# University of Arkansas, Fayetteville ScholarWorks@UARK

Crop, Soil and Environmental Sciences Undergraduate Honors Theses

Crop, Soil and Environmental Sciences

5-2018

# Soil Organic Carbon and Mineralization Rates at the Woolsey Wet Prairie Mitigation Site in Fayetteville, Arkansas

Zachary Tipton

Follow this and additional works at: https://scholarworks.uark.edu/csesuht Part of the <u>Environmental Indicators and Impact Assessment Commons</u>

#### **Recommended** Citation

Tipton, Zachary, "Soil Organic Carbon and Mineralization Rates at the Woolsey Wet Prairie Mitigation Site in Fayetteville, Arkansas" (2018). *Crop, Soil and Environmental Sciences Undergraduate Honors Theses.* 17. https://scholarworks.uark.edu/csesuht/17

This Thesis is brought to you for free and open access by the Crop, Soil and Environmental Sciences at ScholarWorks@UARK. It has been accepted for inclusion in Crop, Soil and Environmental Sciences Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu.

Soil Organic Carbon and Mineralization Rates at the Woolsey Wet Prairie Mitigation Site in

Fayetteville, Arkansas

Zachary Tipton

University of Arkansas

#### Abstract

Atmospheric carbon dioxide (CO<sub>2</sub>) levels are higher than ever recorded, surpassing 400 ppm in 2013, from a pre-industrial revolution level of around 280 ppm. Researchers have been looking at methods to mitigate high CO<sub>2</sub> levels in the atmosphere, including promoting carbon sequestration in soils. Carbon sequestration is the process where  $CO_2$  is naturally or artificially transferred out of the atmosphere and stored in the ocean, plant biomass, soils, and geologic formations. Seemingly contradictory to the notion of carbon sequestration, is the use of fire as a management treatment for the restoration of native prairie grass ecosystems. Fire combusts plant biomass and produces CO<sub>2</sub> as one of its products, potentially leading to increased atmospheric CO<sub>2</sub> concentrations. The first objective of this research was to determine particulate (labile) and total (labile plus stable) soil organic matter content and CO<sub>2</sub> respiration in Woolsey Wet Prairie Sanctuary (WWPS) soil that has been restored and managed with annual burning for 10 years compared to soil from non-restored adjacent fields growing tall fescue. The first objective was accomplished by taking soil samples and  $CO_2$  respiration measurements before the 2017 annual prescribed burn. The second objective was to determine short-term temporal impacts of the 2017 annual prescribed burn on soil carbon release and storage. The second objective was accomplished by comparing CO<sub>2</sub> respiration before the fire management in the spring, then comparing to  $CO_2$  respiration measurements taken 2, 7, 16, and 29 days post-treatment, and taking soil samples. Soil samples were taken before the 2017 annual prescribed burn, two weeks after the burn, and two months after the burn to compare short-term temporal changes to particulate organic matter (POM) and stable organic matter (OM). Results indicated high productivity in the wetland low areas with statistically greater levels of POM and OM compared to the other sample sites. Additionally, there was no statistically significant change measured in

POM following the annual prescribed burn at any sample site, nor a statistically significant increase in  $CO_2$  respiration. The results indicate that the managed wetland area is functioning as a highly-productive carbon sink.

Keywords: carbon sequestration, fire management, prairie restoration, soil respiration

#### Acknowledgments

I would like to thank the University of Arkansas Dale Bumpers College of Agricultural, Food and Life Sciences and the Honors College for providing funding for this research.

I would also like to thank the stewards of the Woolsey Wet Prairie for allowing this research to be conducted on the site.

This research would not have been possible without the guidance and infinite patience of my advisors Dr. Lisa Wood and Dr. Mary Savin. Big thanks to Dr. Benjamin Runkle for his input and generosity in letting me borrow the LICOR LI-8100 for the duration of the study.

Warmest gratitude and love to my wife for not only her emotional support but also the amazing amount of help she provided with SAS programming and statistical analysis. I promise to wash the dishes after I finish this paper.

#### Introduction

## **Carbon Cycling**

While the continual use of fossil fuels as an energy source plays a role in global warming, understanding the carbon cycle and promoting carbon storage in soil is important to the goal of reducing atmospheric carbon dioxide  $(CO_2)$  levels (Stout et al. 2016). Soils store roughly three times more carbon than the atmosphere by capturing plant and animal matter residues which break down and transform into soil organic matter (SOM) (Ontl 2012). The SOM is beneficial to plant growth by improving soil structure, which also protects against erosion, providing micro and macronutrients to plants, and helps retain water (Murphy 2015). Carbon sequestration in SOM has the potential to reduce the levels of atmospheric CO<sub>2</sub> and mitigate the negative effects of global warming (Post et al. 2004, Lal 2004). Carbon sequestration in plant biomass is beneficial; however, burning biomass and thus releasing carbon as  $CO_2$ , is promoted as a tool for prairie management to reduce invasive species and promote native seed germination (Rook et al. 2011). Soil  $CO_2$  is produced by plant root respiration, soil microorganisms around the rhizosphere, and microorganisms free in the soil metabolizing plant litter and SOM. Carbon mineralization, flux, or CO<sub>2</sub> respiration, includes microbial respiration and material decomposition. Flux measurements of CO<sub>2</sub> vary widely with location sampled, time of day, temperature, and soil moisture content.

#### Fire as a Management Tool

Arkansas is covered in large areas of deciduous forest, but before major European settlement Northern Arkansas was primarily tallgrass prairie naturally sustained by fire (Brye et al. 2008). Fire can be used as a management tool in ecosystem restoration by burning back

5

invasive plants, providing bare mineral soil and sunlight to native seeds for establishment. Various intensities of fire happen naturally depending on the amount of biomass available. The prescribed fire utilized on the Woolsey Wet Prairie Sanctuary (WWPS) is a low-intensity, quickly moving fire. The WWPS stewards wait for ideal conditions by monitoring wind speed, ground wetness, and relative humidity. Low-intensity burning can have beneficial results on treatment sites such as increased nutrient availability and a decreased threat of pathogens (Neary et al. 1999). Conversely, high-intensity fires can result in disturbances to a system such as disruption of microbial communities and volatilization of nutrients (Neary et al. 1999).

The two concepts of carbon storage in the soils and burning of OM to promote prairie restoration seem to be contradictory in terms of soil carbon management. However, research suggests that in tallgrass prairie systems specifically above-ground biomass can be significantly increased for up to three years after a fire, resulting in greater amounts of carbon storage in plant residues (Docherty et al. 2011). The increase in nitrogen and other nutrient deposits after a fire can increase plant biomass (Docherty et al. 2011). Other research suggests that the removal of ground litter and increase in soil temperature have positive effects on biomass production (Hulbert 1986). Zhao et al. (2012) reported that organic carbon levels were higher in burned wetland areas than unburned areas, mainly in above-ground biomass, up to two growing seasons after a burn treatment. A potential negative to fire management is that with soil temperature increases soil microbial activity increases causing higher mineralization rates in soil, thus releasing  $CO_2$  (Zhao et al. 2012).

#### **Tallgrass Prairie Restoration**

Prairie ecosystems evolved under a frequent low-intensity natural fire regime, but due to human-interference in this fire regime, prairie ecosystem have been long deprived of fire leading to problems such as invasive species monoculture and total ecosystem shifts (Docherty et al. 2011). Efforts are ongoing to promote using fire as a management tool to restore native tallgrass prairies. Native prairie ecosystems are home to thousands of plants and animals, and due to the deep-rooting nature of prairie grasses, these biomes have been shown to sequester a substantial amount of carbon (Brye et al. 2008). Native plant restoration has also been reported to increase microbial biomass and rebalance nitrogen cycling (Brockway et al. 2001).

A successful example of species restoration in tallgrass prairie is the WWPS located in Fayetteville, AR. The 46-acre WWPS was established as a wetland mitigation project following the construction of a regional wastewater treatment facility in 2006 (ECO, Inc n.d.). Engineers and city planners created a mosaic ecosystem area using earthen berms to include basin wetlands, open water, marsh, and forested wetland areas. The berms and non-wetland areas were restored in native prairie grass and forb species. The area was settled by Samuel Gilbert Woolsey in 1830 and was used for cattle grazing, but from soil horizon sampling, the land did not appear to have been plowed (ECO, Inc n.d.). Further evidence of the land not being plowed is the integrity of the mound/intermound system in the fescue field. The mound/intermound systems are of unique interest because of their symmetric properties; early origin hypotheses suggested that the mounds were created by Native Americans (Quinn 1961). Many hypotheses have been published as to the origin of the mounds, but scientists suspect they developed from accumulation of aeolian deposits and are at a state of "environmental equilibrium" with grasses protecting from erosion and soil organisms seeking slightly elevated soil to reside in dryer conditions (Allgood and Gray 1974). Fire suppression and cattle grazing greatly depreciate the biodiversity of the land with the primary planted grass at this site prior to restoration being tall fescue (*Schedonorus arundinaceus*).

Stewards of the WWPS use a prescribed burn treatment to remove invasive grasses and emergent woody vegetation annually in the spring around mid-March (ECO, Inc n.d.). Burning in the spring kills primarily cool-season invasive grasses prior to emergence of warm-season grasses and creates a mineral bed in which native plants thrive (ECO, Inc n.d.). The approach and continual management plan has been successful in restoring aboveground biodiversity. Forty-seven plant species were counted between 2001 and 2005, and one bird species was counted in December 2006. In contrast, 431 plant species were recorded in November 2013 and 90 bird species counted in 2013 (ECO, Inc n.d.). The establishment and/or reestablishment of these species resulted solely through management to promote growth of native seed that had been lying dormant in the WWPS soil (ECO, Inc n.d.).

#### **Research Question**

While restoration has been successful above-ground, the effect of management on soil carbon has not been studied at this site. Thus, we used this site to research the following questions:

 How has restoration including fire management influenced soil CO<sub>2</sub> respiration and carbon storage after 10 years of prairie restoration management, and
 What is the immediate versus temporal impact of the 2017 annual prescribed burn on soil carbon release and storage?

