
HAL Id: hal-01538002
https://hal.inria.fr/hal-01538002v6

Submitted on 22 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hierarchical Model to Manage Hardware Topology in
MPI Applications

Brice Goglin, Emmanuel Jeannot, Farouk Mansouri, Guillaume Mercier

To cite this version:
Brice Goglin, Emmanuel Jeannot, Farouk Mansouri, Guillaume Mercier. A Hierarchical Model to
Manage Hardware Topology in MPI Applications. [Research Report] RR-9077, Inria Bordeaux Sud-
Ouest; Bordeaux INP; LaBRI - Laboratoire Bordelais de Recherche en Informatique. 2018, pp.32.
�hal-01538002v6�

https://hal.inria.fr/hal-01538002v6
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
90

77
--

FR
+E

N
G

RESEARCH
REPORT
N° 9077
June 2017

Project-Team TADaaM

A Hierarchical Model to
Manage Hardware
Topology in MPI
Applications
Brice Goglin
Emmanuel Jeannot
Farouk Mansouri
Guillaume Mercier





RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

A Hierarchical Model to Manage Hardware

Topology in MPI Applications

Brice Goglin*

Emmanuel Jeannot�

Farouk Mansouri�

Guillaume Mercier�

Project-Team TADaaM

Research Report n° 9077 � version 3 � initial version June 2017 �
revised version March 2018 � 32 pages

Abstract: The MPI standard is a major contribution in the landscape of parallel program-
ming. Since its inception in the mid 90s it has ensured portability and performance for parallel
applications on a wide spectrum of machines and architectures. With the advent of multicore
machines, understanding and taking into account the underlying physical topology and memory
hierarchy have become of paramount importance. On the other hand, providing abstract mecha-
nisms to manipulate the hardware topology is also fundamental. The MPI standard in its current
state, however, and despite recent evolutions is still unable to o�er mechanisms to achieve this.
In this paper, we detail several additions to the standard for building new MPI communicators
corresponding to hardware hierarchy levels. It provides the user with tools to address hardware
topology and locality issues while improving application performance.

Key-words: Hierarchy, Hardware Topology, Message Passing

* Inria/LaBRI
� Inria/LaBRI
� Inria/LaBRI
� Bordeaux INP/LaBRI



Un modèle hiérarchique pour la gestion de la topologie dans

les applications MPI

Résumé : Le standard MPI est une contribution importante dans le domaine de la pro-
grammation parallèle. Il est destiné à l'écriture d'applications parallèles pour un large éventail
d'architectures parallèles. L'arrivée des machines multic÷ur implique une compréhension plus
�ne de la topologie matérielle sous-jacente, notamment en ce qui concerne les hiérarchies mémoire
et réseau. Or, dans son statut actuel, MPI ne permet pas de prendre ces aspects en compte.
Nous détaillons dans cet article des modi�cations à MPI pour permettre la prise en compte de
ces aspects a�n d'améliorer les performances applicatives.

Mots-clés : Hiérarchie, Topologie Matérielle, Passage de Messages



A Hierarchical Model to Manage Hardware Topology in MPI Applications 3

1 Introduction

Parallelizing or writing from scratch a parallel application is a very challenging task and this chal-
lenge has become even more important due to the current trend in processors design and super-
computers architecture. Indeed, the hardware that the programmer has to tackle becomes more
and more hierarchically organized. For instance, CPUs now feature various levels of memories
that have di�erent properties in terms of size, performance and even nature. As a consequence,
a parallel application performance is likely to be impacted by the communication occurring be-
tween processes and by the way they access data. Thus, if a process accesses some data located
in a memory bank physically far from the core it currently executes on, a penalty shall occur
(NUMA e�ect). Also, if two processes share a cache level, they will communicate one with the
other more e�ciently. This is known as the data locality issue. Indeed, a recent survey on MPI
usage for future exascale systems [?] outlines that a signi�cant fraction of applications (18 out
of 48) exhibit sensitivity to the hardware topology.

In order to better exploit the underlying hardware, applications need to take this locality
phenomena into account. On one hand, they need to get a better grasp of the underlying physical
architecture they are running on. The current success of hwloc [2] demonstrates the need for
such a tool and the information it allows to gather. This knowledge may o�er the possibility
of optimize the code, to better exploit the memory hierarchy or the network topology as well
as a global and comprehensive view of the hardware (a continuum of hierarchies between the
network and the memory). However, on the other hand, it is required, for performance portability
reasons and because domain scientists and application programmers are not hardware topology
specialists, that the proposed scheme to take locality into account is done through high-level,
portable abstractions.

Having e�cient yet abstract mechanisms to deal with this issue is a di�cult task. To this
end, a relevant programming model (along with tools and libraries that implement it) can be
of valuable help. The most obvious and natural choice would be to �rst look at what current
parallel programming standards and libraries o�er in this area.

