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Abstract  

Over the past 20 years notable decreases in monarch butterfly populations have led 

researchers to begin evaluating the landscape for changes and seeking out opportunities for 

enacting conservation programs to better support their survival. The monarch butterfly has 

recently come under consideration for listing under the Endangered Species Act which has 

created a need for a more informed view of the landscape through which the migrate and breed, 

the central United States. In this research three spatially-explicit models are explored using the 

most applicable datasets currently available to address pressing policy and land manager 

decisions regarding monarch butterfly and pollinator conservation. Using the Cropland Data 

Layer (CDL) and National Land Cover Data (NLCD) datasets, individually and combined, the 

ability to to evaluate landscape change, annual and decadal, from 2008 – 2017 is evaluated. The 

CDL and NLCD both present unique data integration challenges for reliably estimating land use 

change on an annual basis for all land cover types, and for augmenting additional feature data, 

such as soil productivity and transportation networks that represent valuable target areas for 

monarch and pollinator research. The result of these spatially-explicit model trials are a more 

informed process for quantifying uncertainty and moving toward thoughtful inclusion of CDL 

data in annual change metrics that identifies land conversion for a broad number of categories, 

including grassland/pasture. The results of these models begin to identify a more consistent and 

transferrable process for addressing policy and land manager decisions regarding monarch 

butterfly and pollinator conservation delivery. 
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1.  Introduction 

Determining the amount of existing, and potential, habitat for any species is a difficult 

task but is an important and necessary part of policy guidance and decision making in present 

day conservation delivery. Establishing goals and objectives is often driven by the quantification 

of land cover or land use types on the landscape in contemporary assessment to create baselines, 

or benchmarks, of conditions that indicate important thresholds for a given species or ecological 

community. Using these benchmark assessments, conservation delivery plans are designed using 

a variety of spatial and non-spatial methods to determine what resources are necessary for 

obtaining desired future conditions to preserve, conserve, or restore these systems. These 

decision support models place a great deal of importance on the establishment of benchmark 

conditions, which can be both a strength and weakness. The objective of the models created in 

this research is to provide a method for more accurately representing benchmark conditions, 

while also helping to quantify the impact of uncertainty on outcomes and how uncertainties in 

benchmark calculation methods can inadvertently misguide land managers. The models and 

examples in this research are developed in support of monarch butterfly research. However, 

these processes that have been developed and the products of these models have the potential to 

be utilized beyond monarch butterfly research, and across multiple disciplines. 

2.  Background  

2.1 Recent Policy Influencing Research Mandates and Policy Development for the Monarch 
Butterfly 

Monarch butterflies (Danaus plexippus) and other pollinator species have faced many 

struggles over the past few decades. The monarch butterfly population, specifically, has been 

estimated to be declining by approximately 0.89 hectares per year at the winter sites in Mexico 
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(Oberhauser et al. 2017) with steeper declines being estimated since 2008 (Ries, Taron, and 

Rendón-Salinas 2015). This is a struggle that most citizens would be oblivious to if it were not 

for the “charismatic” capacity of the monarch butterfly and the sociological concept developed 

around this insect. This has made it an icon of conservation and subject of countless research, 

outreach, and seemingly innocuous mentions of their journeys in countless journals, field notes, 

and works of art (Gustafsson et al. 2015). 

A Presidential Memorandum Creating a Federal Strategy to Promote the Health of Honey 

Bees and Other Pollinators was issued on June 20, 2014 (President Barack Obama 2014). This 

memorandum established the Pollinator Health Task Force that includes many of the federal 

agencies governing policies that could be updated to include pollinator-friendly practices. In 

addition to establishing the Pollinator Task Force, the agencies were tasked with developing: a) a 

Pollinator Research Action Plan; b) a public education plan; and c) develop recommendations for 

public-private partnerships (ibid.). 

The Presidential Memorandum also called for strategies to be specifically created for 

native honey bees, managed honey bees, and the monarch butterfly; but also included pollinators 

at-large in the general scope of strategy development (ibid.). “Pollinators” include many species 

other than bees and butterflies, such as flies, birds, beetles, bats, ants, and even unexpected ones 

such as slugs (USDA U.S. Forest Service 2017). Depending on the species of plant and the 

location where the plant is being grown, pollinator visitation may be exclusively by bee, non-

bee, or some combination thereof (Rader et al. 2016), so one might conclude that preservation of 

all pollinators is prudent. 

In August 2014, two organizations and lifelong monarch scientist, Dr. Lincoln Brower, 

petitioned the U.S. Fish and Wildlife Service (USFWS) to protect the Monarch Butterfly under 
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the Endangered Species Act (ESA), the USFWS found the petition to warrant a review and 

initiated a status review of the monarch (Gustafsson et al. 2015, The Center for Biological 

Diversity 2016b; U.S. Fish and Wildlife Service Midwest Region 2016).  

On January 5, 2016, the Center for Biological Diversity and the Center for Center for 

Food Safety issued a notice of intent to sue the USFWS for failure to reach a 12-month decision 

on the monarch status review; a settlement was reached later in 2016 that established a deadline 

of June 30, 2019 as the date by which a status review must be completed for the monarch (The 

Center for Biological Diversity 2016b; The Center for Biological Diversity 2016a; Maeckle 

2016).  

The result of these actions increased recognition and public awareness of monarch 

butterfly decline. Research communities spanning multiple industries and disciplines have 

responded by identifying many ongoing and compounding threats, including: illegal logging and 

deforestation threats to overwintering sites in Mexico (Navarrete, Isabel Ramírez, and Pérez-

Salicrup 2011; Vidal and Rendón-Salinas 2014), loss of breeding habitat throughout the central 

United States (referred to as the “milkweed limitation hypothesis”) (Inamine et al. 2016; 

Pleasants 2016; Thogmartin et al. 2017), climate change impacts on the extent of breeding and 

overwintering habitat (Inamine et al. 2016; Gustafsson et al. 2015; Lemoine 2015; Sáenz-

Romero et al. 2012), episodic weather event impacts of the population at varying stages of 

migration, breeding, and overwintering (Inamine et al. 2016), implications of agriculturally-

enhanced milkweed production over the past century (Gustafsson et al. 2015) and perceived 

artificial norms of population dynamics that may be largely as a result of anthropogenic activity, 

and the myriad of socio-economic-political factors contributing adoption rates of conservation 
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actions in a time where widespread empathy for conservation is competing with numerous, and 

ever-growing, “greater-good” efforts and initiatives. 

The monarch butterfly is not the best pollinator and could even be described as a pest of 

its host plant, milkweed. However, the monarch has become the symbol of pollinator 

conservation (Gustafsson et al. 2015, Agrawal 2017). The promotion of monarch butterfly 

habitat and programs often includes, “and pollinators,” with the general sentiment that many 

pollinators will benefit from the conservation actions taken on behalf of the dainty charismatic 

megafauna of the class Insecta.  

2.2 Previous Research involving the Monarch Butterfly and Other Pollinators 

Since 1948 there have been approximately 1,152 scholarly publications that include 

Monarch Butterfly (including plural and scientific alternate text) as part of the title, abstract, or 

as keyword in citation index searches. Publication data were reviewed for duplication, 

applicability, and reviewed for errors within Zotero reference management software prior to 

being summarized. The number of publications has been steadily increasing since this time as 

shown in Figure 1. Publications between January 2014 and March 2018 account for 25% of the 

total publications recovered through citation index search. This increase may be as a result of 

increased awareness, or funding opportunities made available after the announcement of the 

Presidential Memorandum in 2014; or perhaps the growing number of publications have 

influenced policy to informed action resulting in the issuance in the Presidential Memorandum. 
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Figure 1: Number of publications, by decade and publication type, since 1940 returned in 
citation index searches. 

 

2.3 Current Spatially-Informed Models Influencing Habitat Objectives and Target Locations for 
Conservation Action 

The most recent spatially-explicit models to be used for informing conservation dlivery 

with respect to monarchs are those described by Thogmartin et al. 2017. Thogmartin et al. 2017 

uses the USDA National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) as 

the primary base for modeling the extent of lands possibly amenable to milkweed plantings and 

estimates the possible number of supported stems of milkweeds based off those acreages should 

plantings be undertaken by landowners. While these estimations are for one year only, there are 

some calculations over time regarding the amount of acreage possibly affected by more efficient 
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weed control mechanisms, i.e. glyphosate application, that may have reduced the amount of 

milkweed available in these areas over the past two decades (Thogmartin et al. 2017). 

Another recent model, described by Koh et al. 2016, also uses the CDL as the base for 

developing the nationwide wild bee estimates of abundance and change from 2008 to 2013. 

These models found that the conversion of natural habitats to row crops accounted for a 23% 

decrease in bee abundance within the United States (Koh et. al. 2016).  

In both Koh et al. 2016 and Thogmartin et al. 2017 the CDL categories are reclassified 

from crop cover types to more general categories prior to using data for model input, Table 1 

compares model inputs among Koh et al. 2016 and Thogmartin et al. 2017. In Koh et. al. 2016, 

the crop cover types are reclassified to 32 representative crop categories and 13 non-crop 

categories, and resampled to 120 x 120 meter pixel resolution; Thogmartin et al. 2017 

reclassified crop cover types based on their relevance to milkweed amenability in the upper 

Midwest region of the monarch butterfly range, resulting in 12 representative crop categories and 

30 non-crop categories and retaining a 30 x 30 meter pixel resolution. Thogmartin et al. 2017 

further characterized cover type data through introducing and overlaying additional datasets that 

better described and/or delineated an area of interest regarding milkweed amenability. These 

additional datasets included: U.S. Geological Survey (USGS) Multi-Resolution Land 

Characteristics (MRLC) National Land Cover Database (NLCD) 2011; Cropland Reserve 

Program (CRP) enrollment locations for 2014 (not publicly available); railroads, transmission 

lines, and road rights of way (as roadways); marginal versus productive farmland (as SSURGO 

soils data, specifically 2012 National Commodity Cropland Productivity Index); and, 

characterizations of urban versus exurban environments as determined through generalization 

processes in ESRI ArcGIS, specifically shrinking and expanding (Thogmartin et al. 2017).  
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Table 1: Comparison of model structure between Koh et al. 2016 and Thogmartin et al. 2017. 

 Koh et al. 2016 Thogmartin et al. 2017 
Spatial Resolution 100 x 100 meters 30 x 30 meters 
Time Frame 2008 – 2013 2014 
# Crop Cover Categories 32 12 
# Non-Crop Cover Categories 13 30 
Specifics of Grass-land Categories 
(i.e. which CDL categories are 
included within each reclassified 
grassland category) 

Grassland/Pasture 
Grassland Herbaceous 
Other Hay/Non Alfalfa 
Pasture/Hay 
 

Grassland/Pasture 
Subdivided by overlay 
with NLCD 2011 
categories: 
Grassland and 
Pasture/Hay; further 
subdivided by overlay of 
Protected Areas Database 

 

In both models the outcome is described as a general guide for directing the future 

conservation action for their respective concerns, while also recognizing limitations and 

constraints of existing data. More specifically, that inherent error and accuracy issues that are to 

be considered when using a national product such as the CDL and can introduce error into land 

use change calculations over time (Reitsma et al. 2016). Koh et al. 2016 also points out that 1) 

urban categories are not able to capture the range of pollinator conservation actions that take 

place within those environments due to spatial scale, and 2) additional classification error and 

inaccuracy and error in CDL can indicate change where no change is present (Koh et al. 2016, 

Reitsma et al. 2016). Additionally, in comparing these two datasets the difference in spatial 

resolution should be noted that can preclude direct comparison. The growing use of CDL data for 

modeling land use change over time is, in part. because of the temporal frequency of the data. 

The CDL data is the only nationwide dataset that has an annual release that integrates both crop 

and non-crop categories. However, the CDL’s strength is not found in the ability to model non-

crop categories over time. Non-crop categories are spatially informed by the NLCD. For 

instance, CDL non-crop categories are informed by the most recent version of NLCD released in 
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2011. Therefore, the CDL data cautions that estimates of change involving non-crop classes are 

better informed using NLCD directly. However, many recent studies have begun using these data 

for exactly those purposes (USDA - National Agricultural Statistics Service n.d.). As CDL 

continues to become an increasingly popular dataset for evaluating land use land cover change 

for annual or multi-year time frames, in the absence of other annual categorical and spatially 

appropriate data, methods of how to best utilize these data while minimizing uncertainty and 

inherent inaccuracy are being developed and vetted with varying and sometimes controversial 

results. 

One popular example of these results are the estimations of grassland conversion. 

Quantifying grassland conversion is often a difficult task that is made more arduous by 

similarities, spectrally and categorically, in defining grassland, pastureland, and other grass-land 

cover types. Within the CDL categories of these varieties that were once separate and now 

combined in a general non-crop category called “Grass/Pasture” and found under code 176. 

Figure 2 illustrates how the “Grass/Pasture” category now includes the historical categories: 

“Pasture/Grass”, “Grassland/Herbaceous”, and “Pasture/Hay.” CDL data were retrofitted and re-

processed as far back as 1997, where applicable, to adopt this new categorization scheme for 

grass-land cover types to reduce redundancy and confusion (USDA - National Agricultural 

Statistics Service n.d.). 

Mueller, R. and M. Harris 2013 reviewed applications of CDL as it was used to between 

2006 and 2013, including applications where the primary object was identification of converted 

lands and/or land change; Reitsma et al. 2016 and Laingen 2015 both highlighted specific 

examples of how variation in processing, methods, analysis, and interpretation of data can impact 

results and derivative products when evaluating land use land cover change. Reitsma et al. 2016 
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used South Dakota as an example in reviewing the CDL-derived spatial data products, along 

with USDA NASS tabular accuracy products that accompany the release of the annual CDL 

spatial data product to evaluate producer and user accuracies. The findings of Reitsma et al. 2016 

suggest that the temporal variation in cover type accuracies and climatic transition zones may 

further confound the use of CDL as a surrogate for land change. Laingen 2015 compares change 

estimates among four popular and readily available datasets: NLCD, CDL, remote sensing of 

imagery from the National Agriculture Imagery Program, and tabular estimates from the Census 

of Agriculture. These four datasets evaluated for 2012 South Dakota return values with 6 million 

acres of difference between the high and low estimates of total cropland. Like Reitsma et al. 

2016 and Koh et al. 2016, Laingen 2015 cautions that class selection and data manipulation are 

important to the outcome of data processing and can lead to unaccounted uncertainty. 

 

Figure 2: Reorganization of grass-land cover types within CDL cover types. 

As an example of how class selection and data manipulation can impact model outcomes, 

and obscure uncertainty, it is the comparison of the findings of the two publications, Decision 

Grassland/Pasture 
(176)

Pasture/Grass (62)

Grassland Herbaceous (171)

Pasture/Hay(181)

Historical CDL Categories Current CDL 
Category 
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Innovative Solutions 2013 and Wright and Wimberly 2013, that best demonstrate these 

difficulties. The report from Decision Innovative Solutions 2013 report was completed at the 

request of the Farm Bureau agencies in seven states in the upper Midwest region of the central 

United States: These states included: Illinois, Indiana, Iowa, Michigan, Minnesota, Nebraska, 

and South Dakota. The report focused on land use change from 2007 – 2012 within these states, 

primarily relying on models that leverage the CDL for annual calculations of land use change. 

Wright and Wimberly 2013 completed their study as part of the U.S. Department of Energy Sun 

Grant Initiative’s Regional Biomass Feedstock Partnership with additional funding through a 

National Science Foundation Grant. The study area in Wright and Wimberly included the 

following states: Iowa, Minnesota, Nebraska, North Dakota, and South Dakota; and focused on 

land cover/land use change, specifically grassland conversion, from 2006 – 2011. Both Decision 

Innovative Solutions 2013 and Wright and Wimberly 2013 began with CDL data, reclassifying 

subsets of the data for inclusion in their models and resampled data to better accommodate 1) 

varying resolutions found across the years of CDL coverages and 2) identification of areas of 

change. Table 2 compares the methods used by Decision Innovative Solutions 2013 and Wright 

and Wimberly 2013. 

Table 2: Comparison of land use change methods used in Decision Innovative Solutions 2013 
and Wright and Wimberly 2013. *Grass/Hay is not listed as a category within the CDL. 
However, may be representative of other categories collapsed by the authors without definition. 

 Decision Innovative 
Solutions 2013 

Wright and Wimberly 
2013 

Spatial Resolution 100 x 100 meters 560 x 560 meters 
Time Frame 2007 – 2012 2006 – 2011 
# Crop Cover Categories 6 1 
# Non-Crop Cover Categories 3 1 
Crop Cover Categories List Alfalfa  Corn 

Other Ag Soybeans 
Other Oilseeds 
Small Grains 

Corn-Soybean Combined 
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Table 2 (Cont.)   
 Decision Innovative 

Solutions 2013 
Wright and Wimberly 
2013 

Non-crop Cover Categories List All Non-Ag 
Grassy Habitat 
Woody Habitat 

Grassland 

Specifics of Grass-land Categories 
(i.e. which CDL categories are 
included within each reclassified 
grassland category) 

Grassland Herbaceous 
Herbaceous Wetlands 
Other Hay/Non Alfalfa 
Pasture/Grass 
Pasture/Hay 
Wetlands 

Fallow/Idle Cropland 
Grass/Hay* 
Grassland Herbaceous 
Pasture/Grass 
Pasture/Hay 

Methods Summary USDA NASS CDL 2012 
subtracted from CDL 
2007 on per pixel basis; 
resulting data converted to 
vector, clipped by county, 
and summarized in SAS. 

USDA NASS CDL 2006 
compared to CDL 2011 
on per pixel basis; 
generalization by 5x5 
majority filter; resample 
to 560 x 560 with percent 
change calculation; 
smoothing by quartic 
kernal function 
 

 

Both studies acknowledge inherent difficulties and subsequent inconsistencies that arose 

from using CDL for land use change; use quite different methods for approaching the calculation 

of change; and aggregate results to different spatial resolutions. Both are aggregated to spatial 

resolutions greater than the native grain size which creates uncertainty through the resampling 

process. The result of the differences in how the same data was used by Decision Innovation 

Solutions 2013 and Wright and Wimberly 2013 yielded two very different outcomes for South 

Dakota that did not go un-noticed by industry and academics. The Wright and Wimberly 2013 

paper described grassland conversion for 2006 – 2011 as resulting in a net loss of 182,000 

hectares (449,732 acres) whereas Decision Innovative Solutions 2013 described 2007 – 2012 

grassland conversion as having declined by 879,000 hectares (2,172,056 acres) (Reitsma et al. 

2016). However, prudent inspection of the methods reveals that an “apples-to-apples” 

comparison is not so simple as comparing final outcomes. A  more thoughtful comparison would 
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be to only consider conversion from “Grassy Habitat” to “Corn and/or Soy” from Decision 

Innovative Solutions 2013 as shown in Table 3 as these categories are more focused on Grassy-

Habitat loss specifically to corn and soybean and do not include the other four crop categories for 

which they evaluated loss. However, event this comparison is still quite misinformed as the 

Decision Innovative Solutions 2013 “Grassy Habitat” data also includes categories for wetlands 

as grass-land types. Thus, these data are still considerably different, though improved upon from 

the general comparisons where class selection is not considered. In summary, no one version can 

be deemed correct when not comparable in purpose or process. And each iteration of analysis 

continues to further a more thoughtful inclusion of CDL data into policy and planning as we 

continue to see extreme differences in summary data as a result of specification problems. 

