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Abstract 

Alpha-toxigenic Clostridium septicum (CS), the cause of turkey cellulitis, results in 

devastating mortality with high costs for the industry. Various vaccinations have been evaluated 

to prevent this disease with moderate success. Ability of a CS bacterin-toxoid, in conjunction 

with adjuvants such as aluminum hydroxide, mannoslyated chitosan, or a water-in-oil Seppic 

Montanide 71 R VG adjuvant (OE) to induce immunity was evaluated in a 7-week study 

(Experiment 1). Poults (20/group) were vaccinated day-of-hatch, boosted at 5 weeks-of-age and 

compared to unvaccinated controls. Antibody levels were determined by ELISA for all 

experiments. In experiment 1, initial vaccination with the OE resulted in significantly (P<0.05) 

higher antibody levels at 5 weeks-of-age, and at 7 weeks-of-age OE resulted in numerically 

increased antibody levels compared to all vaccinated groups. Efficacy of the OE vaccine was 

then evaluated in two field trials (Experiment 2 and 3) with treatments including a non-

vaccinated control group and a vaccinated group. Non-vaccinates were marked by removal of the 

dewclaw at the hatchery and comingled during growout (Experiment 2 and 3).  Experiment 2 

consisted of 3 houses: House 1 (HS1), House 2 (HS2), and House 3 (HS3). Mortality associated 

with cellulitis was recorded once the first case was observed. Blood samples were obtained at 8, 

12, and 16 weeks-of-age. Antibody levels (S/P ratio) in vaccinated groups for weeks 12 and 16 

were significantly higher (P<0.05) than the control groups for all 3 houses. In HS1 and HS2, low 

CS-associated mortality was observed and there was no significant difference in mortality/total 

(%) between control and vaccinated group. In HS3, control mortality/total (%) was significantly 

(P<0.001) higher than mortality in vaccinated turkeys. Experiment 3 consisted of 6 farms with 1-

4 houses/farm. Vaccination significantly (P<0.05) reduced CS-related mortalities as compared to 

controls in 5 of 6 farms in experiment 3 and antibody titers were significantly (P<0.05)  higher in 

vaccinated turkeys at 12 and 16 weeks for all 6 farms. Based on these results, W/O emulsion 



 

 

vaccines, such as this alpha-toxin bacterin-toxiod with Montanide 71 R VG adjuvant, can be 

used to increase antibody titers and may reduce related mortalities in the field. 
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Chapter I. Introduction 

 

Turkey cellulitis, also referred to as clostridial dermatitis, is a problematic disease with 

prevalence escalating over the last two decades in the United States (Lighty et al., 2016).  Peak 

incidence occurs in turkey flocks around 13-18 weeks-of-age (Clark et al., 2010). Clostridium 

perfringens and Clostridium septicum are opportunistic pathogens that have been isolated from 

cellulitis lesions (Thachil et al., 2010), however, C. septicum has been identified as the primary 

etiology responsible for cellulitis in commercial turkeys (Tellez et al., 2009).  Controlling C. 

septicum is difficult due to the probability of the pathogen being a commensal organism within 

the gastrointestinal tract of healthy animals (Clark et al., 2010). The spores can also remain 

dormant in an unfavorable environment and then thrive when growth conditions are optimal 

(Clark et al., 2010). Immunosuppression or stressful conditions followed by challenge with C. 

septicum, a ubiquitous pathogen, can prompt disease (Clark et al., 2010). Development of 

clinical signs and mortalities related to cellulitis commonly result in the affected flock being 

treated with antibiotics (Clark et al., 2010).  Proper management practices and antibiotic therapy 

have proven to reduce the incidence, but does not eliminate the disease.   
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Chapter II. Literature Review 

 

Clostridium septicum and other related Clostridial species  

 

 Clostridium septicum is a Gram-positive, anaerobic spore forming bacillus that produces 

four toxins: alpha-toxin, beta-toxin, gamma-toxin, and delta-toxin (Hatheway 1990) with alpha-

toxin as the most necrotizing (Tweten et al., 2001). Bacterial toxin production can vary based on 

temperature, time, pH, and availability of nutrients (Lalitha et al., 2005). In turkeys, C. septicum 

infection is associated with turkey cellulitis (Tellez et al., 2009; Thachil et al., 2013). Areas 

affected include the breast, tail, and thigh area where gas produced by the actively replicating 

anaerobic bacteria accumulates at the site of infection (Clark et al., 2010). In early observed 

cases, C. perfringens Type A was isolated from lesions containing gelatinous fluid under the skin 

with the musculature having a dark or greenish appearance (Carr et al., 1995).  Other etiologies, 

including C. perfringens, have been categorized as a pathogen associated with turkey cellulitis 

(Gomis et al., 2001; Gornatti-Churria et al., 2018), however, C. septicum has been proven to be 

the principal causative agent (Tellez et al., 2009) and the accumulation of C. septicum alpha 

toxin is responsible for accompanying clinical signs (Kennedy et al., 2005).  

Following subcutaneous challenge with 0.5, 1, 2, or 3mL of C. perfringens or C. septicum 

spore culture, C. septicum spore challenge group had more associated mortalities within 48h in 

both 3-week and 7-week old turkeys than the C. perfringens spore challenge group (Thachil et 

al., 2010). Gross macroscopic lesions on breast and tail area were observed in both challenge 

groups although more severe lesions were detected in the C. septicum challenge group (Thachil 

et al., 2010).  Hemorrhage and edema was associated with both the dermis and subcutis, with 

heterophil infiltration more pronounced in the C. septicum 1mL challenge group and gas 

formation identified heavily in the C. septicum 3mL challenge group (Thachil et al., 2010). In 
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turkeys challenged with the higher doses of C. septicum, notable cellular necrosis and 

myonecrosis was observed. Within these necrotic regions, there were high numbers of rod 

shaped bacteria and low amounts of inflammatory cells (Thachil et al., 2010). There was an 

inverse relationship noted between heterophil infiltration and actively replicating bacteria within 

the tissue of C. septicum infected turkeys, the group that showed classical cellulitis mortality 

response and clinical signs (Thachil et al., 2010). To investigate the incidence and relationship 

between C. septicum in broilers and turkeys, 109 C. septicum isolates were recovered from both 

turkey and broiler flocks that had a history of dermatitis or cellulitis (Neumann et al., 2009). Out 

of the analyzed sequences, only one sequence showed commonality between the broiler and 

turkey strain suggesting isolates show specificity (Neumann et al., 2009).  

In broiler chickens, gangrenous dermatitis is caused by both C. perfringens and C. 

septicum around 6 weeks-of-age (Li et al., 2010). Microscopic evaluation of gangrenous 

dermatitis lesions reveal gas and fluid accumulation, necrosis and heterophil infiltration (Li et al., 

2010). Gangrenous dermatitis lesions observed in the breast, abdomen and thigh area were 

heavily discolored with emphysema and serosanguinous fluid (Li et al., 2010; Lee et al., 2012). 