#### **Objectives**

- Determine particulate (labile) and total SOM content and CO<sub>2</sub> respiration rates on soil from WWPS that has been restored and managed with annual burning for 10 years compared to non-restored adjacent field soil growing tall fescue.
- 2) Determine immediate versus temporal impacts of burning on particulate OM content and CO<sub>2</sub> respiration rates starting from two days after the 2017 annual burn treatment to two months post-burn from WWPS compared to adjacent field soil growing tall fescue.

#### **Materials and Methods**

#### **Study Site**

Designed by ecologists from Environmental Consulting Operations, Inc. (ECO) and engineers from McGoodwin, Williams, and Yates Consulting Engineers, Inc., the WWPS is located in Fayetteville, Arkansas (36.062595, -94.231882). Located adjacent to the West Side Wastewater Treatment Facility, the WWPS was created as a wetland mitigation site for the 9.88acres of wetlands impacted or lost in the construction of the wastewater treatment facility (ECO, Inc n.d.). Two treatment sites were selected for the study, one being a section of the berm and wetland which received fire, and the other being an adjacent fescue mound/intermound system that did not receive fire as a management tool. The wetland soil type is anthropogenic in nature, being a blend of the primary soil type for the area (Taloka complex, mounded) and possibly neighboring soil types (Taloka silt loam, 0 to 1 percent slopes, Leaf silt loam, Jay silt loam, 1 to 3 percent slopes, and Pickwick silt loam 3 to 8 percent slopes eroded) as mapped by the WEB Soil Survey. Taloka complex, mounded, is the primary soil type for the fescue control sample area (Figure 1). In the fescue unburned control area, four transects were established and samples were taken on representative mounds, microtopological features with a higher elevation than the surrounding area and adjacent intermounds, low points of elevation between mounds (Figure 2). For the wetland area, due to time and logistical sample access constraints, sample sites were selected along the main trails between the fescue control area and parking lot. Four samples were collected immediately adjacent to the trail but on top of the constructed berm areas. Four samples were collected downslope of the berm sample sites in the wetland cells themselves. The samples were designated by their location, and henceforth will be abbreviated as the following: WL = Wetland Low, WB = Wetland Berm, FL = Fescue Inter-mound (Low), and FM = Fescue Mound with wetland being the treatment site, fescue being the control, and low/intermound vs berm/mound designating the microtopography level. It is important to note that while designations are assigned to landscape positions for both treatment areas, landscape positions cannot be assumed to be at the same elevation at all sample sites.

#### Timeline

Samples were collected between February 10 and May 18, 2017. The first CO<sub>2</sub> respiration measures occurred on February 22. The prescribed burn was conducted on February 25, and CO<sub>2</sub> respiration samples were measured on February 27, March 4, March 13, and March 26. Soil samples were collected February 10, and adjacent to locations of soil respiration measurements on March 12 and May 18.

#### **Bulk Density**

Bulk density (dry soil mass divided by total soil volume) was determined by using one 5cm diameter, 5-cm long soil core to collect soil at each site type (WL, WB, FL, FM) on February 10, March 12, and May 18 for a total of 48 soil samples. The known volume of the soil was removed from the soil core and dried in a pre-weighted container at 55°C for 5-7 days until a constant weight was reached. The dry soil weight was measured and subtracted from the container weight to calculate bulk density.

#### **Soil Organic Matter**

Oven-dry soil (from the determination of bulk density) was ground with a mortar and pestle and passed through a 2-mm sieve. Ten grams of soil was transferred into a pre-weighed crucible. Crucibles were placed in an oven at 55°C for 5 days. After five days, the samples were removed from the oven and weighed again. Crucibles were then placed into a muffle furnace and combusted at 450 °C for 8 hours. Crucibles were weighed again, and percent organic matter was calculated using the following equation: % OM = ([oven-dry soil (g) after 5 days at 55°C]) \* 100%.

#### **Particulate Organic Matter**

Oven-dry soil was ground with a mortar and pestle and passed through a 2-mm sieve. Particulate OM, or sand-sized fraction (SSF) between 0.053-mm and 2-mm, was determined using the oven-dried soil. Sieved soil (25g) was transferred to a 250-mL bottle and mixed with 100-mL of 5 g sodium hexametaphosphate ((NaPO<sub>3</sub>)<sub>6</sub>), shaken for 16 hours, poured through a 53µm sieve, and rinsed with DI water. The retained fraction was dried overnight in a pre-weighed container at 55°C and again weighed. After weighing, dried SSF samples were transferred into pre-weighted crucibles, re-weighed, and combusted in a furnace at 450 °C for 8 hours. Samples were cooled in a desiccator and the weight of the crucible and ash was determined and used to calculate percent OM in the SSF. The weight of the SSF after drying overnight was divided by 25g to determine the fraction of SSF to soil sample. That value was multiplied by % POM in the SSF to determine % POM in the initial 25g soil sample. The % POM SSF was then divided by % OM determined by using the above-mentioned methods to calculate % POM as part of the total organic matter.

### **Carbon Mineralization**

In-situ respiration, or CO<sub>2</sub> flux, was determined using a LI-COR LI-8100A automated soil gas flux system (LI-COR, Lincoln, Nebraska, USA). A 20-cm survey chamber fitted over 20-cm dia. PVC soil collars which were installed 2-5 cm into the soil surface to create a seal. Collars were installed at least 24 hours prior to CO<sub>2</sub> respiration measurements to allow the soil to normalize after the disturbance. Additionally, plant matter on the soil surface within the soil collars was cut and removed 24 hours before measuring soil flux. Flux is calculated by an infrared analyzer located in the survey chamber. The rate of CO<sub>2</sub> being released from the soil into the survey chamber is used to model CO<sub>2</sub> diffusing into the air outside of the chamber. Soil temperature and moisture were determined by inserting both a temperature probe (Omega Soil Temperature Probe 6000-09TC) and theta probe (Delta-T ML2 ThetaProbe) into the soil adjacent to the survey chamber. The temperature probe was inserted 15.24 cm into the soil, while the theta probe was inserted 6 cm into the soil. The soil surface area within the 20-cm soil collar is 317.8 cm<sup>2</sup>. The headspace between the soil surface and top of the soil collar was measured in five locations around the inside of the collar, averaged, and entered into the LI-8100A measurement software as chamber offset in cm to calculate chamber volume. The LI-8100A device was set with a one-minute pre-purge time in between measurements to allow normalization of gasses, while the observation time was set for two minutes. Three measurements one minute apart were collected at each site. Measurements were analyzed using the SoilFluxPro version 4.0 software provided by LI-COR. Soil flux rates  $F_c$  were reported by the LI-8100A in µmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> determined by the following equation.

$$Fc = \frac{10VP_0(1 - \frac{W_0}{1000})}{RS(T_0 + 273.15)} \frac{\partial C'}{\partial t}$$

Where *V* is volume inside the survey chamber (cm<sup>3</sup>), initial pressure is denoted by  $P_0$  (kPa),  $W_0$  is initial water vapor mole fraction (mmol mol<sup>-1</sup>), *S* is soil surface area (cm<sup>2</sup>),  $T_0$  is initial air temperature (°C), and  $\frac{\partial c'}{\partial t}$  is the initial rate of change in the water-corrected CO<sub>2</sub> mole fraction (µmol mol<sup>-1</sup>). The variables  $P_0$ ,  $T_0$ , and  $W_0$  are calculated by the LI-8100A after the chamber closed. Within the two-minute observation time, for analysis purposes, the initial 15-seconds were not included in the flux calculation and are considered a "dead band". This dead band was set at the beginning of the observation to mitigate errors in flux calculations from initial changes in chamber pressure due to the closing of the device. The mean was calculated for the three measurements of exponential flux for each sample site. Flux was adjusted using the  $Q_{10}$  temperature coefficient provided by the following equation:

$$R_2 = R_1 Q_{10}^{(T_2 - T_1)/10^{\circ}C}$$

with  $R_2$  being the new rate of exponential CO<sub>2</sub> flux (µmol m<sup>-2</sup> s<sup>-1</sup>),  $R_1$  being the original exponential CO<sub>2</sub> flux (µmol m<sup>-2</sup> s<sup>-1</sup>),  $Q_{10}$  being a unit-less temperature coefficient,  $T_2$  being a temperature chosen as a standard, for this study 25 °C, and  $T_1$  as the soil temperature determined by Omega Soil Temperature Probe during sampling. Based on a study by Mahecha et al. (2010), a  $Q_{10}$  temperature coefficient of 1.4 was selected for use in this equation. The Mahecha et al. (2010) study emphasizes a strong relationship between photosynthesis and respiration, while concluding that  $Q_{10}$  is independent of mean annual temperature, consistent across different biomes, and that a  $Q_{10}$  value of 1.4 is more appropriate for use in measurements of whole ecosystem processes.

#### **Temperature and Water Content**

During CO<sub>2</sub> respiration measurements, adjacent to each collar, soil temperature and water content measurements were recorded adjacent to the chamber using a temperature and theta probe inserted into the soil. Daily mean air temperature (°C) (Figure 3) and precipitation (Figure 4) during sample dates were taken from the National Weather Service website (weather.gov).

# **Data Analysis**

Preliminary organization of data was performed in Microsoft Excel 2016. Statistical analysis was performed using SPSS Statistics 24.0.0.2 (Armonk, New York) and SAS 9.4 (Cary, North Carolina). Repeated measures ANOVAs were run individually for each dependent variable (bulk density, OM, POM, temperature, water content, flux) to determine significance with  $\alpha$  = 0.05 of values within and across groups.

#### Results

To better understand our sample areas and explore our research questions we first performed statistical analysis to determine if our measurements changed with time, followed by comparing means across the two treatment sites (fescue, wetland) and four microtopography levels (WL, WB, FL, FM). Several of our parameters did not change with time (bulk density, SOM, POM) while soil CO<sub>2</sub> respiration did change with time and we attempted to explain flux variation over time by comparing values measured to soil moisture content and soil temperature measurements recorded at the time of CO<sub>2</sub> respiration sampling.