Table 3: A closer look at comparison of results for conversion of grass-land cover types to corn 
and/or soy crop cover types in South Dakota by only reviewing the data outcomes by the 
categories, rather than project results. 

Decision Innovative Solutions 2013 Wright and Wimberly 2013 

Grassy Habitat to 
Corn (net loss) 

Grassy Habitat to 
Soybean (net loss) 

Grassland (net loss) 

682,573 414,804 451,000 acres 

Grassy Conversion to Corn and/or Soy Total Grassland Conversion to Corn/Soy Total 

1,097,377 451,000 

 

3.  Enhanced Spatial  Decis ion Models  Supporting Monarch and Pol l inator 
Success  

This case study calls for establishing the current extent of monarch butterfly habitat as a 

baseline for comparison in reviewing 25 years of land change with respect to the monarch 

butterfly’s central United States flyway. To determine the current extent of monarch butterfly 
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habitat using CDL data, it would seem logical to first identify what habitats are important to the 

monarch butterfly and then focus on examination of those data. However, there is no limit to 

potential habitat for the monarch butterfly, therefore all data are examined across a spatially vast 

area to determine where change is occurring on the landscape for multiple time periods. 

Additionally, efforts are made to use enhanced data to help differentiate among actual change 

and false change. False change is often present as noise or propagated error, identifying false 

change present in the data will help to further quantify uncertainty within CDL. Acknowledging 

these uncertainties will provide the best estimate of baseline information. In this research a 10-

year annual land change model is completed that compares land change and conversion between 

2008 and 2017. Seeking to develop the most informative version CDL with respect to estimating 

and identifying monarch butterfly habitat and potential habitats there are two models with 

augmented datasets tested against the original CDL with no augmentations. The variation in 

these spatially-explicit models are as follows: 

Model 1: CDL with no augmented or enhanced data; 

Model 2: CDL with augmented data better characterizing protected areas, soil 

productivity, transmission lines, and transportation networks. 

Model 3: CDL with augmented data better characterizing grass-land cover types and 

shrub-land cover types (NLCD), as well as protected areas, soil productivity, 

transmission lines, and transportation networks. 

The foundation for model development described in this paper expands and refines the 

models described in Thogmartin et. al 2017. The enhancements proposed in this research could 

alter the prescribed habitat objectives passed down to state- and local- level land managers when 

considering lands that are potentially amenable to pollinator-friendly plantings, including targets 



1 4  
 

for milkweed stems (genus Asclepias), though it is important to note that it will not change the 

need for a multi-sector approach to monarch and pollinator conservation. Milkweeds are an 

essential part of the monarch life cycle, they are the plant species on which monarch oviposition 

takes place, and primary source of food for emerging larva (Agrawal 2017). Increasing the 

number of milkweed stems planted is the primary conservation action that is addressed by 

Thogmartin et. al 2017 and is supported and regionally allocated by the models he describes. 

However, may be argued that this is not the right course of action for the preservation of the 

monarch butterfly and other pollinators. The models in this research move towards identifying 

Important Pollinator Areas (IPAs) and establishing High-Priority Pollinator Areas (HPPAs) 

focusing more on connectivity of the migration corridor and less on specific numbers of 

milkweeds to be planted. IPAs are identified as those areas that have demonstrated membership 

by being a vital part of the pollinator connection; and HPPAs being those areas that have been 

overlooked in creating connective habitat corridors for pollinator species that migrate. The 

development of the most accurate estimation of monarch butterfly habitat, and potential habitats, 

using available data, is equally important in addressing the larger research objectives involved in 

the four-year study funded by the BASF Corporation, of which this research is a part of, and also 

includes: 

1. Identifying where habitat has changed over the past 25 years;  

2. Analyzing how habitat has changed by calculating landscape metrics such as 

patch size, patch-to-patch distance, and rates of land parceling and fragmentation; 

and, 

3. Identifying where conservation practices are taking place and if these efforts are 

targeting areas where habitat was previously available, and/or can be built upon. 
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Establish IPAs and HPPAs for targeting conservation efforts and funding, where 

possible. 

Additionally, the spatially-explicit models created in this research provide a more user-

friendly, accessible procedure for better identification of land use land change using the CDL 

that can be applied across multiple disciplines. Both the data and tools are readily available, and 

easily customizable, to most agencies and institutions contributing to the monarch butterfly and 

pollinator conservation effort. The resulting data and data models are also products that can be 

modified in endless ways to benefit any number of projects or initiatives, including derivative 

models that may eventually improve additional research for monarch butterflies and other 

pollinators. These models also have the ability to easily expand the extent of the model to 

include additional data or localities in the future. And to expand the application to other areas of 

monarch butterfly or conservation research anywhere that similar data may be obtained and 

processed in place of the study area used in this research.  

4.  Methods 

4.1 Study Area 

The study area of this research includes the central flyway of the monarch butterfly. This 

area includes approximately 20 states within the central United States, as shown in Figure 3. This 

area was selected because of the overlapping areal extents from three sources on monarch 

migration and priority geographies: 1) the "Two-way Monarch Migration Map" created for 

MonarchWatch.org (“Two-Way Monarch Migration Map” 2010); 2) the two central priority 

geographies designated by the U.S. Fish and Wildlife Service and Monarch Joint Venture (U.S. 

Fish and Wildlife Service 2015) and, 3) the U.S. Fish and Wildlife Service Monarch Butterfly 
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Conservation Units in the U.S., specifically inclusive of states encompassing the majority of the 

North Core and South Core Conservation Units (U.S. Fish and Wildlife Service 2017). 

 

Figure 3: Map of central United States with study area boundary displayed for this research. 

The area of this region is approximately 1,449,187 square miles (927,479,680 acres) and 

is broadly characterized by NLCD 2011 as being 37% in Cultivation, Hay, or Pasture; 25% 

Grassland-Herbaceous, Shrub, or Scrub; 20% Forest; 6% Developed; 6% Wetlands; 2% Open 

Water, and 4% Other. The study area includes the states of Alabama, Arkansas, Illinois, Indiana, 

Iowa, Kansas, Kentucky, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Nebraska, 

North Dakota, Ohio, Oklahoma, South Dakota, Tennessee, Texas, and Wisconsin. The study area 

does not include any portion of New York, Pennsylvania, and West Virginia. These areas could 

be included in subsequent model runs along with other areas where data permits inclusion.  

4.2 Defining Monarch Butterfly Habitat 

The resource needs of the monarch butterfly are temporally variable and dependent upon 

life stage, as well as generation, and can be difficult to characterize among land cover data. This 

is primarily due to the increase in small habitat enhancements that have been implemented into 
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many cover types that may have previously been categorically dismissed as having no potential 

for monarch habitat and typically are too small to be represented by 30 meter pixel. For instance, 

in the past developed lands may have been excluded as not providing habitat for monarchs and 

pollinators. However, with the growing adoption of right-of-way management, municipal 

involvement (for example, National Wildlife Federation Mayor's Monarch Pledge, National 

Pollinator Garden Network’s Million Pollinator Garden Challenge, and the MonarchWatch 

Monarch Waystation Program), and corporate campus and other private habitat implementations, 

this is no longer a valid assumption. To better approach defining a monarch butterfly habitat, this 

research enriches existing land cover types with complementary data that will support better 

characterization of the landscape with respect to monarch habitat.  This approach is opposite 

from previous studies where CDL categories have been aggregated or collapsed and summarized 

into more binary categories of habitat vs non-habitat areas. The benefit of expanding the 

categorization is to more precisely characterize the landscape for targeting conservation practices 

and programs based on their existing and future potential to support those activities. For 

example, high productivity corn cover has less potential for implementing a pollinator 

conservation program than low productivity corn cover.  By retaining and creating additional 

cover types and subtypes for two of the three models a more informed proposal can be made. 

The output of these models is to serve as a decision-making guide, that combined with local on-

the-ground knowledge, will help direct action with more focused and relevant content for the 

target demographic. 

4.3 Model Structure and Components 

For each of the three versions of the model, similar processes were completed. The first 

model reflected solely the CDL without augmentations or enhancements. For model 1, the 
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preparation and extent steps were matched to the other two models for comparison purposes. For 

model 2, CDL data was augmented with additional data to better identify key parts of the 

landscape that have the potential to be targeted more specifically for conservation programs. For 

model 3, was augmented with additional data and portions of the NLCD. The third model 

represents the most similar solution to Thogmartin et al. 2017.  

The three versions of the model share common data preparation models, each stored as a 

model constructed within ModelBuilder for ArcGIS Pro. As shown in Figure 4, after data 

preparation has been completed, two of the three models move on to land cover augmentation 

and enhancement. In land cover augmentation and enhancement, a model constructed within 

ModelBuilder for ArcGIS Pro was completed for each year of the CDL where augmentations and 

enhancements are completed. After all models have run, final computations and data summaries 

are produced using analysis scripts in R. There are three major components to each completed 

model run, each component containing several subcomponents: 1) data preparation models; 2) 

land cover augmentation and enhancement models; and, 3) analysis scripts. Each subcomponent 

of the model is discussed in more detail in the following text. 

 

Figure 4: General flow diagram of the three versions of the models created for this research. 

Model 1:
no augmented data

data preparation analysis scripts

Model 2: 
augmented data data preparation

land cover 
augmentation 

and 
enhancement

analysis scripts

Model 3: 
augmented data, 

plus NLCD
data preparation

land cover 
augmentation 

and 
enhancement

analysis scripts
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4.3.1 Data Preparation Models and Processes 

For each year CDL data, 2008 – 2017 the data were clipped to the extent of the study 

area. The NLCD 2006 and 2011 and gridded SSURGO data were also clipped to the extent of the 

study area. In all cases, the grid was snapped to a 30 x 30 meter raster map of the study area to 

ensure complementary alignment and prevent pixel shift during processing. For gridded 

SSURGO data, the attribute of interest, National Crop Commodity Productivity Index (NCCPI) 

Version 2.0, was treated separately for each of the commodity crops for which an index is 

calculated: 1) Corn and soybean; 2) Cotton; and, 3) Small grains. The “USDA NRCS gSSURGO 

VALU1 Table Outline and Column Descriptions” document indicates that NCCPI values range 

from 0.01 (low productivity) to .99 (high productivity). Data were clipped to the extent of the 

study area, sub-categorized using crop-specific data breaks for the study area, and assigned 

descriptive categories, as shown in Table 4.  

Table 4: Descriptive text for productivity assigned to NCCPI values by commodity crop type. 

NCCPI Value Range Corn/ Soybean  Cotton Small Grains 

0.001 – 0.150 Low Low  Low  

0.151 – 0.225 Marginal  Low  Marginal  

0.226 – 0.475 Moderate  Marginal  Moderate  

0.476 – 0.850 Moderate to high  Moderate to high  Moderate to high  

0.851 – 0.991 High  -- High  

 

Figure 5 shows the difference between the NCCPI national and study area specific data 

breaks, demonstrating the importance of normalizing this data to the study area. These data 

represent the soil productivity index for all lands as they would relate to the plantings of the 
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following crops: corn, cotton, small grains, and soybeans. The acreages shown in Figure 5 are 

not acres of actively cultivated area of the selected crops. 

Allowing multiple data breaks, rather than one as indicated in Thogmartin et al. 2017, 

also provides a more continuous categorization of these data and is more forgiving across the 

study area where NCCPI values may vary greatly preventing an over-identification of perceived 

marginal lands in areas where NCCPI value ranges vary. Thogmartin et al. 2017 identified 

NCCPI value 0.40 as being the break point for determining marginal lands in corn and soybean 

lands, and only used values for NCCPI for corn and soybean. NCCPI for cotton and small grains 

were not included in Thogmartin et al. 2017. In this research, several values are identified for 

classifying NCCPI values, as well as across all categories of NCCPI, including cotton, corn, 

small grains, and soybeans. Corn and soybeans are combined and represent one NCCPI category 

within SSURGO but are represented using two datasets in this research in order to retain 

calculations for soybean and corn separately. The placement of data breaks is important in 

designation of low and high productivity when data are for a large area. In this data, areas of 

marginal or moderate productivity corn in the north central United States may be considered high 

productivity corn in the south. The data breaks are merely a guide for providing conservation 

opportunity on landscapes where a mutual benefit can be derived among landowners and 

pollinators. Additionally, NCCPI is designed for use as an indicator of productivity for non-

irrigated crops only. Irrigated varieties of selected crops occurring on low and marginal 

productivity soils may not be recognized at their full potential as supplemental watering regimes 

are not considered in the NCCPI models. 

To include the NCCPI in the models, each of the NCCPI crops was reclassified into a 

multi-value raster with value ranges aligning to the category numbers in Table 4. Where values 
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were not present NA was assigned. Raster data sets for corn, small grains, and soybean contained 

five values aligning to those identified in Table 4, the raster for cotton contains only 3 values, 

also aligning to those identified in Table 4. The NCCPI raster data sets were referenced in the 

model as a parameter, making it easier to interchange raster data sets representing NCCPI 

categories when altering data breaks. 

 

Figure 5: Distribution of NCCPI values by acreage, nationwide and within the study area of this 
research, by value range data breaks indicated in Table 4, including separation at the 0.400 
breakpoint as identified in Thogmartin et al. 2017 for illustration purposes; however, for the 
purposes of the model in this research the value ranges of 0.226 – 0.400 and 0.441 – 0.475 are 
combined. 

 

To better characterize the extent of protected areas, transportation networks, and 

transmission lines (a major focus of right of way activities), each of these input layers were 

converted from their native format as vector data to a raster data set. Data values were assigned 
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grid values that were complementary to attributes in those datasets that best characterize the data. 

Grid values were then used to convert the vector dataset to a 30 x 30 meter grid that was aligned 

with, and snapped to, the extent of the study area. For protected areas (Protected Areas Database 

of the United States (PAD-US)), the data were assigned binary gird values prior to conversion to 

raster. Where data were equal to one the area was defined as “protected areas under the 

management of local, state, federal or other government management;” where data were equal to 

zero the area was defined as “un-protected areas in the general public domain.” PAD-US 

coverage for specific protected land varies based on the data provided by individual states and 

may also include, in some areas, lands protected under the ownership of non-governmental 

organizations and/or easements data. Transportation networks are represented by the 2016 

TIGER Roads National File Geodatabase, those data were assigned grid values based on the 

feature class type and description; resulting in four categories: 1) Primary and secondary roads; 

2) Local neighborhood roads, rural roads, city streets, ramps, alleys, and service drives; 3) 

Private roads, vehicular trails, walkways and pedestrian trails; and, 4) Bike baths and trails, and 

bridle paths; where roads are not present in the raster, NA was assigned. The values that were 

assigned to the transportation networks are the same as the land use category code that defines 

those categories within the lookup table. For transmission lines (Electric Power Transmission 

Lines), the data were assigned as binary grid values prior to conversion to raster; 1 = 

transmission line present; 0 = transmission line not present. Both transportation networks and 

transmission lines may be overstated in their estimated reach as the minimum mapping unit pixel 

is 30 meters. Since both are considered as target areas for conservation activity and as 

contributors to habitat fragmentation it is imperative to include these areas on the landscape, 

even if overstated in quantity in some areas. 
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Other steps completed in data preparation include background removal and mosaicking 

of the CDL confidence raster data sets. Each confidence raster is generated and provided for 

download by state through the USDA NASS CDL website. For this model, we mosaic raster data 

sets of each state using the preparatory models for the CDL confidence raster data sets. 

Preparatory models were created to ensure consistency in removal of background and 

mosaicking of data for the four years for which confidence data are provided (2008, 2009, 2016, 

and 2017). USDA NASS has only recently (2017) added the release of confidence layers to the 

suite of downloadable products available to accompany CDL products. It is important not to 

confuse the confidence raster data sets with accuracy assessments also provided through USDA 

NASS. Accuracy assessments are tabular summaries, as opposed to spatial data sets, providing 

producer and user accuracies by category and state. The CDL confidence layers provide a value 

associated with each output pixel, that represents the predicted confidence based upon the rule(s) 

that were used to classify it. While this information does not provide ground-truth or visually 

verified information, it does provide important information on the spatial distribution and extent 

of confidence for classification and uncertainty that may accompany it. 

4.3.2 Land Cover Augmentation and Enhancement Models 

For Model 1 in Figure 4, the preparation step is the only step required, before moving on 

to analysis. Model 1 is primarily a test of the CDL with no further enhancements or 

augmentations of the data. For models 2 and 3, each year of CDL data is processed through a 

model that augments and enhances the data. The processes are similar, only deviating at the point 

where further subdivision by NLCD categories is necessary. These models are derivative of 

processes described in Thogmartin et al. 2017; however, have been extensively modified in 

hopes of advancing the capacity of the model to better identify areas for conservation action. 
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Consistent with methodology described by Thogmartin et al. 2017, the initial processes of 

each model address urban spaces in the CDL. The first process seeks to separate core areas of 

“Developed/Open Space” from linear areas of the same category by shrinking CDL code 121, 

“Developed/Open Space” by one pixel; then expanding the output of that process also by one 

pixel. The output of this process is assigned a new category and code, 120, “Linear 

Developed/Open Space.” The second set of processes seeks to identify core areas of 

“Developed/Open Space” and other urban landscapes by shrinking CDL codes 121, 122, 123, 

and 124 by two pixels, then expanding the output of that process also by two pixels. 

The next process introduces the transportation networks data as multi-value raster 

described in 4.3.1 of this document. Roads data are given preference over urban data in the 

geoprocessing overlay. Where roads data are not present, and values are zero are present, the 

previously described urban data are inserted. The dataset to this point includes developed lands 

and transportation networks and remains consistent in processing for both Model 2 and 3. 

The next processing phase begins to see divergence in how Model 2 and 3 address grass-

land cover types. For model 2, the process is simple: CDL codes 64, 152, and 176 are isolated 

from the CDL and subdivided using the binary raster data set for protected areas as shown in 

Figure 6. The result is the creation of five categories of grass-land cover types. Three categories 

for areas not contained within a protected area, and two complementary categories for those 

contained within a protected area; CDL codes 64 and 152 are combined as one protected 

shrubland category and assigned new code 150. 
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Figure 6: Process for delineating portions of grass-land cover types as protected using CDL 
Code 176, Grassland/Pasture as example. 