Intestinal observations reveal severe hemorrhaging thus increasing the permeability of the 

intestinal epithelial barrier, allowing potentially allowing for enteric translocation of clostridial 

pathogens to the submucosa, and potentially systemically (Li et al., 2010). To identify causative 

pathogens associated with gangrenous dermatitis after immunocompromising broilers with an 

infectious bursal disease virus vaccination at 14 days, Staphylococcus aureus and C. septicum 

isolates, alone or in combination, were administered intramuscularly or subcutaneously to 4-

week-old broilers (Wilder et al., 2001). Elevated mortality was observed in the C. septicum and 

S. aureus challenge groups. However, C. septicum alone was not responsible for dermatitis 



 

4 
 

associated lesions in this experiment (Wilder et al., 2001).   Li et al., (2010) identified that 

gangrenous dermatitis affected broilers had significantly higher C. perfringens serum antibodies 

than the non-infected broilers. Interestingly, there was no difference in C. septicum serum 

antibodies or Eimeria spp. antibodies between the infected and non-infected group, although 

antibody levels were high in both (Li et al., 2010). This indicates that C. perfringens may be the 

etiology responsible for gangrenous dermatitis associated lesions and mortalities. In another 

study, serum samples were collected from non-affected and gangrenous cellulitis affected 

broilers at 35 days-of-age where the non-affected broilers had higher antibody levels to C. 

perfringens alpha-toxin and netB than the broilers with clinical signs (Lee et al., 2012). The 

authors hypothesized that the non-affected broilers had elevated antibodies levels which 

protected them from acquiring the disease (Lee et al., 2012).  

In ruminants, blackleg is caused by C. chauvoei, an anaerobic, spore-forming, bacillus 

which is generally present in the environment that primarily affects cattle (Useh et al., 2006; 

Uzal et al., 2012) and sheep (Useh et al., 2006). It is widely believed that C. chauvoei spores 

reside in tissues and germinate at the site of an injury (Useh et al., 2006). The pH and oxygen 

availability within damaged muscle continues to change due to replication of C. chauvoei, 

creating an environment where the pathogen can efficiently propagate (Useh et al., 2006). C. 

chauvoei produces gamma toxins, beta-toxins, hemolysins, and neuraminidases (Useh et al., 

2003). C. septicum has also been isolated from blackleg lesions in cattle but differs from C. 

chauvoei based on the presence of edema which is generally not apparent with C. chauvoei 

infections (Hatheway, 1990). To prevent blackleg, cattle are vaccinated annually with formalin 

inactivated bacterins and if an infection occurs, animals are typically treated with penicillin 

(Useh et al., 2006).  
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Opportunistically pathogenic clostridial species are nearly ubiquitous in areas where 

commercial poultry or livestock are raised.  As many or all of these species have a primary niche 

of amplification within the gastrointestinal tract, either ingestion of spores or sporulation of 

living vegetative cells within the digesta provide a nearly constant source for potential 

translocation across the enteric epithelial barrier.  When these spores, perhaps carried by the 

circulation, are present in damaged tissues with relative anoxia, they may then have the potential 

to germinate, replicate, and generate local toxin-associated necrosis, thereby increasing the 

ability of these organisms to anaerobically continue to grow.  These exotoxins, such as alpha 

toxin produced by C. septicum, can also be responsible for initial lesions and ultimately mortality 

related to localized tissue diseases. 

Clostridium septicum Pathogenesis  

 

As described above, turkey cellulitis is caused by the accumulation of Clostridia, 

specifically C. septicum, in lesions leading to edema and inflammation (Clark et al., 

2010).  Lesions containing fluid and gas caused by C. perfringens and C. septicum are often 

similar, but mortality is more frequent in C. septicum infected turkeys (Thachil et al., 2010). 

Pathogens can enter circulation by translocating through the intestinal barrier, through broken 

skin or lesions, or by oral inoculation followed by subsequent physical trauma or gut leakage 

(Clark et al., 2010).  With little known about the mechanisms of this disease, isolation and 

identification of the causative agent was imperative to further understand the pathogen most 

commonly associated with turkey cellulitis. In 2009, C. septicum was determined to be the most 

common pathogen related to turkey cellulitis in commercially produced turkeys (Tellez et al., 

2009).   
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C. septicum alpha-toxin is structurally similar to Aeromonas hydrophila aerolysin 

(Ballard et al., 1995) being a pore-forming cytolysin where this specific toxin attaches to 

glycosylphosylinositol (GPI) protein receptors (Gordon et al., 1999; Kennedy et al., 2005).  This 

attachment and pore formation results in cell lysis. Kennedy et al. (2005) determined that the 

primary virulent attribute of C. septicum is related to alpha-toxin activation and production.  Pore 

forming toxins, such as C. septicum alpha toxin, affect the permeability of the host cell 

membrane by attaching and creating a pore (Popoff et al., 2014) leading to necrosis or apoptosis 

(Bischofberger et al., 2012). Pore size ranges from 1.3-1.6 nm in diameter (Knapp et al., 2009). 

Alterations in permeability caused by pore formation disrupt several cellular interactions, 

including osmotic pressure and ion regulation within the cytosol. When exposed to certain pore 

forming proteins, pores are created in low numbers on the membrane and can be repaired via 

calcium dependent mechanisms (Babiychuk et al., 2011). This mechanism has not been 

evaluated for C. septicum alpha toxin although the probability of membrane repair occurring 

after encounter with pore forming toxins is minimal due to the rapid nature of pore formation 

(Bischofberger et al., 2012), such as with C. septicum alpha toxin. Increased pore formation 

associated with C. septicum alpha toxin may hinder the cell’s ability to self-repair due to the 

accumulation of toxin.  

Kennedy et al., (2009) analyzed high mobility group box 1 (HMGB1), a protein that 

binds to receptor for advanced glycation end products (RAGE) instigating an inflammatory 

cascade that signals necrosis in adjacent cells (Scaffidi et al., 2002), for protein expression within 

the nucleus and the cytoplasm to determine if C. septicum alpha toxin induces HMGB1 

expression in a target cell. A murine myoblast cell line was used with treatments consisting of a 

non-treated control, a group treated with 0.1µg/mL alpha toxin, and a group treated with 1µg/mL 
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alpha toxin (Kennedy et al., 2009). Translocation of HMGB1 into the cytoplasm only occurred in 

the 1µg/mL treated group indicating that C. septicum alpha toxin at that level initiates necrosis 

within cells induced by Ca2+ level changes within the cell (Kennedy et al., 2009). Necrosis 

associated with C. septicum infections is due to HMGB1 expression by damaged cells, ionic 

changes caused by pore formation, and other regulatory changes within the cell (Kennedy et al., 

2009). Although lethality of C. septicum alpha toxin has been evaluated, the primary route of 

transmission or portal of entry for turkey cellulitis is still being investigated.  

Outside-In Theory 

 

 Clostridium septicum is the primary etiology causing turkey cellulitis (Tellez et al., 2009) 

though the portal of entry is not fully understood. This bacterium could potentially enter the host 

via puncture wounds or scratches (Clark et al., 2010) suggesting that the pathogen could 

potentially enter from the “outside”. In an experiment, day-of-hatch poults were subcutaneously 

injected in the breast area with C. septicum supernatant, neat C. septicum culture, or a 

conjunction of supernatant and convalescent antiserum (Tellez et al., 2009). Supernatant alone 

induced classical cellulitis clinical signs within 2h of inoculation (Tellez et al., 2009). No 

mortalities occurred 24h post-inoculation in the C. septicum supernatant only group. Supernatant 

with various dilutions of the convalescent antisera did not result in any lesions or mortality. 

