stress inference[69, 11, 70, 71], app prediction[72, 73, 74], and many others.

Existing cognitive applications tend to follow a “chimney” methodology. In order to

design a cognitive application, developers have to decide which OS context sources are useful

for their applications and design both features to represent the OS context and learning

algorithms to make sense of the contextual data. This process (data collection, feature

design, and learner design) can be daunting for those developers, since the development

of cognitive applications requires extensive knowledge of both the mobile OS context and

machine learning techniques. We believe that much of this process can be automated to ease

the difficulty of cognitive application development. In this paper, we argue that it is critical

to design a generic architecture to fully unleash the potential of the OS context and to enable

cognitive applications. In particular, we focus on the following three questions. First, how

can we efficiently extract the OS context from the heterogeneous and unstructured data

sources, including OS logs, services, and callbacks? Second, how can we infer system usage

16



patterns from the OS context, in particular for resource usage and user interactions? Third,

how can we enable fast prototyping using the complete sensing and inference framework?

3.3 Unagi Architecture

To tackle the three challenges mentioned in the previous section, the following con-

siderations were taken into account with the design of the Unagi framework.

• Lightweight. The framework must not incur excessive overhead, in terms of CPU,

power use, or storage.

• Flexible. The framework should be generic enough for many heterogeneous applica-

tions.

• Configurable. The framework should greatly simplify the task of writing cognitive

applications while still allowing complexity when it is desired.

An overview of the Unagi cognitive framework is shown in Figure 3.1. The framework

consists of three layers. The sensing layer provides a set of virtual sensors that encapsulate

a variety of OS context sources and a universal query interface to access these sensors. The

inference layer provides a generic pattern learner that can infer a variety of system usage

patterns from the virtual sensors. Data pre-processing and model updating approaches are

also proposed to improve the performance of the pattern learner. The personalization layer

provides interfaces for the design of cognitive applications, especially resource management

applications, such as battery management, and personalized user interactions, such as app

preloading. In addition, our framework also includes a set of cognitive APIs to allow third-

party applications to access all three layers.
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Figure 3.1: Overview of the Unagi cognitive framework for mobile devices.

3.4 Energy-efficient Usage Analytics Framework

The OS context includes complex information about how the system is used. However,

the sources of OS context are usually heterogeneous. For example, the OS contexts of both

Android and iOS can be retrieved from three primary data sources: OS logs, services, and

broadcast event callbacks. There are dozens of such OS context sources, and the accessing

interface for each varies significantly.

Initial OS context management approaches have largely focused on manually screen-

ing the context sources for specific applications. For example, Pathak et al. exploits a set

of OS system calls to monitor the energy usage of smartphones[67]. Huang et al. uses the

screen status for network traffic analysis[75]. AppScope uses kernel activities for application-

level energy measurement[76]. Hammer er al. exploit application usage and user locations

for logical status prediction[68]. Although these approaches provide significant insight on

how useful the OS context can be, the challenges of managing the heterogeneous OS context

sources still exist.
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One goal of our framework is to simplify collection of usage information. Towards this

goal, several design considerations need to be addressed. First, the framework has to include

a diverse set of OS context sources that can be probed without modifying (e.g. rooting)

the kernel or the device. Second, collection of this data has to incur negligible overhead

when continuously running. Third, the framework has to provide a universal interface for

3rd party applications that wish to make use of the data sources we provide.

We first systematically study the problem of heterogeneous OS context sources. In

Android, there are three major types of usage data sources, namely broadcast events, OS

services, and OS logs. The means of retrieving usage data for each of these data sources varies

significantly. Broadcast events are naturally suited to passive data collection methods, in

which the data collector should only be active when an event is fired by the OS. OS services,

however, are better suited to active data collection methods, in which periodic or ad-hoc

polling is required to access the data sources. Passive data collection methods are effectively

energy-free, but active polling does incur certain energy costs. Therefore, while our design

does include several uniquely valuable active data sources, such as the current foreground

application and CPU and network logs, passive ones are generally preferred. Table 3.1 lists

several representative OS context sources found in our framework. A complete list contains

more data sources.

Based on these data sources, we designed a virtual sensing manager to provide a

universal query interface and handle the overhead of accessing them. The architecture of the

virtual sensor manager is depicted in Figure 3.2. Inspired by Android’s SensorManager and

the Funf Sensing Framework[77], our manager treats each usage data source as a “virtual

sensor”, similar to that stated in previous work [78]. The virtual sensor manager allows

clients to register for data from specific virtual sensors by specifying a set of key parameters,

such as the associated OS context source, sensor type, and sampling rate (if necessary).
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Table 3.1: A sample list of virtual sensors used in Unagi .

Virtual
Sensor

OS Context Sources Type

Applications Foreground app, Background services Broadcast, OS
Service

Notifications Notification time, sender, and user responses (ig-
nore or process)

Broadcast

Screen State Screen lock and unlock, Passive or active unlock Broadcast
Battery Residual battery, battery level change, charging

time, charging duration
Broadcast

WiFi Connected BSSID and SSID, Connection status
change

Broadcast

Bandwidth TCP/UDP connections, Statistics of Tx/Rx bytes
and packets

OS logs

Network Network connection type and duration, Connection
status change

Broadcast, OS
logs

Downloads time and name of downloaded apps Broadcast
Processor CPU usage, Processes, and wakelocks Broadcast, OS

logs
Memory Memory usage, eviction statistics OS logs
Storage Storage usage, storage status changes Broadcast
Package App download, install, removal Broadcast

Configuration of the virtual sensors is performed using a descriptive language, JSON in our

case, which also allows new sensors to be registered with our framework. We also designed a

universal query interface that supports both ad-hoc and continuous queries. Note that our

design also allows users to adopt the same paradigm used in accessing hardware sensors to

our virtual sensors wherein OS context sources are treated as black boxes that return data,

regardless of the type or access method.

3.5 Leveraging OS Context to Enable Usage Pattern Inference

Mobile users have immense diversity in using smartphones[50, 79], which suggests

that usage patterns are personalized and user behaviors can be inferred from them. An
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Figure 3.2: Unagi’s virtual sensor manager.

example is application usage prediction, which takes advantage of the fact that application

usage behavior is tightly correlated to certain OS context sources, such as the temporal

patterns of historical application usage[74] and recent notifications[68].

Although existing work provides useful insights on several individual smartphone

usage patterns, designing a usage pattern learning algorithm is not straightforward. A

typical design of such algorithms usually involves selecting OS context sources and designing

features to represent them, as well as designing and experimenting with machine learning

algorithms for accurate pattern inference. As future cognitive smartphones should be able

to infer a set of usage patterns simultaneously, manually designing the inference algorithms

for each cognitive goal cannot effectively scale and meet such requirements.

The goals of Unagi’s inference framework are two-fold. First, it aims to automate the

inference process by designing a generic learning framework to support a variety of cognitive

applications; second, it updates the inference model over time to enable online learning.
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Based on the virtual sensing framework presented in previous section, it is feasible to access

a large spectrum of the OS context and incorporate those sources into pattern learning.

However, given a specific cognitive goal, we still need to tackle the following questions to

automate the inference process: 1) how do we determine the right set of OS context sources

for that goal? 2) What is the right set of features that should be extracted from the OS

context sources? 3) How do we design a generic learner to fit different cognitive goals?,

and 4) how do we ensure low overhead in the inference process? Besides automating the

learning process, it is also critical that the pattern learner can evolve over time, enabling

online pattern learning. The rest of this section presents the design of Unagi ’s inference

framework that addresses these two challenges.

3.5.1 Automating usage pattern inference

Unagi’s inference framework divides the inference process into four steps, as shown

in Figure 3.3. The first step is to discretize the raw data from the sensing framework in

order form coherent bundles of data. This data is fed into a set of feature extractors, which

collectively produce a single instance vector. That vector is added to a training data set,

along with a training label provided by the client, and an internal learning model is updated

with the new information. After enough training data instances have been generated, a

feature selection process is applied to reduce the size of the feature space, effectively disabling

part of the framework for efficiency.

Discretization

Since all of the sensed data that is sent to Unagi’s inference framework is temporal in

nature, discretization is important in order to segment it. One approach is to use fixed width

time windows as a segment. In this case, the resulting instance vector represents the state
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Figure 3.3: Architecture of the Unagi inference framework.

of the system during that time window. Another approach is event-driven discretization. In

this case, most pieces of information will be pooled as they arrive. When certain data from a

specific source arrives, the entire pool is sent to the feature extractors as one coherent unit.

An example of this method is a notification arrival. In such a circumstance, each instance

of training data will correspond to one arrival event. This method is used by our adaptive

notification filter application, which is explained in more detail below. Since discretization

is primarily a pooling technique, it tends to incur very little power consumption on average.

Feature extraction

Extracting informative features from the OS context sensors is a vital step towards

usage pattern inference. One benefit to making use of these sources is that they are in-
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trinsically more highly correlated to some individual usage patterns than hardware sensors.

Another is that they tend to require less processing in order to extract relevant features,

since expensive computations (e.g. FFT) are usually unnecessary. Several feature categories

that we make use of in our framework include statistics calculated from the raw data, cur-

rent system states (e.g. screen ON/OFF, SSID, foreground app), and historical aggregations

(e.g. average notification response time), which have been shown to be useful in previous

works[80, 72, 56, 74]. All of these require very little additional processing to extract, so

our feature extractors can initially generate a complete feature table for each application by

exhaustively generating all potential features for all OS context data sources. In order to

optimize this process, each feature that is required by any application will only be extracted

one time. Those features that are used by multiple applications will be shared to reduce

unnecessary computation. Feature selection, the next stage in the process, provides another

optimization.

Feature selection

The primary goal of feature selection is to select the most relevant subset of features

for each specific cognitive goal. Feature selection techniques have been widely studied in

large-scale machine learning problems for improved accuracy and decreased training time[81,

82]. Another benefit is that they allow the framework to disable those features that are not

required for any of the inference goals, considerably reducing the feature extraction cost.

Feature selection occurs exactly once in most cases (during the transition between the

training and prediction phases), so the cost of the reduction is inconsequential. The choice

that remains is which technique to choose. Two common approaches include greedy attribute

selection[83], based on information gain, and Principal Component Analysis (PCA). Given

that our goal is to remove certain features from the superset completely, greedy attribute
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selection is a better choice as PCA requires that all features be calculated so they may then

be transformed into lower-dimensional space.

Generic learning

Conceptually, an ideal learner for general problems would be an ensemble of multiple

weak learners where the model that performs the best is chosen from the ensemble to handle

whichever problem it has been presented with. Unfortunately, this technique quickly becomes

infeasible due to the linear increase in cost with the number of weak learners. Instead, several

common weak learners were evaluated in isolation, such as J48 Decision Trees, K-NN, Näıve

Bayes, and Random Forests. Of those tested, decision trees tended to provide the best

tradeoff between cost and accuracy and so were chosen as the default model for Unagi’s

inference framework. Several other models are supported, however, so the client can adjust

results based on their unique application needs.

3.5.2 Online learning and model updating

After generating the generic learner, Unagi ’s inference framework also needs to up-

date the inference model over time to support online learning. Model updating is critical

to the practicability of our inference framework, as many user behaviors evolve over time,

new patterns emerge and old ones become obsolete. However, model updating also faces the

cost and performance tradeoff. Updating the model too often could incur high energy and

computational costs, while updating the model infrequently might cause inaccurate behavior

pattern learning results. There are at least two potential methods to mitigate the liability

that comes from excessive updates: 1) reduce the frequency of model updates, and 2) sub-

stitute a learning model that is capable of updating incrementally. These two approaches

have the added advantage of being mutually orthogonal to one another. Either can be used
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in isolation, or the two can be used in combination.

In order to reduce the update frequency, there are two primary methods: instance-

based and time-based approaches. Using the instance-based approach, the model is updated

every K instances, rather than every instance. Using the time-based approach, the model is

updated every t seconds instead. Both approaches are evaluated later in the paper.