For model 3, the process of subdividing grass-land cover type is complicated by the 

integration of NLCD as a surrogate for more sophisticated means of more clearly the boundaries 

among herbaceous grasslands and hay or grazing pastures. The annual CDL data used in this 

research spans the time frame of two NLCD releases and thus, NLCD 2006 and NLCD 2011 

have both been used in the combination of CDL to NLCD. For 2008 – 2010, NLCD 2006 is used 

for grass-land cover delineation and for 2011 – 2017, NLCD 2011 is used. It is important to 

remember that NLCD is only released every five years, and that the CDL non-crop categories are 

already quite heavily reliant on NLCD for their categorization. Furthermore, the introduced 

NLCD categories are only used as a factor of delineation in areas where CDL has already 

identified the extent of the area as being of the appropriate grass-land cover type as shown in 

Figure 7. The NLCD categories are not used as a broad replacement for existing categories in 

CDL (i.e. areas of 2017 CDL crop are not overwritten by areas of 2011 NLCD pasture). For each 

CDL code, 64, 152, and 176, the category is isolated from the CDL and first divided by the 

presence (or absence) of NLCD categories within the area, then further subdivided by the portion 

of the area that is within protected areas. Finally, the segments are pieced back together through 

a series of conditional statements, the result is a dataset with 11 grass-land cover type categories. 

CDL Code 176 
(Grassland/Pasture)

Protected Area = 1 New Code 175 (Protected 
Grassland/Pasture)

Protected Area = 0 No Code Change 
(Grassland/Pasture)
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Six for categories not within a protected area, and five for categories within a protected area. 

Again, CDL codes 64 and 152 are combined as one protected shrubland category. 

In both model 2 and 3, the final output of the grass-land delineation process is combined 

with the final output of the urban process through a conditional statement. The result of the 

grass-land delineation process is given priority during conditional statement. More specifically, 

where no grass-land cover type exists in the final output, the urban final output is added. If a 

conflict arises where both grass-land cover type and urban cover type exist in the same pixel, the 

grass-land cover type is selected. However, these conflicts have been minimized by using the 

urban output as the first input of the grass-land cover type process. In theory, there should be no 

instances where conflicts of this nature should arise. 

 

Figure 7: Process for delineating portions of grass-land cover types integrating NLCD data, and 
protected areas database layers, illustrated using Grassland/Pasture as example. 

CDL Code 176 
(Grassland/Pasture)

NLCD Grassland = 
71

Protected Area = 1
New Code 179 

(Protected 
Grassland)

Protected Area = 0 New Code 180 
(Grassland)

NLCD Pasture = 81

Protected Area = 1
New Code 177 

(Protected 
Pasture/Hay)

Protected Area = 0 New Code 178 
(Pasture/Hay)

Not in NLCD 
Grassland or 

Pasture

Protected Area = 1
New Code 175 

(Protected 
Grassland/Pasture)

Protected Area = 0 No code change 
(Grassland/Pasture)
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The next process addresses crop-specific productivity using the 30-meter gridded 

SSURGO data and the NCCPI data discussed in detail in section 4.3.1 of this document. Models 

2 and 3 follow the same structure through this process. Each commodity crop group is isolated 

from the CDL, aggregated, if needed, and then subdivided based on values in the appropriate 

NCCPI raster interpretation. Aggregation prior to splitting is required for corn, small grains, and 

soybeans to accommodate the multiple CDL classes that contribute to the commodity crop class. 

For example, corn includes CDL codes 1, 12, and 13 as shown in Figure 8, and small grains 

includes seven different CDL codes: 21, 22, 23, 24, 25, 27, and 28. Cotton is represented by only 

one CDL code 2, as are soybeans, CDL code 5. After each commodity crop group has been 

processed they are re-assembled into a crop-specific productivity output with 18 resulting 

categories and new codes. The output of this process is combined with the previous output from 

the grass-land cover type delineation process through a conditional statement. No preference is 

given during the combining process as the outputs are non-overlapping. 

The completion of this series of processes and the resulting outputs are finalized by 

updating code values and descriptions through a look up table where old and new values are 

cross-walked. Area calculations (acres) are computed, output is stored for each CDL year for 

models 2 and 3, and summary statistics are generated and written out as table to be referenced in 

by R scripts in the analysis steps.  

The R scripts in Appendix 4 are those used for the processing of the data after all model 

runs have been completed. These scripts import and join the tables created through the model 

process create year-to-year comparisons of total acres, mean acres, standard deviation, 

coefficient of variation, and z-scores for each category. Additionally, year-to-year plots of the 
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number of acres per category based on confidence and frequency are plotted to better understand 

how subdivision of the data alters these distributions.  

 

Figure 8: Process for delineating commodity crops based on NCCPI values, illustrated using 
corn as an example. 

 

4.4 Detecting Change across the Landscape Over the Past Decade 

Using the outputs from the land cover augmentation and enhancement models a 

workflow for generating change matrices over the past decade was developed. Though currently 

completed as step-by-step procedural process, models for completing these tasks are under 

development and will be completed during the next research phase. 

The process for detecting change across the landscape over the past decade is built on 

traditional methods for detecting change in raster analysis were. The development of the change 

matrix for 2008 – 2017, specifically used one of the four concepts from the Multi-Index 

CDL Code 1
(Corn)

CDL Code 12
(Sweet Corn)
CDL Code 13

(Pop/Orn Corn)

NCCPI Value in
0.001 – 0.150

New Code 154
(Corn Low Productivity) 

NCCPI Value in
0.151 - 0.225

New Code 155
(Corn Marginal Productivity)

NCCPI Value in
0.226 - 0.475

New Code 156 
(Corn Moderate Productivity)

NCCPI Value in
0.476 - 0.881

New Code 157
(Corn Moderate-to-High 

Productivity)

NCCPI Value in
0.881 - 0.991

New Code 158 
(Corn High Productivity)
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Integrated Change Analysis (MIICA) process used for determining spectral change among 

Landsat pairs (Jin et al. 2013). One process from MIICA is the Change Vector (CV) calculation 

that can be used in this research to identify categorical change among the pixel pairs. The CV 

functions similarly for identifying categorical change as it does in the traditional use of 

identifying spectral change among Landsat pixel pairs. In this case we use the category values of 

the pixels to look for changes in classification between two-time periods. For each pixel pair in 

the set of model outputs for 2017 and 2008 𝐶𝐶𝐶𝐶 =  ∑ (𝑣𝑣2017 −  𝑣𝑣2008)2𝑖𝑖  is calculated; the absolute 

value of CV is then inserted into the change code that is assigned to each row. The change code 

is formed by the following numeric combination: “17” + [2017 Category Value] + “8” + [2008 

Category Value] + [CV]. This gives each change of category a unique identifier that also serves 

as reference that can be deconstructed to determine what change has taken place. 

Calculating the CV and change code is the first step in identifying land use conversions 

among the model outputs and highlights the extent of the change and generates the change 

matrix. However, the CV is not a stand-alone metric of change in the model outputs. Similar to 

challenges that are discussed in the NLCD MIICA process for identifying change, the CV 

identifies all areas of change, including crop rotation, seasonal, and phenology changes (Jin et al. 

2013). In addition to considerations for these phenomena, part of the difficulty in using data that 

has already been processed and categorized is accounting for error propagation. Specifically, 

edge confusion that may be recorded as change; single pixel or small groupings of pixels that 

have been misclassified; and, differentiating among types of change. For example, separating 

naturally occurring change from change as a result of human activity, such as crop rotation, that 

resembles change on the landscape, but should be quantified separately. 
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In addition to CV, the frequency and confidence of the 2008 and 2017 model outputs are 

combined. The resulting layer is used to establish areas of change apart from areas where data 

support areas of no change. The frequency of each input layer is calculated in ArcGIS Pro 2.1 

using the Equal to Frequency geoprocessing tool where all years 2008 – 2016 are compared to 

2017. The resulting layer is a pixel-by-pixel assessment of the category value in comparison to 

2017, a pixel value of 9 identifies a pixel where the value has been the same for all 10 years of 

the comparison; similarly, a pixel value of zero identifies a pixel where the value has not been 

equal to that of the 2017 pixel in any of the preceding 9 years. Where frequency indicates 

consistent identification for all 10 years, a general assumption about the strength of either the 

classification of that pixel and/or stable ground conditions is made and is categorized to reflect 

generally no change. A pixel value between 0 and 9 indicates that at least one time between 2008 

and 2016, the pixel value was not equal to the pixel value of 2017, these areas are broadly 

characterized as being possible change. 

The CDL Confidence Layer is also being used to better identify change on the landscape. 

To include these data, the confidence layer for each state is mosaicked for a seamless 

representation of the study area. The mosaicking procedure is completed by an ArcGIS model 

built specifically for the consistent compilation of confidence data as described in section 4.3.1 

of this document. The mosaicked confidence layer has a range of values from 0 – 100, where 0 

represents little confidence in the pixel categorization through the CDL decision tree; and 100 

represents a high confidence in the pixel categorization through the CDL decision tree.  

The confidence and frequency of each pixel is used to create a change mask for each 

model. In each change mask, pixels are classified based on the following: where frequency = 9 

AND confidence ≥ 75 the pixel should be classified as one; if these conditions are not met, the 
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pixel should be classified as zero. Areas of pixel values equal to zero indicate areas of potential 

change and areas of pixel values equal to one indicates areas where change is presumed stable 

(no change over 10 years). For each model, the change mask is generated for 2017 and 2008; 

then summed using the plus geoprocessing tool. The resulting datasets divide the study area into 

three broad classifications: areas where the change mask is equal to zero indicates change in both 

2008 and 2017; areas where the change mask is equal to one indicates change in either 2008 or 

2017, but not in both years; and, areas where the change mask is equal to two indicates no 

change in 2008 or 2017. Areas where the change mask agrees in both years are confidently 

assumed to be areas of no change for the decade. However, to better understand the categorical 

change, the change code is cross walked to a look up table with all possible combinations of 

conversion as text descriptors. Using the CV, change code, and raster dataset of combined values 

from 2008 and 2017 for each model, the change code and text descriptions are reintroduced and 

are now ready to be visually assessed and quantified across the landscape. The outputs from this 

model can then be utilized in additional models and data tools to help inform policy and 

conservation delivery across the landscape. 

5.  Results  

Overall, the model outputs agree regarding general land conversion trends and quantities 

of land use types. This is expected since most categories are broadly unchanged throughout the 

models, only further subdivided for more precise consideration. One outcome of this research 

was to complete development and comparison of the three models and their outputs to identify 

where augmenting and enhancing the CDL data served to better categorize data for the purposes 

of targeting conservation actions and best represented the landscape. Additionally, to explore 
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methods for quantifying the amount of uncertainty that may be masked through the process of 

subdividing category data due to inherent data issues.   

Model 1 and 2 outputs, in general, agree that grassland/pasture category has the greatest 

quantity of land, the greatest amount of deviation, and downward trending losses over the past 10 

years. However, as additional spatial subdivision is completed within the grassland/pasture 

category these numbers decrease as smaller, more well-defined categories of grassland/pasture 

increase. This spatial subdivision impacts the overall statistics of the category and can be 

observed by comparing models 1, 2 and 3 by their coefficient of variation. Model 1 (Figure 9, 

Table 5) and model 2 (Figure 10, Table 6) are still capturing a great deal of the uncertainty of the 

grassland/pasture category; while the model 3 (Figure 11, Table 7) processes have masked 

uncertainty in this category through subdivision of the category to the point that only a small 

portion of the original grassland/pasture category continues to stand out. Remaining features, not 

part of the newly enhanced standard features, now have limited standard deviation and 

coefficient of deviation, that may be masking their need for attention. 
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Figure 9: Model 1, 2008 – 2017 Plot by Category and Coefficient of Variation. Data for 
highlighted points (red); points with a standard deviation of greater than 2,500,000 are 
highlighted and displayed in Table 5. Note the difference in scale between Model 1 and Models 2 
and 3. 

 

Table 5: Mean Standard Deviation, Mean Acres, and Coefficient of Variation for Model 1, 2008 
- 2017 points with a standard deviation of greater than 2.5 million as highlighted in red in 
Figure 9. 

Category Standard Deviation 
(Acres) 

Mean 
(Acres) 

Coefficient of 
Variation 

Corn 4,016,840 80,359,580 0.49985820 
Soybeans 6,128,745 72,056,713 0.85054460 

Shrubland 6,073,948 83,646,386 0.07261459 
Grassland/Pasture 17,083,738 218,704,703 0.07811326 
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Figure 10: Model 2, 2008 – 2017 Plot by Category and Coefficient of Variation. Data for 
highlighted points (red); points with a standard deviation of greater than 2,500,000 are 
highlighted and displayed in Table 6. Note the difference in scale between Model 1 and Models 2 
and 3. 

 

Table 6: Mean Standard Deviation, Mean Acres, and Coefficient of Variation for Model 2, 2008 
- 2017 points with a standard deviation of greater than 2.5 million as highlighted in red in 
Figure 9. 

Category Standard Deviation 
(Acres) 

Mean 
(Acres) 

Coefficient of 
Variation 

Deciduous Forest 2,859,511 129,587,995 0.02206617 
Shrubland 2,880,063 64,644,903 0.04455205 

Grassland/Pasture 9,973,022 40,324,682 0.24731806 
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Figure 11: Model 3, 2008 – 2017 Plot by Category and Coefficient of Variation. Data for 
highlighted points (red); points with a standard deviation of greater than 2,500,000 are 
highlighted and displayed in Table 7. Note the difference in scale between Model 1 and Models 2 
and 3. 

 

Table 7: Mean Standard Deviation, Mean Acres, and Coefficient of Variation for Model 3, 2008 
- 2017 points with a standard deviation of greater than 2.5 million as highlighted in red in 
Figure 9. 

Category Standard Deviation 
(Acres) 

Mean 
(Acres) 

Coefficient of 
Variation 

Core Developed/ Open Space 2,660,228 21,994,547 0.12094943 
Soybeans (CDL) Moderate-to-

High Productivity (NCPPI) 2,705,582 33,788,474 0.08007412 

Grassland/Pasture 10,437,081 264,180,855 0.03950733 
 

This is also apparent in comparing the tabular version of results of change for 2008 to 

2017. While the three model outputs are very similar, Table 8 shows the top 10 records out of 

each change dataset which better demonstrates how the process of augmentation have subdivided 

large categories into multiple smaller categories that are perceived as having a better fit. 

However, the extent of the grassland/pasture remains consistent in each model year, only the way 

in which it is described and subdivided changes throughout each model. This gives a false sense 

of improvement over the land categories. 
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Table 8: Comparison of Top 10 (by Area) Categories of Change from 2008 to 2017, by Model 

Model 1 Model 2 Model 3 

Change 
Description 

from 2017 to 2008 

Acres Change Description 
from 2017 to 2008 

Acres Change Description 
from 2017 to 2008 

Acres 

Corn to Soybeans 35,008,234 Corn (CDL) High 
Productivity (NCPPI) 
to Soybeans (CDL) 
High Productivity 
(NCPPI) 

16,212,194 Corn (CDL) High 
Productivity (NCPPI) 
to Soybeans (CDL) 
High Productivity 
(NCPPI) 

15,687,804 

Soybeans to Corn 32,014,247 Soybeans (CDL) High 
Productivity (NCPPI) 
to Corn (CDL) High 
Productivity (NCPPI) 

14,958,809 Soybeans (CDL) High 
Productivity (NCPPI) 
to Corn (CDL) High 
Productivity (NCPPI) 

14,446,396 

Grassland/Pasture 
(CDL) to 
Shrubland 

13,314,312 Corn (CDL) Moderate-
to-High Productivity 
(NCPPI) to Soybeans 
(CDL) Moderate-to-
High Productivity 
(NCPPI) 

14,569,270 Corn (CDL) Moderate-
to-High Productivity 
(NCPPI) to Soybeans 
(CDL) Moderate-to-
High Productivity 
(NCPPI) 

13,520,694 

Grassland/Pasture 
(CDL) to Other 
Hay/Non Alfalfa 

8,042,320 Soybeans (CDL) 
Moderate-to-High 
Productivity (NCPPI) 
to Corn (CDL) 
Moderate-to-High 
Productivity (NCPPI) 

13,545,946 Soybeans (CDL) 
Moderate-to-High 
Productivity (NCPPI) 
to Corn (CDL) 
Moderate-to-High 
Productivity (NCPPI) 

12,585,035 

Grassland/Pasture 
(CDL) to 
Deciduous Forest 

7,418,003 Grassland/Pasture 
(CDL) to Shrubland 

11,673,463 Grassland/Pasture 
(CDL) to Shrubland 

5,956,056 

Grassland/Pasture 
(CDL) to 
Soybeans 

7,395,798 Grassland/Pasture 
(CDL) to Other 
Hay/Non Alfalfa 

7,291,376 Deciduous Forest to 
Woody Wetlands 

5,029,523 

Grassland/Pasture 
(CDL) to Corn 

7,255,516 Grassland/Pasture 
(CDL) to Deciduous 
Forest 

6,505,381 Woody Wetlands to 
Deciduous Forest 

4,915,450 

Other Hay/Non 
Alfalfa to 
Grassland/Pasture 
(CDL) 

6,352,080 Other Hay/Non Alfalfa 
to Grassland/Pasture 
(CDL) 

5,860,616 Deciduous Forest to 
Evergreen Forest 

4,119,724 

Deciduous Forest 
to Woody 
Wetlands 

5,436,658 Deciduous Forest to 
Woody Wetlands 

5,304,163 Grassland/Pasture 
(CDL) to Deciduous 
Forest 

3,795,819 

Woody Wetlands 
to Deciduous 
Forest 

5,292,635 Woody Wetlands to 
Deciduous Forest 

5,163,344 Evergreen Forest to 
Deciduous Forest 

3,775,034 
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Exploring the year-to-year data plots and decadal differences begin to highlight 

interesting trends in the data and areas where models can be extended to further improve 

performance in estimating extent and change across the landscape.  

Comparison among categories of the three model outputs for 2008 – 2017 as year-to-year 

z-score plots, show important temporal trends that may not be captured in a decadal change 

analysis, as well as illustrates how the process of subdividing data impacts z-scores (Figure 12, 

Figure 13, and Figure 14). Plots for grassland/pasture are highlighted here, with similar plots for 

all other categories in Appendix 2. These extensive charts pose inquiries into the drivers of 

fluctuations, as well as exposing possible relationships among categories of commonly rotated 

crops (i.e. corn and soybeans).  

 

Figure 12: Annual z-scores for 2008-2017 model 1 grassland/pasture category. 

 

 

Figure 13: Annual z-scores for 2008-2017 model 2 grassland/pasture categories. 
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Figure 14: Annual z-scores for 2008-2017 model 3 grassland/pasture categories. Note the very 
abrupt changed in z-scores where notated as NLCD-derived, these mark the change in where 
years reference 2006 NLCD and 2011 NLCD. 