In the case of the Message Passing Interface (MPI) [15], some mechanisms are already avail-
able that could make it possible for an application to exploit the hardware hierarchy to improve
interprocess communication and locality. For instance, in the case of virtual topology manage-
ment routines, such as MPI_Dist_graph_create, the reorder argument can be used to create
a topology where processes are reorganized according to the underlying physical topology of the
target architecture.

However, there are several issues with this approach: �rst, this argument might be used
in this fashion, but that is not necessarily the case, which means that the expected behaviour
is totally implementation-dependent (and thus not standard) hence likely to change from one
implementation to the other or even worse from one implementation version to the other. An
application cannot rely on a particular MPI implementation version to be able to use the speci�c
features it needs. Then, in absence of dedicated and relevant mechanisms directly within the
standard, an application is forced to use some side-e�ects of already available features, which
constitutes an issue in terms of both interface expressiveness and usability.

In this paper, we present abstraction mechanisms that can help programmers to structure
their applications based on physical topology criteria. Such structure can then be used to improve
data locality or communication performance by taking into account information that would be
otherwise unavailable to the underlying MPI implementation. We also present the implementa-
tion of this abstraction and mechanisms in the context of the MPI standard.

This paper is organized as follows: the current status of the MPI interface with regard to
hardware topology management is discussed in Section 2 and our proposal is detailed in Section

RR n° 9077



4 Goglin et al.

3. Its implementation is described in Section 4 and examples of uses are detailed in Section 5.
Section 6 describes the target applications of this work and experimental results are analyzed in
Section 7, while Section 8 concludes this paper and give potential future directions.

2 Hardware topology management and the MPI Standard

In this section, we shall examine the current possibilities o�ered by the MPI standard to deal with
the issue of hardware topology management in parallel applications. One key-characteristic of the
MPI standard is its hardware-agnosticism. Indeed, it makes no assumptions about the hardware
on which the application is going to be deployed and run. This behaviour ensures the portability
of parallel programs using MPI. It is to be noted also that despite this independence from any
hardware considerations in its programming model, the MPI standard and programming model
does not prevent from accessing the hardware topology directly from an application.

2.1 Interactions with external tools

One way to tackle this issue is precisely to use an altogether di�erent tool or interface, fully
external to MPI. That is, one current practice is to deal with tools representing the hardware
topology such as hwloc [2], LibNuma [12], or Pthread sched [16]. These libraries could give a
relevant representation of the hardware structure and components. However, they are rather
low-level tools and need a good knowledge of the underlying hardware to be used correctly and
e�ciently. In addition, this practice increases the complexity of developing and supporting codes.
Last, as these tools or interfaces are not standard, portability is not guaranteed.

2.2 Current status in the MPI standard and its implementations

The MPI library even o�ers some means to better understand the nature of the physical ar-
chitecture in order to exploit it to its full potential. For instance, the extension of Remote
Memory Operations with Shared Memory operations in the standard has allowed programmers
to structure their applications to take into account the fact that processes are located on the
same machine. This can be seen as an alternative to the use of multithreading when memory
consumption is at stake [20, Chapter 16]. In this particular case, the MPI standard acknowledges
that some physical resource (e.g. memory) is shareable between processes and o�ers the tools to
actually access this resource.

However, despite the presence of some mechanisms in MPI to better understand and use the
hardware, they address the issue only partially. Some MPI implementations o�er mechanisms
but since they are implementation-dependent they are typically non-standard. Portability is
therefore not guaranteed. The bottom line is: an application should not (or cannot) rely on a
speci�c implementation nor on a speci�c version of an implementation (which is even worse).
On the other hand, improving performances and scalability of applications is more e�cient when
locality is exposed during their design steps rather than only relying on MPI implementation op-
timizations. Thus, the MPI programming model as speci�ed by the standard needs to o�er high-
level abstractions to take into consideration architecture topology at an early stage and before
calling implementations features. The following paragraphs describe some of these mechanisms
and their shortcomings.

2.2.1 Shared Memory constructs

MPI_Comm_split_type can accept MPI_COMM_TYPE_SHARED as a value for its split_type ar-

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 5

gument. The outcome is a communicator that encompasses all processes in the original com-
municator that can create a shared memory region1 By using the communicators produced by
this function, it is possible to structure an application in order to take into account the fact
that memory is shared: for instance direct memory accesses are possible instead of relying on
message-passing exchanges handled by the MPI library. The overheads of the library in case of
shared-memory are eliminated. However, the various levels of cache, a major part of the hard-
ware hierarchy, are left unexploited. As explained previously, this memory hierarchy is becoming
more and more complex and performance gains are expected from a relevant exploitation of it.