The models produced by certain learning algorithms, such as artificial neural net-

works, are readily amenable to online training, wherein the model is updated after each

instance incrementally. Other algorithms, such as decision trees, are not. When a model is

used that does support online training, that model can be updated incrementally, which can

allow for potentially drastic performance increases. Models that do not have this property

must be completely rebuilt when an update is desired. Rebuilding costs, as we will show

later, increase linearly with the size of the training data, and so “offline” models are not

ideal for large-scale problems, even though they may still be suitable for smaller ones.

3.6 Case Studies using Unagi

In order to demonstrate the usefulness of Unagi , we present two concrete applica-

tions of the framework: one for adaptive notification filtering, the other for network content

prefetching. We chose these two applications not only because they are useful for mobile

users, but also due to the fact that they represent two different scenarios of using our frame-

work, with explicit and implicit labels respectively. We present the detailed setting of these

two applications, and evaluate the performance of our framework for them in Section 3.8.

3.6.1 Adaptive Notification Filtering

Individual applications often communicate with their users through status bar noti-

fications. These are typically used to inform the user about some asynchronous events, such
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as the arrival of an email or text message. However, such notifications could be distracting

to the user. Some notifications are simply spam; some other notifications, even those that

are not spam, may be perceived as distracting when issued at an inappropriate time. Most

mobile operating systems, such as Android and iOS, allow users to block notifications from

a given application to combat this problem. Some, such as newer versions of Android, allow

notifications to be filtered so that the user is only interrupted when a priority notification ar-

rives. These solutions are helpful, but do not currently provide enough granularity. Emails,

for example, might need to be filtered only for junk mail, but not for co-workers. Messages

from family members might be distracting when sent when the user is working. The burden

falls on the application developer to decide which notifications should be prioritized.

One possible improvement is to develop an adaptive notification filter. This filter

would monitor the user’s behavior and learn how to differentiate between those notifications

that should and those that should not be filtered out. Unagi could, in theory, remove much

of the complexity of this task. Rather than developing a custom system to collect data

and apply machine learning in order to decide when a notification should and should not be

filtered, an app developer needs only to interface with the framework and use the predictions

that were made as a decision engine in their own app. The basic process is outlined in the

pseudocode given in Algorithm 1

In this case, the application interacts with Unagi using an “event-driven” approach.

The application first connects to the Unagi service and registers a desired Action. Note

that in this case, it is a supervised learning problem, so an Action includes a source of

training labels. For this particular problem, it is reasonable to simply ask the user for a label

(e.g. via a notification of our own) of if a notification should be filtered in the future. A

training instance contains information about one notification arrival, such as current system

values, historical responses to similar notifications, and anything that can be mined from the
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Algorithm 1 Adaptive Notification Filter

function Init()
Action a = new Action()
a.useEventDrivenDiscretization(Notification.Arrival)
a.setTrainingLabelSource(LabelSource)
a.setCallback(CallbackFunc)

UnagiService.registerAction(a)
end function

function CallbackFunc(boolean filter)
Perform filtering based on ‘filter’

end function

function LabelSource(InstanceVector)
Issue notification to ask user of label for ‘InstanceVector’
return label provided by user

end function

notification itself (e.g. the sender). When Unagi decides enough training data is available,

it begins to make predictions and notifies the application client every time a prediction is

made. In other words, the application client will begin to receive guidance from Unagi . The

filter can then act according to those predictions that were made by actually performing the

filter operation.

The entire adaptive notification filter application is implemented in Algorithm 1. As

shown in this implementation, the application developer no longer need to spend time on col-

lecting and making sense of the OS context. Instead, the virtual sensing and generic learning

modules of Unagi take the objective of the application (given by the training label specified

by the application) and automatically generate a learning model that filters notifications

based on the OS context sources.
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3.6.2 Network Content Prefetching

An obvious drawback of the previous application is the explicit requirement that

training labels must be collected from users, which can be impractical for many cases. In

this case study, we explore how Unagi ’s cognitive abilities can be used to generate rule-based

training labels and then use those implicit labels in the inference process. We use network

content prefetching as an example.

Our network content prefetching module tackles a simple version of the app prefetch-

ing problem. We assume that there are two types of network connections, say WiFi and

Cellular networks, with different associated costs. In particular, WiFi has a strictly lower

cost per bit than cellular. Under this assumption, when a user switches from WiFi to cellu-

lar, the application being used during the transition (and the ones right after the transition)

can all benefit from prefetching the network content when still on WiFi. The key to our

app prefetching problem is to predict when a WiFi to cellular switch will occur based on

current and previous OS context data and if the current application should prefetch network

content.

Our framework can handle this task as well, though some minor modifications need

to be made. For example, event-driven discretization is not necessary anymore. Instead, a

frame-based approach is more reasonable. One instance is now a fixed-width time frame,

containing information about the state of the system during that frame (e.g. WiFi connect-

ed/disconnected, SSID of connected network, charging/not charging). Another difference

is that the training data labels in this case need not come from the user of the device. In

this case, a set of rules based on certain features might be more appropriate. For example,

when the WiFi state of one frame is connected and the WiFi state of the next frame is

disconnected, network data should be preloaded. In this manner, Unagi essentially operates

autonomously, requiring no interaction with the device owner and communicating only with
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the prefetching service.

3.7 System Implementation

Our framework was implemented for unmodified Android devices as an application

library that can be included with individual client applications. Our implementation consists

over 12K lines of Java code, built on a highly modified version of the Funf sensing frame-

work [77]. Unagi runs as a system service that handles two major tasks: 1) sensing and 2)

inference. In the sensing component, 64 virtual sensors were implemented, covering a large

spectrum of OS context sources, from CPU usage to battery status. The virtual sensors are

responsible for communicating with the various data sources currently in use and transport-

ing the sensed data back to the core system service. The inference module supports two

types of feature extractors: event-driven features and frame-based features. The inference

model also supports 9 weak learners, including Decision Trees, K-NN, and K-means.

3.8 Evaluation

To evaluate Unagi , each component of the framework will be examined in more

detail. The system as a whole will then be evaluated by examining two driving applications,

one for adaptive notification filtering, the other for network content prefetching. All system

performance experiments were performed on Nexus 4 devices running Android 4.4.

3.8.1 Cost of Virtual Sensing Framework

Energy cost of virtual sensors

In order to evaluate the sensing cost, the rest of the framework was disabled, and a

single virtual sensor was activated. After a fixed amount of time, the power consumption

was measured, and another sensor was added. This process was repeated to include each of
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Figure 3.4: Cumulative energy cost effect of multiple virtual sensors. Red squares represent
active sensors which require explicit polling. Green circles are passive sensors, which do not
require polling.

the 13 sensors Unagi provides by default. Figure 3.4 demonstrates the cumulative impact of

these sensors on the net sensing cost. The first five sensors, (as shown in the red squares), are

active, meaning they incur a non-negligible cost due to polling. In particular, the first two

are OS service-based, meaning they query some OS service to collect data, while the next

three require file system accesses, and so are more expensive. The green circles represent

passive sensors that collect data as a response to some OS-level event. These incur almost

no additional overhead beyond what the OS is already doing, so data can be collected from

many of them simultaneously. As this figure indicates, Unagi scales well with passive sensors,

but the number of active sensors should be restricted to avoid exorbitant sensing costs.

Storage cost of virtual sensors

Because of the online nature of the framework, only a small fraction of the total

information sensed will ever need to be written to storage on the device. Much of the
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Figure 3.5: A comparison of raw vs. processed data sizes for each user in the study.

raw data is converted into a useful form by the feature extraction process, and only those

processed instances will be persisted. To investigate this further, we conducted an in-situ

study involving six mobile users in which they collected data for two test applications,

adaptive notification filter and network content prefetching. During this experiment, those

users used Unagi on their devices, and both their raw data (which was shared between the

two applications) and processed data were written to files (each including some meta-data).

The results, shown in Figure 3.5, were sizable. Note that the y-axis is in log scale. The raw

data files were typically 1-2 orders of magnitude larger than the processed data in either

applications. As seen from Figure 3.6, the average improvement was about 12x for the

network application and nearly 27x for the notification application. Although the processed

files are relatively small already (an average of 183kb for the network example over the course

of one week), they could be shrunk further by using a binary encoding, rather than a plain

text one, and by using compression techniques.
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Figure 3.6: A comparison of the ratio of raw vs. processed data sizes for each user in the
study.

3.8.2 Cost of inference framework

Amortizing Inference Cost

The cost of performing inference on the device could potentially be prohibitive for

a mobile system, but several factors help to mitigate those expenses. Firstly, because the

training and prediction phases are separate, and prediction is typically much less expensive

than training, what cost there is is born primarily by the training phase. Since time spent

in the prediction phase will likely dominate that of the time spent in the training phase, the

lower cost of the prediction phase will also likely dominate over time. Secondly, as shown

in Figure 3.7, the training cost is divided between long idle periods (which incur almost no

cost) and short spikes that occur when a new instance arrives and the model is updated.

Because these spikes are infrequent, the amortized cost is much closer to the idle value than

the peak value. For the case when the given model can be updated online, these peak values
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have an approximately constant height, and therefore the amortized inference cost for the

framework is constant over time.

Unfortunately, when the model cannot be updated online, (as is the case for decision

trees), these peak values will continuously increase as new instances are added. This is due

to the fact that the model will have to be rebuilt after every training instance is received.

To visualize this impact, a J48 decision tree was trained repeatedly on the same dataset of

a certain size, N , over the course of five minutes, after which the power consumption was

measured. By dividing the total consumption by the number of times the tree was rebuilt in

that time, we obtain an estimate of the average power consumption per iteration. Because

the time frame was fixed, fewer iterations were run for larger datasets than for small ones.

Figure 3.8 shows that the peak power per iteration value increases linearly with N (note
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Figure 3.8: Peak power usage compared to the number of training instances. Note both
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that both axes are in log-scale), which implies that the framework’s inference cost will rise

over time if left unchecked, since the idle cost cost is constant, as before.

There are at least two potential methods to mitigate this liability: 1) reduce the

frequency of model updates, and 2) substitute a learning model that is capable of updating

incrementally. These two approaches have the added advantage of being mutually orthogonal

to one another. Either can be used in isolation, or the two can be used in combination. We

will now examine both in more detail.

First we investigate how to reduce the model update frequency. Two methods for

doing so are to use instance-based and time-based approaches. In other words, the model can

be updated after every K instances or after every t seconds. In order to analyze the potential

savings of both methods, a controlled experiment was performed. In this experiment, a
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Figure 3.9: Power consumption as a function of the number of instances (left) and the
window size (right).

random training instance was generated and added to a growing training dataset. A single

J48 decision tree was then trained on the entire dataset, and the process was repeated.

Instances were generated at a rate of one per second, and the entire experiment was allowed

to run for a set amount of time (5 minutes). This gives a baseline value, where K = 1.

The experiment was then repeated with the modification that the model was only trained

either every K consecutive instances or every t seconds, for varying values of both K and t.

The power consumption of both approaches were measured and the results are summarized

in Figure 3.9. Using either method, the power consumption would appear to be inversely

proportional to the magnitude of the independent variable. Larger values of that variable

provide more efficiency at the cost of an additional time delay.

By examining the number of update operations in the same experiment, we can better

understand the relationship between the invariant (either K or t and the power consumption.

Figure 3.10 shows that as the invariant becomes larger, fewer and fewer update operations

occur. With fewer updates, less work is done in the same amount of time, thus reducing the

overall power consumption and the cost of updating an offline model.

The problem of rising inference cost with offline models can also be avoided completely

by using an online model instead. The models produced by certain learning algorithms, such
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Figure 3.10: Count of model updates as a function of the number of instances (left) and
the window size (right).

as artificial neural networks, are readily amenable to online training. As we’ve mentioned,

others, such as decision trees, are not. When a model is used that does support online

training, that model can be updated incrementally, rather than rebuilt, which can allow

for potentially drastic performance increases. This is because the inference cost will remain

constant over time, and that constant value will be lower on average than the continuously

increasing cost of the offline model.

To examine this effect in more detail, another controlled experiment was performed.