 

The weaknesses of the analysis are also more notable in reviewing these charts, 

particularly those of Model 2 and Model 3. In both, datasets such as transportation and railroads, 

results are either presented as null or static. This results from the data being unchanging and 

universally applied to all years of analysis. Ideally, an improved version of this model would 

introduce temporally appropriate datasets for each year or a subset of years that better captures 

areas of increasing urbanization and creation of impermeable surfaces. For model 3, the NLCD 

data also creates interesting patterns in the temporal trends where NLCD is used to improve 

subdivision of grassland/pasture by further refining the grassland/pasture category into NLCD 

categories for grassland/herbaceous and pasture/hay, where the CDL category for 

grassland/pasture already exists on the landscape. For model 3, the 2017 data uses NLCD 2011 
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for this improved differentiation of grassland/pasture; whereas the 2008 data uses the NLCD 

2006. The change in reference NLCD is notable on the year-to-year charts. No attempt to filter 

the data based on the quality of the pixel categorization has been attempted in the first product of 

the research. However, the general output of extent and acreage for each output is created that 

creates a base for future analysis. 

An additional series of exploratory data were created to better understand how pixel 

confidence and frequency could be used to improve estimations of decadal change from 2008 to 

2017. The charts in Figure 15, Figure 16, and Figure 17 show the distribution of the pixels for a 

given category based on confidence and shaded by frequency. As discussed in section 4.4, where 

the frequency is equal to 9 for a given pixel, all 10 years of data for that pixel were classified as 

the same category; whereas the confidence is a metric calculated by USDA NASS that provides 

a value of pixel fit to the CDL model tree. In this research, the measure that identifies lands of no 

change are those pixels where frequency is equal to 9 and confidence greater than or equal to 75. 

This may also serve as a preliminary measure for evaluating what areas may be undergoing 

change in the future (forecasting). 

 

Figure 15: Model 1 distribution of acres of grassland/pasture by confidence and frequency for 
2017. Data greater than 4 million acres have been omitted from plots to illustrate variation (4 
records omitted). 
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Figure 16: Model 2 distribution of acres of grassland/pasture by confidence and frequency for 
2017. Data greater than 4 million acres have been omitted from plots to illustrate variation (4 
records omitted). 

 

 

Figure 17: Model 3 distribution of acres of grassland/pasture by confidence and frequency for 
2017. Data greater than 4 million acres have been omitted from plots to illustrate variation (2 
records omitted). 

 

To demonstrate the value of the model outputs that give a spatial extent to the areas 

where change has occurred, by category, over the past 10 years (2008 – 2017) the 
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grassland/pasture category will continue to serve as example. The grassland/pasture category has 

been initially discussed in section 2.3 of this document. Though grassland/pasture has been 

selected as example, these data exist for all categories of CDL and all three models. Each 

category has unique characteristics of uncertainty across that landscape, but also challenges of 

uncertainty across all categories as there is no way to observe one category without also 

observing all other categories in transactions in land conversion. The grassland/pasture category 

represents a non-crop category that is evaluated using CDL despite the lack of strength CDL has 

in non-crop category identification as discussed earlier. Given this, it is surprising that the 

primary land category selected to be evaluated for change in recent models using CDL (USDA 

NASS 2017).  One special consideration in the grassland/pasture category is differentiating 

among actual change and change that has resulted from the purposeful improvement of models to 

better classify grassland/pasture within the CDL (USDA NASS  2017).  

Initial land conversion data for 2008 – 2017 decadal change is a fully expanded matrix of 

all possible land conversions obtained by first combining the final model outputs of 2017 and 

2008, then using the CV calculation to generate the change code described in section 4.4 to 

arrive at decadal change. For this example, the Extract by Value geoprocessing tool in ArcGIS is 

used to select and create a new raster of only those records that involve “Grassland/Pasture” 

from the decadal change raster. The model 1 extract for grassland/pasture is shown in Figure 18 

and is symbolized by conversion of grassland/pasture gains (21,711,903 acres), losses 

(60,892,791 acres), and areas of no change (172,732,548 acres) that are calculated as the 

difference between 2017 and 2008. Map categories have been grouped based on gain or loss to 

improve readability. The data in Table 9 shows the individual losses and gains for each category 

demonstrating how grassland/pasture is lost to a category or gained from a category, or both. 



4 2  
 

Some of the categories have very small amounts of change in seemingly unlikely categories, as 

well as some large amounts of complementary change. These are indicators that some of the 

issues mentioned previously are present in the dataset.  

 

Figure 18: Conversion of lands in grassland/pasture category, 2008 -2017 (model 1). 

 

For areas of that have a very small number of pixels of conversion, noise reduction 

analysis will need to be completed to possibly remove these areas if they are found to be single 

pixel areas of grassland. For areas of where a large number of pixels are converted as part of 

complementary change, we may be seeing error propagation as edge confusion. Edge confusion 

typically occurs where pixels along the edges of larger, more contiguous pixel patches are 
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equally likely to be classified as one category or the other. In the CDL edge confusion is 

prevalent along field edges in cropped areas but can also be found in non-crop areas. 

 

Table 9: Grassland/Pasture gains and losses for 2008 – 2017, model 1 output. 

Converted to 
Grassland/Pasture from 

Category (Gain) 
Category 

Grassland/Pasture Converted 
to Category (Loss) 

939,779 Alfalfa -2,219,165 
23,406 Apples -16,958 

6,050 Aquaculture -24,353 
66 Asparagus -440 

34,765 Barley -54,939 
153,089 Barren -465,394 

1,948 Blueberries -17,128 
1 Broccoli -6 

309 Buckwheat -2,119 
258 Cabbage -620 

2 Camelina 0 
14,228 Canola -145,093 

28 Cantaloupes -126 
151 Carrots -919 

5 Cauliflower -131 
3 Celery -414 

19,495 Cherries -20,605 
2,072 Christmas Trees -23,842 
1,462 Citrus -1,286 
5,051 Clover/Wildflowers -13,609 

238,636 Core Developed/Open Space -777,036 
1,944,708 Corn -7,255,516 

70,368 Cotton -464,551 
20 Cranberries -6 

518 Cucumbers -7,055 
16 Dbl Crop Barley/Corn -123 
60 Dbl Crop Barley/Soybeans -489 
58 Dbl Crop Corn/Soybeans -74 
61 Dbl Crop Oats/Corn -364 

325 Dbl Crop Soybeans/Oats -957 
3,422 Dbl Crop WinWht/Corn -7,303 

213 Dbl Crop WinWht/Cotton -7,718 
6,860 Dbl Crop WinWht/Sorghum -9,522 

101,859 Dbl Crop WinWht/Soybeans -239,783 
1,157,833 Deciduous Forest -7,418,003 

4,546 Developed/High Intensity -31,076 
35,891 Developed/Low Intensity -283,838 
16,642 Developed/Med Intensity -144,405 
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Table 9 (Cont.)   
Converted to 

Grassland/Pasture from 
Category (Gain) 

Category 
Grassland/Pasture Converted 

to Category (Loss) 

14,375 Dry Beans -70,102 
77,967 Durum Wheat -122,230 

606,532 Evergreen Forest -1,176,111 
1,277,106 Fallow/Idle Cropland -1,326,343 

13,678 Flaxseed -17,940 
19 Gourds 0 

3,969 Grapes -6,207 
550 Greens -251 

551,747 Herbaceous Wetlands -2,819,634 
493 Herbs -2,850 

14 Honeydew Melons -14 
0 Hops -13 

1,001 Lentils -23,194 
1 Lettuce 0 

19,239 Millet -81,199 
27 Mint -1 
14 Misc Vegs & Fruits -30 

86,762 Mixed Forest -209,806 
545 Mustard -528 

5 Nectarines 0 
106,895 Oats -308,778 

0 Olives -137 
387 Onions -1,063 

286,935 Open Water -1,087,512 
50 Oranges -308 

10,573 Other Crops -5,304 
6,352,080 Other Hay/Non Alfalfa -8,042,320 

36 Other Small Grains -17 
40 Other Tree Crops -89 

537 Peaches -1,350 
3,138 Peanuts -26,527 

9 Pears -129 
14,571 Peas -52,251 

7,602 Pecans -30,077 
109 Peppers -208 

4 Plums -2 
877 Pop or Orn Corn -9,164 
963 Potatoes -10,759 
307 Pumpkins -2,584 

4 Radishes -193 
19 Rape Seed -26 

25,981 Rice -96,380 
30,330 Rye -102,960 

808 Safflower -3,099 
3,274,336 Shrubland -13,314,312 
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Table 9 (Cont.)   
Converted to 

Grassland/Pasture from 
Category (Gain) 

Category 
Grassland/Pasture Converted 

to Category (Loss) 

103,632 Sod/Grass Seed -76,490 
396,141 Sorghum -562,992 

1,473,358 Soybeans -7,395,798 
280 Speltz -481 

241,259 Spring Wheat -957,834 
317 Squash -2,753 

45 Strawberries -107 
641 Sugarbeets -12,755 

15,766 Sugarcane -22,986 
49,136 Sunflower -169,441 

1,954 Sweet Corn 0 
941 Sweet Potatoes -3,826 
803 Switchgrass -2,433 

1,950 Tobacco -10,959 
773 Tomatoes -604 

3,243 Triticale -27,600 
43 Turnips -75 
78 Vetch -2 
15 Walnuts -626 

1,527 Watermelons -2,792 
1,587,036 Winter Wheat -1,988,208 

278,131 Woody Wetlands -1,047,063 
21,711,903 Total -60,892,791 

 

As example, for identifying the uncertainty in the model result, the frequency and 

confidence data compiled earlier for model 2 can be used to better categorize the data and the 

uncertainty that accompanies the data. Using the frequency and confidence mask to further 

classify the model output, a version of the data is created that can be reviewed by category, 

conversion, frequency, and confidence. For the model 2 data, of the 185,979,265 acres of lands 

classified as persistent grassland/pasture and grassland/pasture net gains, approximately 49% 

(92,549,496 acres) have a frequency = 9 and confidence >= 75. When considering only the 

confidence of the data, approximately 70% of model 2 persistent grassland/pasture or lands 

converted to grassland/pasture during the past decade fall within the confidence threshold greater 

than or equal to 75. The model 2 grassland conversion losses are calculated at 57,675,446 acres 
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with 24% being attributed to conversion to corn or soybean croplands (of any NCCPI category). 

The full distribution of the pixel frequency for this data is found in Figure 19, and pixel 

confidence in Figure 20.  

Using the combination of confidence and frequency two observations can be made: 1) 

areas where change is more likely to have occurred; and 2) areas where change is less likely to 

be occurring on the landscape. These data can be used to further characterize and select 

appropriate thresholds at which to consider a pixel not usable for analysis, or by simply 

acknowledging limitations of use. However, in reviewing these examples of grassland/pasture 

observations there is a difference in total acres of analyzed lands between model 1 (~133.5 

billion acres) and model 2 (~128.3 billion acres). This represents a reduction of total 

grassland/pasture from model 1 acreages of almost 4%. These differences are due to the 

enhancement and augmentation process that is undertaken in the model, for example in processes 

of shrinking and expanding, and in overlaying road networks and transmission lines. 
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Figure 19: Grassland Pasture Conversion (Model 2 Output) by Pixel Frequency, 2008 - 2017. 

 

 

Figure 20: Grassland Pasture Conversion (Model 2 Output) by Pixel Confidence, 2008 - 2017. 

0 1 2 3 4 5 6 7 8 9
Converted to/Persisted as

Grassland/Pasture 0.71% 1.60% 5.10% 2.57% 2.28% 2.80% 4.89% 8.13% 12.40% 59.52%

Converted From Grassland/Pasture to
Other Categories 29.78% 13.56% 10.07% 10.11% 8.68% 7.48% 7.41% 8.35% 4.56% 0.00%

Converted from Grassland/Pasture to
Corn 22.63% 13.72% 12.14% 17.59% 16.45% 8.53% 5.12% 2.61% 1.20% 0.00%

Converted from Grassland/Pasture to
Soybean 25.46% 14.79% 14.84% 19.44% 15.45% 6.06% 2.63% 1.02% 0.32% 0.00%
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Another method explored in this research, and proposed for further research, is applying 

region group (clump) operations to remove single pixel and small areas of pixels from the 

dataset. Single pixels are those that share no connectivity to another pixel of the same value by a 

neighbor connection of eight. Given the 30-meter pixel resolution, it takes approximately 4.5 

pixels to be equivalent to one acre. In a trial run, using the model 2 grassland/pasture conversion 

dataset, pixel clumps composed of 4 or fewer adjacent pixels, were found to be 0.46% 

(1,131,968 acres), with 0.14% being single pixels. Lands converted to grassland/pasture or 

persisting as grassland/pasture had a mean pixel clump of 5,484 acres, while those converted 

from grassland/pasture to another category has a mean pixel clump of 12,603 acres. However, it 

is still unclear whether these differences point to characterization of grassland/pasture change or 

change in the data processing that identifies grassland/pasture change. The next step in this 

research explores the relationship among pixel clumps, confidence, and frequency to evaluate 

additional methods for quantifying uncertainty in CDL datasets. 

The outputs of the model data can also be reviewed to locate specific types of conversion 

of a category. For example, where are grassland/pasture lands that have been converted to low 

and marginal corn and soybean production? Where are grassland/pasture lands that have been 

converted to any corn and soy production, regardless of NCCPI? Using the model 2 

grassland/pasture conversion dataset, areas where grassland/pasture has seen conversion to low 

or marginal corn and soybean production (Figure 21) is identified. The areas identified in Figure 

21 could be targeted for incentivized programs to return those areas to fallow while still 

supporting the economic interests of the farm. Figure 22 shows the extent of converted 

grassland/pasture to any corn or soybean production, including all levels of NCCPI. However, 

this data must be used with caution, while we show these lands as conversion to corn or soy and 
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as low or marginal production these conditions are only valid for non-irrigated cropland. This 

enhanced data provides a next-level planning approach for land managers seeking to prioritize 

conservation delivery, but still leaves many gaps that must be filled with local knowledge. One 

question that may arise from these analyses is the amount of area converted because of declines 

in CRP enrollment and contracts on existing CRP lands expiring. These models are not capable 

of making these estimations as CRP data are not part of the augmented data layer set. However, 

if appropriate data were available this is an area that could be explored in the future. 

 

Figure 21: Conversion of grassland/pasture to low and marginal corn and soybean production 
lands between 2008 and 2017 (model 2). 
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Figure 22: Conversion of grassland/pasture any corn or soybean production lands between 2008 
and 2017 (model 2). 

 

The conservation policy and planning impacts of these models would possibly alter the 

scenarios given in Thogmartin et al 2017, first by enabling an extension of scenarios to a greater 

area, through re-distributing the conservation delivery within the north central region by re-

defining “marginal” croplands, and by expanding the categorization of the landscape. 

Thogmartin et al. 2017 discuss conversion of marginal croplands (corn or soybean lands with 

NCCPI less than 0.40) in corn and soybean lands totaling 50,329 square kilometers (12,436,567 

acres) over the study area in their research, which by calculations consistent with those used in 

this model exceeds 10% of the lands in production of corn and soybean in their study area for 
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CDL year 2014. Comparatively, the area in this study that would be similarly identified under 

the conditions of model 2 or 3 would call for possible conversion of low or marginal production 

lands in corn and soybean with an NCCPI less than or equal to 0.225, equal to 6,730,855 acres in 

2014, approximately 4.5% of the total corn and soybean lands in production in the central United 

States (the study area of this research). Alternatively, if moderate productivity lands (corn or 

soybean lands with NCCPI less than 0.475, greater than 0.225) are also included as marginal, 

then the proposed percentage increases to 18.1% of total lands in corn and soybean production 

within this study area, and to approximately 12% in the study area defined by Thogmartin et al. 

2017. In both cases, the higher rate of conversion would undoubtedly be too aggressive even 

with the best of conservation program incentives.  

  The NCCPI breaks and other model parameters should be considered as flexible and 

only serve as a point from which modifications can be made to improve such models to better fit 

intentions and identification of lands that would most be likely to have a conservation program 

implemented, which may or may not include low or marginal productivity lands. 

6.  Discussion 

After reviewing the three models, a revision of model 2 is likely to be the best suited to 

provide the input needed through the remainder of the project objectives. Several improvements 

could be made that will best provide for the objectives in the next phase of research. These 

improvements are: 1) correct for land cover type loss due to analysis, such as with the difference 

of grassland/pasture acres analyzed lands; 2)  replace processes, such as shrink and grow, with 

more controlled selection and replacement through pixel cluster counts and neighbor 

associations; 3) eliminate model 3 processes and output that includes NLCD lands for further 

subdividing grassland/pasture data that might best be done at the conclusion of data creation on a 
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user-by-user basis, rather than broadly applied within the model, especially given the increase in 

model runtime for accommodating these datasets (model 2: runtime/model = ~ 2.5 hours; model 

3: runtime/model = ~ 3.5 hours); and 4) expand transportation network datasets to include 

multiple years for better temporal characterization of impervious surfaces and opportunities for 

right-of-way activities. 

Additional research to estimate monarch butterfly habitat, arguably the most notable 

definition absent from these models, is needed to be able to select specific land conversions 

relevant to monarch research. In researching how to best represent monarch butterfly habitat, it 

ultimately is not a universal decision that can be applied broadly without respect to life cycle, 

varying resource needs, and their associated spatial and temporal extents. While additional 

research is needed to account for many site-specific variables, including the unique needs of each 

landowner, these models do provide foundational data that can feed larger decision-making 

matrices in conservation delivery, and provide more easily accessible data in support of 

identifying incentivized paths to conservation action.  

Each model is prepared to support inquiries from a broader-scope of environmental and 

ecological applications, expanding the impact of the development of these processes and data. 

The outputs, and many of the methods, of this research could be built into an online interface to 

1) help landowners locate programs based on land composition in their area; and 2) help 

conservation planners identify where resources have been changed on the landscape, resulting in 

more targeted action, for example by aggregating results to commonly used planning boundaries, 

such as hydrologic units or counties as in Figure 23. 

In addition to the proposed improvements in the models, future research objectives 

include: 1) creating year-to-year conversion matrices (as opposed to decadal) that provides a 
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more comprehensive temporal scale from which patterns in land use can be evaluated; 2) 

converting analysis to take advantage of parallel computing processing environments, where 

appropriate; 3) perform region group (clump) analysis of each category within the model outputs 

to improve the characterization of uncertainty; and, 4) development of landscape metrics for each 

category of land, providing an overall assessment of how the configuration of the landscape has 

changed over the past 10 years with increasing urbanization and landscape modifications. Data 

from reviewing data created through these models and in support of the decision-making process 

can be used in opportunistic determinations of candidate lands that are serviceable by identifying 

enrollment in existing programs and using those data to identify similar areas. Such programs 

may be successful in support of further simplifying the process of linking landowners, land 

managers, and conservation programs.  

The challenge in conservation delivery is using best available data and resources to help 

guide policy and land manager decisions, even when those data are not designed for, or intended 

for those uses. There is always further research and additional data that can be collected, but 

similar to discussions in Rudel et al. 2005 on forest transitions and government policy, 

policymakers often will not wait patiently for results or research to be completed before action 

must be taken, and in case of the monarch butterfly, time has been given for more thorough 

investigations; however, a deadline for policy and directives still exists that precludes creation of 

any new data, or data findings that could be incorporated in these models. As policy-driven 

research continues to grow we will continue to be faced with challenges of wisely integrating 

and manipulating existing data to solve emerging problems.  