Bulk density did not change with time (Table 1); however, WL was statistically lower from WB, FL, and FM and WB was statistically higher from WL, FL, and FM (Table 2, Figure 5, P < 0.05). The bulk density in FL and FM values were not statistically different from each other. The bulk density was lowest in the WL (0.917 g/cm<sup>3</sup>) and highest in the WB (1.295 g/cm<sup>3</sup>) while the FL and FM means were both 1.13 g/cm<sup>3</sup>.

Soil OM did not change with time (Table 3); however, WL was statistically from the other three sample sites higher, while the other three sample sites (WB, FL, FM) were not statistically different from each other (Table 4, Figure 6, P < 0.05). The WL had the highest SOM (8.94%), WB had the lowest (5.34%), and FL and FM measured 6.4%, and 6.19% respectively.

Particulate OM of the total OM did not change with time (Table 5). The WL samples are significantly higher on all three dates compared to other sample sites (Table 6, Figure 7, P < 0.05). The WL had the highest percent POM of SOM values measured (46.6%), while the WB was 25.58%, and FL and FM were 29.18% and 34.49%, respectively. There was no significant change in WL or WB POM samples between pre-burning and March 12 (15 days after burning) measurements.

The WL and WB CO<sub>2</sub> respiration measurements were not statistically different between February 22 (pre-burn) and February 27 (2 days after the burn); however, FL and FM measurements statistically decreased between these time intervals (P < 0.05; Table 7). Respiration in WL did not change statistically across any of the time intervals, while respiration in WB increased statistically from March 13 to March 26 (P < 0.05). For FL, only the mean differences between February 22 and February 27 were statistically significant (P < 0.05). For FM respiration decreased statistically from February 22 to February 27 and between March 4 and March 13 (P < 0.05).

For February 22 pre-burn CO<sub>2</sub> respiration measurements, WL and WB were not statistically different from each other, and FL and FM were not statistically different from each other (Table 8, Figure 8). Both WL and WB measurements were statistically lower to FL and FM measurements (P < 0.05). On February 27, two days following the burn, CO<sub>2</sub> respiration measurements among the four sites were not statistically different from each other. On March 4, the WB sites were statistically lower compared to FL (P < 0.05), and WL, FL, and FM were not statistically different from each other. On March 13, respiration in WB was greater than the two fescue sites, and on March 26, respiration was greater in WB than WL, FM, and FB (P < 0.05), while the other three sites were not statistically different from each other (WL, FL, FM). On the dates following March 4, there were several major rain events (Figure 4), resulting in a corresponding decrease in soil temperature (Figure 9), increase in soil water content (Figure 10), and decrease in CO2 flux (Figure 8) on March 13. Precipitation events in late March (Figure 4) resulted in wetter soil in the lower elevation sites (FL, WL, Figure 9), but respiration increased with warmer soil temperatures (Figure 9) in the higher elevation locations, especially WB (Figure 8).

Temperature over time was statistically different with WL statistically higher on March 26 from March 13, WB higher on February 27 from February 22 and lower on March 13 from

March 4. Additionally, FL was statistically higher on February 27 from February 22, lower on March 13 from March 4, and higher on March 26 from March 13, while FM was statistically lower on March 13 from March 4, and higher on March 26 from March 13 (Table 9, P < 0.05). Regarding within date statistical variation, differences were only measured on February 27 with WL having a statistically higher temperature compared to FL, while WB and FM were not statistically different from the other two sample sites (Table 10, Figure 9, P < 0.05). No other dates showed within date statistical differences between the four sample sites.

Soil water content statistically changed over time with WL lower on February 27 from February 22, and higher on March 13 from March 4. WB was statistically higher on March 13 from March 4, FL was lower on February 27 from February 22 and higher on March 13 from March 4, while FM was higher on March 13 from March 4 (Table 11, P < 0.05). Regarding within date statistical variation, on February 22 WL had a statistically higher water content then WB and FM which were statistically similar, while FL was not different from the other three sample sites. On March 13 and March 26 WL and FL were observed to be statistically similar, and higher than WB and FM which were statistically similar to each other. No statistical variation was observed on February 27 and March 4 (Table 12, Figure 10, P < 0.05).

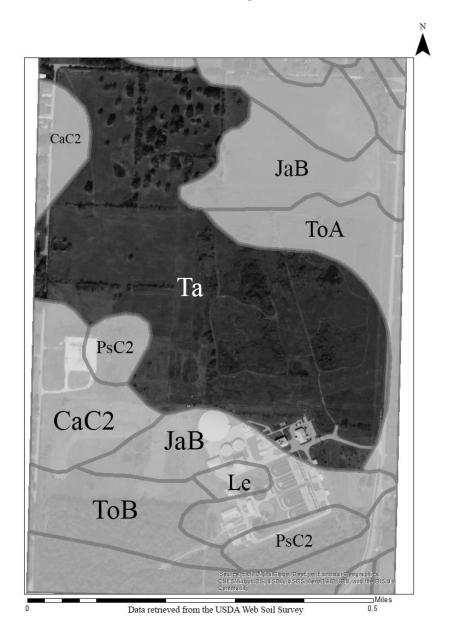
#### Discussion

The first objective was to determine POM and SOM content and compare  $CO_2$ respiration on soil from WWPS that has been restored and managed with annual burning for 10 years compared to non-restored adjacent field soil growing tall fescue. This was accomplished by analyzing pre-burn data measured from the treatment and control areas. Soil POM is beneficial to soil functioning by providing a food source for microorganisms, promoting soil aggregation and can be considered as an initial catalyst to C sequestration (Kravchenko et al. 2014). The results of this study suggest the WL to be highly productive with soil aggregation (low bulk density) and metabolic conversion of POM into more stable forms of SOM (greater measured OM levels). Decomposition of organic matter in soils releases CO<sub>2</sub> into the atmosphere (Keiluweit et al. 2017); however, pre-burn flux values were measured as lower in the wetland area than in the fescue fields. This could be explained by the higher water content measured in the WL sample sites compared to the other sample sites. The sample sites chosen for WL and FL were at the lowest point of the landscape, and after rain events soil collars had to be retrieved from underwater and relocated to above the water line. Keiluweit et al. (2017) reported that while mineralization occurs during anaerobic conditions, mineralization rates decrease by 60-95% compared to aerobic conditions. Anaerobic conditions are typical for a wetland system.

The second objective was to determine immediate versus temporal impacts of burning on POM content and C mineralization rates on wetland (burned) soil. Since there was no measured change in POM before the burn and 15 days after the burn, it appears from these samples that there was no change in POM immediately following the burn. Regarding flux, measurements taken 2 days after the burn all decreased from pre-burn levels and were not significantly different from each other regardless of microtopography. It is possible that the heat from the fire and increased solar radiation resulting from the removal of surface biomass disrupted the microbiological functions in the wetland area as soil temperature in WL increased significantly 2 days after the burn compared to FL. However, flux measurements from the fescue areas were not statistically different from the wetland 2 days after the burn, suggesting that biological functions were not altered by the prescribed fire. Additionally, major disruptions to proteins and plant tissue occur around 40-70°C (Neary et al. 1999). Reports from the prescribed fire indicate that the fire moved very quickly through the system at a low intensity and after the burn was completed, the ground was cool enough to walk on. Fire can have a wide range of effects on the soil system depending on intensity and duration of the fire, with duration being the main factor in how much damage a soil system receives belowground (Neary et al. 1999). Low-intensity fire events typically do not burn hotter than 100°C at the surface and 50 °C at 5 cm below the soil surface (Neary at al. 1999). These types of low-intensity fire can break down nutrients into similar forms for plant and microbial consumption, thin overcrowded biomes, and is popular as an ecological restoration practice (Neary et al. 1999). The annual burning schedule at the WWPS limits large amounts of fuel loading, thus limiting the intensity of fires and damage to the soil system.

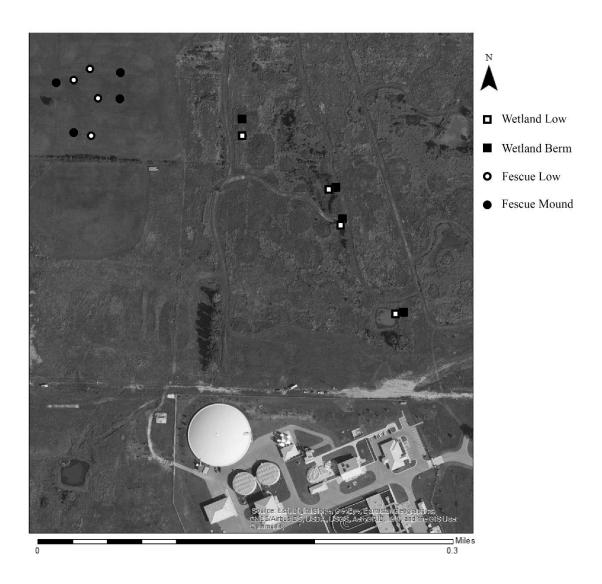
Besides the expected variability in flux measurements, a potential source of error was introduced into the system because the PVC soil collars had to be moved several times. The preburn collars were removed after initial measurements, so they were not damaged by the prescribed fire treatment. Additionally, the WL and FL collars had to be relocated to slightly higher elevation on March 12 because they were completely submerged after a rainstorm. Another potential source of analysis error is that soil temperature readings were taken at 15cm, while the PVC soil collars used for hosting the LI-8100A in CO<sub>2</sub> respiration measurements were inserted shallowly into the soil at a depth of 2-5cm. This may have resulted in improper analysis of the effect of temperature on flux as the temperatures measured were not exactly at the same depth as major microbial activity. In a study by Zhou et al. (2013), they reported nearly twice the microbial biomass to be residing at a 0-10cm depth compared to 10-20cm at their grassland study site. Additionally, the 0-10cm microbial community had a higher response (increasing respiration) to temperature and moisture changes.

Future studies should include soil texture analysis of the wetland area to measure the texture as a result of anthropogenic mixture. Additionally, C:N measurements might allow researchers to gain more insight regarding total ecosystem health.