2.2.2 Process topologies and reordering

The various process topologies available in MPI can help to structure an application but they
are virtual topologies and quoting the standard itself: �The virtual topology can be exploited
by the system in the assignment of processes to physical processor, if this helps to improve the
communication performance on a given machine. How this mapping is done, however, is outside
the scope of MPI." Some implementations use the reorder parameter of some functions (e.g.
MPI_Dist_graph_create [8], etc.) and take the opportunity to retrieve hardware information
and make use of it [14, 19, 9]. Some others tailor the topology routine of MPI to a speci�c
hardware [5, 10]. This, of course, falls into the non-standard category as it is implementation-
dependent and is a side e�ect of the function. It is not the primary goal of it and the fact that
the underlying hardware is e�ciently exploited can be seen as a bonus.

2.2.3 MPI Sessions

MPI sessions are a new concept that is currently being discussed by the MPI Forum. In its
current state, the standard only allows to call MPI_Init and MPI_Finalize a single time in an
application. This can raise some issues when multiple libraries that internally rely on MPI are
used concurrently. Sessions can be seen as a lightweight construct, even lighter than groups.
A session encompasses MPI processes and some information can be attached to it, for instance
about the application or the hardware. In this case, the sharing of hardware resources could be
exploited by the application with several di�erent MPI sessions.

2.2.4 Process Managers and process mapping

One last critical point regards process managers. They can also be of help when it comes to
exploit the underlying hardware. Indeed, through their process mapping and binding options,
they can allow the user to �nely control the way the various MPI application processes are
dispatched and executed [7]. Thanks to an adequate placement policy enforced by both these
mapping and binding parameters, it is possible to take into account the physical topology and
reduce the communication costs for instance [13, 1]. This is also used to improve collective
communication performance [22], Unfortunately, these options are totally non-standard and can
even change from one version of a process manager to the other.

Even though we consider this speci�c point to be outside the scope of this paper, it is strongly
tied to the issue of hardware topology management in MPI applications. Indeed, in the absence of
a (relevant) mapping/binding of processes, the performance improvements of taking into account
the underlying hardware topology are not expected to be as high as if an e�cient policy is en-
forced. For the rest of this paper, we make the assumption that the user knows the consequences
of adopting a relevant mapping/binding process policy and chooses one accordingly.

1 It is obviously the case when they are located on the same machine, but could also be the case if the processes
are on di�erent machines linked by a network à la SCI.

RR n° 9077



6 Goglin et al.

3 Proposed Extensions to the MPI standard

As exposed in the previous section, there are currently no means in the MPI standard to portably
take into account the hardware topology at the application level. We think that it is impor-
tant/necessary to o�er high-level abstractions helping programmers to take care of locality and
communication optimizations when they design their applications. This way we anticipate and
facilitate an implementation work that optimizes communications according to the target archi-
tecture. Therefore, we propose to extend the MPI standard and detail in the rest of this section
the relevant mechanisms and features needed to achieve these objectives.

3.1 Guidelines

Since its �rst version in 1994, the MPI standard has grown steadily in terms of number of
available routines and functionalities. We therefore advocate for a minimal amount of changes
and prefer to leverage existing mechanisms. We prefer not introducing new functions unless it
is unavoidable and rather expand existing mechanisms. MPI is about communications and how
they are managed. In this regard, exploiting the underlying topology boils down to be able
to organize the various MPI application processes in a way that is both topologically-wise and
performance-wise sensible. The same idea has already been used in the case of reordering: the
processes that communicate a lot should be bound on two cores physically close to each other.
Consequently, the sharing of caches is likely to decrease communication times and improve overall
application performance.

The key idea is therefore to group processes into entities where a speci�c kind of resource is
shared by all groups2 members (i.e. processes). MPI features a concept/construct that perfectly
matches our needs: the communicator. As a consequence, we propose to make hardware topology
information and structure available at the application level through a hierarchy of communica-
tors. We want to help an application developer and guide him/her to build the most relevant
communicator (hardware) topologically-wise, without any deep knowledge of the underlying ar-
chitecture and regardless of the way the application processes are mapped and/or bound on the
machine.

In this hierarchy, each communicator corresponds to a speci�c resource that is shared by
all the processes belonging to it. For instance, if a process shares a L2 cache and a L3 cache
with other processes, it will be part of the communicator encompassing all processes sharing the
same L2 and part of the communicator encompassing all the processes sharing this level 3 cache.
Creating communicators also allows the use of collective communications among processes that
share a resource. Collective communication operations are a major feature of MPI. It gives the
programmer some ability to structure his/her application and encourages him/her to improve
the locality factor of the communications.

3.2 Communicators creation

There exists a couple of functions in the MPI standard that create communicators, and one
in particular if of interest for our purpose: MPI_Comm_split. Since the idea supporting our
proposal is to create communicators based on the sharing of common hardware resources, splitting
some input communicator (MPI_COMM_WORLD being obviously a relevant but not a mandatory
candidate) is a natural �t for the goal we want to achieve: indeed the information about the
sharing of the resource can be conveyed by the color argument. However, the outcome is not
likely to be the one expected: let us take for example the case of processes mapped onto di�erent

2"group" has to be taken in the generic sense, we do not deal with the concept of MPI groups here.