These models, along with the contributions of many other collaborators, citizen scientists, 

state and federal agencies, private organizations, and non-profits; provide valuable information 
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for the U.S. Fish and Wildlife Service as part of a summary of ongoing activities supporting 

monarch and pollinator conservation throughout the United States, and ultimately as a decision 

support tool to aid in rendering a decision on the status of Danaus plexippus by June 30, 2019. 

 

 

Figure 23: Conversion of grassland to other categories (loss) between 2008 and 2017 as 
aggregated to HUC12 that intersect the study area and symbolized by number of acres of 
grasslands converted to other categories using natural breaks in the data. 
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Appendix 

1.  Data Layers Specif ics  Required for Models  

Cropland Data Layers 2008 – 2017 raster data sets. In December 2017, CDL for 2008 

and 2009 was re-released at 30 meter pixel resolution. In January 2018, CDL 2017 was released. 

Models were updated to include these data given the updated data availability. USDA National 

Agricultural Statistics Service. 2017. “Cropscape and Cropland Data Layer.” August 3, 2016. 

https://www.nass.usda.gov/Research_and_Science/Cropland/Release/. 

Cropland Data Layer National Confidence Layer 2008, 2009, 2016, and 2017 raster data 

sets. In December 2017, CDL for 2008 and 2009 was re-released at 30 meter pixel resolution, in 

addition to the re-release of CDL for these years National Confidence Layers were generated. 

Data were originally organized as single state layers; for the purposes of this research the 

National Confidence Layers for each year were mosaicked. USDA National Agricultural 

Statistics Service. 2017. “Cropscape and Cropland Data Layer.” August 3, 2016. 

https://www.nass.usda.gov/Research_and_Science/Cropland/Release/. 

Cropland Data Layer Equal to Frequency (Derived) 2017 raster data set. Calculated using 

Cropland Data Layers 2008 – 2017 using the Equal to Frequency tool in ArcGIS Pro 2.1.2 where 

2017 is the “Input Value Raster” and 2016 – 2008 are each members of the list of raster data sets 

that will be compared against 2017. 

Electric Power Transmission Lines (2014 – 2017), specifically using data for spatial 

presence of transmission lines throughout the study area. https://hifld-

geoplatform.opendata.arcgis.com/datasets/electric-power-transmission-lines. 

Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United 

States 2017 used with the National Value Added Look Up (Valu1) Table Database for the 

gSSURGO Database for the United States of America and the Territories, Commonwealths, and 
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Island Nations Served by the USDA-NRCS 2017. Specifically, accessing the 30m gSSURGO 

grid data set for the areas within the broad study area delineation and the following “ready-to-

map” crop productivity indices for the areas within the broad study area. Fields include: 

nccpi2co, nccpi2cs, and nccpi2sg. https://gdg.sc.egov.usda.gov/. 

National Land Cover Database 2011 (Homer et al. 2015) and National Land Cover 

Database 2006 (Fry et al. 2011). Select classes were used from the NLCD data, including 52 – 

Shrub/Scrub; 71 – Grassland/Herbaceous; and 81 – Pasture/Hay. 

https://www.mrlc.gov/finddata.php 

Protected Areas Database of the United States (PAD-US) 2016, specifically the extent 

designations within the ‘\PADUS4\textunderscore1Combined Feature Class’ that serves as the 

nation’s official inventory of protected areas in the standard PAD-US framework, including 

management, easements, fee, and marine protected areas. 

https://gapanalysis.usgs.gov/padus/data/download/. 

Roads National Geodatabase 2016, specifically using data for spatial presence of 

transportation data throughout study area. https://www.census.gov/geo/maps-data/data/tiger-

geodatabases.html. 
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2.  List  of  al l  Categories  in  CDL, original and enhanced 

Table 10: Table of all CDL original and enhanced versions of data. 

CDL Code Original CDL Category Enhanced CDL Category 
1 Corn **see corn NCCPI** 
2 Cotton Cotton 
3 Rice Rice 
4 Sorghum Sorghum 
5 Soybeans **see soybean NCCPI** 
6 Sunflower Sunflower 
10 Peanuts Peanuts 
11 Tobacco Tobacco 
12 Sweet Corn **see corn NCCPI** 
13 Pop or Orn Corn **see corn NCCPI** 
14 Mint Mint 
21 Barley **see small grains NCCPI** 
22 Durum Wheat **see small grains NCCPI** 
23 Spring Wheat **see small grains NCCPI** 
24 Winter Wheat **see small grains NCCPI** 
25 Other Small Grains **see small grains NCCPI** 
26 Dbl CropWinWht/Soybeans Dbl Crop WinWht/Soybeans 
27 Rye **see small grains NCCPI** 
28 Oats **see small grains NCCPI** 
29 Millet Millet 
30 Speltz Speltz 
31 Canola Canola 
32 Flaxseed Flaxseed 
33 Safflower Safflower 
34 Rape Seed Rape Seed 
35 Mustard Mustard 
36 Alfalfa Alfalfa 
37 Other Hay/Non Alfalfa Other Hay/Non Alfalfa 
38 Camelina Camelina 
39 Buckwheat Buckwheat 
41 Sugarbeets Sugarbeets 
42 Dry Beans Dry Beans 
43 Potatoes Potatoes 
44 Other Crops Other Crops 
45 Sugarcane Sugarcane 
46 Sweet Potatoes Sweet Potatoes 
47 Misc Vegs & Fruits Misc Vegs & Fruits 
48 Watermelons Watermelons 
49 Onions Onions 
50 Cucumbers Cucumbers 
51 Chick Peas Chick Peas 
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Table 10 (Cont.)   
Value Original CDL Category Enhanced CDL Category 

52 Lentils Lentils 
53 Peas Peas 
54 Tomatoes Tomatoes 
55 Caneberries Caneberries 
56 Hops Hops 
57 Herbs Herbs 
58 Clover/Wildflowers Clover/Wildflowers 
59 Sod/Grass Seed Sod/Grass Seed 
60 Switchgrass Switchgrass 
61 Fallow/Idle Cropland Fallow/Idle Cropland 
62 Pasture/Grass Pasture/Grass 
63 Forest Forest 
64 Shrubland Shrubland 
65 Barren Barren 
66 Cherries Cherries 
67 Peaches Peaches 
68 Apples Apples 
69 Grapes Grapes 
70 Christmas Trees Christmas Trees 
71 Other Tree Crops Other Tree Crops 
72 Citrus Citrus 
74 Pecans Pecans 
75 Almonds Almonds 
76 Walnuts Walnuts 
77 Pears Pears 
81 Clouds/No Data Clouds/No Data 
82 Developed Developed 
83 Water Water 
87 Wetlands Wetlands 
88 Nonag/Undefined Nonag/Undefined 
92 Aquaculture Aquaculture 
111 Open Water Open Water 
112 Perennial Ice/Snow  Perennial Ice/Snow  
120 

 
Linear Developed/Open Space 

121 Developed/Open Space Core Developed/Open Space 
122 Developed/Low Intensity Developed/Low Intensity 
123 Developed/Med Intensity Developed/Med Intensity 
124 Developed/High Intensity Developed/High Intensity 
125 

 
TIGER Primary and Secondary Roads 

126 
 

Local Neighborhood Road, Rural Road, City 
Street, Alley  

127 
 

Vehicular Trail (4WD), Walkway/Pedestrian 
Trail, Private Road for service vehicles 

128 
 

Bike Path or Trail, Bridle Path 
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Table 10 (Cont.)   
Value Original CDL Category Enhanced CDL Category 

131 Barren Barren 
141 Deciduous Forest Deciduous Forest 
142 Evergreen Forest Evergreen Forest 
143 Mixed Forest Mixed Forest 
150 

 
Protected Shrubland (CDL) 

151 
 

Protected Shrubland (NLCD-derived) 
152 Shrubland Shrubland 
153 

 
Shrubland (NLCD) 

154 
 

Corn (CDL) Low Productivity (NCPPI) 
155 

 
Corn (CDL) Marginal Productivity (NCPPI) 

156 
 

Corn (CDL) Moderate Productivity (NCPPI) 
157 

 
Corn (CDL) Moderate-to-High Productivity 
(NCPPI) 

158 
 

Corn (CDL) High Productivity (NCPPI) 
159 

 
Cotton (CDL) Low Productivity (NCPPI) 

160 
 

Cotton (CDL) Marginal Productivity (NCPPI) 
161 

 
Cotton (CDL) Moderate to High Productivity 
(NCPPI) 

162 
 

Small Grains (CDL) Low Productivity (NCPPI) 
163 

 
Small Grains (CDL) Marginal Productivity 
(NCPPI) 

164 
 

Small Grains (CDL) Moderate Productivity 
(NCPPI) 

165 
 

Small Grains (CDL) Moderate to High 
Productivity (NCPPI) 

166 
 

Small Grains (CDL) High Productivity (NCPPI) 
167 

 
Soybeans (CDL) Low Productivity (NCPPI) 

168 
 

Soybeans (CDL) Marginal Productivity (NCPPI) 
169 

 
Soybeans (CDL) Moderate Productivity (NCPPI) 

170 
 

Soybeans (CDL) Moderate-to-High Productivity 
(NCPPI) 

171 
 

Soybeans (CDL) High Productivity (NCPPI) 
175 

 
Protected Grassland/Pasture (CDL) 

176 Grassland/Pasture Grassland/Pasture (CDL) 
177 

 
Protected Pasture/Hay (NLCD-derived) 

178 
 

Pasture/Hay (NLCD-derived) 
179 

 
Protected Grassland (NLCD-derived) 

180 
 

Grassland (NLCD-derived) 
190 Woody Wetlands Woody Wetlands 
195 Herbaceous Wetlands Herbaceous Wetlands 
204 Pistachios Pistachios 
205 Triticale Triticale 
206 Carrots Carrots 
207 Asparagus Asparagus 
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Table 10 (Cont.)   
Value Original CDL Category Enhanced CDL Category 

208 Garlic Garlic 
209 Cantaloupes Cantaloupes 
210 Prunes Prunes 
211 Olives Olives 
212 Oranges Oranges 
213 Honeydew Melons Honeydew Melons 
214 Broccoli Broccoli 
215 

  

216 Peppers Peppers 
217 Pomegranates Pomegranates 
218 Nectarines Nectarines 
219 Greens Greens 
220 Plums Plums 
221 Strawberries Strawberries 
222 Squash Squash 
223 Apricots Apricots 
224 Vetch Vetch 
225 Dbl Crop WinWht/Corn Dbl Crop WinWht/Corn 
226 Dbl Crop Oats/Corn Dbl Crop Oats/Corn 
227 Lettuce Lettuce 
229 Pumpkins Pumpkins 
230 Dbl Crop Lettuce/Durum 

Wht 
Dbl Crop Lettuce/Durum Wht 

231 Dbl Crop 
Lettuce/Cantaloupe 

Dbl Crop Lettuce/Cantaloupe 

232 Dbl Crop Lettuce/Cotton Dbl Crop Lettuce/Cotton 
233 Dbl Crop Lettuce/Barley Dbl Crop Lettuce/Barley 
234 Dbl Crop Durum 

Wht/Sorghum 
Dbl Crop Durum Wht/Sorghum 

235 Dbl Crop Barley/Sorghum Dbl Crop Barley/Sorghum 
236 Dbl Crop WinWht/Sorghum Dbl Crop WinWht/Sorghum 
237 Dbl Crop Barley/Corn Dbl Crop Barley/Corn 
238 Dbl Crop WinWht/Cotton Dbl Crop WinWht/Cotton 
239 Dbl Crop Soybeans/Cotton Dbl Crop Soybeans/Cotton 
240 Dbl Crop Soybeans/Oats Dbl Crop Soybeans/Oats 
241 Dbl Crop Corn/Soybeans Dbl Crop Corn/Soybeans 
242 Blueberries Blueberries 
243 Cabbage Cabbage 
244 Cauliflower Cauliflower 
245 Celery Celery 
246 Radishes Radishes 
247 Turnips Turnips 
248 Eggplants Eggplants 
249 Gourds Gourds 



6 5  
 

Table 10 (Cont.)   
Value Original CDL Category Enhanced CDL Category 

250 Cranberries Cranberries 
254 Dbl Crop Barley/Soybeans Dbl Crop Barley/Soybeans 
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3.  Plots  by Category  

3.1 Model 1 – Z-Score Plot by Year, 2008 -2017 

 



6 7  
 

3.2 Model 2 – Z-Score Plot by Year, 2008 -2017 
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3.3 Model 3 – Z-Score Plot by Year, 2008 -2017 
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3.4 Model 1 – 2017 Frequency and Confidence Plots by Category 

 

 



7 0  
 

3.5 Model 2 – 2017 Frequency and Confidence Plots by Category 
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3.6 Model 3 – 2017 Frequency and Confidence Plots by Category 
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4.  R script  for Exploratory Data Analysi s  

## Clear Environments 
rm(list=ls()) 
 
## Load Required Libraries 
library(fBasics) 
#library(ggplot) ##ggplot should not be loaded until after all arc.open() and arc.select() commands 
library(tidyr) 
library(tidyverse) 
library(plyr) 
library(reshape2) 
library(readxl) 
library(scales) 
 
 
## unload packages when needed 
#detach("package:fBasics", unload=TRUE) 
#detach("package:ggplot", unload=TRUE) 
#detach("package:tidyr", unload=TRUE) 
#detach("package:tidyverse", unload=TRUE) 
#detach("package:plyr", unload=TRUE) 
#detach("package:reshape2", unload=TRUE) 
#detach("package:scales", unload=TRUE) 

To read tables directly from the file geodatabases, library(arcgisbinding) must be loaded. Afterwards, the 
arc.check_product() command must be entered for the ArcGIS license to be verified. 

## Getting going with R Bridge for ArcGIS 
library(arcgisbinding) 

*** Please call arc.check_product() to define a desktop license. 

arc.check_product() 

product: ArcGIS Pro ( 12.1.0.10257 ) 
license: Advanced  

Use arc.open() to select tables from file geodatabases. 

#arc.open the tables for noModelMods version 
input <- file.path(getwd(), 'model-tests.gdb', 'T2017_30m_cdls_BroadR') 
T2017_30m_cdls_BroadR.SA <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2016_30m_cdls_BroadR') 
T2016_30m_cdls_BroadR.SA <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2015_30m_cdls_BroadR') 
T2015_30m_cdls_BroadR.SA <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2014_30m_cdls_BroadR') 
T2014_30m_cdls_BroadR.SA <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2013_30m_cdls_BroadR') 
T2013_30m_cdls_BroadR.SA <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2012_30m_cdls_BroadR') 
T2012_30m_cdls_BroadR.SA <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2011_30m_cdls_BroadR') 
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T2011_30m_cdls_BroadR.SA <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2010_30m_cdls_BroadR') 
T2010_30m_cdls_BroadR.SA <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2009_30m_cdls_BroadR') 
T2009_30m_cdls_BroadR.SA <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2008_30m_cdls_BroadR') 
T2008_30m_cdls_BroadR.SA <- arc.open(input) 

#arc.open the table for the without NLCD versoin 
input <- file.path(getwd(), 'model-tests.gdb', 'T2008_30m_cdls_Broad_SummStats_I35_NoNLCD01') 
T2008_30m_cdls_Broad_SummStats_I35_withoutNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2009_30m_cdls_Broad_RC_SummStats_I35_NoNLCD01') 
T2009_30m_cdls_Broad_SummStats_I35_withoutNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2010_30m_cdls_Broad_SummStats_I35_NoNLCD01') 
T2010_30m_cdls_Broad_SummStats_I35_withoutNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2011_30m_cdls_Broad_SummStats_I35_NoNLCD01') 
T2011_30m_cdls_Broad_SummStats_I35_withoutNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2012_30m_cdls_Broad_SummStats_I35_NoNLCD01') 
T2012_30m_cdls_Broad_SummStats_I35_withoutNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2013_30m_cdls_Broad_SummStats_I35_NoNLCD01') 
T2013_30m_cdls_Broad_SummStats_I35_withoutNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2014_30m_cdls_Broad_SummStats_I35_NoNLCD01') 
T2014_30m_cdls_Broad_SummStats_I35_withoutNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2015_30m_cdls_Broad_SummStats_I35_NoNLCD01') 
T2015_30m_cdls_Broad_SummStats_I35_withoutNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2016_30m_cdls_Broad_SummStats_I35_NoNLCD01') 
T2016_30m_cdls_Broad_SummStats_I35_withoutNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2017_30m_cdls_Broad_SummStats_I35_NoNLCD01') 
T2017_30m_cdls_Broad_SummStats_I35_withoutNLCD <- arc.open(input) 

#arc.open the tables for the with NLCD version 
input <- file.path(getwd(), 'model-tests.gdb', 'T2008_30m_cdls_Broad_SummStats_I35_0201') 
T2008_30m_cdls_Broad_SummStats_withNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2009_30m_cdls_Broad_RC_SummStats_I35_0201') 
T2009_30m_cdls_Broad_SummStats_withNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2010_30m_cdls_Broad_SummStats_I35_0201') 
T2010_30m_cdls_Broad_SummStats_withNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2011_30m_cdls_Broad_SummStats_I35_0201') 
T2011_30m_cdls_Broad_SummStats_withNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2012_30m_cdls_Broad_SummStats_I35_0201') 
T2012_30m_cdls_Broad_SummStats_withNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2013_30m_cdls_Broad_SummStats_I35_0201') 
T2013_30m_cdls_Broad_SummStats_withNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2014_30m_cdls_Broad_SummStats_I35_0201') 
T2014_30m_cdls_Broad_SummStats_withNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2015_30m_cdls_Broad_SummStats_I35_0201') 
T2015_30m_cdls_Broad_SummStats_withNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2016_30m_cdls_Broad_SummStats_I35_0201') 
T2016_30m_cdls_Broad_SummStats_withNLCD <- arc.open(input) 
input <- file.path(getwd(), 'model-tests.gdb', 'T2017_30m_cdls_Broad_SummStats_I35_0201') 
T2017_30m_cdls_Broad_SummStats_withNLCD <- arc.open(input) 

Use arc.select() to specifying the fields wanted from each table. 
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#tables with no Model Modifications 
T2017_30m_cdls.SA <- arc.select(T2017_30m_cdls_BroadR.SA, c('Value', 'Count', 'Class_Name')) 
T2016_30m_cdls.SA <- arc.select(T2016_30m_cdls_BroadR.SA, c('Value', 'Count', 'Class_Name')) 
T2015_30m_cdls.SA <- arc.select(T2015_30m_cdls_BroadR.SA, c('Value', 'Count', 'Class_Name')) 
T2014_30m_cdls.SA <- arc.select(T2014_30m_cdls_BroadR.SA, c('Value', 'Count', 'Class_Names')) 
T2013_30m_cdls.SA <- arc.select(T2013_30m_cdls_BroadR.SA, c('Value', 'Count', 'Class_Names')) 
T2012_30m_cdls.SA <- arc.select(T2012_30m_cdls_BroadR.SA, c('Value', 'Count')) 
T2011_30m_cdls.SA <- arc.select(T2011_30m_cdls_BroadR.SA, c('Value', 'Count')) 
T2010_30m_cdls.SA <- arc.select(T2010_30m_cdls_BroadR.SA, c('Value', 'Count')) 
T2009_30m_cdls.SA <- arc.select(T2009_30m_cdls_BroadR.SA, c('Value', 'Count')) 
T2008_30m_cdls.SA <- arc.select(T2008_30m_cdls_BroadR.SA, c('Value', 'Count', 'Class_Name')) 