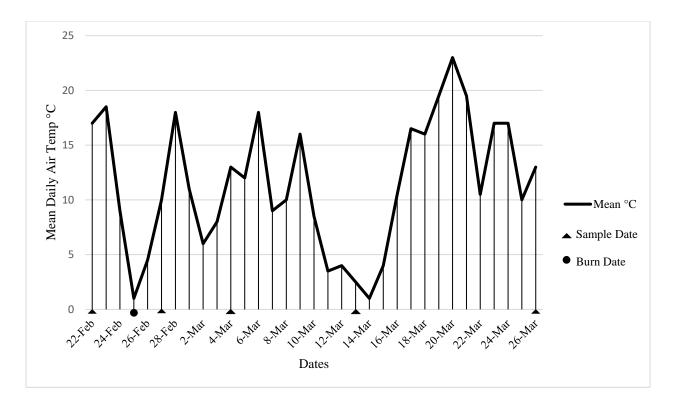

Based on the measurements of this study, the WL area is functioning as a highly productive carbon sink with greater C retention in OM and lower CO<sub>2</sub> respiration. Organic matter (particulate and total) and respiration measurements in the spring before and after an annual prescribed burn did not indicate that fire management is detrimental to carbon sequestration; therefore, prescribed annual fire appears to be a positive influence on soil carbon storage at the WWPS.

#### **Literature Cited**

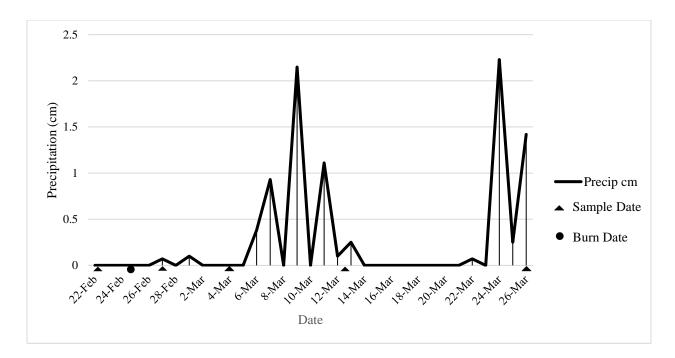
- Allgood, F. P., and Gray, F. 1974. An ecological interpretation for the small mounds in landscapes of eastern Oklahoma. Journal of Environment Quality 3(1):37-41.
- Brockway, D. G., Gatewood, R. G., and Paris, R. B. 2002. Restoring fire as an ecological process in shortgrass prairie ecosystems: Initial effects of prescribed burning during the dormant and growing seasons. Journal of Environmental Management, 65(2):135-152.
- Brye, K.R., Riley, T.L., and Gbur, E.E. 2008. Prairie restoration effects on soil properties in the Ozark Highlands. Journal of Integrative Biosciences 6(1):87-104.
- Docherty, K.M., Balser, T.C., Bohannan, B.J.M., and Gutknecht, J.L.M. 2011. Soil microbial responses to fire and interacting global change factors in a California annual grassland. Biogeochemistry 109(1-3):63-83.


- Environmental Consulting Operations, Inc., "Woolsey History." Woolsey history. n.d. ecoarkansas.com/updatedwoolseyhistory.html. Accessed October 20, 2016.
- Hulbert, L.C. 1986. Fire effects on tallgrass prairie. The prairie: Past, present and future.Proceedings of the Ninth North American Prairie Conference. Tri-College UniversityCenter for Environmental Studies, Fargo, North Dakota. p. 138-142.
- Keiluweit, M., Wanzek, T., Kleber, M., Nico, P., & Fendorf, S. 2017. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nature Communications, 8:1-10
- Kravchenko, A. N., Negassa, W., Guber, A. K., & Schmidt, S. 2014. New approach to measure soil particulate organic matter in intact samples using X-ray computed microtomography.
  Soil Science Society of America Journal, 78(4):1177-1185.
- Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123(1):1-22.
- Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G., Lange, H., Seneviratne, S. I.,
  Vargas, R., Ammann, C., Arain, M. A., Cescatti, A., Janssens, I. A., Migliavacca, M.,
  Montagnani, L., and Richardson, A. D. 2010. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329(5993):838-840.
- Murphy, B.W. 2015. Impact of soil organic matter on soil properties—a review with emphasis on Australian soils. Soil Research 53:605-635.
- Neary, D. G., Klopatek, C. C., DeBano, L. F., and Ffolliott, P. F. 1999. Fire effects on belowground sustainability: A review and synthesis. Forest Ecology and Management, 122(1):51-71.
- Ontl, T.A. and Schulte, L.A. 2012. Soil carbon storage. Nature Education Knowledge 3(10):35

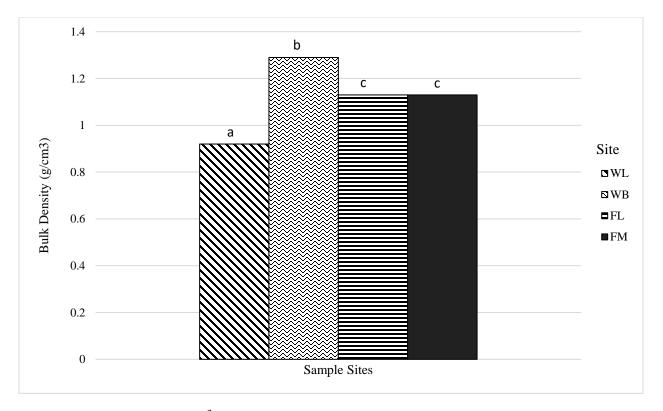
- Post, W.M., Izaurralde, R.C., Jastrow, J.D., Mccarl, B.A., Amonette, J.E., Bailey, V.L., Jardine,
  P.M., West, T.O., and Zhou, J. 2004. Enhancement of carbon sequestration in US soils.
  BioScience 54.10:895.
- Rook, E. J., Fischer, D. G., Seyferth, R. D., Kirsch, J. L., LeRoy, C. J., and Hamman, S. 2011. Responses of prairie vegetation to fire, herbicide, and invasive species legacy. Northwest Science 85(2):288-302.
- Stout, B., Lal, R., Monger, C. 2016. Carbon capture and sequestration: The roles of agriculture and soils. International Journal of Agricultural and Biological Engineering 9(1)1-8.
- Zhao, H., Tong, D.Q., Lin, Q., Lu, X., and Wang, G. 2012. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma 189-190:532-39.
- Zhou, X., Chen, C., Wang, Y., Xu, Z., Duan, J., Hao, Y., and Smaill, S. 2013. Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid inner mongolian grassland. Geoderma 206:24-31.



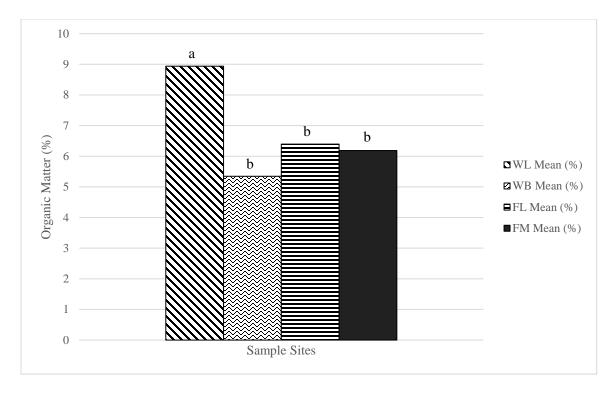

# **Tables and Figures**


**Figure 1.** Primary soil type map for the Woolsey Wet Prairie Sanctuary in Fayetteville, AR. Ta = Taloka complex, mounded. ToA = Taloka silt loam, 0 to 1 percent slopes. ToB = Taloka silt loam, 1 to 3 percent slopes. PsC2 = Pickwick silt loam, 3 to 8 percent slopes, eroded. Le = Leaf silt loam. JaB = Jay silt loam, 1 to 3 percent slopes. CaC2 = Captina silt loam, 3 to 6 percent slopes, eroded.

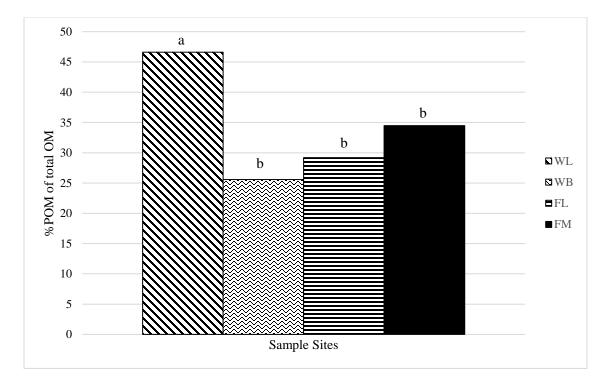



**Figure 2.** Woolsey Wet Prairie Sanctuary location map for Wetland Low, Wetland Berm, Fescue Low, and Fescue Mound sample sites.

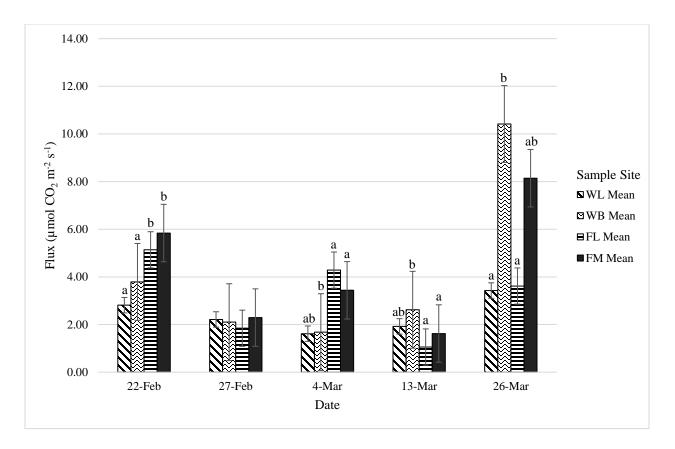



**Figure 3.** Mean daily air temperature (°C) during the time measurements were taken at the Woolsey Wet Prairie Sanctuary.