As in the previous experiment, random training instances were generated and added to a

growing training dataset, which was used to train a classifier capable of training either in an

online or offline manner (Näıve Bayes). No delay was added between training the classifier

and adding the next training instance, unlike in the previous experiment. The time required

to complete the process once for each of N total training samples was measured, using both

the online and offline methods, and the results are shown in Figure 3.11. Note first that

the y-axis is in log-scale. For small values of N , the offline approach is only an order of

magnitude slower than the online method. This difference quickly progresses to three orders

of magnitude, even for relatively modest training data sizes (N = 2000). Therefore, an

online training algorithm should be substituted for an offline one when it is feasible to do so
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Figure 3.11: Time required to repeatedly rebuild or update a model. Y axis is in log-scale.

because the inference cost remains mostly constant with larger training set sizes.

3.8.3 Breakdown of the sensing and inference overhead

In order to evaluate each of the components of the framework empirically, power

consumption was measured with various pieces of the pipeline disabled over a fixed time

window. Initially, only the sensing component was enabled, which includes the framework’s

overhead costs. Then the storage component was enabled, followed by the feature extraction

component, and then inference (in both the training and prediction phases). Unagi was run

in two conditions, one representing a normal environment, with few active sensors and events,

and another representing a stressed environment, containing many active sensors with high

sampling rates and more outside events. The results are summarized in Figure 3.12. First,

note that feature extraction consumes more power in the stressed case, as more events imply

more features had to be extracted. Also note that there is a more significant reduction
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Figure 3.12: Estimated Power Cost Per System Component.

in cost during the prediction phase (which includes fewer features and no online learning)

in the stressed example. The same features were extracted in both cases, but the costs of

updating the model were more expensive in the stressed environment because there were

more instances generated.

3.8.4 Performance of two driving applications

To evaluate the framework in its entirety, an in-situ study was performed using 6

participants over the course of 2-3 weeks. Our study is approved and monitored by the

IRB of the University of Arkansas under protocol #13-09-068. Each participant installed

a custom Android application https://play.google.com/store/apps/details?id=edu.

uark.inference.app on their device that implemented the Unagi framework, as well as two
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placeholder Action modules—one for each of two driving applications. We will now discuss

both in more detail.

Performance of Adaptive Notification Filtering:

The adaptive notification filter module was designed to prevent cumbersome notifica-

tions from distracting the user. During training, a secondary notification, like that shown in

Figure 3.13 is posted when a normal notification arrives. The secondary notification simply

asks if the primary notification should have been filtered or not. In this case, each instance

in the training data corresponds to features extracted when the primary notification arrived

first arrived, an event-driven approach. The label was provided by a human in order to

facilitate supervised learning. After a sufficient amount of training data is collected, Unagi

will begin returning results to the client application, based on the predictions of its model.

At that point, every time a new notification arrives, the framework will make a prediction

as to whether it should be filtered or not and return that result to the client application.

The client can then perform the actual notification filtering based on that new knowledge.

The framework will automatically determine when it is appropriate to stop collecting

data by occasionally measuring predictive accuracy using standard 10-fold cross-validation.

When that accuracy passes a specified threshold, Unagi transitions into a prediction phase

where it begins to make predictions. Using all of data collected from the individual partici-

pants, we can compare their individual accuracy values at various points during the study.

Figure 3.14 visualizes this. Along the x-axis is the percent of total training data used (e.g.

the first 10%, the first 20%, and so on). Along the y-axis is the cross-validation accuracy

measured using the data up to that point. Percentages are used in lieu of actual instance

counts because different participants had comparable, but different data sizes.

We can see that for most users, accuracy drops slightly while the framework collects
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Figure 3.13: UI displayed to user for human labeling of training data instances. Used for
the adaptive notification filtering example.

representative data before increasing again when the model stabilizes. User E’s patterns are

unique in that it takes much longer to collect representative data, compared to the other

users. This implies that User E’s usage pattern is likely more complicated than that of

the other users, either due to lifestyle or noise. Using all of the training data, 5 of the 6

participants reported an accuracy of 90% or better. User E only had an accuracy of 79%,

but if the trend shown in the graph continues, that accuracy will continue to increase over

time.

The cumulative confusion matrix from all users is shown in Table 3.2. The two

columns show what the instance was classified as, the rows show what the ground truth

provided by the user was. Based on this table, the cumulative precision was 83.5% and the

cumulative recall was 86.5%.
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Figure 3.14: Cross-validation accuracy over time for the adaptive notification filter.

Table 3.2: Cumulative Confusion Matrix - Adaptive Notification Filtering

Predicted Yes Predicted No

True Yes 711 111
True No 141 1376

Performance of Network Content Prefetching

The network content prefetching model was designed to predict when network content

for an app should be prefetched. Such circumstances arise when moving from region with

an active WiFi connection to one without, especially when using applications that require

internet access. This application differs from the adaptive notification filter in that it is

not event-driven. Instead, each instance is a fixed-width time window. It also differs in the

source of training labels. While the notification filter required human labels, the labels for

the network content prefetching model were generated by the following rules:
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i f Current . Wi f iState i s CONNECTED
and Current . App i s not ‘ ‘ Launche r ’ ’
and Next . Wi f iState i s DISCONNECTED:
Label = YES

else :
Label = NO

In other words, when transitioning from region with an active WiFi connection to

one without and when the user is actively using applications, we should prefetch network

content for that application. This rule set is demonstrative in nature. We do not argue that

this is the best way to achieve the desired goal. It is simply one means of achieving that

goal. The purpose is to show that Unagi can be useful in varying conditions.

However, there is still one issue to deal with regarding this data—the classes are

considerably unbalanced. Because of the strict nature of our rule set, very few affirmative

instances will be present in the dataset, compared to an overwhelming majority of negative

ones. A baseline algorithm, one that always predicts NO, will perform very well in terms

of pure accuracy. One way to alleviate this problem is to stratify the training data by

probabilistically resampling it, which creates repetitions of the affirmative classes, effectively

balancing the dataset. We have adopted this approach for Unagi .

Similar to the previous application, Figure 3.15 shows the accuracy over time for

the same users using the resampled dataset. User B had no positive instances, so was

removed from consideration. Stratification was performed after the appropriate percentage

was extracted from the original data. Similar to the previous example, the accuracy values

are initially somewhat chaotic while representative data is collected, but they even out as

time progresses and more instances are added. Using all of the training data, each user

achieved more than 90% accuracy. The average across all users was nearly 94%.

As before, the cumulative confusion matrix is shown in Table 3.3. Based on this table,

the cumulative precision was 94.5% and the cumulative recall was 97.9%.
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Figure 3.15: Cross-validation accuracy over time for the network content prefetching ser-
vice.

Table 3.3: Cumulative Confusion Matrix - Network Prefetching

Predicted Yes Predicted No

True Yes 8115 170
True No 471 8019

3.9 Conclusion and Discussions

This paper presents the design and implementation of Unagi , a sensing and inference

framework for OS context-based cognitive applications. Unagi provides a comprehensive

investigation of three OS context sources and a virtual sensor design for universal access of

heterogeneous data sources. Based on a set of virtual sensors, Unagi further automates the

process of user behavior pattern inference with a set of feature design, feature selection, and

model updating methods. Benchmark results indicate that continuous running of Unagi on

mobile phones incurs negligible energy, computation, and storage cost. Two case studies
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indicate that the automatically generated inference models can achieve high accuracy while

simultaneously incurring low system overhead for both supervised and unsupervised learning

scenarios.

While Unagi can significantly simplify the development of cognitive applications, it

also faces several limitations. Unagi takes advantage of the fact that the OS context is

inexpensive to retrieve, and therefore a comprehensive list of virtual sensors is feasible.

However, the cost of accessing hardware sensors is not negligible, which means we cannot

extend the methodology of Unagi directly to hardware sensors. A hybrid approach, where

virtual sensors are used as inexpensive triggers for hardware sensors, could potentially solve

this problem. Unagi also sacrifices specially for generality. For some specific applications,

the automatically selected features or the behavior model might not be the best choice.

Unagi does, however, allow developers to insert their own feature generator and/or behavior

pattern learner into the framework to handle the special cases. Unagi should also evolve itself

with new OS features and/or new machine learning methods. We also evaluated Unagi with

limited applications, with a small-scale user study. A larger scale study would be helpful to

further validate its use in this domain.
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4 Depth-based Positioning

This chapter focuses on our work regarding depth- and inertial-based positioning. We

discuss DIPS, a novel indoor positioning method that uses depth and inertial sensor data to

localize both mobile users and objects in their ambient context with up-to centimeter-level

accuracy. The key contributions of this technique include a thorough theoretical analysis

of the problem, a chaining method that extends the effective localization range from a few

meters to more than 30 without significant error accumulation, and an optimization that can

further reduce accumulative error. We have implemented our method on Googles Project

Tango platform, and early evaluation results show that the localization error can be less

than 10 centimeters in practical settings using an unmodified consumer-level device.

4.1 Introduction

With the proliferation of smart mobile devices, especially wearables, we have seen a

surge of new context-aware mobile applications. A typical example is Augmented Reality

(AR), which integrates augmented information and user-interactions with the physical con-

text. Microsoft HoloLens [13], for example, is an AR platform that incorporates physical

real-world elements, such as walls or the surface of a vehicle, into the presentation of appli-

cation content. Google Glass [14] and other similar systems [15, 16] are pioneer platforms

that enable egocentric AR applications with an optical head-mounted display (OHMD).

When augmented information can be tightly integrated with physical objects, natural user

interactions can be enabled.

A core challenge of new context-aware applications is determining the precise loca-

tion of mobile users and the objects in their ambient context. The two primary approaches
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that are currently used to enable ambient context sensing are those that rely on embedded

RF transceivers (e.g.: NFC and Bluetooth), and those that rely on computer vision (CV).

RF-based approaches suffer from the primary limitations of scale and accuracy. Because

they typically require certain infrastructure elements, the heavy cost of both deployment

and maintenance of such elements is a substantial hurdle to the ubiquity of ambient context-

sensitive applications. Furthermore, while RF-based systems are capable of reasonable accu-

racy, for some applications, such as AR, modest accuracy is simply not enough. In order to

enable ubiquitous AR applications, reliable centimeter level accuracy is required. CV-based

approaches are comparatively much more accurate than RF-based ones, and they can be

deployed without a significant infrastructure, but they do suffer from a different drawback—

they are usually quite expensive, in terms of both energy and computation. Due to the

small form factor of mobile and wearable devices, existing CV-based methods are typically

too resource intensive for practical use.

Due to the intrinsic limitations of both RF- and CV-based context sensing methods,

alternative technologies have recently started to become more popular. One example is an

infrared projector paired with a specialized camera tuned to the IR spectrum like that used

in Microsoft’s Kinect and Google’s Project Tango. These sensors (e.g.: OmniVision OV4682)

typically possess regular RGB imaging capabilities as well as a depth sensor. Compared with

pure CV-based 3D construction methods such as stereo vision, IR cameras are typically more

accurate in distance measurement and are much more energy-efficient in practice [26, 27].

In this chapter, we discuss our current work with a novel context positioning method

named DIPS, which stands for “Depth- and Inertial-based Positioning System”, that is able

to accurately co-localize mobile users, as well as critical objects in their context. The core of

the proposed method is a technique that combines information from both the inertial sensors

and an IR-based depth sensor in order to achieve localization accuracy within 10 cm over a
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range of 30 meters (and beyond) using off-the-shelf commercial hardware and no additional

infrastructure elements. To realize this goal, we first provide a theoretical basis and practical

design considerations for simple short-range localization goals. Next, we propose a multi-hop

approach that extends the localization range with a chaining method that alternately local-

izes mobile users and critical objects in the environment while simultaneously minimizing

the accumulation of error over time. In addition, we propose an optimization method to

further eliminate error accumulation over multiple hops, which can help to realize the goal

of high localization accuracy over long distances if there is enough uncertainty in the data.

Lastly, we demonstrate the utility of the system under real world conditions with a prototype

implementation. To summarize, the core contributions of this paper are as follows:

• We propose DIPS, a method that enables indoor localization of both mobile users and

contextual landmarks with an accuracy of just a few centimeters.

• We perform a thorough theoretical study of the technique to provide a solid mathe-

matical justification for its use.

• We propose a chaining method that extends the effective localization range from a few

meters to more than 30 without significant error accumulation.

• We also propose a statistical optimization to the chaining method that allows the

framework to use noisy measurements to its advantage.