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 7

physical nodes (for the sake of simplicity, each core of each node executes its own process).
Let us then assume that each node features several L3 caches. If we want to create as many
communicators as the number of L3 caches in our con�guration, we cannot provide a single color
value, otherwise, all processes would end up belonging to the same communicator. Ideally, we
would like to provide the same color value, but this value has to carry a di�erent meaning in
di�erent processes.

3.2.1 MPI_Comm_split_type extension

Fortunately, this is exactly the behaviour of MPI_Comm_split_type. Indeed, this function par-
titions the group associated with the input communicator into disjoint subgroups, based on the
type speci�ed by the value assigned to the split_type parameter. A single value is currently
de�ned in MPI 3.1: MPI_COMM_TYPE_SHARED. When this value is used, the input communicator
is split into communicators, where each new communicator represents a shared-memory domain.
That is, two processes belonging to the same subcommunicator are able to create a mutually
accessible shared-memory region. Obviously, there is no overlap between these new communica-
tors. This function, along with the particular MPI_COMM_TYPE_SHARED value for the split_type
parameter, already allows the user to better understand the way the processes are mapped onto
the underlying hardware. It also gives the opportunity to take advantage of it since a di�erent
programming model (MPI-3 Shared Memory style) can be used in each new communicator and
classical Message Passing between them. The MPI standard stipulates that implementations may
de�ne their own values for the split_type parameter, in order to enforce speci�c behaviours.
The �exibility granted by this approach is counterbalanced by its sheer lack of portability. As
a consequence, we propose to enrich the set of possible values for the split_type argument by
adding a new one (MPI_COMM_TYPE_PHYSICAL_TOPOLOGY for instance3). The info argument can
be used to pass hints to the implementation about the way the split operation should be done.

3.2.2 Properties of the hierarchical communicators

A call to MPI_Comm_split_type with this new value shall yield a communicator correspond-
ing to the lowest possible level in the hierarchy tree representing the hardware topology. This
newly produced communicator can then be used as an input argument in subsequent calls to
MPI_Comm_split_type to produce other "child" subcommunicators that correspond to deeper
levels (complete examples are detailed in Section 5). Also, the newly produced communicators
should retain the following properties:

� The last valid communicator produced in this fashion may be identical to MPI_COMM_SELF,
but not necessarily.

� Each recursively created new communicator should be a strict subset of its parent (input)
communicator. That is, a call to

MPI_Comm_compare(oldcomm,newcomm)

must return MPI_UNEQUAL. This property ensures that no unnecessary new communicators
are created in case of redundancies of levels in the hardware topology. For instance, if a
L3 cache and a L2 cache are shared between all processes, there is no need to create a
communicator for both resources.

� If no valid communicator is to be created, MPI_COMM_NULL should (obviously) be returned.

3Or any suitable and meaningful name.

RR n° 9077



8 Goglin et al.

These communicators calls will form a kind of hierarchy, mimicking the hardware one, as all
new communicators are encompassed (so to speak) in their parent communicator. That is, if
a process belongs to the communicator corresponding to the n-th level of the hierarchy, it also
belongs to all communicators corresponding to levels 0 to n− 1. It is important to note that our
abstraction does not make any distinction between the network hierarchy and the nodes internal
memory hierarchy. We provide means to organize an application according to the structure of
the hardware, not its nature.

3.2.3 Creation of Roots Communicators

One other useful addition is the ability to create at the same time at each level of the hierarchy
yet another communicator which includes all root processes of a hierarchical communicator. This
forms another kind of hierarchy of its own and could ease the communication between all the
levels of the hierarchy. This function could have the following prototype:

int MPI_Comm_hsplit_with_roots(MPI_Comm oldcomm,

MPI_Info info,

MPI_Comm *newcomm,

MPI_Comm *rootscomm)

With:

IN oldcomm: communicator (handle)

IN info:info argument (handle)

OUT newcomm: communicator (handle)

OUT rootscomm: communicator (handle)

newcomm is the same communicator created by a call to MPI_Comm_split_

type with MPI_COMM_TYPE_PHYSICAL_TOPOLOGY as value for the split_type parameter. rootscomm
is the communicator containing all processes that are roots in newcomm. A valid roots communica-
tor can only be returned if the root process of oldcomm calls this function. MPI_COMM_NULL
is otherwise returned by non-root processes. This function prototype shows that both key and
color/split_type parameters are missing, as regularly found in others MPI split routines. In
the case of the color/split_type parameter, since this routine is called to produce a hierarchy
of hardware-topologically meaningful communicators, it is therefore unneeded. As for the key
parameter, we chose in our design to retain the rank of the calling process in the newly produced
communicator. However, should this be considered not �exible enough, the interface could be
modi�ed easily, as this point is not in�uenced whatsoever by the hypotheses formulated on the
newly created communicators.