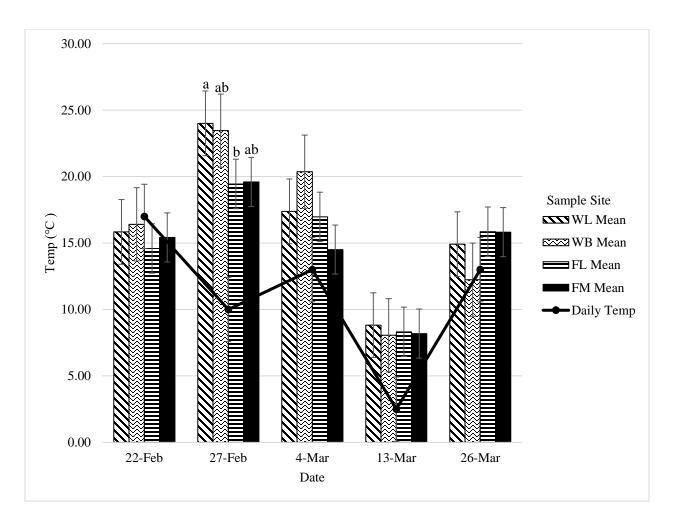



**Figure 4.** Precipitation (cm) during the time measurements were taken at the Woolsey Wet Prairie Sanctuary.

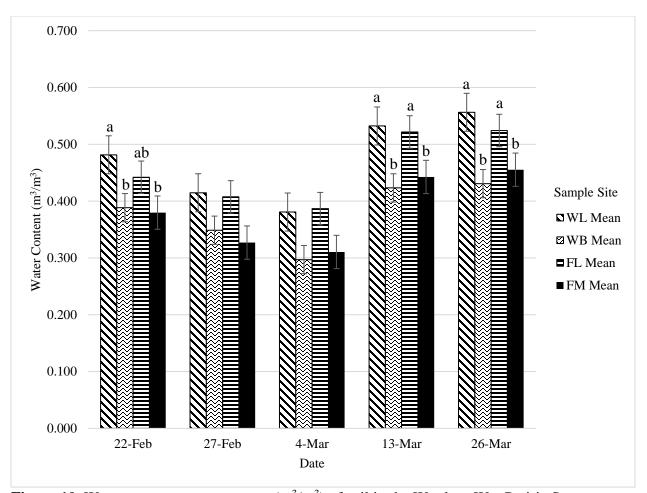



**Figure 5.** Bulk density (g/cm<sup>3</sup>) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR from February 10, March 12, and May 18, 2017. Bulk density did not change with time and samples were averaged together (n = 12). Means with the same letters are not statistically different ( $\alpha = 0.05$ ). Fire management was applied to the wetland area on February 25.




**Figure 6.** Organic matter (%) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR from February 10 to May 18, 2017. Means with the same letters are not statistically different ( $\alpha = 0.05$ ). Organic Matter did not significantly change over time and values across dates are averaged together (n = 12). Fire management was applied to the wetland area on February 25.




**Figure 7.** Particulate organic matter of the total organic matter (%) in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR on February 10, March 12, and May 18, 2017. On each date, means with the same letters are not statistically different ( $\alpha = 0.05$ ). Particulate organic matter did not significantly change over time and values across dates are averaged together (n = 12). Fire management was applied to the wetland area on February 25.



**Figure 8.** Carbon respiration measurements ( $\mu$ mol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR on February 22, February 27, March 4, March 13, and March 26, 2017 (n = 12). On each date, means with the same letters are not statistically different ( $\alpha = 0.05$ ). Statistical differences were not observed on February 27. Fire management was applied to the wetland area on February 25.



**Figure 9.** Soil temperature measurements (°C) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR on February 22, February 27, March 4, March 13, and March 26, 2017 (n = 4). On each date, means with the same letters are not statistically different ( $\alpha = 0.05$ ). Statistical differences were only observed on February 27. Fire management was applied to the wetland area on February 25.



**Figure 10.** Water content measurements  $(m^3/m^3)$  of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR on February 22, February 27, March 4, March 13, and March 26, 2017 (n = 4). On each date, means with the same letters are not statistically different ( $\alpha = 0.05$ ). Statistical differences were not observed on February 27 or March 4. Fire management was applied to the wetland on February 25.

|    |        | Diff  | F    | P-value |
|----|--------|-------|------|---------|
| WL | Diff 1 | 0.01  | 0.09 | 0.7854  |
|    | Diff 2 | 0.08  | 0.59 | 0.4978  |
| WB | Diff 1 | 0.01  | 0.02 | 0.8916  |
|    | Diff 2 | 0.11  | 1.69 | 0.2849  |
| FL | Diff 1 | 0.06  | 0.61 | 0.4905  |
|    | Diff 2 | 0.02  | 0.09 | 0.7873  |
| FM | Diff 1 | 0.09  | 8.95 | 0.0581  |
|    | Diff 2 | -0.06 | 1.84 | 0.2680  |

Table 1. Bulk density (g/cm<sup>3</sup>) repeated measured ANOVA of contrast variables

n = 12

*Note*: The dependent variable is bulk density (g/cm<sup>3</sup>) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field mounds (FM) and intermounds (FL) in Fayetteville, AR. Diff 1 is the difference in means between February 10 and March 12. Diff 2 is the difference in means between March 12 and May 18. All differences are not significantly different from 0 at  $\alpha = 0.05$ . Fire management was applied to the wetland area on February 25.

|                       |          |          |                       |            |       | 95% Confidence Interval |             |  |
|-----------------------|----------|----------|-----------------------|------------|-------|-------------------------|-------------|--|
| Dependent<br>Variable | (I) site | (J) site | Mean Difference (I-J) | Std. Error | Sig.  | Lower Bound             | Upper Bound |  |
| Bulk density          | WL       | WB       | -0.373*               | 0.043      | 0.000 | -0.459                  | -0.288      |  |
|                       |          | FL       | -0.203*               | 0.043      | 0.000 | -0.288                  | -0.117      |  |
|                       |          | FM       | $-0.208^{*}$          | 0.043      | 0.000 | -0.294                  | -0.123      |  |
|                       | WB       | WL       | 0.373*                | 0.043      | 0.000 | 0.288                   | 0.459       |  |
|                       |          | FL       | $0.171^{*}$           | 0.043      | 0.000 | 0.085                   | 0.257       |  |
|                       |          | FM       | $0.165^{*}$           | 0.043      | 0.000 | 0.079                   | 0.251       |  |
|                       | FL       | WL       | $0.203^{*}$           | 0.043      | 0.000 | 0.117                   | 0.288       |  |
|                       |          | WB       | -0.171*               | 0.043      | 0.000 | -0.257                  | -0.085      |  |
|                       |          | FM       | -0.006                | 0.043      | 0.891 | -0.092                  | 0.080       |  |
|                       | FM       | WL       | $0.208^{*}$           | 0.043      | 0.000 | 0.123                   | 0.294       |  |
|                       |          | WB       | -0.165*               | 0.043      | 0.000 | -0.251                  | -0.079      |  |
|                       |          | FL       | 0.006                 | 0.043      | 0.891 | -0.080                  | 0.092       |  |

**Table 2.** Bulk density (g/cm<sup>3</sup>) one-way ANOVA Post-Hoc (LSD) test

\*P < 0.05; n = 12

*Note:* The dependent variable is bulk density (g/cm<sup>3</sup>) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR on February 10, March 12, and May 18, 2017. Time was not statistically significant; therefore, measurements are averaged across the three days for each site. Fire management was applied to the wetland area on February 25.

|    |        | Diff  | F    | P-value |
|----|--------|-------|------|---------|
| WL | Diff 1 | 1.13  | 0.20 | 0.6865  |
|    | Diff 2 | -2.48 | 3.04 | 0.1797  |
| WB | Diff 1 | 1.09  | 5.90 | 0.0933  |
|    | Diff 2 | -1.39 | 4.74 | 0.1178  |
| FL | Diff 1 | 0.13  | 0.36 | 0.5888  |
|    | Diff 2 | 0.06  | 0.01 | 0.9330  |
| FM | Diff 1 | 0.38  | 1.54 | 0.3031  |
|    | Diff 2 | 0.20  | 0.14 | 0.7296  |

Table 3. Soil organic matter (%) repeated measures ANOVA of contrast variables

n = 12

*Note*: The dependent variable is organic matter (%) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field mounds (FM) and intermounds (FL) in Fayetteville, AR. Diff 1 is the difference in means between February 10 and March 12. Diff 2 is the difference in means between March 12 and May 18. All differences are not significantly different from 0 at  $\alpha = 0.05$ . Fire management was applied to the wetland area on February 25.

|                       |          |          | Mean Difference |            |       | 95% Confidence Interval |             |  |
|-----------------------|----------|----------|-----------------|------------|-------|-------------------------|-------------|--|
| Dependent<br>Variable | (I) Site | (J) Site | (I-J)           | Std. Error | Sig.  | Lower Bound             | Upper Bound |  |
| OM                    | WL       | WB       | 4.337*          | 0.679      | 0.000 | 2.969                   | 5.704       |  |
|                       |          | FL       | 3.263*          | 0.679      | 0.000 | 1.896                   | 4.631       |  |
|                       |          | FM       | 3.474*          | 0.679      | 0.000 | 2.107                   | 4.842       |  |
|                       | WB       | WL       | -4.337*         | 0.679      | 0.000 | -5.704                  | -2.969      |  |
|                       |          | FL       | -1.073          | 0.679      | 0.121 | -2.441                  | 0.294       |  |
|                       |          | FM       | -0.863          | 0.679      | 0.210 | -2.230                  | 0.505       |  |
|                       | FL       | WL       | -3.263*         | 0.679      | 0.000 | -4.631                  | -1.896      |  |
|                       |          | WB       | 1.073           | 0.679      | 0.121 | -0.294                  | 2.441       |  |
|                       |          | FM       | 0.211           | 0.679      | 0.757 | -1.157                  | 1.578       |  |
|                       | FM       | WL       | -3.474*         | 0.679      | 0.000 | -4.842                  | -2.107      |  |
|                       |          | WB       | 0.863           | 0.679      | 0.210 | -0.505                  | 2.230       |  |
|                       |          | FL       | -0.211          | 0.679      | 0.757 | -1.578                  | 1.157       |  |