#tables without NLCD 
T2017_withoutNLCD_model.SA <- arc.select(T2017_30m_cdls_Broad_SummStats_I35_withoutNLCD, c('N
ew_Value','New_Category','SUM_Count')) 
T2016_withoutNLCD_model.SA <- arc.select(T2016_30m_cdls_Broad_SummStats_I35_withoutNLCD, c('N
ew_Value','New_Category','SUM_Count')) 
T2015_withoutNLCD_model.SA <- arc.select(T2015_30m_cdls_Broad_SummStats_I35_withoutNLCD, c('N
ew_Value','New_Category','SUM_Count')) 
T2014_withoutNLCD_model.SA <- arc.select(T2014_30m_cdls_Broad_SummStats_I35_withoutNLCD, c('N
ew_Value','New_Category','SUM_Count')) 
T2013_withoutNLCD_model.SA <- arc.select(T2013_30m_cdls_Broad_SummStats_I35_withoutNLCD, c('N
ew_Value','New_Category','SUM_Count')) 
T2012_withoutNLCD_model.SA <- arc.select(T2012_30m_cdls_Broad_SummStats_I35_withoutNLCD, c('N
ew_Value','New_Category','SUM_Count')) 
T2011_withoutNLCD_model.SA <- arc.select(T2011_30m_cdls_Broad_SummStats_I35_withoutNLCD, c('N
ew_Value','New_Category','SUM_Count')) 
T2010_withoutNLCD_model.SA <- arc.select(T2010_30m_cdls_Broad_SummStats_I35_withoutNLCD, c('N
ew_Value','New_Category','SUM_Count')) 
T2009_withoutNLCD_model.SA <- arc.select(T2009_30m_cdls_Broad_SummStats_I35_withoutNLCD, c('N
ew_Value','New_Category','SUM_Count')) 
T2008_withoutNLCD_model.SA <- arc.select(T2008_30m_cdls_Broad_SummStats_I35_withoutNLCD, c('N
ew_Value','New_Category','SUM_Count')) 

#tables with NLCD 
T2017_withNLCD_model.SA <- arc.select(T2017_30m_cdls_Broad_SummStats_withNLCD, c('New_Value','
New_Category','SUM_Count')) 
T2016_withNLCD_model.SA <- arc.select(T2016_30m_cdls_Broad_SummStats_withNLCD, c('New_Value','
New_Category','SUM_Count')) 
T2015_withNLCD_model.SA <- arc.select(T2015_30m_cdls_Broad_SummStats_withNLCD, c('New_Value','
New_Category','SUM_Count')) 
T2014_withNLCD_model.SA <- arc.select(T2014_30m_cdls_Broad_SummStats_withNLCD, c('New_Value','
New_Category','SUM_Count')) 
T2013_withNLCD_model.SA <- arc.select(T2013_30m_cdls_Broad_SummStats_withNLCD, c('New_Value','
New_Category','SUM_Count')) 
T2012_withNLCD_model.SA <- arc.select(T2012_30m_cdls_Broad_SummStats_withNLCD, c('New_Value','
New_Category','SUM_Count')) 
T2011_withNLCD_model.SA <- arc.select(T2011_30m_cdls_Broad_SummStats_withNLCD, c('New_Value','
New_Category','SUM_Count')) 
T2010_withNLCD_model.SA <- arc.select(T2010_30m_cdls_Broad_SummStats_withNLCD, c('New_Value','
New_Category','SUM_Count')) 
T2009_withNLCD_model.SA <- arc.select(T2009_30m_cdls_Broad_SummStats_withNLCD, c('New_Value','
New_Category','SUM_Count')) 
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T2008_withNLCD_model.SA <- arc.select(T2008_30m_cdls_Broad_SummStats_withNLCD, c('New_Value','
New_Category','SUM_Count')) 

For each model, join the tables so that all years are in the same table First, import the base tables that will 
support the joins 

oriValues <- read_excel("J:\\Box Sync\\CAST_SUS_Monarch\\data\\LookUpTable-Development.xlsx", range 
= "OriValues!A1:B256" , col_names = TRUE) 
 
newValues <- read_excel("J:\\Box Sync\\CAST_SUS_Monarch\\data\\LookUpTable-Development.xlsx", rang
e = "NewValues!A1:B256" , col_names = TRUE) 

Model 1 Joins 

#tables with no Model Modifications 
j.1 <- (full_join(oriValues, T2008_30m_cdls.SA, by = "Value")) 
j.2 <- (full_join(j.1, T2009_30m_cdls.SA, by = "Value")) 
j.3 <- (full_join(j.2, T2010_30m_cdls.SA, by = "Value")) 
j.4 <- (full_join(j.3, T2011_30m_cdls.SA, by = "Value")) 
j.5 <- (full_join(j.4, T2012_30m_cdls.SA, by = "Value")) 
j.6 <- (full_join(j.5, T2013_30m_cdls.SA, by = "Value")) 
j.7 <- (full_join(j.6, T2014_30m_cdls.SA, by = "Value")) 
j.8 <- (full_join(j.7, T2015_30m_cdls.SA, by = "Value")) 
j.9 <- (full_join(j.8, T2016_30m_cdls.SA, by = "Value")) 
CompareAddFinalnoModelMods.SA <- (full_join(j.9, T2017_30m_cdls.SA, by = "Value")) 

Model 1 field names have become redundant and difficult to diffrentiate, so they are renamed. 

#rename the fields, model 1 
names(CompareAddFinalnoModelMods.SA) <- c("Value","Category","Count.2008","Category.2008","Count.
2009","Count.2010","Count.2011","Count.2012","Count.2013","Category.2013","Count.2014","Category.201
4","Count.2015","Category.2015","Count.2016","Category.2016", "Count.2017", "Category.2017") 

Model 2 Joins 

#tables without NLCD 
j.1 <- (full_join(newValues, T2008_withoutNLCD_model.SA, by = "New_Value")) 
j.2 <- (full_join(j.1, T2009_withoutNLCD_model.SA, by = "New_Value")) 
j.3 <- (full_join(j.2, T2010_withoutNLCD_model.SA, by = "New_Value")) 
j.4 <- (full_join(j.3, T2011_withoutNLCD_model.SA, by = "New_Value")) 
j.5 <- (full_join(j.4, T2012_withoutNLCD_model.SA, by = "New_Value")) 
j.6 <- (full_join(j.5, T2013_withoutNLCD_model.SA, by = "New_Value")) 
j.7 <- (full_join(j.6, T2014_withoutNLCD_model.SA, by = "New_Value")) 
j.8 <- (full_join(j.7, T2015_withoutNLCD_model.SA, by = "New_Value")) 
j.9 <- (full_join(j.8, T2016_withoutNLCD_model.SA, by = "New_Value")) 
CompareAddFinalwithoutNLCD.SA <- (full_join(j.9, T2017_withoutNLCD_model.SA, by = "New_Value")) 

Model 2 field names have become redundant and difficult to differentiate, so they are renamed. 

#rename the fields, model 2 
names(CompareAddFinalwithoutNLCD.SA) <- c("New_Value","New_Category","Category.2008","Count.20
08","Category.2009","Count.2009","Category.2010","Count.2010","Category.2011","Count.2011","Category.
2012","Count.2012","Category.2013","Count.2013","Category.2014","Count.2014","Category.2015","Count.2
015","Category.2016","Count.2016", "Category.2017", "Count.2017") 
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Model 3 Joins 

#tables with NLCD 
j.1 <- (full_join(newValues, T2008_withNLCD_model.SA, by = "New_Value")) 
j.2 <- (full_join(j.1, T2009_withNLCD_model.SA, by = "New_Value")) 
j.3 <- (full_join(j.2, T2010_withNLCD_model.SA, by = "New_Value")) 
j.4 <- (full_join(j.3, T2011_withNLCD_model.SA, by = "New_Value")) 
j.5 <- (full_join(j.4, T2012_withNLCD_model.SA, by = "New_Value")) 
j.6 <- (full_join(j.5, T2013_withNLCD_model.SA, by = "New_Value")) 
j.7 <- (full_join(j.6, T2014_withNLCD_model.SA, by = "New_Value")) 
j.8 <- (full_join(j.7, T2015_withNLCD_model.SA, by = "New_Value")) 
j.9 <- (full_join(j.8, T2016_withNLCD_model.SA, by = "New_Value")) 
CompareAddFinalwithNLCD.SA <- (full_join(j.9, T2017_withNLCD_model.SA, by = "New_Value")) 

Model 3 field names have become redundant and difficult to differentiate, so they are renamed. 

#rename the fields, model 3 
names(CompareAddFinalwithNLCD.SA) <- c("New_Value","New_Category","Category.2008","Count.2008"
,"Category.2009","Count.2009","Category.2010","Count.2010","Category.2011","Count.2011","Category.201
2","Count.2012","Category.2013","Count.2013","Category.2014","Count.2014","Category.2015","Count.2015
","Category.2016","Count.2016", "Category.2017", "Count.2017") 

Remove NAs from the datasets to avoid complications in processes down the line. 

#eliminate NAs from dataset 
Compare2008thru2017noModelMods.SA.OMIT <- na.omit(CompareAddFinalnoModelMods.SA) 
Compare2008thru2017withNLCD.SA.OMIT <- na.omit(CompareAddFinalwithNLCD.SA) 
Compare2008thru2017withoutNLCD.SA.OMIT <- na.omit(CompareAddFinalwithoutNLCD.SA) 

Calculate acres in a new column for each year 

#model 1 
Compare2008thru2017noModelMods.SA.OMIT$Acres.2008 <- ((Compare2008thru2017noModelMods.SA.O
MIT$Count.2008*0.222394)) 
Compare2008thru2017noModelMods.SA.OMIT$Acres.2009 <- ((Compare2008thru2017noModelMods.SA.O
MIT$Count.2009*0.222394)) 
Compare2008thru2017noModelMods.SA.OMIT$Acres.2010 <- ((Compare2008thru2017noModelMods.SA.O
MIT$Count.2010*0.222394)) 
Compare2008thru2017noModelMods.SA.OMIT$Acres.2011 <- ((Compare2008thru2017noModelMods.SA.O
MIT$Count.2011*0.222394)) 
Compare2008thru2017noModelMods.SA.OMIT$Acres.2012 <- ((Compare2008thru2017noModelMods.SA.O
MIT$Count.2012*0.222394)) 
Compare2008thru2017noModelMods.SA.OMIT$Acres.2013 <- ((Compare2008thru2017noModelMods.SA.O
MIT$Count.2013*0.222394)) 
Compare2008thru2017noModelMods.SA.OMIT$Acres.2014 <- ((Compare2008thru2017noModelMods.SA.O
MIT$Count.2014*0.222394)) 
Compare2008thru2017noModelMods.SA.OMIT$Acres.2015 <- ((Compare2008thru2017noModelMods.SA.O
MIT$Count.2015*0.222394)) 
Compare2008thru2017noModelMods.SA.OMIT$Acres.2016 <- ((Compare2008thru2017noModelMods.SA.O
MIT$Count.2016*0.222394)) 
Compare2008thru2017noModelMods.SA.OMIT$Acres.2017 <- ((Compare2008thru2017noModelMods.SA.O
MIT$Count.2017*0.222394)) 
 
#model 2 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres.2008 <- ((Compare2008thru2017withoutNLCD.SA.O
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MIT$Count.2008*0.222394)) 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres.2009 <- ((Compare2008thru2017withoutNLCD.SA.O
MIT$Count.2009*0.222394)) 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres.2010 <- ((Compare2008thru2017withoutNLCD.SA.O
MIT$Count.2010*0.222394)) 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres.2011 <- ((Compare2008thru2017withoutNLCD.SA.O
MIT$Count.2011*0.222394)) 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres.2012 <- ((Compare2008thru2017withoutNLCD.SA.O
MIT$Count.2012*0.222394)) 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres.2013 <- ((Compare2008thru2017withoutNLCD.SA.O
MIT$Count.2013*0.222394)) 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres.2014 <- ((Compare2008thru2017withoutNLCD.SA.O
MIT$Count.2014*0.222394)) 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres.2015 <- ((Compare2008thru2017withoutNLCD.SA.O
MIT$Count.2015*0.222394)) 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres.2016 <- ((Compare2008thru2017withoutNLCD.SA.O
MIT$Count.2016*0.222394)) 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres.2017 <- ((Compare2008thru2017withoutNLCD.SA.O
MIT$Count.2017*0.222394)) 
 
#model 3 
Compare2008thru2017withNLCD.SA.OMIT$Acres.2008 <- ((Compare2008thru2017withNLCD.SA.OMIT$C
ount.2008*0.222394)) 
Compare2008thru2017withNLCD.SA.OMIT$Acres.2009 <- ((Compare2008thru2017withNLCD.SA.OMIT$C
ount.2009*0.222394)) 
Compare2008thru2017withNLCD.SA.OMIT$Acres.2010 <- ((Compare2008thru2017withNLCD.SA.OMIT$C
ount.2010*0.222394)) 
Compare2008thru2017withNLCD.SA.OMIT$Acres.2011 <- ((Compare2008thru2017withNLCD.SA.OMIT$C
ount.2011*0.222394)) 
Compare2008thru2017withNLCD.SA.OMIT$Acres.2012 <- ((Compare2008thru2017withNLCD.SA.OMIT$C
ount.2012*0.222394)) 
Compare2008thru2017withNLCD.SA.OMIT$Acres.2013 <- ((Compare2008thru2017withNLCD.SA.OMIT$C
ount.2013*0.222394)) 
Compare2008thru2017withNLCD.SA.OMIT$Acres.2014 <- ((Compare2008thru2017withNLCD.SA.OMIT$C
ount.2014*0.222394)) 
Compare2008thru2017withNLCD.SA.OMIT$Acres.2015 <- ((Compare2008thru2017withNLCD.SA.OMIT$C
ount.2015*0.222394)) 
Compare2008thru2017withNLCD.SA.OMIT$Acres.2016 <- ((Compare2008thru2017withNLCD.SA.OMIT$C
ount.2016*0.222394)) 
Compare2008thru2017withNLCD.SA.OMIT$Acres.2017 <- ((Compare2008thru2017withNLCD.SA.OMIT$C
ount.2017*0.222394)) 

Calculate standard deviation, mean, and coefficient of variation (cv) 

#model 1 
Compare2008thru2017noModelMods.SA.OMIT$Acres_SD <- rowStats(subset(Compare2008thru2017noMod
elMods.SA.OMIT, select = c(Acres.2008, Acres.2009 ,Acres.2010, Acres.2011, Acres.2012, Acres.2013, Acre
s.2014, Acres.2015, Acres.2016, Acres.2017)), sd, na.rm = TRUE) 
 
Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean <- rowStats(subset(Compare2008thru2017noM
odelMods.SA.OMIT, select = c(Acres.2008, Acres.2009, Acres.2010, Acres.2011, Acres.2012, Acres.2013, A
cres.2014, Acres.2015, Acres.2016, Acres.2017)), mean, na.rm = TRUE) 
 
Compare2008thru2017noModelMods.SA.OMIT$Acres_CV <- ((Compare2008thru2017noModelMods.SA.O
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MIT$Acres_SD/Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean)) 
 
#model 2 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres_SD <- rowStats(subset(Compare2008thru2017without
NLCD.SA.OMIT, select = c(Acres.2008, Acres.2009 ,Acres.2010, Acres.2011, Acres.2012, Acres.2013, Acres
.2014, Acres.2015, Acres.2016, Acres.2017)), sd, na.rm = TRUE) 
 
Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean <- rowStats(subset(Compare2008thru2017with
outNLCD.SA.OMIT, select = c(Acres.2008, Acres.2009, Acres.2010, Acres.2011, Acres.2012, Acres.2013, A
cres.2014, Acres.2015, Acres.2016, Acres.2017)), mean, na.rm = TRUE) 
 
Compare2008thru2017withoutNLCD.SA.OMIT$CV <- ((Compare2008thru2017withoutNLCD.SA.OMIT$Ac
res_SD/Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean)) 
 
#model 3 
Compare2008thru2017withNLCD.SA.OMIT$Acres_SD <- rowStats(subset(Compare2008thru2017withNLCD
.SA.OMIT, select = c(Acres.2008, Acres.2009 ,Acres.2010, Acres.2011, Acres.2012, Acres.2013, Acres.2014, 
Acres.2015, Acres.2016, Acres.2017)), sd, na.rm = TRUE) 
 
Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean <- rowStats(subset(Compare2008thru2017withNL
CD.SA.OMIT, select = c(Acres.2008, Acres.2009 ,Acres.2010, Acres.2011, Acres.2012, Acres.2013, Acres.20
14, Acres.2015, Acres.2016, Acres.2017)), mean, na.rm = TRUE) 
 
Compare2008thru2017withNLCD.SA.OMIT$CV <- ((Compare2008thru2017withNLCD.SA.OMIT$Acres_S
D/Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean)) 

Calculate z-score for each year 

#model 1 
Compare2008thru2017noModelMods.SA.OMIT$Zscore.2008 <- abs((Compare2008thru2017noModelMods.S
A.OMIT$Acres.2008 - Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean) / Compare2008thru201
7noModelMods.SA.OMIT$Acres_SD) 
Compare2008thru2017noModelMods.SA.OMIT$Zscore.2009 <- abs((Compare2008thru2017noModelMods.S
A.OMIT$Acres.2009 - Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean) / Compare2008thru201
7noModelMods.SA.OMIT$Acres_SD) 
Compare2008thru2017noModelMods.SA.OMIT$Zscore.2010 <- abs((Compare2008thru2017noModelMods.S
A.OMIT$Acres.2010 - Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean) / Compare2008thru201
7noModelMods.SA.OMIT$Acres_SD) 
Compare2008thru2017noModelMods.SA.OMIT$Zscore.2011 <- abs((Compare2008thru2017noModelMods.S
A.OMIT$Acres.2011 - Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean) / Compare2008thru201
7noModelMods.SA.OMIT$Acres_SD) 
Compare2008thru2017noModelMods.SA.OMIT$Zscore.2012 <- abs((Compare2008thru2017noModelMods.S
A.OMIT$Acres.2012 - Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean) / Compare2008thru201
7noModelMods.SA.OMIT$Acres_SD) 
Compare2008thru2017noModelMods.SA.OMIT$Zscore.2013 <- abs((Compare2008thru2017noModelMods.S
A.OMIT$Acres.2013 - Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean) / Compare2008thru201
7noModelMods.SA.OMIT$Acres_SD) 
Compare2008thru2017noModelMods.SA.OMIT$Zscore.2014 <- abs((Compare2008thru2017noModelMods.S
A.OMIT$Acres.2014 - Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean) / Compare2008thru201
7noModelMods.SA.OMIT$Acres_SD) 
Compare2008thru2017noModelMods.SA.OMIT$Zscore.2015 <- abs((Compare2008thru2017noModelMods.S
A.OMIT$Acres.2015 - Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean) / Compare2008thru201
7noModelMods.SA.OMIT$Acres_SD) 
Compare2008thru2017noModelMods.SA.OMIT$Zscore.2016 <- abs((Compare2008thru2017noModelMods.S
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A.OMIT$Acres.2016 - Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean) / Compare2008thru201
7noModelMods.SA.OMIT$Acres_SD) 
Compare2008thru2017noModelMods.SA.OMIT$Zscore.2017 <- abs((Compare2008thru2017noModelMods.S
A.OMIT$Acres.2017 - Compare2008thru2017noModelMods.SA.OMIT$Acres_Mean) / Compare2008thru201
7noModelMods.SA.OMIT$Acres_SD) 
 