• We prototype DIPS on Google’s Project Tango tablet and use it to evaluate our method

in real world conditions.
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4.2 Background

4.2.1 Indoor Localization

Locating mobile users and ambient objects in their environment is an active research

field in mobile computing. Odometry [17] is a classic method to realize simultaneous local-

ization and mapping (SLAM) in a GPS-denied environment. However, inertial navigation

systems can suffer from integration drift, where small errors accumulate to cause inaccurate

localization results over time [18].

RF-based localization is another widely investigated approach that is well-suited to

locating locating moving objects, as well as objects attached to RF transceivers in indoor

environments. The primary idea of RF-based methods is to take advantage of the unique RF

signal fingerprints at different places for localization purposes. Common RF-based methods

include WiFi localization [19], Near-field communication [20], and Ultra-wideband meth-

ods [21]. Recent RF-based methods can locate an object within 1-2 meters [22].

Image-based indoor localization is another well-studied field [23]. Stereo vision [24]

can compare a scene from two vantage points and extract 3D information from the objects in

the scene. Stereo vision on mobile platforms faces several practical challenges, in particular

its high computational and energy cost [25].

Optical methods, such as IR-based localization are a fairly recent trend. Industrial

systems, such as AICON 3D Systems [28] can reach an accuracy of centimeter or even mil-

limeter level but are difficult to integrate with mobile systems. Consumer-level platforms,

such as the widely-used Microsoft Kinect [29] and Google’s recent Project Tango tablet [30],

are equipped with small form-factor IR optical sensors and have begun to show the tremen-

dous potential of optical-based localization for mobile devices [31, 32].
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4.2.2 Optical Imaging and Context Localization

Compared with RF- or vision-based approaches, optical sensors have a unique ad-

vantage: they provide direct (and therefore fairly accurate) depth measurements of a scene.

As such, optical sensors, often combined with regular RGB cameras, have been used to con-

struct 3D scenes in indoor environments, enabling applications such as robot navigation [84]

and AR [85]. Recent 3D scene mapping and reconstruction techniques, such as live 3D

scanners [86], can reach an accuracy of a few centimeters but only within a short range of

around a meter [87, 88]. Extending the distance of optical-based localization is a significant

challenge, as optical sensors have a limited range (typically less than 5m), and the depth

measurements become increasingly noisy as distance increases. Many existing approaches

handle the range challenge by integrating stereo RGB information [84], but despite their

effectiveness, their disadvantages on mobile platforms severely hinder their broader use. In

this work, we propose a novel method of using information from both optical and inertial

sensors in order to enable improved location accuracy with comparatively less computational

cost.

4.3 Depth- and Inertial- based Localization

In this section, we first formally define the error model used for depth-based localiza-

tion. Equation 4.1 represents the fundamental technique used for our localization problem.

Given a known location, A, if we have access to a distance measurement, d, and a unit

direction vector, ~v, we can calculate the position of an unknown object, B as follows.

B = A+ d~v (4.1)

Based on Equation 4.1, it is clear that any localization error can be decomposed into
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Table 4.1: Common Notation

Notation Meaning

A, B, etc. A location of a 3D point

Â An estimated location of a 3D point
Ā An average of several points
d A true distance

ḋ A measured distance
~v A true unit vector

~̇v A measured unit vector
~X A vector (not necessarily of unit length)

~X · ~Y Inner (dot) product

‖ ~X‖ Vector magnitude
∼ Distributed according to

two orthogonal components, depth error and directional (or rotational) error. In other words,

localization error can be a result of inaccuracies with the depth measurement, the direction

vector, or some combination of the two. In order to account for and correct this error,

we must model each individual component and analyze their joint effects on localization

accuracy.

4.3.1 Depth Error Model

Generally, depth error stems from deficiencies in either the hardware or the associated

software of the depth sensor, but it could also be a result of lossy processing of depth data on

the client side. Regardless of the source, modeling depth error is a simple matter of comparing

many measured depth values to their associated ground truths. Given an empirical model

derived from such data, depth measurements can be calibrated appropriately.

For an arbitrary depth sensor, the depth error can be modeled as:

ed(ḋ) = |ḋ− f(ḋ)| (4.2)
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Figure 4.1: An empirical model of the calibration curve for a Project Tango tablet.

where f(ḋ) is any function of the measured depth value, ḋ. f(ḋ) is essentially a

calibration curve. In order to calibrate depth measurements, one simply needs to replace the

measured depth value, ḋ, with f(ḋ) in localization calculations. In Figure 4.1, we show the

calibration curve for a Google Project Tango tablet that was used in our laboratory setting.

We measured approximately 70 objects at various known distances and plotted them against

their ground truth values, which were measured separately and manually. Based on these

observations, f(ḋ) ≈ 1.0509ḋ− 3.0611 (depth is measured in centimeters) for that device. If

another sensor is used, however, the calibration curve will have to be recalculated.

4.3.2 Rotational Error Model

Rotational error is more difficult to analyze because it contains components of both

system and user error. System error arises from the use of one or more hardware sensors,

such as an accelerometer or a gyroscope, as well as inertial drift of the data from those
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sensors over time. User error is a result of a system requirement that the user must look

directly towards an object in order to perform localization. Even if the user fully intends to

cooperate, it is highly likely there will be an angular difference between the true direction

and the perceived direction from the user.

To fully characterize the rotational error, we need to account for both sources. More

formally, we describe this error as er(~̇v) = f(s(~̇v), u(~̇v)), where er(~̇v) is the rotational error,

s(~̇v) is the system error, u(~̇v) is the user error, and f(s, u) is the accumulative effect of these

two factors.

System error can generally be modeled as a simple (e.g. polynomial or logarithmic)

relationship between the error and time, but in the case of Project Tango, it can at least

partially be removed before the client receives the data by applying drift correction [89].

After this correction has been performed, system error is typically reduced enough that the

user error tends to dominate the rotational error equation. Under these conditions, the

rotational error model can effectively be simplified to er(~̇v) = u(~̇v).

We are left with a need to model the user error, u(~̇v). To do so, we will assume the

user is cooperative, meaning we assume the user is honestly attempting to look directly at

the object of interest. (Working with uncooperative users is a topic for future research.)

Because users rarely behave deterministically in practice, the user error is best described

probabilistically instead. We model the user error as u(X) ∼ N (b, σ), where X is a random

variable that represents the angular offset between the true direction, ~v, and the measured

direction, ~̇v. In the formula, b and σ represent an individual user’s bias and average deviation,

respectively.

In the last equation, another way of visualizing X can is to apply the following

equation: X = cos−1(~v · ~̇v). The dot product between the true direction and the measured

direction gives the cosine of the angle between them. If we then take the inverse cosine, we
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obtain the angle itself. That angle is what is normally distributed, so ideally, b = 0 and σ is

very small, which implies that the user is actually looking directly at the object of interest.

With this addition of u(X), the complete model for rotational error becomes simply:

er(X) ∼ N (b, σ) (4.3)

4.3.3 Localization Error.

Now that we have established models for both the depth and the rotational error, we

can discuss their effects, both individually and combined.

Isolating Depth Error

The effect of isolating the depth error when localizing an object is the following.

Suppose we are currently standing at point A and we are attempting to localize point B. The

true location of B is given by Equation 4.1. Due to inaccuracies in our depth measurement

however, we actually measure ḋ, which means our estimate of B is B̂ = A+ ḋ~v. The error is

the distance between the two, or e = ‖B̂ − B‖ = ‖(A+ ḋ~v)− (A+ d~v)‖. After simplifying,

we get e = ‖ḋ~v − d~v‖ = |ḋ − d|. In other words, the isolated depth error is equal to the

difference between the measured depth value and the true depth value.

Isolating Rotational Error

As with the depth error, we can isolate the effect of rotational error when localizing

an object. Again, suppose we are currently standing at point A and we are attempting to

localize point B. Due to inaccuracies in our direction measurement, we actually measure ~̇v,

which means our estimate of B is now B̂ = A + d~̇v. The error is once again the distance

between the two, or e = ‖B̂ − B‖ = ‖(A + d~̇v) − (A + d~v)‖. After simplifying, we get
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Figure 4.2: Overview of the chaining method.

e = ‖d~̇v − d~v‖ =

√
d2 + d2 − 2d2(~̇v · ~v) =

√
2d2 − 2d2 cos θ, where θ is the angle between ~v

and ~̇v. A result of this equation is that the isolated rotational error depends not only on

distance between the objects, as was the case when the depth error was isolated, but also on

the angular offset between the true direction and the measured direction.

Combined Error

When we apply a similar logic to the task of localizing an object with both depth and

rotational error, we end up with e = ‖ḋ~̇v−d~v‖, which works out to e =
√
ḋ2 + d2 − 2(ḋ)(d) cos θ.

This formula has an important interpretation: rotational error is typically going to be more

significant than depth error, as the former will dominate the latter as the range between

the two objects increases. This is primarily due to the fact that any rotational error that is

present will be scaled by the distance to the object.

4.3.4 Depth Processing.

We now address a practical challenge that arises with regards to the error model.

Google’s Project Tango tablet, as well as several other commercial depth sensors, provide

depth data as a 3D point cloud, but our various localization equations require only a single
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value. We must first process the point cloud in order to obtain this value before we can

proceed with localization. The first step is to create a 2D depth map from the raw point

cloud data using a perspective transformation. The values stored in the depth map are the

distances to the corresponding 3D point from the center of the depth camera.

Ideally, the cell of the depth map we are interested in has a value, but as the map

is sparse, that is unlikely to be the case in general. If nearby points do have values, one

approach is to use nearest-neighbor sampling to fill in the gaps between valid depth values

in the depth map. In other words, for each pixel that does not have a valid depth value, we

search a small neighborhood for pixels that do have valid depth values and average them to

estimate the value for that pixel. Depending on the size of the neighborhood window used,

the depth map can be smoothed by varying amounts before being sampled directly.

If it is known a priori which cells in the depth map we are interested in, we can

perform a significant optimization: we can choose to interpolate only those cells, reducing

the computational cost from O(WN) to O(Wn), where W is the size of the window used,

N is the number of pixels in the image, and n is the number of pixels that are of interest to

us.

In order to make the selection of depth points more robust to noise, we use a variable-

sized median filter. Ideally, if we are looking for a depth value in a particular cell, that cell

will already have a valid value. As this is unlikely, however, we can create a small window

(different from that used for interpolation) and return the median value of all the valid depth

values in that window. If there were no valid values, the window size can be increased (up

to a user-specified maximum value) until such a search is successful.
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4.4 Creating a Localization Chain

If we have available to us both a depth measurement and a direction vector, localizing

an object is a simple matter of applying Equation 4.1. However, as all depth sensors have a

limited range for which they are effective, we would only be able to localize objects that are

nearby with that method. To extend the useful range of depth sensing devices, we propose

the following extension to the idea.

At a high level, our goal will be to create a “chain” of localizations from a known

starting point. Figure 4.2 details the process visually. The procedure is as follows. From

the initial starting point, A1 (whose location is known), we can use Equation 4.1 to localize

N points in the immediate vicinity (B1,1...B1,N). Those N intermediate points can then

themselves be used to determine another location, A2. This sequence constitutes a single

hop. To increase the effective localization range, we add more hops to the chain, adding as

many links as necessary.

4.4.1 One Hop Localization

First we will examine a single hop in more detail. Figure 4.3 shows the physical

layout of a single hop. The solid lines represent the true values and the dotted lines represent

measured ones. The heavily shaded circles are the true locations of the points, and the lightly

shaded circles are the estimates generated by the equations. Estimates of the points are only

shown for the first intermediate landmark, but the process is analogous for the others (which

are shaded gray).

A single hop is made up of N forward links followed by N back links. Each forward

link calculates an estimate of the position of an intermediate point (Bj). Each back link

will yield one estimate of the location of Ai+1. Those N estimates are averaged together

to calculate a single unified estimate for future calculations. The following three equations
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Figure 4.3: Relationship between the parameters for a single hop.

formalize the notion of a single hop mathematically.