However, injection with the C. septicum neat culture resulted in 78.5% mortality. Each affected 

poult had inflammation of the lungs, heart, and peritoneum similarly to observed cellulitis cases. 

Since morbidities, but no mortalities occurred in the supernatant only group, Tellez et al. 

suggested that the toxin produced by C. septicum may not be responsible for associated 

mortalities.  However, subcutaneous challenge with neat C. septicum culture was resulted in high 
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mortality which may indicate the bacteria were replicating quickly thus producing high 

concentrations of exotoxins.  

Thachil et al., (2013) investigated immune response post-vaccination with a C. septicum 

bacterin-toxoid oil emulsion vaccine with a subsequent challenge in the breast area in 

commercial turkeys. In this study, 24 hours post challenge in the breast area, there was 100% 

mortality in the control group (Thachil et al., 2013) providing further evidence that C. septicum 

can enter through openings in the skin. Reproduction of disease and mortality via subcutaneous 

challenge indicates C. septicum could enter through a puncture or wound, such as observed with 

a needle during challenge. In the field, this may be via scratches, abrasions, or cuts on the 

animal.   

Inside-Out Theory 

 

 Clostridial species are ubiquitous; therefore, disease may not be apparent until stress 

induces intestinal inflammation ultimately resulting in gut leakage allowing the passage of the 

pathogen into circulation (Gornatti-Churria et al., 2018). Once in circulation, cells may proceed 

to the site of damage or bruising where replication and toxin production likely occur (Clark et al., 

2010). Braxy in sheep and calves, or inflammation of the abomasum caused by a C. septicum 

infection, often results in septicemia and high mortality rates (Songer 1996). Intestinal barrier 

failure allows for the propagation of diseases related to C. septicum, such as cellulitis. 

 Cellulitis has not been successfully recreated with an oral challenge model. An 

experiment was conducted to determine the effect of dexamethasone treatment, an 

immunosuppressant, on mortality associated with C. perfringens and C. septicum challenge 

(Thachil et al., 2014). In this experiment, oral challenge with C. perfringens or C. septicum at 

both ~107 and 109 cfu/bird did not cause related mortalities in the control or dexamethasone 
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treated group. However, subcutaneous challenge with low dose of C. perfringens resulted in 0% 

mortality in both groups while the high dose caused 42% mortality in the positive control group 

and 100% mortality in the dexamethasone treated group (Thachil et al., 2014). A subcutaneous 

challenge of the low dose C. septicum resulted in 16% morality in the controls and 83% 

mortality in the dexamethasone group (Thachil et al., 2014). The high dose C. septicum 

subcutaneous challenge caused 100% mortality in both the control group and dexamethasone 

treated group. Dexamethasone treatment in conjunction with the oral challenge had no effect on 

mortality (Thachil et al., 2014) providing more evidence for the “outside-in” theory. Disease may 

not have been observed in the orally challenged group because these animals were not punctured 

while the subcutaneously injected turkeys were subjected to dermal puncture at challenge. A 

replicate experiment should be conducted to determine if oral challenge followed by sham 

subcutaneous challenge (no organism) induces cellulitis. This would provide more information 

for the argument of “outside-in” versus “inside-out”.  

Experimental Vaccines  

 

Toxoid vaccinations for various Clostridial diseases in humans (Kotloff et al., 2000) and 

livestock (Hammer et al., 2007) have been effective. Blackleg in cattle and ruminant animals 

caused by Clostridium chauvoei is controlled frequently with vaccines (Useh et al., 2003). A 

variety of toxoid vaccines are administered to prevent blackleg consisting of seven Clostridium 

isolates, although C. chauvoei and C. septicum are the two that calves are required to be 

vaccinated for (Uzal et al., 2012). C. chauvoei spores within the environment can be ingested, 

spread throughout circulation and reside in muscular tissue (Useh et al., 2006.). Once an injury 

occurs around where the spores are located, blackleg symptoms and mortality ensue (Useh et al., 

2006). However, a toxoid vaccine that provides optimal protection without antibiotic treatment 
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under commercial conditions has not been discovered for turkey cellulitis.  Experimental 

vaccinations for turkey cellulitis have included inactivated C. perfringens and C. septicum cells 

and toxins alone and in combination (Tellez et al., 2009; Thachil et al., 2012; Thachil et al., 

2013).  The antigen can be administered as an inactivated bacterin-toxoid or toxoid which will 

stimulate an immune response, specifically antibody production, but not cause infection in the 

animal. A C. perfringens and C. septicum toxoid vaccine subcutaneously administered at 6 

weeks-of-age significantly reduced mortality and penicillin usage, and significantly increased 

serum antibody levels to C. septicum and C. perfringens alpha-toxin in commercial turkeys 

(Thachil et al., 2012).  The mortality percentage in the nonvaccinated group was 9.4% and 7.4% 

in the vaccinated group indicating that the vaccination is providing immune protection and 

preventing mortalities related to cellulitis (Thachil et al., 2012).  There were 547 packs of 

penicillin used over 59 days in the nonvaccinated group compared to 361 packs of penicillin 

used over 31 days in the vaccinated group (Thachil et al., 2012).  Vaccination reduced penicillin 

usage days by 50% over the 22- week period although vaccination did not eliminate the need for 

penicillin treatment.  Although the C. perfringens and C. septicum toxoid vaccination provided 

significant protection, this vaccination alone cannot fully control or eliminate this disease.   

Although not proven, the possible mode of action for oil emulsion vaccines may be the 

ability of creating a depot effect at the site of injection where the antigen is slowly released and 

presented to the immune system (Aucouturier et al., 2001).  Thachil et al., (2013) conducted an 

experiment utilizing a C. septicum toxoid oil emulsion vaccine. Turkeys were vaccinated with a 

1mL dose (1.5g of toxoid) or 2mL dose (3g of toxoid) at 6 weeks-of-age (Thachil et al., 2013). A 

group of turkeys were boosted at 14 days post-vaccination. Antibody levels were significantly 

different between both vaccinated groups and the control groups at both doses as expected. Two 
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field studies were conducted to test the effects of the C. septicum bacterin-toxoid. In field study 1 

and 2, turkeys were vaccinated with the 1mL dose at 6 weeks-of-age. Cellulitis associated 

mortality was reported at 12.1% for the control group and 10.5% for the vaccinated group. The 

vaccinated turkeys had significantly less mortalities reported and were administered penicillin 40 

days less than the control.  In field study 2, mortality in the control group was 1.68% versus 

0.87% for the vaccinated group (Thachil et al., 2013). This indicates that this C. septicum 

bacterin-toxoid has protective effects against cellulitis in the field, but does not fully eliminate 

the use of antibiotics or mortality occurrence.  

A C. septicum bacterin-toxoid vaccine has been evaluated using aluminum hydroxide as 

an adjuvant (Tellez et al., 2010).  To test the ability of inactivated C. septicum vaccine, 10-week-

old turkeys were vaccinated with a formalin inactivated C. septicum bacterin-toxoid with 

aluminum hydroxide included as the adjuvant (Tellez et. al, 2009).  Vaccinated turkeys had 

significantly higher C. septicum antibody levels than the nonvaccinated turkeys (Tellez et al., 

2009). Vaccination with C. septicum bacterin-toxoid induces an immune response regardless of 

the adjuvant although protection may vary greatly between the adjuvants used.  