Table 4. Organic matter (%) one-way ANOVA Post-Hoc (LSD) test

*Note:* The dependent variable is bulk density (g/cm<sup>3</sup>) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR on February 10, March 12, and May 18, 2017. Time was statistically significant; therefore, measurements are averaged across the three days for each site. Fire management was applied to the wetland area on February 25.

|    |        | Diff   | F    | P-value |
|----|--------|--------|------|---------|
| WL | Diff 1 | 10.07  | 0.79 | 0.4392  |
|    | Diff 2 | -24.61 | 2.03 | 0.2496  |
| WB | Diff 1 | 7.49   | 2.00 | 0.2522  |
|    | Diff 2 | -16.84 | 4.12 | 0.1354  |
| FL | Diff 1 | 12.51  | 3.43 | 0.1612  |
|    | Diff 2 | -7.82  | 2.14 | 0.2394  |
| FM | Diff 1 | -3.23  | 0.60 | 0.4950  |
|    | Diff 2 | 3.23   | 0.60 | 0.4950  |

**Table 5.** Particulate organic matter of the total organic matter (%) of soil repeated measures ANOVA of contrast variables

n = 12

*Note*: The dependent variable is particulate organic matter of the total organic matter (%) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR. Diff 1 is the difference in means between February 10 and March 12. Diff 2 is the difference in means between March 12 and May 18. All differences are not significantly different from 0 at  $\alpha = 0.05$ . Fire management was applied to the wetland area on February 25.

| Dependent | -        |          | Mean                 |            | -     | 95% Confide | nce Interval |
|-----------|----------|----------|----------------------|------------|-------|-------------|--------------|
| Variable  | (I) Site | (J) Site | Difference (I-J)     | Std. Error | Sig.  | Lower Bound | Upper Bound  |
| POM       | WL       | WB       | $12.800^{*}$         | 2.572      | 0.000 | 7.197       | 18.403       |
|           |          | FL       | $11.910^{*}$         | 2.572      | 0.001 | 6.307       | 17.513       |
|           |          | FM       | $11.620^{*}$         | 2.572      | 0.001 | 6.017       | 17.223       |
|           | WB       | WL       | $-12.800^{*}$        | 2.572      | 0.000 | -18.403     | -7.197       |
|           |          | FL       | -0.890               | 2.572      | 0.735 | -6.493      | 4.713        |
|           |          | FM       | -1.180               | 2.572      | 0.655 | -6.783      | 4.423        |
|           | FL       | WL       | -11.910 <sup>*</sup> | 2.572      | 0.001 | -17.513     | -6.307       |
|           |          | WB       | 0.890                | 2.572      | 0.735 | -4.713      | 6.493        |
|           |          | FM       | -0.290               | 2.572      | 0.912 | -5.893      | 5.313        |
|           | FM       | WL       | -11.620*             | 2.572      | 0.001 | -17.223     | -6.017       |
|           |          | WB       | 1.180                | 2.572      | 0.655 | -4.423      | 6.783        |
|           |          | FL       | 0.290                | 2.572      | 0.912 | -5.313      | 5.893        |

**Table 6.** Particulate organic matter of the total organic matter (%) one-way ANOVA Post-Hoc (LSD) test

*Note:* The dependent variable is particulate organic matter of total organic matter (%) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR on February 10, March 12, and May 18, 2017. Time was not statistically significant; therefore, measurements are averaged across the three days for each site. Fire management was applied to the wetland area on February 25.

|    |        | Diff   | F      | P-value |
|----|--------|--------|--------|---------|
| WL | Diff 1 | -0.84  | 1.16   | 0.3597  |
|    | Diff 2 | 0.08   | 0.02   | 0.8866  |
|    | Diff 3 | -0.13  | 0.12   | 0.7521  |
|    | Diff 4 | 2.03   | 3.45   | 0.1604  |
| WB | Diff 1 | -1.28  | 1.55   | 0.3018  |
|    | Diff 2 | -0.42  | 3.89   | 0.1433  |
|    | Diff 3 | 1.43   | 3.52   | 0.1572  |
|    | Diff 4 | 7.74*  | 14.55  | 0.0317  |
| FL | Diff 1 | -3.24* | 398.72 | 0.0003  |
|    | Diff 2 | 2.16   | 2.61   | 0.2044  |
|    | Diff 3 | -2.95  | 6.37   | 0.0859  |
|    | Diff 4 | 2.56   | 5.53   | 0.1001  |
| FM | Diff 1 | -3.60* | 30.73  | 0.0116  |
|    | Diff 2 | 1.15   | 4.83   | 0.1154  |
|    | Diff 3 | -1.82* | 12.06  | 0.0403  |
|    | Diff 4 | 3.76   | 5.57   | 0.0994  |

**Table 7.**  $CO_2$  respiration (µmol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) repeated measures ANOVA of contrast variables

*Note:* The dependent variable is  $CO_2$  respiration (µmol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR. Diff 1 is the difference in means between February 22 and February 27. Diff 2 is the difference in means between February 27 and March 4. Diff 3 is the difference in means between March 4 and March 13. Diff 4 is the difference in means between March 13 and March 26. Fire management was applied to the wetland area on February 25.

|                    | -        | -        | Mean Difference |            | •     | 95% Confide |             |
|--------------------|----------|----------|-----------------|------------|-------|-------------|-------------|
| Dependent Variable | (I) Site | (J) Site | (I-J)           | Std. Error | Sig.  | Lower Bound | Upper Bound |
| 22-Feb             | WL       | WB       | -0.562          | 0.939      | 0.560 | -2.608      | 1.483       |
|                    |          | FL       | -2.277*         | 0.939      | 0.032 | -4.322      | -0.230      |
|                    |          | FM       | -3.076*         | 0.939      | 0.007 | -5.122      | -1.031      |
|                    | WB       | WL       | 0.562           | 0.939      | 0.560 | -1.483      | 2.608       |
|                    |          | FL       | -1.714          | 0.939      | 0.093 | -3.759      | 0.332       |
|                    |          | FM       | -2.514*         | 0.939      | 0.020 | -4.560      | -0.468      |
|                    | FL       | WL       | 2.276*          | 0.939      | 0.032 | 0.230       | 4.322       |
|                    |          | WB       | 1.714           | 0.939      | 0.093 | -0.332      | 3.759       |
|                    |          | FM       | -0.800          | 0.939      | 0.411 | -2.846      | 1.245       |
|                    | FM       | WL       | 3.076*          | 0.939      | 0.007 | 1.031       | 5.122       |
|                    |          | WB       | $2.514^{*}$     | 0.939      | 0.020 | 0.468       | 4.560       |
|                    |          | FL       | 0.800           | 0.939      | 0.411 | -1.245      | 2.846       |
| 27-Feb             | WL       | WB       | -0.130          |            | 0.764 | -1.050      | 0.790       |
| 2, 100             |          | FL       | 0.124           | 0.422      | 0.774 | -0.796      | 1.044       |
|                    |          | FM       | -0.323          | 0.422      | 0.459 | -1.243      | 0.597       |
|                    | WB       | WL       | 0.130           | 0.422      | 0.764 | -0.790      | 1.050       |
|                    |          | FL       | 0.254           | 0.422      | 0.559 | -0.666      | 1.174       |
|                    |          | FM       | -0.193          | 0.422      | 0.655 | -1.113      | 0.726       |
|                    | FL       | WL       | -0.124          | 0.422      | 0.774 | -1.044      | 0.796       |
|                    |          | WB       | -0.254          | 0.422      | 0.559 | -1.174      | 0.666       |
|                    |          | FM       | -0.448          | 0.422      | 0.310 | -1.367      | 0.472       |
|                    | FM       | WL       | 0.323           | 0.422      | 0.459 | -0.597      | 1.243       |
|                    |          | WB       | 0.193           | 0.422      | 0.655 | -0.726      | 1.113       |
|                    |          | FL       | 0.448           | 0.422      | 0.310 | -0.472      | 1.367       |
| 4-Mar              | WL       | WB       | 0.368           | 0.954      | 0.707 | -1.712      | 2.447       |
|                    |          | FL       | -1.955          | 0.954      | 0.063 | -4.034      | 0.125       |
|                    |          | FM       | -1.388          | 0.954      | 0.172 | -3.467      | 0.691       |
|                    | WB       | WL       | -0.368          | 0.954      | 0.707 | -2.447      | 1.712       |
|                    |          | FL       | -2.323*         | 0.954      | 0.032 | -4.402      | -0.243      |
|                    |          | FM       | -1.756          |            | 0.091 | -3.835      | 0.324       |
|                    | FL       | WL       | 1.955           | 0.954      | 0.063 | -0.125      | 4.034       |
|                    |          | WB       | 2.323*          | 0.954      | 0.032 | 0.243       | 4.402       |
|                    |          | FM       | 0.567           | 0.954      | 0.564 | -1.513      | 2.646       |
|                    | FM       | WL       | 1.388           | 0.954      | 0.172 | -0.691      | 3.467       |
|                    |          | WB       | 1.756           |            | 0.091 | -0.324      | 3.835       |
|                    |          | FL       | -0.567          | 0.954      | 0.564 | -2.646      | 1.513       |