3.2.4 Interaction with process mapping/binding policies

A special care should be taken regarding the current binding of process ranks. Indeed, the
deepest level that shall be returned should correspond to the current process binding (e.g if a
rank is bound to a L3 cache, no information below this level should be returned since it may
use di�erent L2 caches below when moving inside the binding). Any attempt to do so should
return MPI_COMM_NULL. Moreover, unbound processes may move across an entire shared-memory
machine and therefore cannot belong to a communicator split deeper than the "Machine" level:
in such a case, the returned communicator shall be the same as the one returned by a call to
MPI_Comm_split_type with the MPI_COMM_TYPE_SHARED value for the split_type parameter.

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 9

3.3 Communicators characteristics query

The main aspect of our proposal deals with hierarchical communicators creation. However, we
need to introduce other functions in order to make the use of these communicators more practical
to the application developer. So far, with the proposed abstraction, users are able to leverage the
structure of their hardware. However, more information might be needed, for instance in case of
data distribution between the various communicators created at a certain level in the hierarchy.

3.3.1 Getting information for a hierarchical level

A process is able to retrieve some information about a speci�c communicator it belongs to with
a call to the following function:

int MPI_Comm_get_hlevel_info(MPI_Comm comm,

int *num_comms,

int *index,

char **type)

With:

IN comm: communicator (handle)

OUT num_comms: number of siblings communicators (integer)

OUT index: communicator index (integer)

OUT type: type of communicator (string)

� num_comms is the number of communicators at the same level and that share the same
parent communicator.

� index is a kind of rank for each communicator which should be contiguously numbered
and starting from 0. It is the rank of the communicator among all communicators created
by its parent communicator.

� type is a string giving information about the kind of resource that the communicator
represents. It should be unambiguous, like L2_Cache, L3_Cache or NumaNode.

All this information should be cached by the communicator in an info object attached to it
containing a set of (key,value) pairs properly de�ned when the communicator comm is created
with a call to MPI_Comm_split_type or MPI_Comm_hsplit_with_roots. This info object creation
would require the use of the MPI_Comm_set_info and MPI_Comm_get_info functions.

3.3.2 Getting the minimal level

Another helpful feature would be the ability for a programmer to know the name (type) of the
lowest level in the hardware hierarchy that is shared by some processes. To this end, we propose
to add the following function:

int MPI_Comm_get_min_hlevel(MPI_Comm comm,

int nranks,

int *ranks,

char **type)

With:

RR n° 9077



10 Goglin et al.

IN comm: communicator (handle)

IN nranks: number of MPI processes (integer)

IN ranks: list of MPI process ranks (array)

OUT type: type of the resource (string)

This function returns the name of the lowest level in the hierarchy shared by all the MPI processes
which ranks in the communicator comm are listed in the rank array. If the calling process rank
is not among the ranks listed in the array passed as an argument, the type returned should be
"Unknown" or "Invalid".

3.4 Discussion

In this section, we discuss the design choices, advantages and potential drawbacks of our ap-
proach. We propose an abstraction based on existing MPI objects (the communicators), hi-
erarchically modelling the hardware topology in order to improve performance and scalability.
Communicators are often used in MPI applications and a well-understood concept to boot. A
large majority of application developers are familiar with it (beyond MPI_COMM_WORLD). There-
fore, using our proposal would require little e�ort, conceptually speaking. The communicators
created do not feature a predetermined name, taken after the underlying resource it is supposed
to represent. This ensures that there will be no need to make any change nor modi�cations in
the future in case new levels in the hardware hierarchy should appear. This also justi�es why we
do not specify a maximal depth for the hierarchy. By creating "recursively" new communicators,
the user is able to get all needed objects until the bottom is reached and no new communicator
can be produced. The user can of course choose the desirable depth by querying the name/type
of the communicator created and deciding to go further or not. This choice also explains why we
do not rely on several predetermined values for the split_type argument 4 (e.g. one value cor-
responding to a speci�c hierarchy level) because architectural changes in hardware would require
modi�cations to the standard.

It is important to note that with this proposal, it becomes possible to create a hierarchy of
communicators corresponding to the various hardware levels, but not the hierarchy. Indeed, it
is not mandatory that this hierarchy has to be exhaustive or complete. As a consequence, a
partial implementation that cannot or do not want to expose some levels is totally acceptable.
However, the various communicators must comply to the characteristics and properties described
in Section 3.2.2. The only expected consequence of this lack of levels provided to the user is in
terms of performance, as the users will not be able to optimize their code to the full extent of
the available hardware.