B̂i,j = Ai + ḋi,j(~̇vi,j) (4.4)

Â−i+1,j = B̂i,j − ḋi+1,j(~̇vi+1,j) (4.5)

Âi+1 =

∑N
j=0 Â

−
i+1,j

N
(4.6)

Equation 4.4 represents a single forward link between Ai and Bj, where Bj is any one

of the intermediate points used in the chain. ~vi,j is defined as a unit vector in the direction

from Ai to Bj, and di,j is the distance between Ai and Bj. Values that are measured by the

device are denoted ḋ and ~̇v. To estimate the location of Bj, we traverse a distance of ḋi,j

along the direction vector starting from Ai.
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In Equation 4.5, we follow a similar procedure. We start at Ai+1 and look towards

Bj, whose location estimate, B̂i,j we calculated with Equation 4.4. Here, ~vi+1,j is the unit

vector from Ai+1 to Bj, and di+1,j is the corresponding distance.

The final step, applied in Equation 4.6 but not shown in Figure 4.3, is to average the

N estimates of Ai+1 from each back link to create a single location estimate for Ai+1. Since

both the forward and back link processes require one depth measurement and one direction

measurement each, a single hop requires two of each for each intermediate point that is used.

In other words, 2N depth measurements and 2N direction measurements are required for

each hop.

Calculating Error

The amount of error that results from one hop can be determined algebraically. This

is important because we will show in the next section how individual hops can be isolated

from one another, meaning that the error at each point in the chain can be calculated

irrespective of any other point in the chain.

Figure 4.3 shows the physical setup for an arbitrary hop. In the diagram, Ai+1,j is

the true location of the point Ai+1, calculated by going from Ai through Bj. Since we are

referring to the ground truth here, the choice of which j to use is irrelevant—they will all

yield the same result. The following equation represents the location of Ai+1 mathematically.

Ai+1,j = Ai + di,j(~vi,j)− di+1,j(~vi+1,j)

The next equation is the result of combining Equations 4.4 - 4.6. It represents the

estimate of Ai+1 given the various depth and direction measurements between Ai, Bj, and

Ai+1. In this equation, d represents an actual distance and ḋ represents a measured distance

(which likely does contain some error). Similarly, ~v represents an actual direction vector and
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~̇v represents a measured direction vector. As before, N is the number of intermediate points

that are used.

Âi+1 =

∑N
j=0Ai + ḋi,j(~̇vi,j)− ḋi+1,j(~̇vi+1,j)

N

Given that we know both where Ai+1 really is and our estimate from our measure-

ments, the error is simply:

e = ‖Âi+1 − Ai+1,j‖

Expanding for both Âi+1 and Ai+1,j:

e =

∥∥∥∥∥
{
Ai +

∑N
j=0 ḋi,j(~̇vi,j)− ḋi+1,j(~̇vi+1,j)

N

}
− {Ai + di,j(~vi,j)− di+1,j(~vi+1,j)}

∥∥∥∥∥
There is an Ai term that disappears after the subtraction:

e =

∥∥∥∥∥
{∑N

j=0 ḋi,j(~̇vi,j)− ḋi+1,j(~̇vi+1,j)

N

}
− {di,j(~vi,j)− di+1,j(~vi+1,j)}

∥∥∥∥∥
Splitting the two halves into separate variables for readability:

~X =

∑N
j=0 ḋi,j(~̇vi,j)− ḋi+1,j(~̇vi+1,j)

N

~Y = di,j(~vi,j)− di+1,j(~vi+1,j)

e = ‖ ~X − ~Y ‖ =

√
‖ ~X‖2 + ‖~Y ‖2 − 2( ~X · ~Y ) (4.7)
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In Equation 4.7, the second form of the equation is a result of applying elementary

geometry and the law of cosines to the first. It helps to demonstrate that the error that arises

from a single hop depends not only on the measured depth values and direction vectors, but

also on their relationship with the true values.

4.4.2 Multi-hop Object Localization

An important concern with the chaining method is the accumulation of error between

hops. Conceivably, if there was any error present in the estimate for point Ai, that error

could propagate when estimating point Ai+1 and every other point farther down the chain.

In other words, one could expect a graph of the localization error after each successive hop

to have a positive slope (though not necessarily a linear shape). We call such a graph the

error accumulation curve.

In order for the chaining method to be generally applicable in real world scenarios,

the slope of the error accumulation curve must be reduced as much as possible, ideally to 0.

When that slope nears 0, each hop loses any sense of dependency on those that came before

it in the chain. This implies that the error for any given hop comes entirely from the 2N

depth measurements and the 2N direction measurements that were used in its calculation

and not from any previous measurements used for other hops, which essentially guarantees

that the chain can be extended indefinitely. The amount of error for an arbitrary hop will

approach the theoretical value given in Equation 4.7 as the slope of the error accumulation

curve approaches 0.

Since our goal is for the chaining method to be applicable for arbitrarily long se-

quences, it is vital that both the depth and rotational error from each measurement be

minimized as much as possible. Based on the previous discussion in Section A, depth error

can be modeled empirically. As such, it can be corrected easily using a device-dependent
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calibration wherein the measured depth value, ḋ, is replaced with the estimated true depth

value, f(ḋ) in the localization calculations.

Because rotational error is distributed normally, its effects can be countered with

statistical averaging. Rather than using a single direction sample, we average M of them

over a given time window. Given a large enough M , the rotational error degenerates to b, the

user bias. While the user bias cannot be removed completely, it can be reduced significantly

be presenting the user with a visual guide (e.g. crosshairs or a bulls-eye). Aids such as these

will assist the user in looking at the desired point, thereby reducing their personal bias.

With these suggestions in mind, we will show (in Section 4.6) that it is possible to

reduce the slope of the error accumulation curve by a sufficient amount to enable multi-hop

object localization using the chaining method in real world scenarios.

4.5 Statistical Optimization

The chaining method has one additional potential weakness—it uses the depth and

direction measurements from the device directly. Despite our best efforts to reduce the error,

the measurements will still likely contain some noise. Rather than maintain an antagonistic

relationship with it, is it possible to use that noise to improve the accuracy of our esti-

mates? This question is the foundation of an optimization technique that we have created

to supplement the standard chaining approach detailed in the last section.

At a high level, for a single hop, we require 2N depth measurements and 2N direction

measurements to estimate the location of a given point (where N is still the number of

intermediate points employed). If we have some understanding of the error range of each of

those parameters, we can modify them slightly such that the N estimates of the location of

the given point more closely agree with one another.

As described, this approach is a constrained optimization problem. We optimize
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each parameter with the restriction that it stays within some defined error bounds. If an

oracle were present, the goal function would adjust each parameter such that each calculated

estimate equals the ground truth value, effectively eliminating all error from each parameter.

However, since an oracle is not normally present, our goal function should instead be a

quantity that can actually be measured under real world conditions.

One heuristic that we have found to work well in practice is to minimize the sum-

squared distance (SSD) from the centroid for each location estimate. Intuitively, the idea

is that we want all of our location estimates to come to a consensus as to what the correct

answer is, whilst adhering to their various individual constraints. In order to do so, each

measurement will be adjusted slightly until they are sufficiently aligned.

SSD = (Âi+1,j − Āi+1)
2 (4.8)

In Equation 4.8 we formalize the error metric that we use. Mathematically, the goal

is to minimize SSD, where Âi+1,j is a single estimate of the location of point Ai+1 using

intermediate point j, and Āi+1 is the current centroid of all the estimates.

In general, the choice of the optimization technique that is used is inconsequential,

as long as a sufficient local optimum can be found. We applied a simple gradient descent

approach in our implementation that iterated until the SSD changed by less than a small

preset ε or until a maximum number of iterations were performed.
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4.6 Evaluation

4.6.1 Experimental Setup

Sensor Data Collection

We use a Google Project Tango tablet for our experiments. The Tango tablet provides

depth measurements at a rate of approximately 5 Hz. It also provides pose estimates,

including an orientation vector, at a rate of around 50 Hz. Although the tablet is capable of

providing RGB color information, we do not make use of that data for any of our localization

calculations. The Project Tango tablet has a specified depth range of 0.5 m to 4.0 m, but we

found experimentally that it was difficult to get reliable readings farther than around 3.0 m

in practice. Therefore, we set 3.0 m as the maximum depth range used in our experiments.

We built a custom Tango application to collect both depth and inertial data from the

tablet. The application allows users to take measurements between the device and an object

at the center of the scene. A single measurement consists of 10 depth samples (each of which

is calculated using the method in Section 4.3) and a variable number of direction samples.

In an effort to remove the effects of rotational error, all of the direction samples that fall

within the measurement’s time window are averaged to estimate the user’s true direction

at that moment. After a measurement is taken, the depth and rotation measurements are

saved to a file so they can be processed offline later.

Using our data collection application is straightforward: when a user wants to localize

an object, he or she only needs to point the tablet at that object. From the user’s perspective,

this process is quite similar to to taking a photograph with a smart phone. The UI of our

data collection application is shown in Figure 4.4. As shown in this figure, the UI forwards

the live camera feed to the screen and superimposes a targeting reticle in the center. If

the user uses the reticle to align his direction with the point of interest, it helps to further
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reduce the affects of rotational error on the measurement that is taken by the application.

The process of taking a single measurement typically takes only a couple seconds.

Laboratory Setup

All of our experiments were conducted in a laboratory setting, seen in Figure 4.4. We

chose to use tripods to represent points of interest as they allowed us to quickly reconfigure

the environment for different setups. We placed various tripods on a floor grid which allowed

us to accurately measure ground truth. The Tango tablet was also mounted to a tripod in

order to simulate a user.

Ground Truth

For each experiment, we either determined the ground truth manually or assigned it

a priori. In the former case, we used laser levels to project the desired point on the tripod

onto the floor grid. By measuring the offsets in the x and y axes, we were able to calculate

the 2/3 of the direction vector between the user and the various points of interest. The last

component of the direction vector, the height differential, was computed by measuring the

heights of both objects and subtracting them. When we assigned the ground truth a priori,

the tripods used as points of interest were physically moved to match the expected location

before the experiment began.

4.6.2 Single Object Localization

Since any number of intermediate objects can be used to localize a single point,

we first demonstrate the relationship between that number and localization accuracy. We

conducted an experiment in which up to 5 different objects were used to localize the user.

We analyzed the error that results from using each combination of those 5 objects, from

using a single object to using all 5.
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Figure 4.4: The laboratory setting of our experiments. Left: The UI of our Tango applica-
tion. It provides a camera view for the user to point the tablet to the object to be positioned.
Right: We use tripods to simulate users and objects in the scene. The user tripod (on the
right) holds the Tango tablet, and others represent scene objects.

The results are tabulated in Figure 4.5. For each value of N , the corresponding bar

represents the error distribution that arises when choosing N of the 5 objects for localization.

In column 5, there is only a single data point, since there is only one way to choose 5 objects

from a set of 5. Specifically, we have drawn a box and whisker plot that shows the minimum,

Q1, Q2, Q3, and maximum error values that we determined from the experiment.

Note that when N = 1, the localization error shows a large variance. That variance

decreases as N increases, which is to be expected, since with more objects used for localiza-

tion, the more sure we should be that our calculated position is accurate. The lowest error

for this particular experiment comes from combining the results of Objects 1 and 3, yielding

an error of 3.9 cm, but unless the ground truth is known a priori, the user will not be able to

know the ideal set of measurements. Given that it is typically intractable to determine the

optimal set of objects to use, our recommendation is to simply average measurements from

as many objects as is feasible given the circumstances. In Figure 4.5, the difference between

the 3rd quartile and the 1st is about a centimeter for N = 3 and less for N = 4, so using

N = 3 appears to be a good compromise between accuracy and user tedium.
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Figure 4.5: Using more objects to localize a single point tends to result in less variance.

4.6.3 Multi-hop Object Localization

While an object can be localized effectively using information from just a few objects,

as seen in the previous section, the physical range is quite limited. In the case of the Tango

tablet, it can be difficult to get depth measurements at a distance larger than about 3.0 m.

In order to traverse greater distances, we will now evaluate the multi-hop chaining operation

that was initially proposed in Section 4.4.

When sufficient care has been taken to reduce the effects of depth and rotational error,

the slope of the error accumulation curve can be reduced very close to 0. At that point, the

error that results from a single hop begins to lose any dependency on that of previous hops.