**Table 8.** CO<sub>2</sub> respiration measurements ( $\mu$ mol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>) one-way ANOVA Post-Hoc test

|                    | -        |          | Mean Difference |            |       |                |          |
|--------------------|----------|----------|-----------------|------------|-------|----------------|----------|
| Dependent Variable | (I) Site | (J) Site | (I-J)           | Std. Error | Sig.  | 95% Confidence | Interval |
| 13-Mar             | WL       | WB       | -1.184          | 0.662      | 0.099 | -2.628         | 0.259    |
|                    |          | FL       | 0.869           | 0.662      | 0.214 | -0.574         | 2.312    |
|                    |          | FM       | 0.305           | 0.662      | 0.653 | -1.138         | 1.748    |
|                    | WB       | WL       | 1.184           | 0.662      | 0.099 | -0.259         | 2.628    |
|                    |          | FL       | 2.053*          | 0.662      | 0.009 | 0.610          | 3.497    |
|                    |          | FM       | 1.489*          | 0.662      | 0.044 | 0.046          | 2.933    |
|                    | FL       | WL       | -0.869          | 0.662      | 0.214 | -2.312         | 0.574    |
|                    |          | WB       | -2.053*         | 0.662      | 0.009 | -3.497         | -0.610   |
|                    |          | FM       | -0.564          | 0.662      | 0.411 | -2.007         | 0.879    |
|                    | FM       | WL       | -0.305          | 0.662      | 0.653 | -1.748         | 1.138    |
|                    |          | WB       | -1.489*         | 0.662      | 0.044 | -2.933         | -0.046   |
|                    |          | FL       | 0.564           | 0.662      | 0.411 | -0.879         | 2.007    |
| 26-Mar             | WL       | WB       | -6.897*         | 2.889      | 0.034 | -13.191        | -0.603   |
|                    |          | FL       | 0.339           | 2.889      | 0.909 | -5.956         | 6.633    |
|                    |          | FM       | -4.526          | 2.889      | 0.143 | -10.820        | 1.768    |
|                    | WB       | WL       | 6.897*          | 2.889      | 0.034 | 0.603          | 13.191   |
|                    |          | FL       | 7.236*          | 2.889      | 0.028 | 0.942          | 13.530   |
|                    |          | FM       | 2.371           | 2.889      | 0.428 | -3.923         | 8.665    |
|                    | FL       | WL       | -0.339          | 2.889      | 0.909 | -6.633         | 5.956    |
|                    |          | WB       | -7.236*         | 2.889      | 0.028 | -13.530        | -0.942   |
|                    |          | FM       | -4.865          | 2.889      | 0.118 | -11.159        | 1.429    |
|                    | FM       | WL       | 4.526           |            | 0.143 | -1.768         | 10.820   |
|                    |          | WB       | -2.371          | 2.889      | 0.428 | -8.665         | 3.923    |
|                    |          | FL       | 4.865           | 2.889      | 0.118 | -1.429         | 11.159   |

Table 8 (Continued).  $CO_2$  respiration measurements (µmol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) one-way ANOVA Post-Hoc test

*Note*: The dependent variable is  $CO_2$  respiration measurements (µmol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR on February 22, February 27, March 4, March 13, and March 26. Fire management was applied to the wetland area on February 25<sup>th</sup>.

|    |        | Diff    | F       | P-value |
|----|--------|---------|---------|---------|
| WL | Diff 1 | 8.17    | 5.60    | 0.0988  |
|    | Diff 2 | -6.62   | 3.37    | 0.1637  |
|    | Diff 3 | -8.56   | 5.65    | 0.0980  |
|    | Diff 4 | 6.09*   | 150.10  | 0.0012  |
| WB | Diff 1 | 7.04*   | 28.79   | 0.0127  |
|    | Diff 2 | -3.09   | 1.79    | 0.2737  |
|    | Diff 3 | -12.30* | 21.66   | 0.0187  |
|    | Diff 4 | 4.18    | 1.24    | 0.3464  |
| FL | Diff 1 | 4.85*   | 71.61   | 0.0035  |
|    | Diff 2 | -2.47   | 1.01    | 0.3898  |
|    | Diff 3 | -8.64*  | 22.50   | 0.0178  |
|    | Diff 4 | 7.53*   | 3511.86 | 0.0001  |
| FM | Diff 1 | 4.17    | 5.61    | 0.0986  |
|    | Diff 2 | -5.09   | 4.05    | 0.1377  |
|    | Diff 3 | -6.32*  | 13.50   | 0.0349  |
|    | Diff 4 | 7.63*   | 936.56  | 0.0001  |

Table 9. Soil temperature (°C) repeated measures ANOVA of contrast variables

*Note:* The dependent variable is soil temperature (°C) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR. Diff 1 is the difference in means between February 22 and February 27. Diff 2 is the difference in means between February 27 and March 4. Diff 3 is the difference in means between March 4 and March 13. Diff 4 is the difference in means between March 13 and March 26. Fire management was applied to the wetland area on February 25.

|                    |          |          | Mean Difference |            |       | 95% Confide | ence Interval |
|--------------------|----------|----------|-----------------|------------|-------|-------------|---------------|
| Dependent Variable | (I) Site | (J) Site | (I-J)           | Std. Error | Sig.  | Lower Bound | Upper Bound   |
| 22-Feb             | WL       | WB       | -0.575          | 1.858      | 0.762 | -4.622      | 3.472         |
|                    |          | FL       | 1.245           | 1.858      | 0.515 | -2.802      | 5.292         |
|                    |          | FM       | 0.415           | 1.858      | 0.827 | -3.632      | 4.462         |
|                    | WB       | WL       | 0.575           | 1.858      | 0.762 | -3.472      | 4.622         |
|                    |          | FL       | 1.820           | 1.858      | 0.347 | -2.227      | 5.867         |
|                    |          | FM       | 0.990           | 1.858      | 0.604 | -3.057      | 5.037         |
|                    | FL       | WL       | -1.245          | 1.858      | 0.515 | -5.292      | 2.802         |
|                    |          | WB       | -1.820          |            | 0.347 | -5.867      | 2.227         |
|                    |          | FM       | -0.830          | 1.858      | 0.663 | -4.877      | 3.217         |
|                    | FM       | WL       | -0.415          | 1.858      | 0.827 | -4.462      | 3.632         |
|                    |          | WB       | -0.990          |            | 0.604 | -5.037      | 3.057         |
|                    |          | FL       | 0.830           |            | 0.663 | -3.217      | 4.877         |
| 27-Feb             | WL       | WB       | 0.550           |            | 0.793 | -3.926      | 5.020         |
| 2,100              |          | FL       | 4.562*          | 2.054      | 0.046 | 0.087       | 9.038         |
|                    |          | FM       | 4.408           | 2.054      | 0.053 | -0.068      | 8.883         |
|                    | WB       | WL       | -0.550          |            | 0.793 | -5.026      | 3.926         |
|                    |          | FL       | 4.013           | 2.054      | 0.074 | -0.463      | 8.488         |
|                    |          | FM       | 3.858           | 2.054      | 0.085 | -0.618      | 8.333         |
|                    | FL       | WL       | -4.562*         | 2.054      | 0.046 | -9.038      | -0.08         |
|                    |          | WB       | -4.013          | 2.054      | 0.074 | -8.488      | 0.463         |
|                    |          | FM       | -0.155          | 2.054      | 0.941 | -4.631      | 4.32          |
|                    | FM       | WL       | -4.408          | 2.054      | 0.053 | -8.883      | 0.068         |
|                    |          | WB       | -3.858          | 2.054      | 0.085 | -8.333      | 0.618         |
|                    |          | FL       | 0.155           | 2.054      | 0.941 | -4.321      | 4.63          |
| 4-Mar              | WL       | WB       | -2.980          |            | 0.409 | -10.569     | 4.609         |
|                    |          | FL       | 0.420           |            | 0.906 | -7.169      | 8.009         |
|                    |          | FM       | 2.880           | 3.483      | 0.424 | -4.709      | 10.469        |
|                    | WB       | WL       | 2.980           |            | 0.409 | -4.609      | 10.569        |
|                    |          | FL       | 3.400           |            | 0.348 | -4.189      | 10.989        |
|                    |          | FM       | 5.860           |            | 0.118 | -1.729      | 13.449        |
|                    | FL       | WL       | -0.420          |            | 0.906 | -8.009      | 7.16          |
|                    |          | WB       | -3.400          |            | 0.348 | -10.989     | 4.189         |
|                    |          | FM       | 2.460           |            | 0.493 | -5.129      | 10.049        |
|                    | FM       | WL       | -2.880          |            | 0.424 | -10.469     | 4.709         |
|                    |          | WB       | -5.860          |            | 0.118 | -13.449     | 1.729         |
|                    |          | FL       | -2.460          | 3.483      | 0.493 | -10.049     | 5.129         |

 Table 10. Soil temperature (°C) one-way ANOVA Post-Hoc test

|                    |          |          | Mean Difference |            |       |                |       |
|--------------------|----------|----------|-----------------|------------|-------|----------------|-------|
| Dependent Variable | (I) Site | (J) Site | (I-J)           | Std. Error | Sig.  | 95% Confidence |       |
| 13-Mar             | WL       | WB       | 0.758           | 0.374      | 0.066 | -0.057         | 1.572 |
|                    |          | FL       | 0.500           | 0.374      | 0.206 | -0.315         | 1.315 |
|                    |          | FM       | 0.633           | 0.374      | 0.116 | -0.182         | 1.447 |
|                    | WB       | WL       | -0.758          | 0.374      | 0.066 | -1.572         | 0.057 |
|                    |          | FL       | -0.258          | 0.374      | 0.504 | -1.072         | 0.557 |
|                    |          | FM       | -0.125          | 0.374      | 0.744 | -0.940         | 0.690 |
|                    | FL       | WL       | -0.500          | 0.374      | 0.206 | -1.315         | 0.315 |
|                    |          | WB       | 0.258           | 0.374      | 0.504 | -0.557         | 1.072 |
|                    |          | FM       | 0.133           | 0.374      | 0.729 | -0.682         | 0.947 |
|                    | FM       | WL       | -0.633          | 0.374      | 0.116 | -1.447         | 0.182 |
|                    |          | WB       | 0.125           | 0.374      | 0.744 | -0.690         | 0.940 |
|                    |          | FL       | -0.133          | 0.374      | 0.729 | -0.947         | 0.682 |
| 26-Mar             | WL       | WB       | 2.670           | 2.558      | 0.317 | -2.903         | 8.243 |
|                    |          | FL       | -0.940          | 2.558      | 0.720 | -6.513         | 4.633 |
|                    |          | FM       | -0.910          | 2.558      | 0.728 | -6.483         | 4.663 |
|                    | WB       | WL       | -2.670          | 2.558      | 0.317 | -8.243         | 2.903 |
|                    |          | FL       | -3.610          | 2.558      | 0.184 | -9.183         | 1.963 |
|                    |          | FM       | -3.580          | 2.558      | 0.187 | -9.153         | 1.993 |
|                    | FL       | WL       | 0.940           | 2.558      | 0.720 | -4.633         | 6.513 |
|                    |          | WB       | 3.610           | 2.558      | 0.184 | -1.963         | 9.183 |
|                    |          | FM       | 0.030           | 2.558      | 0.991 | -5.543         | 5.603 |
|                    | FM       | WL       | 0.910           | 2.558      | 0.728 | -4.663         | 6.483 |
|                    |          | WB       | 3.580           | 2.558      | 0.187 | -1.993         | 9.153 |
|                    |          | FL       | -0.030          | 2.558      | 0.991 | -5.603         | 5.543 |