Currently, our design is based on a "recursive" call to MPI_Comm_split_

type in order to create the hierarchy. However, an alternate solution would be to introduce a
function that create all communicators at once, returning an array for instance as well as its size
(i.e. the hierarchy depth). Such a function is more simple to use, but compels the user to create
all the levels, even undesired ones. The chosen design allows for more control at the cost of some
ease of use.

One drawback of our approach is the fact that it targets architectures which are hierarchically
organized. It is the case for most machines, but there are some exceptions that our model does
not currently address. And the same issue arises for network topologies that are not hierarchical,
such as torus for instance. In such a case, should the split be made on just a particular dimension

4As implemented in OpenMPI with the OMPI_COMM_TYPE_* values for instance.

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 11

of the torus? The info argument could be used to pass this information. But if some form of
hierarchy can be extracted from the network topology, we can exploit it with our mechanism.

Currently, the interface proposed features one new value for the split_type argument of
the MPI_Comm_split_type function and three new routines. But one open question is whether
we should o�er more elements. Indeed, it could be interesting to create several hierarchies
of communicators, based on di�erent criteria with di�erent split_type values. For instance,
making a distinction between the network topology and the nodes internal topology could be
a relevant idea. The info argument in MPI_Comm_split_type could also be used to split a
communicator directly at a desired level, without creating the whole hierarchy.

4 Implementation Details

Our proposal is implemented and available as a prototype library called libhsplit (for hierarchi-
cal split). We chose the external library route for fast prototyping reasons but our goal is to
eventually integrate this work within an MPI implementation.

Our proposal is technology or software independent and implementable at the sole condition
that hardware informations can be retrieved from the underlying target machine. In our case,
we chose to leverage two di�erent pieces of software: hwloc [2] and its extension, netloc [4].

4.1 An hwloc-based implementation

In this section, we describe the functions of the library that implements the proposal exposed
previously. The �rst version of this library focuses only on the nodes and their internal memory
hierarchy and leaves unaddressed the network hierarchy. That is, this implementation considers a
�at network topology, meaning that all nodes of a cluster are connected to the same switch. The
reason of such a choice stems from the software used to retrieve hardware information. Indeed,
we used hwloc [2] to gather as much information as possible. hwloc is a tool that provides the
user with an interface allowing to retrieve hardware details in the most portable fashion possible.
hwloc is widely available and has already been integrated in several MPI implementations to
manage hardware details. It is the case of both OpenMPI and MPICH, for instance. As a
consequence, this version of our library partially captures the hardware hierarchy. However, as
discussed previously in Section 3.4, this is an acceptable outcome/behaviour. Moreover, this
implementation complies totally with the communicators properties listed in Section 3.2.2.

4.1.1 MPI_Comm_split_type implementation

First, we detail the implementation of the routine at the core of our proposal, that is, MPI_Comm_split_type.
We propose to introduce a new value for the split_type parameter of this function. Our im-
plementation relies on the more generic MPI_Comm_split operation that takes as input a color

parameter that allows to split the input communicator into k non-overlapping subcommunica-
tors5. Using this operation in our case is relevant since the subcommunicators we propose to
build are non-overlapping by nature. As a consequence, the issue then boils down to determining
the right color that shall be used by the regular split operation. Algorithm 1 details how this
can be determined with hwloc:

� The �rst major thing is to determine the hwloc object in the hierarchy that encompasses
all the processes members of the communicator that we want to split. hwloc conveniently

5If no color is speci�ed (MPI_UNDEFINED), then no valid communicator (MPI_COMM_NULL) is created.

RR n° 9077



12 Goglin et al.

Algorithm 1: Split Color Algorithm: cpusets refer to the way hwloc describes object
location (set of hardware threads included in the object) or process binding (set of hardware
threads where the process may run).

1 color ← MPI_UNDEFINED

2 obj = get_ancestor(comm); // Get the deepest obj which contains all

processes binding

3 foreach idx← 0 .. (obj->arity) do // Find the right color

4 if calling_process->cpuset ⊆ obj->children[idx]->cpuset then
5 color ← idx

6 break

7 MPI_Comm_rank(comm,&rank)

8 MPI_Comm_split(comm,color,rank,newcomm)

proposes a routine returning the deepest object in the hierarchy in case of levels redundancy
(line 2).

� Once this object has been obtained, we are able to search through its hwloc children
objects in order to �nd to which speci�c one the calling process is bound (line 3). A match
is found when the binding of the calling process is included in the considered child (line
4). These child objects are logically numbered in sequence by hwloc, therefore the right
color is the matching child's index (line 5). If no candidate is found, the color is left to the
MPI_UNDEFINED value which will yield an invalid (null) communicator in MPI_Comm_split.

� A key needs to be determined for the split. We decided to use the rank of the calling
process in the input communicator (line 7).