Lancto et al. (2014) evaluated the efficacy of a noncytolytic C. septicum alpha toxin to 

provide protection against C. septicum challenge. Challenge related mortalities were significantly 

lower in the noncytolytic C. septicum alpha toxin group when compared to non-vaccinated 

controls and there were numerically fewer mortalities within the C. septicum alpha toxin-

vaccinated group, although not significant (Lancto et al., 2014). The authors suggested that the 

safety concerns and cost to produce the recombinant vaccine are lower than for the bacterin-

toxoid vaccine and even indicate that a water administration with a vector expressing alpha toxin 
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antigen would be a viable vaccine alternative to the bacterin-toxoid preparation (Lanco et., 

2014).  

Prevention and Treatment Methods 

 

Antibiotics, including penicillin and lincomycin, and/or iodine are administered in the 

drinking water (Lighty et al., 2016) at onset of cellulitis-related mortalities and are provided until 

cellulitis lesions and mortalities are absent for at least 72 hours (Clark et al., 2010). Currently, 

the only effective treatment for turkey cellulitis is antibiotic therapy. Few alternative treatment 

and prevention approaches have been investigated. Dexamethasone, a synthetic glucocorticoid, 

causes immunosuppression in turkeys (Huff et al., 2013; Thachil et al., 2014) and increases 

intestinal leakage and bacterial translocation to the liver in chickens (Vicuna et al., 2015). It has 

also been shown to increase the incidence of turkey cellulitis mortalities (Huff et al., 2013; Huff 

et al., 2014) To evaluate the effects of yeast extract in the feed or vitamin D in the drinking water 

at reducing the incidence of cellulitis associated with stress, turkeys were administered 

dexamethasone intramuscularly in conjunction with yeast extract or vitamin D supplementation 

(Huff et al., 2014). No cellulitis-related mortalities occurred in the yeast extract treated group 

however, 47% of mortalities in the vitamin D treated group had characteristic cellulitis lesions 

(Huff et al., 2014). Administration of yeast extract in the feed at the late stages of production 

reduced incidence of cellulitis breakout in a flock although further studies need to be conducted 

to determine if yeast extract supplementation can prevent cellulitis in a challenge model. 

Direct-fed microbials are probiotics included in the diet that are beneficial to the host 

(Lee et al., 2010). The addition of a commercially available direct-fed microbial significantly 

reduced the presence of C. perfringens in the ceca and in the feces compared to a non-treated 

group (Rahimi et al., 2011).  Commercially, for cellulitis prevention, selected Bacillus isolates 
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have been included in the diet, although this does not fully avert the disease (Clark et al., 2010). 

Periodic inclusion of direct-fed microbial probiotics would provide flocks with beneficial 

bacteria that may prevent colonization of potentially harmful bacteria, such as C. septicum.  

In 2008, a meeting was held by collaborators in the industry to discuss and assemble 

prevention measures for producers to ultimately minimize the risk of disease and mortality 

associated with turkey cellulitis (Clark et al., 2010). A few recommendations included 

continuous education for farmers and others involved with turkey production, antibiotic 

treatment (dose, timing, type), immediate removal of any mortalities, and improved management 

practices to reduce the impact of environmental related factors (Clark et al., 2010).  In the United 

States, many commercial turkey producers continuously reuse litter and the build-up of used 

litter is correlated with turkey cellulitis (Clark et al., 2010). In Europe, turkey cellulitis is not an 

apparent threat to the turkey industry due to the all-in, all-out type of production systems, 

including complete cleanout and disinfection, that has been adopted (Clark et al., 2010). Reusing 

litter in the US, especially after a flock with high incidence of cellulitis, possibly subjects 

subsequent flocks to a challenge with the pathogenic organism that is present in the environment. 

Similarly, to the experimental breast area challenge, the flocks raised on reused litter may be 

naturally challenged through cuts or scratches on the skin. Complete removal of used litter and 

replacement with fresh litter may be necessary to reduce disease related to litter quality.  A study 

conducted comparing control farms with high incidence farms determined that elevated soil pH, 

high humidity levels within the barn, and the presence of a litter composting pile 200 feet from 

the barn increased the occurrence of turkey cellulitis (APHIS, 2012).  Barn management 

practices can be improved, but these practices are difficult to implement across the United States. 
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Conclusion 

 

 Clostridia are ubiquitous and are able to reside in the environment for extended periods of 

time. Commercial turkeys are frequently exposed to C. septicum, the pathogenic etiology linked 

to turkey cellultis, most frequently by injury to the dermis where this anaerobic, highly toxigenic 

rod replicates rapidly at the site of entry. In livestock, clostridial-related diseases can be 

prevented with vaccines and controlled with antibiotics. However, numerous vaccinations are 

difficult for commercial turkey producers because of the large labor cost attributed to handling 

each turkey. Experimental cellulitis vaccines have been evaluated with moderate success due to 

the need of intermittent treatment with antibiotics even after vaccination. Evaluating the efficacy 

of multiple adjuvants with a C. septicum bacterin-toxoid can provide implications for which 

vaccine to use in the field. 
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ABSTRACT 

 

Alpha-toxigenic Clostridium septicum (CS), the primary etiology of turkey cellulitis, results in 

devastating mortality. Various experimental vaccines have been evaluated to prevent this disease 

with variable but partial success. The ability of a CS bacterin-toxoid, in conjunction with 

adjuvants such as aluminum hydroxide, mannoslyated chitosan, or a water-in-oil Seppic 

Montanide 71 R VG adjuvant (OE) to induce immunity was evaluated in a 7-week study 

(Experiment 1). Poults (20/group) were vaccinated on day-of-hatch, boosted at 5 weeks-of-age 

and compared to unvaccinated controls. Antibody levels were determined by ELISA for all 

experiments. In experiment 1, initial vaccination with the OE resulted in significantly (P<0.05) 

higher antibody levels at 5 weeks-of-age, and at 7 weeks-of-age OE resulted in numerically 

increased antibody levels compared to all vaccinated groups. Efficacy of the OE vaccine was 

then evaluated in two field trials (Experiments 2 and 3) with treatments including a non-

vaccinated control group and a vaccinated group (~50% each). Non-vaccinates were marked by 

dewclaw removal at the hatchery and were comingled during growout (Experiments 2 and 3).  

Experiment 2 consisted of 3 houses: House 1 (HS1), House 2 (HS2), and House 3 (HS3). 

Mortality associated with cellulitis was recorded once the first case was observed. Blood samples 

were obtained at 8, 12, and 16 weeks-of-age. Antibody levels (S/P ratio) in vaccinated groups for 

weeks 12 and 16 were significantly higher (P<0.05) than the control groups for all 3 houses. In 

HS1 and HS2, low CS-associated mortality was observed and there was no significant difference 

in mortality/total (%) between control and vaccinated group. In HS3, control mortality (%) was 

significantly (P<0.001) higher than mortality in vaccinated turkeys. Experiment 3 consisted of 6 

farms with 1-4 houses/farm. Vaccination significantly (P<0.05) reduced CS-related mortalities as 

compared to controls in 5 of 6 farms in experiment 3 and antibody titers were significantly 
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(P<0.05)  higher in vaccinated turkeys at 12 and 16 weeks for all 6 farms. Based on these results, 

W/O emulsion vaccines, such as this alpha-toxin bacterin-toxiod with Montanide 71 R VG 

adjuvant, can be used to increase antibody titers and may reduce related mortalities in the field. 