Table 10 (Continued). Soil temperature (°C) one-way ANOVA Post-Hoc test

*Note*: The dependent variable is soil temperature (°C) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR on February 22, February 27, March 4, March 13, and March 26. Fire management was applied to the wetland area on February 25. Statistical differences were only observed on February 27.

|    |        | Diff    | F      | P-value |
|----|--------|---------|--------|---------|
| WL | Diff 1 | -0.067* | 10.83  | 0.0460  |
|    | Diff 2 | -0.034  | 1.16   | 0.3605  |
|    | Diff 3 | 0.152*  | 20.54  | 0.0201  |
|    | Diff 4 | 0.024   | 8.07   | 0.0656  |
| WB | Diff 1 | -0.039  | 0.50   | 0.5323  |
|    | Diff 2 | -0.052  | 7.82   | 0.0680  |
|    | Diff 3 | 0.126*  | 167.67 | 0.0010  |
|    | Diff 4 | 0.007   | 0.14   | 0.7355  |
| FL | Diff 1 | -0.035* | 37.89  | 0.0086  |
|    | Diff 2 | -0.021  | 6.20   | 0.0884  |
|    | Diff 3 | 0.135*  | 53.76  | 0.0052  |
|    | Diff 4 | 0.002   | 0.04   | 0.8632  |
| FM | Diff 1 | -0.053  | 7.46   | 0.0719  |
|    | Diff 2 | -0.017  | 0.21   | 0.6795  |
|    | Diff 3 | 0.132*  | 13.62  | 0.0345  |
|    | Diff 4 | 0.013   | 0.31   | 0.6150  |

Table 11. Soil water content  $(m^3/m^3)$  repeated measures ANOVA of contrast variables

*Note:* The dependent variable is soil temperature (°C) of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR. Diff 1 is the difference in means between February 22 and February 27. Diff 2 is the difference in means between February 27 and March 4. Diff 3 is the difference in means between March 4 and March 13. Diff 4 is the difference in means between March 13 and March 26. Fire management was applied to the wetland area on February 25.

|                    |          |          | Mean Difference |            |       | 95% Confide |             |
|--------------------|----------|----------|-----------------|------------|-------|-------------|-------------|
| Dependent Variable | (I) Site | (J) Site | (I-J)           | Std. Error | Sig.  | Lower Bound | Upper Bound |
| 22-Feb             | WL       | WB       | 0.093*          | 0.034      | 0.017 | 0.020       | 0.166       |
|                    |          | FL       | 0.0395          | 0.034      | 0.263 | -0.034      | 0.113       |
|                    |          | FM       | 0.102*          | 0.034      | 0.011 | 0.029       | 0.175       |
|                    | WB       | WL       | 093*            | 0.034      | 0.017 | -0.166      | -0.020      |
|                    |          | FL       | -0.054          | 0.034      | 0.138 | -0.127      | 0.020       |
|                    |          | FM       | 0.009           | 0.034      | 0.799 | -0.065      | 0.082       |
|                    | FL       | WL       | -0.039          | 0.034      | 0.263 | -0.113      | 0.034       |
|                    |          | WB       | 0.054           | 0.034      | 0.138 | -0.020      | 0.127       |
|                    |          | FM       | 0.062           | 0.034      | 0.089 | -0.011      | 0.136       |
|                    | FM       | WL       | -0.102*         | 0.034      | 0.011 | -0.175      | -0.029      |
|                    |          | WB       | -0.009          | 0.034      | 0.799 | -0.082      | 0.065       |
|                    |          | FL       | -0.062          | 0.034      | 0.089 | -0.136      | 0.011       |
| 27-Feb             | WL       | WB       | 0.066           |            | 0.134 | -0.023      | 0.155       |
|                    |          | FL       | 0.007           | 0.041      | 0.863 | -0.082      | 0.097       |
|                    |          | FM       | 0.088           | 0.041      | 0.054 | -0.002      | 0.177       |
|                    | WB       | WL       | -0.066          |            | 0.134 | -0.155      | 0.023       |
|                    |          | FL       | -0.059          | 0.041      | 0.178 | -0.148      | 0.031       |
|                    |          | FM       | 0.022           | 0.041      | 0.606 | -0.068      | 0.111       |
|                    | FL       | WL       | -0.007          | 0.041      | 0.863 | -0.097      | 0.082       |
|                    |          | WB       | 0.059           | 0.041      | 0.178 | -0.031      | 0.148       |
|                    |          | FM       | 0.081           | 0.041      | 0.073 | -0.009      | 0.170       |
|                    | FM       | WL       | -0.088          | 0.041      | 0.054 | -0.177      | 0.002       |
|                    |          | WB       | -0.022          | 0.041      | 0.606 | -0.111      | 0.068       |
|                    |          | FL       | -0.081          | 0.041      | 0.073 | -0.170      | 0.009       |
| 4-Mar              | WL       | WB       | 0.084           |            | 0.069 | -0.008      | 0.175       |
|                    |          | FL       | -0.006          | 0.042      | 0.888 | -0.097      | 0.085       |
|                    |          | FM       | 0.070           |            | 0.119 | -0.021      | 0.162       |
|                    | WB       | WL       | -0.084          | 0.042      | 0.069 | -0.175      | 0.008       |
|                    |          | FL       | -0.089          | 0.042      | 0.053 | -0.181      | 0.002       |
|                    |          | FM       | -0.014          |            | 0.753 | -0.105      | 0.078       |
|                    | FL       | WL       | 0.006           |            | 0.888 | -0.085      | 0.097       |
|                    |          | WB       | 0.089           | 0.042      | 0.053 | -0.002      | 0.181       |
|                    | EM       | FM       | 0.076           |            | 0.094 | -0.015      | 0.168       |
|                    | FM       | WL       | -0.070          |            | 0.119 | -0.162      | 0.021       |
|                    |          | WB<br>FI | 0.014           | 0.042      | 0.753 | -0.078      | 0.105       |
|                    |          | FL       | -0.076          | 0.042      | 0.094 | -0.168      | 0.015       |

 Table 12. Soil water content (m<sup>3</sup>/m<sup>3</sup>) one-way ANOVA Post-Hoc test

|                    |          |          | Mean Difference |            |       |                |          |
|--------------------|----------|----------|-----------------|------------|-------|----------------|----------|
| Dependent Variable | (I) Site | (J) Site | (I-J)           | Std. Error | Sig.  | 95% Confidence | Interval |
| 13-Mar             | WL       | WB       | 0.109*          | 0.037      | 0.012 | 0.028          | 0.190    |
|                    |          | FL       | 0.011           | 0.037      | 0.782 | -0.070         | 0.091    |
|                    |          | FM       | 0.089*          | 0.037      | 0.032 | 0.009          | 0.171    |
|                    | WB       | WL       | -0.109*         | 0.037      | 0.012 | -0.190         | -0.028   |
|                    |          | FL       | -0.099*         | 0.037      | 0.021 | -0.179         | -0.018   |
|                    |          | FM       | -0.019          | 0.037      | 0.613 | -0.100         | 0.062    |
|                    | FL       | WL       | -0.011          | 0.037      | 0.782 | -0.091         | 0.070    |
|                    |          | WB       | 0.099*          | 0.037      | 0.021 | 0.018          | 0.179    |
|                    |          | FM       | 0.079           | 0.037      | 0.054 | -0.002         | 0.160    |
|                    | FM       | WL       | -0.089*         | 0.037      | 0.032 | -0.171         | -0.009   |
|                    |          | WB       | 0.019           | 0.037      | 0.613 | -0.062         | 0.100    |
|                    |          | FL       | -0.079          | 0.037      | 0.054 | -0.160         | 0.002    |
| 26-Mar             | WL       | WB       | 0.126*          | 0.024      | 0.000 | 0.073          | 0.178    |
|                    |          | FL       | 0.032           | 0.024      | 0.206 | -0.020         | 0.084    |
|                    |          | FM       | 0.101*          | 0.024      | 0.001 | 0.049          | 0.153    |
|                    | WB       | WL       | -0.126*         | 0.024      | 0.000 | -0.178         | -0.073   |
|                    |          | FL       | -0.094*         | 0.024      | 0.002 | -0.146         | -0.041   |
|                    |          | FM       | -0.025          | 0.024      | 0.326 | -0.077         | 0.028    |
|                    | FL       | WL       | -0.032          | 0.024      | 0.206 | -0.084         | 0.020    |
|                    |          | WB       | 0.094*          | 0.024      | 0.002 | 0.041          | 0.146    |
|                    |          | FM       | 0.069*          | 0.024      | 0.014 | 0.017          | 0.121    |
|                    | FM       | WL       | -0.101*         | 0.024      | 0.001 | -0.153         | -0.049   |
|                    |          | WB       | 0.025           | 0.024      | 0.326 | -0.028         | 0.077    |
|                    |          | FL       | -0.069*         | 0.024      | 0.014 | -0.121         | -0.017   |

Table 12 (Continued). Soil water content (m<sup>3</sup>/m<sup>3</sup>) one-way ANOVA Post-Hoc test

*Note*: The dependent variable is soil water content  $(m^3/m^3)$  of soil in the Woolsey Wet Prairie Sanctuary wetland low (WL), wetland berm (WB), and adjacent fescue field intermounds (FL) and mounds (FM) in Fayetteville, AR on February 22, February 27, March 4, March 13, and March 26. Fire management was applied to the wetland area on February 25.