� The split operation is e�ectively performed, with both the color and key parameters set
with their values (line 8).

If the resulting communicator is valid, we then set three (key,value) pairs that can later be
queried by a call to MPI_Comm_get_hlevel_info (see below). These three keys are the following:

� MPI_COMM_HLEVEL_TYPE: the value corresponding to this key is a name for the communica-
tor that can help the programmers to better understand the resource they are using through
the communicator. See section 3.3.1 for examples of possible string values. In our imple-
mentation, the names are provided directly by hwloc by the hwloc_obj_type_snprintf

routine. By doing so, portability is enforced to some degree, or at least across MPI imple-
mentations that feature hwloc (which is the case of OpenMPI, MPICH and MVAPICH
for instance).

� MPI_COMM_HLEVEL_NUM: the value corresponding to this key is the total number of subcom-
municators created at a speci�c level in the hierarchy.

� MPI_COMM_HLEVEL_RANK: the value corresponding to this key the "rank" of a subcommuni-
cator among all created subcommunicators at a speci�c level of the hierarchy.

The last two (key,value) pairs can be used by programmer in case of data distribution among
the various parts of the hardware architecture. These (key,value) pairs are then stored in the
resulting new communicator with the MPI_Comm_set_info function. It is important to note that
the keys names are not exposed to the programmer at any time. Indeed, since a query routine
is provided, there is no need to expose this internal part of the library.

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 13

4.1.2 MPI_Comm_hsplit_with_roots implementation

The next function we describe is the one that returns both a subcommunicator and the com-
municator whose group contains all the root processes of all created subcommunicators during
this step. It is possible to create this roots communicator with the current functions available
in MPI. However, from a performance standpoint, an hwloc-based implementation (and thus a
new function in the standard) is more e�cient as hwloc gives use information that can directly
use to this purpose. It also removes the burden of implementing it by the user. That is why
we proposed a single function that creates both communicators at the same time. Algorithm 2
describes how this can be performed with hwloc:

Algorithm 2: Split Color Algorithm: variant with roots communicator creation

1 color ← MPI_UNDEFINED

2 obj = get_ancestor(comm); // Get the deepest obj which contains all

processes binding

3 foreach idx← 0 .. (obj->arity) do // Find the right color

4 if calling_process->cpuset ⊆ obj->children[idx]->cpuset then
5 color ← idx

6 break

7 MPI_Comm_rank(comm,&rank)

8 MPI_Comm_split(comm,color,rank,newcomm)

9 color ← MPI_UNDEFINED

10 MPI_Comm_rank(newcomm,&newrank)

11 if newrank = 0 then
12 color ← (obj->logical_index)

13 MPI_Comm_split(comm,color,rank,rootscomm)

� The �rst part is similar to the algorithm explained in the previous paragraph: the subcom-
municator is produced (line 1 to 8).

� In order to produce the root communicator, we need once again to �nd the right color to
use in a second MPI_Comm_split operation. Only the roots of the subcommunicators will
be part of the resulting communicators. Such roots are chosen as processes with rank 0
in the subcommunicators. This is a sensible choice because if a communicator is valid, i.e.
not MPI_COMM_NULL, it shall contain at least one process and processes are numbered in
sequence, starting from 0 (lines 10 and 11).

� If the calling process is determined to be a root, it will be part of the split and has to
provide MPI_Comm_split with a color (as previously, the key used shall be its rank in the
input communicator and not the subcommunicator). This color is chosen as the hwloc

logical index of the ancestor object (line 12). Indeed, choosing a valid color value for
processes with 0 rank and an invalid color otherwise will not create the intended hierarchy
of roots communicators. We have to make a distinction between root processes sharing the
previous level and this information is conveyed by the logical index of the ancestor object.

� The split operation is performed with the right parameters (line 13).

All the (key,value) pairs detailed in the previous section are also set in this function.

RR n° 9077



14 Goglin et al.

4.1.3 MPI_Comm_get_hlevel_info implementation

The implementation of this function is rather straightforward, as its goal is to gather the infor-
mation available for a certain hierarchical level (a communicator) and pass it to the application
developer in a tractable form. Since all information is stored in an MPI info object, a call
to MPI_Comm_get_info is su�cient to retrieve the needed object. Since the various keys used
(i.e. MPI_COMM_HLEVEL_NUM, MPI_COMM_HLEVEL_RANK and MPI_COMM_HLEVEL_TYPE) are internal
to the library, we can then query for their value and passing it to the user through the arguments
of the function.

We decided to not use MPI_Comm_set_name and MPI_Comm_get_name to store/retrieve the
value of the MPI_COMM_HLEVEL_TYPE key since it is not possible to store multiple names of a
more complete description of the hierarchical level the communicator represents. Also, this
communicator could possibly bear a name that we do not want to replace.