Keywords: oil-emulsion vaccine; turkey cellulitis; Clostridium septicum; alpha-toxin; antibody 

titer 
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INTRODUCTION 

 

Turkey cellulitis or clostridial dermatitis is primarily caused by Clostridium septicum (Tellez et 

al., 2009), a Gram positive, anaerobic rod primarily affecting commercial turkey flocks later in 

production (Clark et al., 2010). The incidence of cellulitis is costly due to the increase in 

production expenses at the onset of disease (Lighty et al., 2016). Cellulitis lesions occur in areas 

such as the breast region where discoloration, edema and gas accumulation are commonly 

observed (Clark et al., 2010). Pathogens, such as C. perfringens, have been affiliated with 

cellulitis, however C. septicum alpha toxin is the most virulent exotoxin responsible for necrosis 

associated with C. septicum infections (Kennedy et al., 2005). Subcutaneous challenge models 

(Tellez et al., 2009; Thachil et al., 2010; Thachil et al., 2014) have been more effective than oral 

challenge models (Thachil et al., 2014) possibly indicating that C. septicum primarily enters the 

animal through scratches or punctures of the skin rather than by oral inoculation, although the 

possibility of systemic seeding due to enteric translocation has not been eliminated. C. septicum 

is a ubiquitous pathogen which makes this disease difficult to prevent or control under 

commercial conditions (Clark et al., 2010). Antibiotic therapy can effectively treat this disease; 

however, a prevention method is needed to reduce the use of antibiotics. Experimental vaccines 

have been investigated for cellulitis, such as a C. perfringens and C. septicum bacterin-toxoid 

(Thachil et al., 2012), a recombinant C. septicum alpha toxin peptide vaccine (Lancto et al., 

2014), and C. septicum bacterin-toxoids (Tellez et al., 2009; Thachil et al., 2013). Vaccination 

with a C. septicum bacterin-toxoid mineral oil vaccine reduced antibiotic usage and associated 

mortalities compared to non-vaccinated controls (Thachil et al., 2013). It has been hypothesized 

that water-in-oil emulsion vaccines create a depot or repository effect which stimulates and 

provides long term interaction with the immune system and antigen, thus elevating the overall 
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immune response (Aucouturier et al., 2001). Water-in-oil emulsion vaccines consist of a 

liquid/antigenic part and an oil part which are homogenized to achieve a target droplet size and 

uniformity. Aluminum hydroxide is commonly used as an adjuvant and may be an effective by 

creating a depot effect at the site of vaccination (He et al., 2015). Mannosylated chitosan has 

been combined with multiple antigens to enhance the immune response (Hargis et al., 2015). The 

purpose of these experiments was to evaluate and compare the efficacy of multiple adjuvants 

with a C. septicum bacterin-toxoid antigen to induce an immune response under laboratory 

conditions and then test the most efficacious vaccine under commercial conditions.  

MATERIALS AND METHODS 

 

Bacterial isolates 

 

Isolation, identification, and culture of isolates used in these experiments has been previously 

described (Tellez et al., 2009).  Briefly, two Clostridium septicum (CS) isolates from fluid 

emphysematous lesions of cellulitis in commercial turkeys that died acutely were purified and 

identified using commercial anaerobic identification panels (RapID ANA II anaerobic 

identification panels, Remel Inc., Lenexa, KS). From this, an experimental bacterin/toxoid was 

produced from two CS isolates that were capable of causing lesions consistent with turkey 

cellulitis and was recovered from induced lesions, as described. The bacterin was produced from 

an anaerobic 18h tryptic soy broth and sodium thioglycollate (0.5%) culture of CS, inactivated 

by the addition of formaldehyde (Fisher, Waltham, MA) to achieve a final concentration of 

0.25%. Inactivation was timed to allow accumulation of toxin and 108 cells/mL (24- hr 

incubation) as verified by quantitative enumeration and hemolysin titration (Hang’ombe et al., 

2005).  
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CS bacterin-toxoid Vaccine Preparation  

 

Adjuvants were combined with the CS bacterin-toxoid as follows. Aluminum hydroxide (Rugby 

Labs, Duluth, GA.) was included as an adjuvant at 12% (v/v) (Experiment 1). Mannosylated 

chitosan (Hargis et al., 2015) was included at a 2:1 ratio with the bacterin-toxioid (Experiment 1 

and 2). A commercial water-in-oil adjuvant (Seppic Montanide 71R VG) was included at 70%, 

per manufacturer’s instructions (Experiment 1, 2 and 3). For the OE vaccine, the CS bacterin-

toxoid was added to oil component and homogenized over a 45 second duration at low speed 

using a PRO 200 homogenizer, (PRO Scientific Inc., Oxford, CT). Following addition of 

antigen, oil emulsion was homogenized for 5 minutes. Emulsion stability decreased when 

homogenization time continued longer than 5 minutes. Droplets size for oil emulsion vaccine 

ranged from 1-2 μm. Stability of emulsion was evaluated and verified to be stable at 4C for at 

least 30 days. Sterility was verified by spread plating 100µl of prepared vaccine on sheep blood 

agar and incubating aerobically and anaerobically at 37C for 18h.  

Indirect Enzyme-Linked Immunosorbent Assay (ELISA) 

 

The indirect enzyme-linked immunosorbent assay (ELISA) used for measuring relative antibody 

levels against the potential CS etiology has been previously described (Tellez et al., 2009). This 

assay was used to show that vaccinated turkeys had increased levels of antibodies to CS or that 

turkeys with higher levels of antibodies were less likely to contract cellulitis. The assay was 

performed similarly to previously described methods (Roberts et al., 1987; Ameiss et al., 2004; 

Hang’ombe et al., 2005). Absorbance was read at 450 nm using a commercial microplate reader 

(BioTek MQX200, BioTek Instruments Inc., Winooski, VT.). The absorbance obtained for the 
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positive control, negative control, and experimental samples was used to calculate the sample to 

positive control ratios (S/P ratios) (Brown et al., 1991; Davies et al., 2003).  

EXPERIMENTAL DESIGN 

 

Laboratory Trial  

 

Experiment 1 was conducted comparing the effects of adjuvants including aluminum hydroxide, 

mannosylated chitosan, or commercial water-in-oil adjuvant, Seppic Montanide 71R VG with 

the CS bacterin-toxoid. 100 day-of-hatch commercial cross poults were obtained from a local 

hatchery and transferred to the University of Arkansas JKS Poultry Health Laboratory 

(Fayetteville, AR). Poults (n=20 per treatment) were randomly assigned to one of five treatment 

groups and then individually neck tagged according to treatment. Treatment groups were 

subcutaneously (neck) vaccinated with respective candidate vaccines on day-of-hatch (prime) 

with 0.25mL and boosted at 5 weeks-of-age with 0.5mL. Treatment groups included 1) non-

vaccinated control, 2) alum prime + oil emulsion (OE) boost, 3) mannosylated chitosan (MCA) 

prime + MCA boost, 4) MCA prime + alum boost, 5) and an oil emulsion prime + oil emulsion 

group boost. Turkeys were comingled and provided feed and water ad libitum for the 7-week 

duration of the experiment. Serum samples were obtained at 2, 5 and 7 weeks-of-age. No 

cellulitis-associated lesions or mortalities were observed in this experiment. Vaccine injection 

site lesions were scored post-mortem by a licensed veterinarian as a 0 (not present), 1 (detectable 

but insignificant), 2 (moderate), and 3 (clinically meaningful lesions).  