This is useful because it effectively allows us to make as many hops as necessary without the

need to worry about the accumulation of error along the way.

To demonstrate the lack of error accumulation, we performed an experiment in which

the user was localized using the chaining approach. Only the initial location of the user was
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Figure 4.6: Error of several 3-hop chains with different ranges.

known. From that initial location, we localized 3 intermediate objects. The user moved to

another location and we used those 3 intermediate objects to perform relocalization of the

user. This sequence of operations constitutes a single hop. The process was then repeated

with another set of intermediate objects and then once more for a total of 3 hops. This entire

experiment was performed using 3 different ranges between hops, 0.5 m, 2.5 m, and 6.0 m,

our assigned maximum. We were only able to perform two hops at the shortest range, so

the final hop value is missing for that test.

Figure 4.6 shows the results of localizing the user after the first, second, and third

hops under each set of conditions. The most important aspect to notice is that for both the

2.5 m and the 6.0 m cases, the error does not monotonically increase between the first hop

and the last one. Unfortunately, there’s not enough data to make a clear argument for the

0.5 case, so the pattern is not obvious at that range.
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Figure 4.7: A long chain at long range. Note that the error does not monotonically increase
between hops.

In the next experiment, we extended the number of hops to 5 for the long range (6.0

m per hop) test, giving a total range of roughly 30.0 m between the starting point and the

final localization point. The results are shown in Figure 4.7. It can be seen the previous

pattern has continued. The various error values are similar in magnitude, but there is not

a clear upwards trend, which demonstrates that the error did not appreciably accumulate

between hops.

4.6.4 Statistical Optimization

If there is a lot of uncertainty in the measurements, it is possible to improve on the

chaining method by using the statistical optimization technique detailed in Section 4.5. We

applied the technique to the same raw data that was used to generate Figure 4.6. The results

are summarized in Figure 4.8.
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In the short range case (0.5 m), applying optimization actually made the results

appreciably worse. This is evidence that the error metric used for statistical optimization,

SSD, is likely a poor fit when the range is severely limited. When the distance between hops

was near the average value of 2.5 m, optimization provided a small benefit, but not necessarily

a significant one. Statistical optimization is most useful when the distance between hops is

large (6.0 m). Because increasing distance between objects causes the effects of rotational

error to similarly increase, there is typically more uncertainty with those measurements than

with the others. The optimization method is able to take advantage of that uncertainty in

order to further reduce the error from one hop to the next, yielding better results than the

chaining method alone in those circumstances.

As an intuition, for short- to mid-range applications, the chaining method provides

results that are close to optimal already, and the optimization method is unable to exploit

enough uncertainty to drastically improve the results further. The evident conclusion is to

use the chaining approach alone if the distance between hops is fairly short (less than 3.0

m, for example) and to use optimization when the distance is larger, as the optimization

method is more likely to appreciably increase the performance of the system.

4.7 Discussion and Limitations

DIPS can potentially enable a plethora of mobile applications that require accurate

context localization. The most noticeable example is AR. For example, in supermarkets,

navigation and augmented product information could be used to help shoppers find products

that interest them. In shopping malls, augmented information such as discounts and featured

products could also be displayed on AR headsets while users are looking around. Assisted

living applications could also benefit from our technique. Critical contextual items, such as

TV remotes, magazines, and glasses, could be localized immediately when a user intentionally
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Figure 4.8: Statistical optimization tends to improve performance when the distance be-
tween objects is large.

or unintentionally gazes at them. When the user wants to find any of those items, the system

could navigate the user to its precise location.

Despite the unique advantages our system provides, there are several limitations that

should be mentioned. First, in our particular implementation, we used a Project Tango tablet

that makes use of an IR-based depth sensor. Such sensors are known to operate suboptimally

in an outdoor environment, meaning our implementation is currently only applicable to

indoor areas. We do note, however, that our method does not have this restriction—just the

implementation. The method would still be applicable if the IR-based depth sensor were

replaced with another sensor better suited to outdoor environments. Second, our current

system does require the user to actively gaze at an object in order to perform localization,

which is an immediate drawback in terms of practicality. In the future, extensions that

remove that requirement could be investigated, allowing the system to be used passively or

opportunistically without any conscious cooperation from the user. Finally, the use of this
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technology to enable augmented applications is not yet well-understood. Another area that

could be further investigated in the future is the integration of accurate location data with

AR platforms to enable novel mobile AR experiences.

4.8 Conclusion

In this chapter, we presented DIPS, an optical-based localization system for mobile

platforms. The primary contributions of DIPS include a thorough theoretical analysis of

the problem, a novel chaining approach capable of accurately localizing objects to within 10

cm at a range of 30 m or more, a statistical optimization to the chaining method that can

further increase the accuracy of the system under certain circumstances, and a prototype

implementation of the system using a Google Project Tango tablet evaluated under several

real-world scenarios.

4.9 Future Work

Object positioning falls into the category of indoor localization techniques as it can

be used to determine the location of the user at any given point, assuming one or more

reference points are available and the user is willing to accept a small latency while the

system performs localization. If continuous estimates of the user’s position are desired, we

could make further use of the inertial sensors on the device.

Since our system produces accurate estimates at low frequencies and inertial sensors

can be used to produce less accurate estimates at high frequencies (due to sensor drift), we

should be able to combine those estimates (e.g. using a Kalman or Particle Filter) in order

to obtain reasonably accurate location estimates at any point in time.
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5 Learning Resolution-independent Image Representations

Humans are well-known to be highly effective at comprehending continuous patterns

within digital images. In this chapter, we present a collection of methods that enable analo-

gous capabilities in deep neural networks. These methods train neural networks to represent

images with continuous resolution-independent representations. They utilize an MCMC al-

gorithm that directs attention during the learning phase to regions of the image that deviate

from the current model. An encoding hypernetwork learns to generalize from a collection

of images, such that it can effectively compute resolution-independent representations in

constant time. These methods have immediate applications in super-resolution scaling of

images, image compression, and secure image processing, and additionally suggest improved

capabilities for image processing with neural networks in several future applications.

5.1 Introduction

The pixel values in a digital image may be viewed as samples drawn from a function of

the form f(x) = i, where x ∈ R2 represents the image coordinates, i ∈ Rc is the corresponding

intensity for that coordinate, and c is the number of channels of the image. A digital

camera does not measure f directly, but samples it at uniform intervals. The discrete

sequence {i0,0, i0,1, . . . iH−1,W−1} of intensity values is only a representation of the underlying

continuous image from which it is sampled.

Although generally useful for computer graphics, the discrete representation does

have several important drawbacks. For example, in order to change the width or height

of the image, the discrete representation must be resampled. In practice, the ability to do

so directly is often limited (e.g. the digital camera does not have the ability, the subject
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has moved, etc.), so new intensity values must be synthesized using the pixels that have

already been captured, adding additional noise. The discrete representation also has a space

requirement proportional to the number of samples taken. Larger images require more space,

which limits their utility in practice.

A continuous representation of the image would not suffer from these drawbacks,

but since f is not typically available, a learned approximation, f̂ , would have to be used

instead. Such an approximation can be learned by examining the pixels of the discrete image

representation as long as the underlying model has sufficient capacity.

A popular choice of learning model is the neural network, especially a multilayer

perceptron (MLP). Assuming several conditions are met, MLPs have been shown to be

universal function approximators [48]. As such, they possess the capability to accurately

model f . We define f̂(θ, x) = i to be an MLP that maps normalized image coordinate pairs

x to a vector of intensity values i, where i ∈ Rc. When fully trained, f̂(θ, x) ≈ f(x) ∀x ∈ R2.

In practice, we limit ourselves to the range x ∈ [0, 1]2. Given θ, the intensity for any

individual coordinate can be approximated by performing a feed-forward pass through f̂ .

Similarly, an entire image can be constructed by feeding multiple coordinates in as a batch.

Importantly, if θ has been provided, f̂ can be used to generate discrete representations

of f with arbitrary pixel sampling frequencies. In other words, images can be generated at

any resolution. As a result, θ itself constitutes an alternative representation of the original

image f , one that is invariant with respect to the sampling resolution.

The parameters θ of f̂ can be learned for any given image using traditional gradient

descent-based techniques. A set of N 〈xi, f(xi)〉 tuples can be obtained directly from the

pixels of the available image, where N is the number of pixels. This information can be used

as training data for an ordinary regression model.

Interestingly, it is also possible to train another model, we call the encoder, to
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predict a reasonable image encoding θ for a single image. The encoder is given as input all

available intensity values from an original image and outputs the set of parameters to be

used by f̂ . As the encoder will output the weights and biases of another network, it can

be categorized as a type of hypernetwork [90]. The encoder is trained on a collection of

images based on a reconstuctive error metric utilizing f̂ . The encoder will learn to recognize

features that are common to multiple images and associate them with the parameters of

f̂ necessary to properly reconstruct the image that was provided as input, even providing

reasonable encodings of images it has never seen.

In this work, we focus on two important questions: 1) How is θ calculated for a

given image? 2) What is the utility of a sampling-independent image representation? As a

response, our primary contributions are as follows:

• We show that θ can be learned using the discrete representation of an arbitrary image

using traditional gradient-descent.

• We demonstrate an MCMC-based technique that yields improved reconstruction ac-

curacy and lowers training time compared to standard batch processing of pixels.

• We present a deep convolutional encoder that is capable of generating reasonable θ

values for unknown images using a single forward pass through the network. Our

encoder generates the weights of f̂ directly, rather than requiring extensive training

for each image.

• We demonstrate several practical applications of our work, including image resizing,

compression, and security.

This chapter is outlined as follows: In section 5.2, we discuss the relevant works pre-

sented by others in this domain. In section 5.3, we detail the process by which θ can be
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learned iteratively for a single image. In section 5.4, we show how a generalized encoder can

be trained to output useful image representations directly. In section 5.5, we demonstrate

several applications of a resolution-invariant image representation, including arbitrary scal-

ing, compression, and security. In section 5.6, we evaluate our claims using single images

and groups of related images. Section 5.7 concludes our work.

5.2 Related Works

Neural networks have been used for several state-of-the-art applications in image

processing, including recognition [36, 37, 38], completion [41, 42], style transfer [39, 40],

and generation, especially using Variational Autoencoders [43] and Generative Adversarial

Networks [44, 45]. Many of these approaches create approximate image representations

implicitly in order to accomplish their stated goals. In our work, we focus entirely on the

problem of generating reasonable representations of images.

Several other works have put more focus on learning image representations, including

PixelRNN [91], which uses a recurrent network to generate pixels one a time, and Ashmore

et. al [92], who suggested learning image representations in order to capture state from

either a single image or a sequence of images. Our approach differs from PixelRNN in that

we can generate an entire image in parallel, as our model does not make use of recurrent

connections (e.g. LSTM). Ashmore’s approach uses a type of autoencoder to learn image

state, while our approach more closely resembles a hypernetwork.

5.2.1 Hypernetworks

A hypernetwork refers to a neural network capable of generating the weights for

another neural network. For example, Ha et al. used hypernetworks to generate adaptive

weights for recurrent neural networks [90]. Stanley used an approach called HyperNEAT to
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make a neural network that was highly amenable for evolving images [93]. In our work, we

train a hypernetwork to learn how to approximate resolution-independent representations of

images from pixel values. More specifically, our hypernetwork learns from many images how

to comprehend what is implied by the discrete sampling of pixels in digital images.

5.2.2 Super-resolution

Recently, the problem of resizing an arbitrary image, especially to increase the resolu-

tion, has been addressed by deep convolutional neural networks [94, 95]. For example, Dong

et. al [94] demonstrated that super-resolution can be achieved for a single image by training

a deep network to map between low and high resolution versions of that image. One appli-

cation of our work is super-resolution, as an image can be reconstructed using any arbitrary

resolution, including larger sizes. Our work differs in that a higher resolution version of the

original image is not required for training. Our work also produces results a single pixel at a

time, rather than one image at a time. This allows the networks to be significantly smaller

and faster to evaluate.