#model 2 
Compare2008thru2017withoutNLCD.SA.OMIT$Zscore.2008 <- abs((Compare2008thru2017withoutNLCD.S
A.OMIT$Acres.2008 - Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean) / Compare2008thru201
7withoutNLCD.SA.OMIT$Acres_SD) 
Compare2008thru2017withoutNLCD.SA.OMIT$Zscore.2009 <- abs((Compare2008thru2017withoutNLCD.S
A.OMIT$Acres.2009 - Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean) / Compare2008thru201
7withoutNLCD.SA.OMIT$Acres_SD) 
Compare2008thru2017withoutNLCD.SA.OMIT$Zscore.2010 <- abs((Compare2008thru2017withoutNLCD.S
A.OMIT$Acres.2010 - Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean) / Compare2008thru201
7withoutNLCD.SA.OMIT$Acres_SD) 
Compare2008thru2017withoutNLCD.SA.OMIT$Zscore.2011 <- abs((Compare2008thru2017withoutNLCD.S
A.OMIT$Acres.2011 - Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean) / Compare2008thru201
7withoutNLCD.SA.OMIT$Acres_SD) 
Compare2008thru2017withoutNLCD.SA.OMIT$Zscore.2012 <- abs((Compare2008thru2017withoutNLCD.S
A.OMIT$Acres.2012 - Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean) / Compare2008thru201
7withoutNLCD.SA.OMIT$Acres_SD) 
Compare2008thru2017withoutNLCD.SA.OMIT$Zscore.2013 <- abs((Compare2008thru2017withoutNLCD.S
A.OMIT$Acres.2013 - Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean) / Compare2008thru201
7withoutNLCD.SA.OMIT$Acres_SD) 
Compare2008thru2017withoutNLCD.SA.OMIT$Zscore.2014 <- abs((Compare2008thru2017withoutNLCD.S
A.OMIT$Acres.2014 - Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean) / Compare2008thru201
7withoutNLCD.SA.OMIT$Acres_SD) 
Compare2008thru2017withoutNLCD.SA.OMIT$Zscore.2015 <- abs((Compare2008thru2017withoutNLCD.S
A.OMIT$Acres.2015 - Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean) / Compare2008thru201
7withoutNLCD.SA.OMIT$Acres_SD) 
Compare2008thru2017withoutNLCD.SA.OMIT$Zscore.2016 <- abs((Compare2008thru2017withoutNLCD.S
A.OMIT$Acres.2016 - Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean) / Compare2008thru201
7withoutNLCD.SA.OMIT$Acres_SD) 
Compare2008thru2017withoutNLCD.SA.OMIT$Zscore.2017 <- abs((Compare2008thru2017withoutNLCD.S
A.OMIT$Acres.2017 - Compare2008thru2017withoutNLCD.SA.OMIT$Acres_Mean) / Compare2008thru201
7withoutNLCD.SA.OMIT$Acres_SD) 
 
#model 3 
Compare2008thru2017withNLCD.SA.OMIT$Zscore.2008 <- abs((Compare2008thru2017withNLCD.SA.OMI
T$Acres.2008 - Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean) / Compare2008thru2017withNLC
D.SA.OMIT$Acres_SD) 
Compare2008thru2017withNLCD.SA.OMIT$Zscore.2009 <- abs((Compare2008thru2017withNLCD.SA.OMI
T$Acres.2009 - Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean) / Compare2008thru2017withNLC
D.SA.OMIT$Acres_SD) 
Compare2008thru2017withNLCD.SA.OMIT$Zscore.2010 <- abs((Compare2008thru2017withNLCD.SA.OMI
T$Acres.2010 - Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean) / Compare2008thru2017withNLC
D.SA.OMIT$Acres_SD) 
Compare2008thru2017withNLCD.SA.OMIT$Zscore.2011 <- abs((Compare2008thru2017withNLCD.SA.OMI
T$Acres.2011 - Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean) / Compare2008thru2017withNLC
D.SA.OMIT$Acres_SD) 
Compare2008thru2017withNLCD.SA.OMIT$Zscore.2012 <- abs((Compare2008thru2017withNLCD.SA.OMI
T$Acres.2012 - Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean) / Compare2008thru2017withNLC
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D.SA.OMIT$Acres_SD) 
Compare2008thru2017withNLCD.SA.OMIT$Zscore.2013 <- abs((Compare2008thru2017withNLCD.SA.OMI
T$Acres.2013 - Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean) / Compare2008thru2017withNLC
D.SA.OMIT$Acres_SD) 
Compare2008thru2017withNLCD.SA.OMIT$Zscore.2014 <- abs((Compare2008thru2017withNLCD.SA.OMI
T$Acres.2014 - Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean) / Compare2008thru2017withNLC
D.SA.OMIT$Acres_SD) 
Compare2008thru2017withNLCD.SA.OMIT$Zscore.2015 <- abs((Compare2008thru2017withNLCD.SA.OMI
T$Acres.2015 - Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean) / Compare2008thru2017withNLC
D.SA.OMIT$Acres_SD) 
Compare2008thru2017withNLCD.SA.OMIT$Zscore.2016 <- abs((Compare2008thru2017withNLCD.SA.OMI
T$Acres.2016 - Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean) / Compare2008thru2017withNLC
D.SA.OMIT$Acres_SD) 
Compare2008thru2017withNLCD.SA.OMIT$Zscore.2017 <- abs((Compare2008thru2017withNLCD.SA.OMI
T$Acres.2017 - Compare2008thru2017withNLCD.SA.OMIT$Acres_Mean) / Compare2008thru2017withNLC
D.SA.OMIT$Acres_SD) 

Plot mean of acres against SD of acres using CV as sizing of point; highlighting greatest standard deviation 

#First, load the ggplot library 
 
library(ggplot2) ##ggplot should not be loaded until after all arc.open() and arc.select() commands 
 
#model 1 
ggplot(Compare2008thru2017noModelMods.SA.OMIT, aes(Acres_Mean/100000, Acres_SD/100000)) + geo
m_point(aes(size = Compare2008thru2017noModelMods.SA.OMIT$Acres_CV, colour = Compare2008thru20
17noModelMods.SA.OMIT$Acres_SD > 2500000)) + scale_colour_manual(values = c("black", "red")) + labs
(title = "CDL 2008 - 2017", x = "Mean (Acres) in Millions", y = "Standard Deviation (Acres) in Millions", cap
tion = "") + scale_size_continuous(name = "Coefficient of Variation (StDev/Mean)") + guides(colour=FALSE
) + scale_y_continuous(labels = unit_format()) + scale_x_continuous(labels = unit_format()) 

 

model1.select <- subset(Compare2008thru2017noModelMods.SA.OMIT, Acres_SD > 2500000) 
model1.select 

# A tibble: 4 x 41 
   Value Category        Count.2008 Category.2008    Count.2009 Count.2010 
   <dbl> <chr>                <dbl> <chr>                 <dbl>      <dbl> 
1   1.00 Corn             333416160 Corn              339183032  347543788 
2   5.00 Soybeans         297295629 Soybeans          313591248  316805484 
3 152    Shrubland        350468484 Shrubland         349325375  370428107 
4 176    Grassland/Past~ 1050501987 Grassland/Pastu~ 1052155338 1077026486 
# ... with 35 more variables: Count.2011 <dbl>, Count.2012 <dbl>, 
#   Count.2013 <dbl>, Category.2013 <chr>, Count.2014 <dbl>, 
#   Category.2014 <chr>, Count.2015 <dbl>, Category.2015 <chr>, 
#   Count.2016 <dbl>, Category.2016 <chr>, Count.2017 <dbl>, 
#   Category.2017 <chr>, Acres.2008 <dbl>, Acres.2009 <dbl>, 
#   Acres.2010 <dbl>, Acres.2011 <dbl>, Acres.2012 <dbl>, 
#   Acres.2013 <dbl>, Acres.2014 <dbl>, Acres.2015 <dbl>, 
#   Acres.2016 <dbl>, Acres.2017 <dbl>, Acres_SD <dbl>, Acres_Mean <dbl>, 
#   Acres_CV <dbl>, Zscore.2008 <dbl>, Zscore.2009 <dbl>, 
#   Zscore.2010 <dbl>, Zscore.2011 <dbl>, Zscore.2012 <dbl>, 
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#   Zscore.2013 <dbl>, Zscore.2014 <dbl>, Zscore.2015 <dbl>, 
#   Zscore.2016 <dbl>, Zscore.2017 <dbl> 

#model 2 
ggplot(Compare2008thru2017withoutNLCD.SA.OMIT, aes(Acres_Mean/1000000, Acres_SD/1000000)) + ge
om_point(aes(size = Compare2008thru2017withoutNLCD.SA.OMIT$CV, colour = Compare2008thru2017wit
houtNLCD.SA.OMIT$Acres_SD > 2500000)) + scale_colour_manual(values = c("black", "red")) + labs(title 
= "CDL 2008 - 2017 without NLCD", x = "Mean (Acres) in Millions", y = "Standard Deviation (Acres) in Mill
ions", caption = "") + scale_size_continuous(name = "Coefficient of Variation (StDev/Mean)") + guides(colou
r=FALSE) + scale_y_continuous(labels = unit_format()) + scale_x_continuous(labels = unit_format()) 

 

model2.select <- subset(Compare2008thru2017withoutNLCD.SA.OMIT, Acres_SD > 2500000) 
model2.select 

# A tibble: 3 x 45 
  New_Value New_Category Category.2008 Count.2008 Category.2009 Count.2009 
      <dbl> <chr>        <chr>              <dbl> <chr>              <dbl> 
1       121 Core Develo~ Core Develop~  116096425 Core Develop~  115539834 
2       170 Soybeans (C~ Soybeans (CD~  137981297 Soybeans (CD~  147888539 
3       176 Grassland/P~ Grassland/Pa~ 1218216465 Grassland/Pa~ 1219131791 
# ... with 39 more variables: Category.2010 <chr>, Count.2010 <dbl>, 
#   Category.2011 <chr>, Count.2011 <dbl>, Category.2012 <chr>, 
#   Count.2012 <dbl>, Category.2013 <chr>, Count.2013 <dbl>, 
#   Category.2014 <chr>, Count.2014 <dbl>, Category.2015 <chr>, 
#   Count.2015 <dbl>, Category.2016 <chr>, Count.2016 <dbl>, 
#   Category.2017 <chr>, Count.2017 <dbl>, Acres.2008 <dbl>, 
#   Acres.2009 <dbl>, Acres.2010 <dbl>, Acres.2011 <dbl>, 
#   Acres.2012 <dbl>, Acres.2013 <dbl>, Acres.2014 <dbl>, 
#   Acres.2015 <dbl>, Acres.2016 <dbl>, Acres.2017 <dbl>, Acres_SD <dbl>, 
#   Acres_Mean <dbl>, CV <dbl>, Zscore.2008 <dbl>, Zscore.2009 <dbl>, 
#   Zscore.2010 <dbl>, Zscore.2011 <dbl>, Zscore.2012 <dbl>, 
#   Zscore.2013 <dbl>, Zscore.2014 <dbl>, Zscore.2015 <dbl>, 
#   Zscore.2016 <dbl>, Zscore.2017 <dbl> 

#model 3 
ggplot(Compare2008thru2017withNLCD.SA.OMIT, aes(Acres_Mean/1000000, Acres_SD/1000000)) + geom
_point(aes(size = Compare2008thru2017withNLCD.SA.OMIT$CV, colour = Compare2008thru2017withNLC
D.SA.OMIT$Acres_SD > 2500000)) + scale_colour_manual(values = c("black", "red")) + labs(title = "CDL 2
008 - 2017 with NLCD", x = "Mean (Acres) in Millions", y = "Standard Deviation (Acres) in Millions", captio
n = "") + scale_size_continuous(name = "Coefficient of Variation (StDev/Mean)") + guides(colour=FALSE) + 
scale_y_continuous(labels = unit_format()) + scale_x_continuous(labels = unit_format()) 

 

model3.select <- subset(Compare2008thru2017withNLCD.SA.OMIT, Acres_SD > 2500000) 
model3.select 

# A tibble: 3 x 45 
  New_Value New_Category Category.2008 Count.2008 Category.2009 Count.2009 
      <dbl> <chr>        <chr>              <dbl> <chr>              <dbl> 
1       141 Deciduous F~ Deciduous Fo~  564204207 Deciduous Fo~  563656789 
2       152 Shrubland    Shrubland      277335666 Shrubland      275285166 
3       176 Grassland/P~ Grassland/Pa~  233565371 Grassland/Pa~  236029882 
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# ... with 39 more variables: Category.2010 <chr>, Count.2010 <dbl>, 
#   Category.2011 <chr>, Count.2011 <dbl>, Category.2012 <chr>, 
#   Count.2012 <dbl>, Category.2013 <chr>, Count.2013 <dbl>, 
#   Category.2014 <chr>, Count.2014 <dbl>, Category.2015 <chr>, 
#   Count.2015 <dbl>, Category.2016 <chr>, Count.2016 <dbl>, 
#   Category.2017 <chr>, Count.2017 <dbl>, Acres.2008 <dbl>, 
#   Acres.2009 <dbl>, Acres.2010 <dbl>, Acres.2011 <dbl>, 
#   Acres.2012 <dbl>, Acres.2013 <dbl>, Acres.2014 <dbl>, 
#   Acres.2015 <dbl>, Acres.2016 <dbl>, Acres.2017 <dbl>, Acres_SD <dbl>, 
#   Acres_Mean <dbl>, CV <dbl>, Zscore.2008 <dbl>, Zscore.2009 <dbl>, 
#   Zscore.2010 <dbl>, Zscore.2011 <dbl>, Zscore.2012 <dbl>, 
#   Zscore.2013 <dbl>, Zscore.2014 <dbl>, Zscore.2015 <dbl>, 
#   Zscore.2016 <dbl>, Zscore.2017 <dbl> 

Melt the data for year-to-year plotting 

Compare2008thru2017noModelMods.SA.OMIT.MELT <- melt(Compare2008thru2017noModelMods.SA.OM
IT, id=c("Value", "Category")) 
Compare2008thru2017withNLCD.SA.OMIT.MELT <- melt(Compare2008thru2017withNLCD.SA.OMIT, id=
c("New_Value", "New_Category")) 
Compare2008thru2017withoutNLCD.SA.OMIT.MELT <- melt(Compare2008thru2017withoutNLCD.SA.OM
IT, id=c("New_Value", "New_Category")) 
 
#convert value currently stored as a factor to numeric 
Compare2008thru2017noModelMods.SA.OMIT.MELT$value=as.numeric(Compare2008thru2017noModelM
ods.SA.OMIT.MELT$value) 

Warning: NAs introduced by coercion 

Compare2008thru2017withNLCD.SA.OMIT.MELT$value=as.numeric(Compare2008thru2017withNLCD.SA.
OMIT.MELT$value) 

Warning: NAs introduced by coercion 

Compare2008thru2017withoutNLCD.SA.OMIT.MELT$value=as.numeric(Compare2008thru2017withoutNL
CD.SA.OMIT.MELT$value) 

Warning: NAs introduced by coercion 

#clear NAs that are created as a result (these are records where category was stored as a value during melt) 
#eliminate NAs from dataset 
Compare2008thru2017noModelMods.SA.OMIT.MELT <- na.omit(Compare2008thru2017noModelMods.SA.
OMIT.MELT) 
Compare2008thru2017withNLCD.SA.OMIT.MELT <- na.omit(Compare2008thru2017withNLCD.SA.OMIT.
MELT) 
Compare2008thru2017withoutNLCD.SA.OMIT.MELT <- na.omit(Compare2008thru2017withoutNLCD.SA.
OMIT.MELT) 

Plot zscores by year and category 

#decim pts 
scaleFUN <- function(x) sprintf("%.2f", x) 
 
#model 1 
ggplot(data = subset(Compare2008thru2017noModelMods.SA.OMIT.MELT, variable %in% c("Zscore.2008",
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"Zscore.2009","Zscore.2010", "Zscore.2011", "Zscore.2012", "Zscore.2013", "Zscore.2014", "Zscore.2015", "
Zscore.2016","Zscore.2017")), aes(x = variable, y = value)) + geom_point(data = subset(Compare2008thru201
7noModelMods.SA.OMIT.MELT, variable %in% c("Zscore.2008","Zscore.2009","Zscore.2010", "Zscore.201
1", "Zscore.2012", "Zscore.2013", "Zscore.2014", "Zscore.2015", "Zscore.2016","Zscore.2017"))) + geom_sm
ooth(method = "lm", se = FALSE, lwd = .5, col = "black") + facet_wrap(~ Category, shrink = TRUE, ncol = 5) 
+ scale_x_discrete(labels = c(2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017)) + scale_y_contin
uous(labels=scaleFUN, breaks = c(0,0.5,1,1.5,2,2.5,3,3.5,4)) 

ggsave("model-1.png", plot = last_plot(), width = 24, height = 32, units = "in", dpi = 300) 
 
#model 2 
ggplot(data = subset(Compare2008thru2017withoutNLCD.SA.OMIT.MELT, variable %in% c("Zscore.2008",
"Zscore.2009","Zscore.2010", "Zscore.2011", "Zscore.2012", "Zscore.2013", "Zscore.2014", "Zscore.2015", "
Zscore.2016","Zscore.2017")), aes(x = variable, y = value)) + geom_point(data = subset(Compare2008thru201
7withoutNLCD.SA.OMIT.MELT, variable %in% c("Zscore.2008","Zscore.2009","Zscore.2010", "Zscore.201
1", "Zscore.2012", "Zscore.2013", "Zscore.2014", "Zscore.2015", "Zscore.2016","Zscore.2017"))) + geom_sm
ooth(method = "lm", se = FALSE, lwd = .5, col = "black") + facet_wrap(~ New_Category, shrink = TRUE, nc
ol = 5) + scale_x_discrete(labels = c(2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017)) + scale_y
_continuous(labels=scaleFUN, breaks = c(0,0.5,1,1.5,2,2.5,3,3.5,4)) 

ggsave("model-2.png", plot = last_plot(), width = 24, height = 32, units = "in", dpi = 300) 
 