Field Trial 1  

 

Experiment 2 included 3 houses (HS) with each having a non-vaccinated control and vaccinated 

group. Control turkeys were distinguished by the removal of the dewclaw and were comingled 
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with vaccinated turkeys. Vaccinated turkeys were primed at day-of-hatch with a CS 

bacterin/toxoid MCA vaccine and subcutaneously boosted at 8 weeks-of-age with the CS 

bacterin/toxoid oil emulsion vaccine (0.5mL). Allocation treatments was as follows: HS 1 

consisted of 5800 control turkeys and 4800 vaccinated turkeys, HS 2 consisted of 4800 control 

turkeys and 5000 vaccinated turkeys, and HS 3 with 4100 control turkeys and 5100 vaccinated 

turkeys. Mortality was calculated based on percent of each group.  Blood samples were obtained 

from 20 per treatment per house at 8, 12, and 16 weeks-of-age. Mortality estimates were reported 

from 13-16 weeks-of-age. Antibiotic treatment was administered when cellulitis mortalities were 

observed, however, the duration of antibiotic therapy was not provided in this trial.  

Field Trial 2  

 

Experiment 3 consisted of 6 farms with 1-4 houses per farm as described in Table 4. Non-

vaccinated control and vaccinated group were allocated evenly. Control turkeys were 

distinguished by the removal of the dewclaw and were comingled with vaccinated turkeys.  

Turkeys were subcutaneously vaccinated (0.5mL) at 8 weeks-of-age with CS toxoid oil emulsion 

vaccine. Blood samples were obtained from 10 per treatment per house at 8, 12, and 16-20 

weeks-of-age based on collection date determined by producer. Mortality estimates were 

reported from 13-21 weeks-of-age. Similar to experiment 2, antibiotic therapy was administered 

at onset of disease and duration of treatment was recorded (Table 5).  

Statistical Analysis  

 

All data were subjected to Analysis of Variance as a completely randomized design using the 

General Linear Models procedure of SAS (SAS Institute, 2002). Antibody response data is 

expressed as mean ± standard error, in all experiments. Significant differences among means 
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were determined by using Tukey’s multiple-range test (Experiment 1) at P < 0.05. Chi-squared 

test of independence (Zar, 1984) was used to determine significant (P < 0.05) differences for 

mortality. 

RESULTS AND DISCUSSION 

 

Toxoid vaccines have successfully prevented Clostridial diseases, such as blackleg in 

ruminants (Useh et al., 2006; Uzal et al., 2012). Vaccines for turkey cellulitis including a C. 

septicum bacterin-toxiod combined with an aluminum hydroxide adjuvant (Tellez et al., 2009), a 

recombinant C. septicum alpha toxin peptide (Lancto et al., 2014) and both a C. septicum 

bacterin-toxiod and C. septicum and C. perfringens bacterin-toxoid mixed with an oil emulsion 

adjuvant (Thachil et al., 2012; Thachil et al., 2013) have been evaluated and proven to have some 

protective effects. 

In experiment 1, at 2 weeks post-prime, a group vaccinated day-of-hatch with MCA CS 

bacterin-toxoid had significantly (P<0.05) higher antibody levels than the non-vaccinated 

control, but was not statistically different than vaccinated groups. At 5 weeks post-prime, turkeys 

vaccinated on day-of-hatch with the CS oil emulsion vaccine had significantly (P<0.05) higher 

antibody levels than all groups. By 7 weeks-of-age, all vaccinated groups had markedly (P<0.05) 

higher antibody levels than the control however there was no statistical difference between 

vaccinated groups. CS oil emulsion prime + CS oil emulsion boost group resulted in the most 

elevated immune response compared to all treatment groups followed by the Alum prime + CS 

oil emulsion boost group (Table 1). We identified that prime and boost vaccination with the C. 

septicum bacterin-toxoid oil emulsion vaccine elicits a more robust immune response than the 

alternatives evaluated (Table 1). This, in part, may be due to the fact that oil emulsion vaccines 

provide long term protection against the antigenic portion included in a vaccine due to the 
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accumulation of a depot at the injection site (Aucouturier et al., 2001). Antigen should be 

released slowly from this repository over an extended period thus increasing encounter of 

antigen with antigen presenting cells. Continuous interaction between antigen and antigen 

presenting cells provides constant stimulation of the immune system and subsequent antibody 

production (Awate et al., 2014). Vaccine injection sites were evaluated post mortem to determine 

if there were any lesions associated with the adjuvants tested in experiment 1. MCA prime + 

MCA boost and MCA prime + alum boost groups had no observed lesions at vaccine injection 

site. However, in the both oil emulsion vaccine groups there were lesions present at the injection 

site (Table 2). Injection site lesions associated with oil emulsion vaccination were consistent 

with lesions induced by commercial oil emulsion vaccines (data not shown). There were no 

cellulitis related morbidities or mortalities in experiment 1 (Table 2).  

In experiment 2, there was no difference in titer between the control and vaccinated 

group at 8 weeks post-prime with the CS MCA vaccine. However, at 12 and 16 weeks-of-age (4 

and 8 weeks post-boost with the CS oil emulsion vaccine), the vaccinated group had significantly 

(P<0.05) higher antibody levels than the control group in all three houses (Table 3). Vaccinated 

turkeys in experiment 2 were primed with the C. septicum MCA vaccine which may have 

stimulated a primary immune response. The prime vaccination could explain the higher antibody 

levels that were observed in the vaccinated group for this experiment.  Mortality was reported 

from 13-16 weeks-of-age although the results are complicated due to the intermittent use of 

antibiotics. In HS 1 and 2, CS-related mortalities were low in both groups and there was no 

mortality differences observed between the control and vaccinated group. However, in HS 3, 

there was a significant (P<0.001) reduction in cellulitis related mortalities in the vaccinated 

group (Table 3).  The significantly lower mortality observed in the vaccinated treatment group 
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may be a result a higher bacterial challenge being present in this house, thus the vaccinated 

group had a sufficient immune response to the C. septicum bacterin-toxoid oil emulsion vaccine 

and were protected whereas the non-vaccinated controls were naïve to the antigen. 