Generative adversarial networks have also been applied to this problem. For example,

Ledig et. al [96] have demonstrated that GANs can effectively generate the fine image texture

details that are often missing from other super-resolution approaches, which indicates that

they are capable of accurately approximating the original image. Our work differs in that

we can train networks and produce scaled results using images of any arbitrary resolutions.

As such, we are not constrained to any particular scale (e.g. 4x larger).

5.2.3 Compression

Although not our primary focus, one tangential application of our research is the

ability to compress images with reasonable effectiveness. Several others have also used neural
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networks to compress images, including Toderici et. al [97]. These approaches tend to rely

on learning some form of mapping between the original image and the compressed version

in order to maximize compression ratios. Our approach is conceptually much simpler, as θ

directly corresponds to the compressed image representation. Due to the simplicity, however,

our method is unlikely to outperform established SOA techniques in this particular field.

5.3 Learning a Representation for Single Images

5.3.1 Formulation

Training an MLP to fit to a single image f can be a relatively straightforward process

when the problem has been well-formulated. The goal is to find a setting of the parameters

of the network θf that minimizes some reconstruction error E with respect to the pixels of

the original image. More formally,

θf = argminθf (E[f̂(x, θf ), f(x)]) (5.1)

In this equation, E refers to some error metric, and x represents a vector in R2

containing the normalized image coordinates for a single pixel, scaled such that x = (0, 0)

and x = (1, 1) refers to the top-left and bottom-right corners of the image, respectively. Both

f̂(x, θf ) and f(x) produce a value in Rc, representing a c channel intensity (e.g. 3 for RGB,

1 for grayscale, etc.).

If E is differentiable, equation 5.1 can be evaluated using traditional gradient descent-

based techniques. For each pixel, the appropriate image coordinate vector x is calcluated

and used as the input to the model. The pixel intensity values themselves are used as labels.

If an image contains N pixel values, then at most N unique training samples are available

for training f̂ .
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5.3.2 Error Metrics

While the choice of error metric E is theoretically arbitrary, certain metrics work

better than others in practice. For example, in our testing, variants of Sum-squared Error

(SSE) seem to be highly susceptible to a local optimum in which the network learns to

output a blank image (all intensities are either 0 or 1). Experimentally, we found that using

Cross-Entropy Error does not have these limitations and indeed does perform well for most

images. Therefore, the remainder of this paper assumes that Cross-Entropy Error is used

for E.

5.3.3 Batching

As is common when training neural networks for classification or regression, equation

5.1 may also be formulated in terms of matrices in order to evaluate several image coordinates

simultaneously:

θf = argminθf (E[f̂(X, θf ), f(X)]) (5.2)

X then is a B× 2 matrix, both f(X) and f̂(X, θf ) are B× c matrices, and B < N is

the batch size. When batching is used, E is the mean Cross-Entropy Error across all pixels

in the batch.

5.3.4 Model

The topology of f̂ controls the degree to which it is capable of approximating f . If

the topology is too restrictive, f̂ will not be able to capture the fine details of the original

image, resulting in a blurred reconstruction. Conversely, as we will discuss further in sections

5.4 and 5.5, it is desirable to have as small a representation of θf as possible. Ideally, the

number of weights would be proportional to the entropy of the image in order to guarantee

79



the network has the capacity necessary to fully represent f , but a small fixed topology can

be effective in practice. For example, a 2 → 100 → 50 → c fully connected topology with

tanh or relu nonlinearities is sufficient to represent many low resolution images.

The choice of nonlinearity has an affect on the quality of the reconstruction when

training is not fully converged. A tanh nonlinearity tends to produce smoother images than

a relu nonlinearity, for example. Upon convergence, however, the choice has demonstrated

much less significance.

5.3.5 Training

f̂ can be trained using mini-batch gradient descent, where the batch size varies be-

tween 1 and N , where N is the number of pixels in the image. There are several different

strategies that could be used to select the pixels to use in each mini-batch: A näıve ap-

proach would be to group pixels into blocks of a certain width and height. The pixels within

a particular block would always be part of the same batch, and blocks could be chosen for

training randomly. A slightly more sophisticated solution would allow for overlapping blocks

by adjusting the horizontal and vertical strides from one block to the next. This approach

tends to compromise between learning high-frequency and low-frequency image components

based on the size of the blocks. As a result, it tends to converge slowly.

A related method is to choose pixels from the image randomly to fill each mini-batch.

Random sampling allows the network to efficiently learn the low-frequency components of an

image due to the potentially large spacial separation between the pixels in the mini-batch.

As a result, this method is likely to converge more quickly than the block-based method at

the beginning of training. However, since the separation between pixels is typically much

larger than the block-based approach, learning high-frequency image components can be

more difficult when using random sampling. This effect tends to slow progress once the
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Algorithm 2 Applying the Metropolis-Hastings algorithm to pixel selection

function Next-Batch-Metropolis(f , f̂ , bprev, σ, γ)
b← bprev
for i ∈ [0, len(b)− 1] do

ci ← bi +N (0, σ)
p(bi)← |f(bi)− f̂(bi)|γ
p(ci)← |f(ci)− f̂(ci)|γ
if U(0, 1) < p(ci)

p(bi)
then

bi ← ci
end if

end for
return b

end function

low-frequency portions of the image have been learned.

A potential solution to this problem takes the image structure into account. Once

low-frequency parts of the image have been learned, pixels that can already be reconstructed

accurately should not be weighted the same as pixels that are are far from their correct

intensities. Training would be more efficient if those pixels with large reconstruction error

were more likely to be placed in a batch than those with small reconstruction error. Many

machine learning techniques based on boosting use a similar rationale.

Pixel weights can be calculated for an entire image by forward-propagating each pixel

coordinate, calculating an appropriate reconstruction error for each pixel (e.g. |y − ŷ|γ),

and then normalizing those errors to form a valid probability distribution. This particular

approach tends to be expensive in practice because the pixel weights need to be updated fre-

quently, ideally after each mini-batch presentation, and calculating the pixel weights requires

a forward propagation of the entire image.

We propose a significantly more efficient alternative approach based on the Metropolis-

Hastings (MH) algorithm [98], a Markov Chain Monte Carlo (MCMC) approach often used

to generate random samples from an arbitrary probability distribution. The first batch con-

tains pixels chosen uniformly from the original image, but each batch afterwards is generated
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using the process outlined in Algorithm 2. For each element in the batch, we generate a can-

didate pixel in the same neighborhood as the original. We then calculate reconstruction

errors for both the original pixel and the candidate. (We use γ = 0.125 for our experiments.)

These are used as estimates of the probability density function required by the MH algo-

rithm. Finally, we apply the MH algorithm directly, choosing probabilistically whether or

not to replace the original pixel with the candidate.

This algorithm tends to cause training to focus training on high-frequency portions

of the image, such as edges. As those pixels are better represented in the training batches,

the network is given more motivation to correctly reconstruct detailed portions of the image.

Especially when combined with the random-pixel method to learn low-frequency portions of

the image, this MCMC-based approach can lead to faster convergence throughout training

and lower overall reconstructive error compared to either of the other methods alone.

5.4 Learning a Generic Encoder

The previous section presented an iterative process for training a network to generate

a resolution-independent image representation. This section generalizes upon that capability

by demonstrating that we can train an encoding hyper-network, e, to compute θf . This

encoder offers significantly greater utility by computing θf in a single forward-pass, and

learns to generalize effectively from multiple images. e maps from the pixels of the original

image to a resolution-independent representation, θf . With this formulation, f̂ no longer

needs to be trained directly. Instead it is used as part of an objective function to train the

parameters of e, θe. θe then, represents the entire set of variables that need to be optimized.

Here, we show that e can be trained by examining numerous images, extracting

common features and mapping them to image representations that can then be used by

f̂ directly, without the need for additional training at inference time. As a result, if e
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has already been sufficiently trained, θf can be calculated for an arbitrary image using a

single forward pass through the encoder network. Compared to the approach outlined in

the previous section, this approach is asymptotically faster. Evaluating e for a single input

is a constant time operation, compared to the linear cost of fully training a network to

accomplish the same goal, which is clearly an improvement.

In addition to the methods outlined in the previous section, additional procedures

unique to this problem are also needed in order to generate high quality encodings across

multiple images. In this section, we examine these additional procedures, as well as the

architecture of the complete encoding hyper-network in detail.

5.4.1 Model Architecture

Deep neural networks, especially convolutional ones, have demonstrated that they are

capable of extracting high-level features from images, especially for the purposes of image

recognition, segmentation, and generation [36, 37, 38, 43, 44, 45]. The same properties

are desirable in creating a generic encoder, as we desire to associate image features with

appropriate image representations. As a result, we will use a deep convolutional network as

the basis for our generic encoder.

The architecture of our model is shown in Figure 5.1. We use several layers of con-

volution, separated by rectified linear activation units and 2 × 2 max-pooling operations

to extract and downsample important image features. We then attach two fully connected

layers separated by additional relu activations to map between the extracted features and

the appropriate image representation θf .

Adding a layer of activation units after the output layer would have the effect of

enforcing constraints on the weights of the MLP f̂ . For example, a tanh activation layer

would constrain all values of θf to fall in the range [-1, 1], providing a form of regularization.
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Figure 5.1: Architecture of the encoder. We use convolution and max pooling to identify
important image features and fully connected layers to learn the mapping to θf .

However, in order to provide e with maximal flexibility to reconstruct images, we have chosen

to omit such an activation layer in our model. Studying the effects of different activation

layers is left as an area for future work.

5.4.2 Training

In order to train e directly, we would need to have access to a dataset mapping images

to an appropriate representation, θf . While such a dataset could be generated given a large

enough collection of images using the techniques outlined in Section 5.3, doing so would

require training a network to completion for each image in that collection, which is not

practical.

Instead, we use the function f̂ as an objective metric to guide training directly. We

select an image from the training collection and forward-propagate it through e to obtain an

intitial image encoding θf . That encoding is split into individual vectors, each of which is

reshaped to form the weight and bias matrices used by f̂ . f̂ is then evaluated using a mini-
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batch of pixels selected from the chosen image, producing a B × c matrix of reconstructed

pixels. As in Section 5.3, we calculate the gradient of some reconstruction error metric (e.g.

Cross-Entropy) with respect to each of the components of θf , which is then backpropagated

back into e in order to update the encoder’s parameters θe. We repeat the process K times

using the MCMC algorithm presented in Section 5.3 to select which pixels to use in each

mini-batch. After the K iterations have passed, another image from the training set is

selected, and the algorithm repeats until e produces encodings of sufficient quality.

There is an interesting interaction between the hyperparameter K and the choice of

optimizer used during training. If e is trained for too long (or too well) on a single image, it

can learn to produce encodings that do not generalize effectively. For example, e might learn

to memorize a good encoding for the most recently presented image or to produce a uniform

encoding for all images, introducing significant reconstruction error. We found that by using

smaller values of K (e.g. K = 10) and by making use of slightly weaker optimizers (e.g.

RMSProp [99] instead of ADAM [100]), we can counteract these types of issues in practice.

5.5 Applications

There are several practical applications for resolution-independent image represen-

tations, including, but not limited to, image resizing, compression, and security. In this

section, we survey these applications.

5.5.1 Image Resizing

A straightforward application of our research is the ability to resample images to

arbitrary resolutions. This is achieved by feeding a different set of relative pixel coordinates

x′ to f̂ than the model was initially trained on. If Wd and Hd represent the desired width

and height in pixels, x′ can be calculated as:
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h =

⌊
i

Wd

⌋
w = i mod Wd

x′i =

[
w

Wd − 1
,

h

Hd − 1

]
,where 0 ≤ i < Wd ×Hd

(5.3)

Indeed, we demonstrate in Section 5.6 that simple images such as MNIST digits can

easily be rescaled roughly 20x larger, from 28 x 28 pixels to 512 x 512 pixels, with little

perceptual loss in quality, while larger images can be comfortably be scaled by a lesser

amount.

5.5.2 Compression

Another interesting application of this research is the ability to efficiently compress

images, especially higher-resolution ones. Our generation network f̂ is designed to encode

images using relatively few weights (e.g. 5,503 for the topology given in Section 5.3 with

3 channels). For the purposes of storage or transmission, only those weights need to be

persisted, rather than each of the individual pixels of the original image. As a result, the

resolution-independent encoding can often be smaller than the alternative representation.