#model 3 
ggplot(data = subset(Compare2008thru2017withNLCD.SA.OMIT.MELT, variable %in% c("Zscore.2008","Zs
core.2009","Zscore.2010", "Zscore.2011", "Zscore.2012", "Zscore.2013", "Zscore.2014", "Zscore.2015", "Zsc
ore.2016","Zscore.2017")), aes(x = variable, y = value)) + geom_point(data = subset(Compare2008thru2017wi
thNLCD.SA.OMIT.MELT, variable %in% c("Zscore.2008","Zscore.2009","Zscore.2010", "Zscore.2011", "Zs
core.2012", "Zscore.2013", "Zscore.2014", "Zscore.2015", "Zscore.2016","Zscore.2017"))) + geom_smooth(m
ethod = "lm", se = FALSE, lwd = .5, col = "black") + facet_wrap(~ New_Category, shrink = TRUE, ncol = 5) 
+ scale_x_discrete(labels = c(2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017)) + scale_y_contin
uous(labels=scaleFUN, breaks = c(0,0.5,1,1.5,2,2.5,3,3.5,4)) 

ggsave("model-3.png", plot = last_plot(), width = 24, height = 32, units = "in", dpi = 300) 

Build a change matrix of all possible combinations between 2017 and 2008 to use as a look-up table 

#for model 1 
#expand the grid for all possible values 
orivalues.allp <- expand.grid(as.numeric(oriValues$Value), as.numeric(oriValues$Value)) 
orivalues.allp1 <- orivalues.allp[complete.cases(orivalues.allp), ] 
 
#compute the value difference code between 2008 and 2017 
orivalues.allp1$var3 <- (orivalues.allp1$Var1 - orivalues.allp1$Var2)^2 
 
#rename for clarity 
names(orivalues.allp1) <- c("Value","Value2","ValueDiff") 
 
#full join to 2017 to re-capture category names for descriptive text 
orivalues.allp2 <- (full_join(orivalues.allp1, oriValues, by = c("Value"))) 
 
#rename for clarity 
names(orivalues.allp2) <- c("Value2017","Value","ValueDiff","Category2017") 
 
#full join to 2008 to re-capture category names for descriptive text 
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orivalues.allp3 <- (full_join(orivalues.allp2, oriValues, by = c("Value"))) 
 
#rename for clarity 
names(orivalues.allp3) <- c("Value2017","Value2008","ValueDiff","Category2017","Category2008") 
 
#create descriptive text that describe change 
orivalues.allp3$descriptor <- paste(orivalues.allp3$Category2008, " to ", orivalues.allp3$Category2017) 
orivalues.allp4 <- transform(orivalues.allp3, ChangeCode=paste0(17,orivalues.allp3$Value2017, 8, orivalues.a
llp3$Value2008, abs(orivalues.allp3$ValueDiff))) 
 
#check for duplicates 
n_occur <- data.frame(table(orivalues.allp4$ChangeCode)) 
n_occur[n_occur$Freq > 1,] 

               Var1 Freq 
20281 1717282222500    2 
21811     171782225    2 
22820  171818132400    2 
27809 1719881334225    2 
37140  172318252441    2 
57819    1774844900    2 
59615    1780855625    2 
61156    1786866400    2 
61930    1788886400    2 
62951    1792877225    2 
64735    1798888100    2 

dups <- orivalues.allp4[orivalues.allp4$ChangeCode %in% n_occur$Var1[n_occur$Freq > 1],] 
 
#using these change codes has greatly reduced duplication; however 22 instances of potential duplication still 
exist. These change types seem unlikely and will be monitored for in the model seperately. 
 
#add a column where the Change Code is stored as character values so arcgisbinding does not change the val
ues on export to fgdb 
orivalues.allp4$ChangeCodeNum <- as.character(orivalues.allp4$ChangeCode) 

#for models 2 and 3 
#models 2 and 3 require a different lookup table as there are more possible combinations due to the introducti
on of additional data and categories. 
#expand the grid for all possible values 
newvalues.allp <- expand.grid(as.numeric(newValues$New_Value), as.numeric(newValues$New_Value)) 
newvalues.allp1 <- newvalues.allp[complete.cases(newvalues.allp), ] 
 
#compute the value difference code between 2008 and 2017 
newvalues.allp1$var3 <- (newvalues.allp1$Var1 - newvalues.allp1$Var2)^2 
 
#rename for clarity 
names(newvalues.allp1) <- c("New_Value","New_Value2","New_ValueDiff") 
 
#full join to 2017 to re-capture category names for descriptive text 
newvalues.allp2 <- (full_join(newvalues.allp1, newValues, by = c("New_Value"))) 
 
#rename for clarity 
names(newvalues.allp2) <- c("New_Value2017","New_Value","New_ValueDiff","New_Category2017") 
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#full join to 2008 to re-capture category names for descriptive text 
newvalues.allp3 <- (full_join(newvalues.allp2, newValues, by = c("New_Value"))) 
 
#rename for clarity 
names(newvalues.allp3) <- c("New_Value2017","New_Value2008","New_ValueDiff","New_Category2017",
"New_Category2008") 
 
#create descriptive text that describe change 
newvalues.allp3$descriptor <- paste(newvalues.allp3$New_Category2008, " to ", newvalues.allp3$New_Categ
ory2017) 
newvalues.allp4 <- transform(newvalues.allp3, ChangeCode=paste0(17,newvalues.allp3$New_Value2017, 8, 
newvalues.allp3$New_Value2008, abs(newvalues.allp3$New_ValueDiff))) 
 
#check for duplicates 
n_occur <- data.frame(table(newvalues.allp4$ChangeCode)) 
n_occur[n_occur$Freq > 1,] 

               Var1 Freq 
20281 1717282222500    2 
21811     171782225    2 
22820  171818132400    2 
27809 1719881334225    2 
37140  172318252441    2 
57819    1774844900    2 
59615    1780855625    2 
61156    1786866400    2 
61930    1788886400    2 
62951    1792877225    2 
64735    1798888100    2 

dups2 <- newvalues.allp4[newvalues.allp4$ChangeCode %in% n_occur$Var1[n_occur$Freq > 1],] 
 
#using these change codes has greatly reduced duplication; however 22 instances of potential duplication still 
exist. These change types seem unlikely and will be monitored for in the model seperately. 
 
#add a column where the Change Code is stored as character values so arcgisbinding does not change the val
ues on export to fgdb 
newvalues.allp4$ChangeCodeNum <- as.character(newvalues.allp4$ChangeCode) 

The next section usese the arcgisbinding package, the ggplot package can sometimes cause difficulties with 
arc.open(), arc.select(), and arc.write() so we will detact ggplot2 to start with and load it again when we are 
ready to use the ggplot2 package. 

detach("package:tidyverse", unload=TRUE) 
#detach("package:ggplot2", unload=TRUE) 

First, export the lookup tables created above to the geodatabase where they are needed 

input <- file.path(getwd(), 'cdl-comparisons.gdb', 'orivalues_lut') 
arc.write(input, orivalues.allp4) 
 
input <- file.path(getwd(), 'cdl-comparisons.gdb', 'newvalues_lut') 
arc.write(input, newvalues.allp4) 



8 6  
 

Import the combined files for confidence, frequency and categoy 

#arc open the tables for the confidence - frequency models for 2017; frequency and model output are dynamic 
and dependent on model parameters. Confidence is static. 
input <- file.path(getwd(), 'cdl-comparisons.gdb', 'cdl_30m_r_2017_albers_noModelMods_Combine_Broad') 
T2017_noModelMods_Conf <- arc.open(input) 
 
input <- file.path(getwd(), 'cdl-comparisons.gdb', 'cdl_30m_r_2017_albers_noNLCD_Combine_Broad_tbl') 
T2017_withoutNLCD_Conf <- arc.open(input) 
 
input <- file.path(getwd(), 'cdl-comparisons.gdb', 'cdl_30m_r_2017_albers_withNLCD_Combine_Broad_tbl') 
T2017_withNLCD_Conf <- arc.open(input) 
 
T2017_noModelMods_Conf.SA <- arc.select(T2017_noModelMods_Conf) 
T2017_withoutNLCD_Conf.SA <- arc.select(T2017_withoutNLCD_Conf) 
T2017_withNLCD_Conf.SA <- arc.select(T2017_withNLCD_Conf) 
 
#arc.open the tables for the confidence - frequency models for 2008: frequency from 2017 is used; confidence i
s from 2008 CDL and is static; however the frequency and model output are dynamic and dependent on model 
paramenters. 
 
input <- file.path(getwd(), 'cdl-comparisons.gdb', 'cdl_30m_r_2008_albers_noModelMods_Combine_Broad') 
T2008_noModelMods_Conf <- arc.open(input) 
 
input <- file.path(getwd(), 'cdl-comparisons.gdb', 'cdl_30m_r_2008_albers_noNLCD_Combine_Broad_tbl') 
T2008_withoutNLCD_Conf <- arc.open(input) 
 
input <- file.path(getwd(), 'cdl-comparisons.gdb', 'cdl_30m_r_2008_albers_withNLCD_Combine_Broad_tbl') 
T2008_withNLCD_Conf <- arc.open(input) 
 
T2008_noModelMods_Conf.SA <- arc.select(T2008_noModelMods_Conf) 
T2008_withoutNLCD_Conf.SA <- arc.select(T2008_withoutNLCD_Conf) 
T2008_withNLCD_Conf.SA <- arc.select(T2008_withNLCD_Conf) 

#rename for clarity, MaskValue 0 = areas of change; 1 = areas of little or no change 
names(T2017_withNLCD_Conf.SA) <- c("ObjectID","Value","Count","Category","Frequency","Confidence",
"MaskValue") 
names(T2017_withoutNLCD_Conf.SA) <- c("ObjectID","Value","Count","Category","Frequency","Confiden
ce","MaskValue") 
names(T2017_noModelMods_Conf.SA) <- c("ObjectID","Value","Count","Category","Frequency","Confiden
ce","MaskValue") 
 
names(T2008_withNLCD_Conf.SA) <- c("ObjectID","Value","Count","Category","Frequency","Confidence",
"MaskValue") 
names(T2008_withoutNLCD_Conf.SA) <- c("ObjectID","Value","Count","Category","Frequency","Confiden
ce","MaskValue") 
names(T2008_noModelMods_Conf.SA) <- c("ObjectID","Value","Count","Category","Frequency","Confiden
ce","MaskValue") 

#add acres calculation 
T2017_withNLCD_Conf.SA$Acres <- ((T2017_withNLCD_Conf.SA$Count*0.222394)) 
T2017_withoutNLCD_Conf.SA$Acres <- ((T2017_withoutNLCD_Conf.SA$Count*0.222394)) 
T2017_noModelMods_Conf.SA$Acres <- ((T2017_noModelMods_Conf.SA$Count*0.222394)) 
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T2008_withNLCD_Conf.SA$Acres <- ((T2008_withNLCD_Conf.SA$Count*0.222394)) 
T2008_withoutNLCD_Conf.SA$Acres <- ((T2008_withoutNLCD_Conf.SA$Count*0.222394)) 
T2008_noModelMods_Conf.SA$Acres <- ((T2008_noModelMods_Conf.SA$Count*0.222394)) 

#subset data before melting 
T2017_withNLCD_Conf.SA.subset <- data.frame(T2017_withNLCD_Conf.SA$Value, T2017_withNLCD_C
onf.SA$Category, T2017_withNLCD_Conf.SA$Confidence, T2017_withNLCD_Conf.SA$Frequency, T2017
_withNLCD_Conf.SA$Acres) 
T2017_withoutNLCD_Conf.SA.subset <- data.frame(T2017_withoutNLCD_Conf.SA$Value, T2017_without
NLCD_Conf.SA$Category, T2017_withoutNLCD_Conf.SA$Confidence, T2017_withoutNLCD_Conf.SA$Fr
equency, T2017_withoutNLCD_Conf.SA$Acres) 
T2017_noModelMods_Conf.SA.subset <- data.frame(T2017_noModelMods_Conf.SA$Value, T2017_noMod
elMods_Conf.SA$Category, T2017_noModelMods_Conf.SA$Confidence, T2017_noModelMods_Conf.SA$F
requency, T2017_noModelMods_Conf.SA$Acres) 
 
T2008_withNLCD_Conf.SA.subset <- data.frame(T2008_withNLCD_Conf.SA$Value, T2008_withNLCD_C
onf.SA$Category, T2008_withNLCD_Conf.SA$Confidence, T2008_withNLCD_Conf.SA$Frequency, T2008
_withNLCD_Conf.SA$Acres) 
T2008_withoutNLCD_Conf.SA.subset <- data.frame(T2008_withoutNLCD_Conf.SA$Value, T2008_without
NLCD_Conf.SA$Category, T2008_withoutNLCD_Conf.SA$Confidence, T2008_withoutNLCD_Conf.SA$Fr
equency, T2008_withoutNLCD_Conf.SA$Acres) 
T2008_noModelMods_Conf.SA.subset <- data.frame(T2008_noModelMods_Conf.SA$Value, T2008_noMod
elMods_Conf.SA$Category, T2008_noModelMods_Conf.SA$Confidence, T2008_noModelMods_Conf.SA$F
requency, T2008_noModelMods_Conf.SA$Acres) 

#rename for clarity 
names(T2017_withNLCD_Conf.SA.subset) <- c("Value","Category","Confidence","Frequency","Acres") 
names(T2017_withoutNLCD_Conf.SA.subset) <- c("Value","Category","Confidence","Frequency","Acres") 
names(T2017_noModelMods_Conf.SA.subset) <- c("Value","Category","Confidence","Frequency","Acres") 
 
names(T2008_withNLCD_Conf.SA.subset) <- c("Value","Category","Confidence","Frequency","Acres") 
names(T2008_withoutNLCD_Conf.SA.subset) <- c("Value","Category","Confidence","Frequency","Acres") 
names(T2008_noModelMods_Conf.SA.subset) <- c("Value","Category","Confidence","Frequency","Acres") 

#melt and sort each table 
T2017_withNLCD_Conf.SA.MELT <- melt(T2017_withNLCD_Conf.SA.subset, id.var="Value", na.rm=TRU
E) 
T2017_withoutNLCD_Conf.SA.MELT <- melt(T2017_withoutNLCD_Conf.SA.subset, id.var="Value", na.rm
=TRUE) 
T2017_noModelMods_Conf.SA.MELT <- melt(T2017_noModelMods_Conf.SA.subset, id.var="Value", na.r
m=TRUE) 
 
T2008_withNLCD_Conf.SA.MELT <- melt(T2008_withNLCD_Conf.SA.subset, id.var="Value", na.rm=TRU
E) 
T2008_withoutNLCD_Conf.SA.MELT <- melt(T2008_withoutNLCD_Conf.SA.subset, id.var="Value", na.rm
=TRUE) 
T2008_noModelMods_Conf.SA.MELT <- melt(T2008_noModelMods_Conf.SA.subset, id.var="Value", na.r
m=TRUE) 
 
#new value column as numeric 
T2017_noModelMods_Conf.SA.MELT$value.num <- as.numeric(T2017_noModelMods_Conf.SA.MELT$val
ue) 
T2017_withNLCD_Conf.SA.MELT$value.num <- as.numeric(T2017_withNLCD_Conf.SA.MELT$value) 
T2017_withoutNLCD_Conf.SA.MELT$value.num <- as.numeric(T2017_withoutNLCD_Conf.SA.MELT$val



8 8  
 

ue) 
 
T2008_noModelMods_Conf.SA.MELT$value.num <- as.numeric(T2008_noModelMods_Conf.SA.MELT$val
ue) 
T2008_withNLCD_Conf.SA.MELT$value.num <- as.numeric(T2008_withNLCD_Conf.SA.MELT$value) 
T2008_withoutNLCD_Conf.SA.MELT$value.num <- as.numeric(T2008_withoutNLCD_Conf.SA.MELT$val
ue) 

#sort data before plotting 
 
library(data.table) 

setorder(T2017_noModelMods_Conf.SA.subset, Category, Confidence, Frequency) 
setorder(T2017_withNLCD_Conf.SA.subset, Category, Confidence, Frequency) 
setorder(T2017_withoutNLCD_Conf.SA.subset, Category, Confidence, Frequency) 
 
setorder(T2008_noModelMods_Conf.SA.subset, Category, Confidence, Frequency) 
setorder(T2008_withNLCD_Conf.SA.subset, Category, Confidence, Frequency) 
setorder(T2008_withoutNLCD_Conf.SA.subset, Category, Confidence, Frequency) 
 
detach("package:data.table", unload=TRUE) 

#first, reload tidyverse/ggplot2 
library(tidyverse) 

#ggplot data -- stacked columns showing acres by confidence and frequency for each category 
ggplot(T2017_noModelMods_Conf.SA.subset, aes(x = Confidence, y = Acres)) + geom_col(aes(fill = Frequen
cy)) + facet_wrap(~ Category, shrink = TRUE, scales = "free_y", ncol=5) 

ggsave("model-1-2017-confidence-frequency.png", plot = last_plot(), width = 24, height = 32, units = "in", dpi 
= 300) 
 
ggplot(T2017_withoutNLCD_Conf.SA.subset, aes(x = Confidence, y = Acres)) + geom_col(aes(fill = Frequen
cy)) + facet_wrap(~ Category, shrink = TRUE, scales = "free_y", ncol=5) 

ggsave("model-2-2017-confidence-frequency.png", plot = last_plot(), width = 24, height = 32, units = "in", dpi 
= 300) 
 
ggplot(T2017_withNLCD_Conf.SA.subset, aes(x = Confidence, y = Acres)) + geom_col(aes(fill = Frequency)
) + facet_wrap(~ Category, shrink = TRUE, scales = "free_y", ncol=5) 

ggsave("model-3-2017-confidence-frequency.png", plot = last_plot(), width = 24, height = 32, units = "in", dpi 
= 300) 
 
ggplot(T2008_noModelMods_Conf.SA.subset, aes(x = Confidence, y = Acres)) + geom_col(aes(fill = Frequen
cy)) + facet_wrap(~ Category, shrink = TRUE, scales = "free_y", ncol=5) 

ggsave("model-1-2008-confidence-frequency.png", plot = last_plot(), width = 24, height = 32, units = "in", dpi 
= 300) 
 
ggplot(T2008_withNLCD_Conf.SA.subset, aes(x = Confidence, y = Acres)) + geom_col(aes(fill = Frequency)
) + facet_wrap(~ Category, shrink = TRUE, scales = "free_y", ncol=5) 

ggsave("model-2-2008-confidence-frequency.png", plot = last_plot(), width = 24, height = 32, units = "in", dpi 
= 300) 
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ggplot(T2008_withoutNLCD_Conf.SA.subset, aes(x = Confidence, y = Acres)) + geom_col(aes(fill = Frequen
cy)) + facet_wrap(~ Category, shrink = TRUE, scales = "free_y", ncol=5) 

ggsave("model-3-2008-confidence-frequency.png", plot = last_plot(), width = 24, height = 32, units = "in", dpi 
= 300) 
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