Experiment 3 consisted of 6 farms with 1-4 houses per farm. At vaccination (8 weeks-of-

age), there was no antibody level differences between control and vaccinated groups. At 12 

weeks-of-age (4 weeks post vaccination), vaccinated groups had a significantly (P<0.05) more 

robust immune response than the control groups. Vaccinated group antibody titers were 

significantly (P<0.05) higher than control groups at 16-20 weeks-of-age (Table 4). Mortality was 

reported between 13-21 weeks-of-age. Cellulitis-associated mortalities were significantly 

(P<0.05) lower in vaccinated groups than control groups in 5 of the 6 houses. There were 24% 

less cellulitis-related mortalities in the vaccinated groups in experiment 3 (Table 5). Similar to 

experiment 2, if antibiotic treatment was required, both the control and the vaccinated groups 

were subjected to the treatment. Previously, Thachil et al., (2013) evaluated a CS bacterin-toxoid 

oil emulsion vaccine and observed a significant reduction in antibiotic usage and cellulitis 

mortalities in the vaccinated group. Vaccinate antibody titers were elevated and had complete 

protection against C. septicum challenge while non-vaccinates had low antibody levels with 

100% mortality 24 hours post challenge (Thachil et al., 2013). This indicates that an oil emulsion 

vaccine for cellulitis can protect against experimental subcutaneous challenge (Thachil et al., 

2013).  

These data show that the C. septicum bacterin-toxoid oil emulsion vaccine used in these 

experiments elicits robust immune response and may reduce the incidence of cellulitis related 

mortalities. Vaccine efficacy without antibiotic treatment under commercial conditions is 

currently unknown.  Further studies need to be conducted to determine effectiveness of a 
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subsequent boost vaccination in a field study, protective ability of this C. septicum bacterin-

toxoid oil emulsion vaccine against experimental C. septicum challenge, and evaluation of 

vaccine efficacy without antibiotic treatment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 
 

References 

 

Ameiss KA, Danforth HD, McElroy AP, et al.: 2004, Immunogenicity of ad libitum drinking 

water administration of bovine serum albumin in Leghorn chickens. Poult Sci 83:1535–1538. 

 

Aucouturier, J., L. Dupuis, and V. Ganne. 2001. Adjuvants designed for veterinary and human 

vaccines. Vaccine 19:2666–72. 

 

Awate, S., L. A. B. Babiuk, and G. Mutwiri. 2013. Mechanisms of action of adjuvants. Frontiers 

in immunology 4:114. 

 

Brown MB, Stoll ML, Scasserra AE, et al.: 1991, Detection of antibodies to Mycoplasma 

gallisepticum in egg yolk versus serum samples. J Clin Microbiol 29:2901–2903.  

 
Clark, S., R. Porter, B. McComb, R. Lipper, S. Olson, S. Nohner, and H. L. Shivaprasad. 2010. 

Clostridial cellulitis and cellulitis: an emerging disease of turkeys. Avian Dis. 54:788–94. 

 

Davies RH, Heath PJ, Coxon SM, et al.: 2003, Evaluation of the use of pooled serum, pooled 

muscle tissue fluid (meat juice) and pooled faeces for monitoring pig herds for Salmonella. J 

Appl Microbiol 95:1016–1025.  

 

Hang’ombe MB, Kohda T, Mukamoto M, et al.: 2005, Relationship between Clostridium 

septicum alpha-toxin activity and binding to erythrocyte membranes. J Vet Med Sci 67:69–74.   

 

Hargis, Billy M., Neil R. Pumford, Marion Morgan, Srichaitanya Shivaramaiah, Guillermo 

Tellez, and Amanda Wolfenden. "Novel mucosal adjuvants and delivery systems." U.S. Patent 

Application 14/439,536, filed October 22, 2015. 
 

 He, P., Y. Zou, and Z. Hu. 2015. Advances in aluminum hydroxide-based adjuvant research and 

its mechanism. Human vaccines & immunotherapeutics 11:477–488. 
  

Kennedy, C. L., E. O. Krejany, L. F. Young, J. R. O’Connor, M. M. Awad, R. L. Boyd, J. J. 

Emmins, D. Lyras, and J. I. Rood. 2005. The alpha-toxin of Clostridium septicum is essential 

for virulence. Mol. Microbiol. 57:1357–66. 

 

Lancto, C. A., L. K. Foster, M. M. Kromm, B. McComb, J. Williams, J. Luke, A. Carnes, C. P. 

Hodgson, and D. N. Foster. 2014. A noncytolytic alpha toxin recombinant protein protects 

turkeys against Clostridium septicum challenge. Avian diseases 58:566–571. 

 

Lighty, M. E., F. Elvinger, R. D. Evans, N. Sriranganathan, T. LeRoith, and F. W. Pierson. 2016. 

Incidence of clostridial cellulitis (cellulitis) and factors for development of the disease in 

turkeys. Journal of Applied Poultry Research 25:104–112. 

 

Roberts DW, Pumford NR, Potter DW, et al.: 1987, A sensitive immunochemical assay for 

acetaminophen-protein adducts. J Pharmacol Exp Ther 241:527–533  

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kohda%20T%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mukamoto%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'J%20Vet%20Med%20Sci.');


 

32 
 

 

SAS Institute. 2002. SAS User Guide. Version 9.1. SAS Institute., Cary, NC.  

 

Tellez, G., N. R. Pumford, M. J. Morgan, A. D. Wolfenden, and B. M. Hargis. 2009. Evidence 

for Clostridium septicum as a primary cause of cellulitis in commercial turkeys. Journal of 

veterinary diagnostic investigation 21:374–377. 

 

Thachil, A. J., B. McComb, M. M. Andersen, D. P. Shaw, D. A. Halvorson, and K. V. Nagaraja. 

2010. Role of Clostridium perfringens and Clostridium septicum in causing turkey cellulitis. 

Avian Dis. 54:795–801. 

 

Thachil, A., B. McComb, M. Early, C. Heeder, and K. Nagaraja. 2012. Clostridium perfringens 

and Clostridium septicum toxoid to control cellulitis in turkeys. Journal of Applied Poultry 

Research 21:358–366. 

 

Thachil, A. J., B. McComb, M. Kromm, and K. V. Nagaraja. 2013. Vaccination of turkeys with 

Clostridium septicum bacterin-toxoid: evaluation of protection against clostridial cellulitis. 

Avian diseases 57:214–219. 

 

Thachil, A. J., D. P. Shaw, and K. V. Nagaraja. 2014. Effects of dexamethasone 

immunosuppression on turkey clostridial dermatitis. Avian diseases 58:433–436. 

 

Useh, N., A. Nok, and K. Esievo. 2006. Blackleg in ruminants. CAB Rev Perspect Agric Vet Sci 

Nutr Natur Resour 1:1–8. 

 

Uzal, F. A. 2012. Evidence-based medicine concerning efficacy of vaccination against 

Clostridium chauvoei infection in cattle. Vet. Clin. North Am. Food Anim. Pract. 28:71–7, 

viii. 