For example, the famous “Lenna” image often used with Image Processing research

is a 220 x 220 pixel RGB image, requiring 145,200 bytes uncompressed (220 x 220 x 3 bytes

per pixel). The corresponding scale-independent representation would require 22,012 bytes

uncompressed (5,503 weights x 4 bytes per weight), an 84% reduction in size or roughly a

7:1 compression ratio. For comparison, a standard JPEG compressed version of the same

image with the highest quality level requires 47,145 bytes, which is a 67% reduction in size

or a 3:1 compression ratio.

With many lossy compression algorithms, ours included, a tradeoff can be made
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between file size and reconstruction quality. By limiting the topology of f̂ , we can simulta-

neously constrain the capacity of the neural network while introducing additional reconstruc-

tion error. In Section 5.6, we will demonstrate the results of a more complete compression

test, showing how as the size of the network topology correlates positively to the reconstruc-

tion quality.

5.5.3 Security

A final application of our technique is relevant to information security, particularly

as an additional layer of “security through obscurity”. Sensitive images that have been

encoded to a resolution-independent format would not be able to be viewed by a malicious

entity without understanding the significance of the values, similarly to how most binary

formats cannot easily be read without understanding the file format in which they were

saved.

Assuming an attacker did understand that the individual bits of an image’s resolution-

independent representation could be interpreted as 4-byte floating point values, those num-

bers would still be meaningless without the associated network topology, which would not

necessarily have to be encoded into the file format itself, and an understanding of what the

inputs and outputs to the network represent.

As resolution-independent representations are not currently commonplace in many

real-world scenarios, entities interested in preserving the privacy of their users could adopt

our technique as an additional line of defense beyond other orthogonal approaches, such as

strong encryption or multi-factor authentication.
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(a) Original Images (b) Reconstructed Images

Figure 5.2: A network has been trained on each individual image to generate a corre-
sponding resolution-independent encoding. Images were then reconstructed at the original
resolution.

5.6 Evaluation

In this section, we validate the claims that have been made so far in the paper.

Firstly, we demonstrate that a resolution-independent image encoding can be learned for a

single image using a small MLP. Then we demonstrate our results for training a single generic

encoder that outputs reasonable image encodings directly. Next, we compare our resampling

approach to several others in common use. Finally, we perform a comparison between the

size of the resolution-independent encoding and reconstructive accuracy, showing that as the

two are positively correlated.

For our evaluation, we will use examples from the MNIST database of handwritten

digits, photo #6 from the Kodak dataset, and the famous “Lenna” photo often used in

image processing. The resolutions of each (in pixels) are 28 x 28, 192 x 128, and 220 x 220,

respectively. The MNIST images are greyscale, while the others are traditional RGB images.

5.6.1 Resolution-independent Image Encodings

We first demonstrate that the techniques discussed in Section 5.3 can be applied

to learn a resolution-independent image encoding directly. For this experiment, a small

network was trained on a single image from the MNIST dataset of handwritten digits using

the ADAM optimizer and a learning rate of 0.001 for 50,000 iterations. This network was

then used to reconstruct the image used for training. We repeated the process for the first
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Figure 5.3: A comparison of three batching methods on two different images. Left: an
arbitrary example from the MNIST dataset. Right: Lenna.

20 elements of the MNIST dataset to generate the entries in Figure 5.2. Notice that simple

images can be reconstructed relatively easily and that most images show little perceptable

error.

Next we show how the choice of batching method affects the convergence of training.

In Section 5.3, three alternative methods were proposed: block training, random pixel sam-

pling, and an MCMC-based approach. For this test, two individual models were created, one

for a single MNIST image, and another for the Lenna image. Both networks were trained

to convergence using each of the three approaches. For the MCMC-based approach, several

iterations of random sampling were used at the beginning of training before switching to

the MCMC algorithm as discussed in Section 5.3. The resulting training curves are given in

Figure 5.3. Note that the figure on the left is displayed in log-scale to better visualize the

differences between each method.

In both cases, block sampling proved to be the least effective of the three approaches,

as it converged slower and had a higher resulting reconstruction error. The MCMC-based

approach clearly outperformed random sampling for the MNIST test, but the two approaches

produced virtually identical results for the Lenna test. We believe the MCMC method

tends to perform better when there are steep color gradients as opposed to shallow ones, as

demonstrated by its performance on the MNIST image.
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(a) The first 10 training images. (b) Reconstructions of the first 10 training im-
ages.

(c) The 10 testing images. (d) Reconstructions of the 10 testing images

Figure 5.4: A generic encoder was trained on 10,000 images from the MNIST dataset.
Reconstructions were produced without any additional training.

5.6.2 General Image Encoder

In this section, we evaluate the performance of our generic encoder. For this test, an

encoder with the architecture given in Figure 5.1 was created and trained on 10,000 images

from the MNIST dataset using the training procedure outlined in Section 5.4. That encoder

was then used to recreate 10 additional images that were not part of the training set at their

original resolutions, as well as the first 10 images in the training set. The results are given

in Figure 5.4.

We see that the encoder was generally able to provide image encodings that allowed

for good reconstructions of both the images that were seen previously and those that were

not. Importantly, it seems that some of the imperfections present in several of the images

were effectively corrected by the encoder. For example, the digit 8 in row 2 appears to

have a ! symbol next to it in the original image, but that symbol was removed by the

encoder. There were also holes in each of the two previous examples (the 0 and 9) that were
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(a) NN Interpola-
tion

(b) Linear Interpo-
lation

(c) Cubic Interpo-
lation

(d) Sinc Interpola-
tion

(e) Our Approach

Figure 5.5: Various means of upscaling an element from the MNIST database. Images were
increased in resolution from 28 x 28 pixels to 512 x 512 pixels.

filled during reconstruction. This demonstrates that the encoder does appear to have some

understanding about the content of the images, rather than simply memorizing the encoding

space.

5.6.3 Scaling

As mentioned in Section 5.5, one application of our work is the ability to resample

an image at a higher resolutions. To demonstrate the utility, Figure 5.5 shows how various

interpolation algorithms perform on one particular element of the MNIST dataset. For this

experiment, the original image, which has a resolution of 28 x 28 pixels, was upscaled to 512

x 512 pixels (roughly 20x larger), using various common methods for image interpolation.

Our method captures the unique features of the original image while avoiding unnecessary

blurring.

5.6.4 Encoding Size and Reconstruction Error

For our last experiment, we compare how the size of θ affects reconstructive quality.

For this test, we trained several networks to reproduce three images: an example from

the MNIST database, photo #6 from the Kodak dataset, and the Lenna image. The size

of the topology of f̂ was varied to produce larger (and more expressive) encodings. The
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10→ 5→ c 20→ 8→ c 25→ 10→ c 35→ 20→ c 50→ 25→ c 80→ 30→ c 100→ 50→ c 150→ 75→ c 200→ 100→ c 250→ 125→ c

Figure 5.6: Larger topologies yield better image reconstructions. From top: an example
from the MNIST dataset, Kodak #6, Lenna, the topology of f̂ using tanh() activations.

results are given in Figure 5.6. Intuitevly, as the size of the encoding increases, so does the

reconstructive power of the network. Relatively small topologies are sufficient to reconstruct

images clearly.

5.7 Conclusion

In this chapter, we demonstrated a process for learning resolution-independent im-

age encodings. We also demonstrated that a deep convolutional encoder can be trained to

produce reasonable encodings for images, avoiding the cost of training a complete neural net-

work for each individual image. We validated our claims with well-known standard datasets

and images. These new methods offer capabilities in such areas as super-resolution scaling,

image compression, secure image processing, and other image processing applications.
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6 Summary

In this dissertation, we have explored methods for enhancing the context-awareness

capabilities of modern computers, including mobile devices, tablets, wearables, and tradi-

tional computers. Advancements include proposed methods for fusing information from

multiple logical sensors, localizing nearby objects using depth sensors, and building models

to better understand the content of 2D images.

First we proposed a system called Unagi designed to incorporate multiple logical

sensors into a single framework that allows context-aware application developers to easily test

new ideas and create novel experiences. Unagi is responsible for collecting data, extracting

features, and building personalized models for each individual user. We demonstrated the

utility of the system with two applications: adaptive notification filtering and a network

content prefetcher. We then thoroughly evaluated the system with respect to predictive

accuracy, temporal delay, and power consumption.

While Unagi can significantly simplify the development of certain context-aware ap-

plications, it also faces several important limitations that may provide fruitful avenues for

further research. For example, as the energy cost of accessing hardware sensors on a mobile

device is generally not negligible, we cannot trivially extend Unagi’s methodology to work

with them. Hybrid sensing techniques may have the potential to collect highly relevant

contextual information while avoiding many of these associated costs.

Next we discussed a set of techniques that can be used to accurately determine the

location of objects near a user in 3D space using a mobile device equipped with both depth

and inertial sensors. Using a novel chaining approach, we were able to locate objects farther

away than the standard range of the depth sensor without compromising localization accu-
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racy. Empirical testing showed our method was capable of localizing objects 30 m from the

user with an error of less than 10 cm.

An important aspect of our DIPS project is that it is designed to obtain a single

highly accurate location estimate, rather than a continuous stream of events. By combining

information from other sources, such as inertial sensors, it is possible to use this work to

create a more complete localization system that could be implemented using inexpensive

consumer devices. Inexpensive localization, especially in an indoor environment, has long

been a goal in mobile computing, so such a step could potentially be valuable for both

research and for end users.

For our final topic, we demonstrated a set of techniques that allow a multi-layer

perceptron (MLP) to learn resolution-invariant representations of 2D images, including the

proposal of an MCMC-based technique to improve the selection of pixels for mini-batches

used for training. We also showed that a deep convolutional encoder could be trained to

output a resolution-independent representation in constant time, improving the utility con-

siderably. Lastly, we discussed several potential applications of this research, including image

resampling, image compression, and security.

A key challenge with work like this is the ability to “explain” the motivations behind

actions taken by a neural network. For example, our resolution-independent image repre-

sentation can reconstitute an image, but we can not currently alter the reconstruction in

any semantically relevant way by adjusting individual parameters of the representation. For

example, we cannot easily create a representation for the Paris skyline and then intentionally

remove the Eiffel Tower in the reconstruction. Questions like these provide the motivation

for a multitude of research topics in Computer Vision and Machine Learning that will prove

invaluable for other fields as well.
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6.1 Final Thoughts

Each of the individual topics we’ve discussed so far represents an important advance-

ment in the field of context-aware computing.

Frameworks like Unagi are necessary to simplify the development of applications

that can react appropriately to changes in the user or in the user’s environment. These

applications represent the realization of the efforts made by the research community to

provide tangible benefits to our society. Without them, the research has diminished utility.

Simplifying the process of creating context-aware applications then, has value to both end

users and to researchers in the field.

Another important means to serve the research community is to explore uncommon

data sources, such as the psychological or low-cost depth sensors we have addressed in this

dissertation. Our goal with this sort of research is to better understand how the raw data

can best be used to accomplish interesting tasks, such as determining how users are feeling

or localizing objects near them efficiently. These experiments can be used to inspire other

researchers to explore related methods, contributing to the natural growth of the field.

A final method of advancement comes from exploring other research domains and

adapting topics, methods, and technologies to solve similar problems. Our work, for exam-

ple, fuses Systems Design, Hardware and Software Sensing, Computer Vision, and Machine

Learning with context-aware computing to advance our research. The perspectives offered by

studying each of those domains have proven to be invaluable when deciding how to approach

each of our research questions.

Future work in the field of context-aware computing will be heavily influenced by each

of these three methods of advancement. As context-aware applications become more com-

mon and more powerful, a significant amount of engineering effort will be put into creating

95



high-quality experiences for users, necessitating useful programming interfaces. Additional

data sources, particularly software-based ones that require almost no additional power con-

sumption, will also be very important moving forward, as they tend to correlate very highly

with user behaviors. Finally, collaboration between researchers in other fields will be invalu-

able in order to address new limitations as they are uncovered. New problems in one domain

can often benefit from established solutions in another.
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