 

Zar , J. 1984. Pages 348–351 in Biostatistical Analysis. 2nd ed. Prentice-Hall, Englewood Cliffs, 

NJ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 
 

List of Tables 
 

Table 1. Antibody response to Clostridium septicum following vaccination with various CS 

bacterin-toxoid/adjuvant combinations (Experiment 1) 

  

2 weeks post-

prime 

 

5 weeks post-

prime, pre-

boost 

 

 

7 weeks post-

prime, 2 weeks 

post-boost 

 

Mortality*,1 

Control 0.14 ± 0.02b 0.44 ± 0.04b 0.34 ± 0.06 b 1/12 (8.33%) 

Alum + OE 0.16 ± 0.02 ab 0.51 ± 0.06 b 1.48 ± 0.13a 0/15 (0%) 

MCA + MCA 0.16 ± 0.03 ab 0.55 ± 0.06 b 1.30 ± 0.14 a 1/17 (5.89%) 

MCA + Alum 0.31 ± 0.05 a 0.35 ± 0.06 b 1.25 ± 0.13 a 1/17 (5.89%) 

OE + OE 0.26 ± 0.06 ab 1.06 ± 0.14 a 1.63 ± 0.17 a 1/18 (5.56%) 

a, b Indicates significant differences (P < 0.05) between treatment groups by age 

Turkeys were primed on day-of-hatch with 0.25mL and boosted at 5 weeks-of-age with respective vaccine 

1 Several neck tags were lost in each group.  Mortality was calculated on the basis of the number of birds 

with retained neck tags at the end of the experiment  

*No cellulitis lesions observed and no challenge was administered in this experiment 

 

 

 

Table 2. Localized reactions at vaccine injection site evaluated post-mortem at 7 weeks-of-age 

(Experiment 1) 

 Score 

Treatment 0 1 2 3 

Non-vaccinated Control 12/12 (100%) 0/12 (0%) 0/12 0/12 (0%) 

Alum + OE 5/15 (33%) 9/15 (60%) 1/15 (6.7%) 0/15 (0%) 

MCA + MCA 17/17 (100%) 0/17 (0%) 0/17 (0%) 0/17 (0%) 

MCA + Alum  17/17 (100%) 0/17(0%) 0/17 (0%) 0/17 (0%) 

OE + OE 6/18 (33.3%) 9/18 (50%) 3/18 (16.7%) 0/18 (0%) 

Turkeys were comingled for the duration of the trial. Injection site lesions were not evaluated for turkeys which lost 

neck tags 

Scoring: 0 (not present), 1 (detectable but insignificant), 2 (moderate), and 3 (clinically meaningful lesions) 
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Table 3. Cellulitis-related mortalities and antibody response Clostridium septicum at 8, 12, and 

16 weeks post-vaccination (Experiment 2) 

 8 weeks post-

prime, pre-

boost 

12 weeks post-

prime, 4 weeks 

post-boost 

16 weeks post-

prime, 8 weeks 

post-boost 

Late mortality 

associated with 

cellulitis 

HS 1 Control 0.25 ± 0.01 a 0.39 ± 0.05 b 0.37 ± 0.02 b 81 

HS 1 Vaccinated 0.30 ± 0.02 a 2.16 ± 0.16 a 1.57 ± 0.08 a 80 

HS 2 Control 0.25 ± 0.02 a 0.46 ± 0.09 b 0.41 ± 0.07 b 70 

HS 2 Vaccinated 0.29 ± 0.02 a 1.71 ± 0.13 a 2.40 ± 0.15 a 80 

HS 3 Control 0.24 ± 0.02 a 0.32 ± 0.03 b 0.56 ± 0.18 b 148 

HS 3 Vaccinated 0.28 ± 0.06a 1.60 ± 0.11a 2.12 ± 0.15a 78* 
a, b Indicates significant differences (P < 0.05) between control and treatment group by house 

Vaccinated turkeys were primed with CS bacterin-toxoid MCA vaccine day-of-hatch and boosted (0.5mL) with CS 

bacterin-toxoid oil emulsion vaccine at 8 weeks-of-age 

n=20/group 

*Indicates significant difference (P < 0.001) between control and vaccinated group by house  

Mortality reported between 13 and 16 weeks-of-age 

 



 

 
   

3
5
 

Table 4. Antibody response at 8, 12, and 16-20 weeks-of-age (Experiment 3) 

   Antibody Response (S/P) ratio 

 n/farm (# of houses) † Treatment  8 weeks 12 weeks 16-20 weeks*  

Farm 1  13608 (2) Control 0.43 ± 0.02 a 0.56 ± 0.03 b 1.28 ± 0.02 b 

  Vaccinated 0.40 ± 0.02 a 0.88 ± 0.07 a 2.01 ± 0.16 a 

Farm 2 21600 (4) Control 0.31 ± 0.01 a 0.81 ± 0.03 b 1.01 ± 0.04 b 

  Vaccinated 0.30 ± 0.01 a 1.29 ± 0.10 a 1.91 ± 0.12 a 

Farm 3 21600 (4) Control 0.37 ± 0.02 a 0.64 ± 0.02 b 1.08 ± 0.04 b 

  Vaccinated 0.38 ± 0.01 a 1.02 ± 0.06 a 2.16 ± 0.09 a 

Farm 4 6792 (1) Control 0.61 ± 0.04 a 0.77 ± 0.06 b 1.12 ± 0.11 b 

  Vaccinated 0.63 ± 0.04 a 1.15 ± 0.15 a 1.57 ± 0.15 a 

Farm 5 36288 (3) Control 0.51 ± 0.03 a 0.66 ± 0.03 b 0.98 ± 0.06 b 

  Vaccinated 0.51 ± 0.01 a 0.99 ± 0.06 a 1.39 ± 0.13 a 

Farm 6 18774 (3) Control 0.53 ± 0.02 a 0.92 ± 0.05 a 1.38 ± 0.08 a 

  Vaccinated 0.52 ± 0.02 a 1.19 ± 0.05 b 1.90 ± 0.12 b 

a, b Indicates significant differences (P < 0.05) between control and treatment group by farm 

*Collection date determined by producer  

Vaccinated turkeys were subcutaneously vaccinated (0.5mL) with CS bacterin-toxoid oil emulsion vaccine at 8 weeks-of-age 

n=10/group 
†
n/treatment was allocated evenly between control and vaccinated group for all houses 
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Table 5. Late cellulitis-associated mortalities (Experiment 3) 

 Control 

Mortality 

Vaccinated 

Mortality 

Total Late 

Mortality 

Total Late 

Mortality as % 

of Farm 

Antibiotic 

Treatment (# of 

days) 

Farm 1 131 (76%) 42 (24%)* 173 1.27% 42 

Farm 2 10 (24%)* 31(76%) 41 0.19% 14 

Farm 3 19 (86%) 3 (14%)* 22 0.10% 0 

Farm 4 160 (71%) 64 (29%)* 224 3.30% 35 

Farm 5 749 (59%) 514 (41%)* 1263 3.48% 42 

Farm 6 266 (63%) 158 (37%)* 424 2.26% 35 

Exp 2 total† 1335 (62%) 812 (38%) 2147 1.81% - 

*Indicates significant differences (P < 0.05) between control and treatment group by farm 

(%) indicative of a percent of total late mortalities  
†
Statistical analysis not conducted due to variability between farms 
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Chapter IV. Conclusion 

 

C. septicum alpha-toxin is the primary virulent toxin responsible for inducing cellulitis. 

Preventative measures, such as improved flock management and direct-fed microbials, can 

reduce the risk of disease, however antibiotic therapy is still required. An effective vaccine could 

provide immune protection for flocks if vaccinated prior to infection. Oil emulsion vaccines 

induce long term robust immunity to the antigenic portion of the vaccine, such as the C. septicum 

bacterin-toxoid evaluated in these experiments. Although booster vaccination under field 

conditions are not ideal, it may be necessary to prevent turkey cellulitis related mortalities 

without antibiotic treatment.  
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