4.1.4 MPI_Comm_get_min_hlevel implementation

In our current implementation, most of the strings returned by this function are generated by
hwloc. However, some cases are not covered by hwloc and as a consequence, we introduced our
proper strings:

� if the calling process is not part of the communicator queried upon, "Unknown" is returned

� if some processes in the list and the calling process do not belong to the same node, "System
� Cluster" is returned

� if all processes in the list are local (i.e. belong to the same node), the hwloc name corre-
sponding to the level they share is returned

4.2 Network Support Extension with netloc

The implementation described in the previous sections only addresses the node internal hierarchy,
such as the memory hierarchy. However, even though this is an acceptable solution as users can
exploit some (but not all) hierarchy levels, a more comprehensive solution is preferable. Indeed,
the various switches in a network often form a hierarchy of their own. Allowing the users to know
about it and leverage the hardware characteristics and organization of the underlying network
is a compelling idea.

Our model and abstraction is able to give the user some means to optimize their code accord-
ing to the structure of the hardware and not its nature. Practically, this means that a hierarchy
of switches and a memory hierarchy are not seen nor treated as di�erent things: they constitute
a continuum. The issue is then to be able to retrieve the needed information about these various
levels in the network, like hwloc is able to gather information about the memory hierarchy inside
a node.

Such a tool actually exists: netloc [4]. netloc is a hwloc extension that speci�cally addresses
network hierarchies and topologies. In order to create the communicators corresponding to the
switches levels, we use the following experimental netloc routine:

int netloc_get_network_coords(int *nlevels,int *dims,int *coords)

Where:

� nlevels represents the number of switch levels in the network hierarchy

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 15

� dims[i] represents the number of switches at level i in the network hierarchy. dims is
therefore an array of size nlevels.

� coords[i] represents the coordinates (or "rank") of the calling process at level i in the
network hierarchy. coords is also an array of size nlevels.

The last level in the network hierarchy is not taken into account as it is merely a port number
in the last switch. Since all nodes are connected to a switch with their own port number, this
information has no use in our context and is redundant with the "Node" level.

From an implementation's point of view, adding the knowledge of the network hierarchy
introduces moderate modi�cations to the existing code, as it was conceptually ready to sup-
port such feature. The switch level number is added as a possible string returned by the
MPI_Comm_get_min_hlevel function.

5 Practical examples

Figure 1: A hierarchical node example.

We now detail practical examples of use of this new split_type value. Let us suppose that
an MPI application is launched on several machines featuring the memory hierarchy depicted by
Figure 1: each node is composed of two NumaNodes with a single socket (i.e. package) and 4
cores per socket. Each socket features its dedicated L3 cache and a L2 cache is shared between a
pair of cores (hence 4 L2 caches in total). At some point, we assume that the various processes
of the application execute the following code:

MPI_Comm newcomm[NLEVELS];

MPI_Comm oldcomm = MPI_COMM_WORLD;

int rank, idx = 0;

while(oldcomm != MPI_COMM_NULL){

MPI_Comm_rank(oldcomm,&rank);

MPI_Comm_split_type(oldcom,

MPI_COMM_TYPE_PHYSICAL_TOPOLOGY,

rank,

MPI_INFO_NULL,

&newcomm[idx]);

oldcomm = newcomm[idx++];

}

In this code snippet, NLEVELS is chosen appropriately so that there are enough elements in the
newcomm array, but as we discussed previously (see Section 3.4), our proposal does not make any

RR n° 9077



16 Goglin et al.

assumption on the total number of levels in the hardware hierarchy nor on the nature of the
hardware resource the communicator is supposed to represent for the processes.

Our proposal does not feature a query function that yields that maximum number of hierarchy
levels, as it would incur to an additional time the communicators hierarchy. Practically, this
number is not going to be very high, a few tenths at most. As a consequence, having a statically
allocated array as in our example is not an issue for memory consumption.

5.1 A simple case

In our �rst case, we suppose that we have an application featuring 32 processes, launched on
a 4-node cluster, each node ( nk, k ∈ [0..3]) is as described previously. Let us also suppose
that each process is bound to its own dedicated core. For instance, process px (of rank x in
MPI_COMM_WORLD) is bound to core number i of node number k where x = 8k + i (k ∈ [0..3] and
i ∈ [0..7]) 6. When the code shown above is executed, the following communicators are created
in several steps, where one step corresponds to a call to the MPI_Comm_split_type function:

� step 1: Since processes are located on 4 di�erent nodes, MPI_COMM_WORLD encompasses
all these nodes. As newly created communicators have to be strictly "included" in their
parent communicator, new communicators corresponding to the �Machine� level of each
node shall be created. That is:

newcomm[0] = {p8k, p8k+1, . . . , p8k+6, p8k+7}
(for each node number k ∈ [0, 3])

This is equivalent to a call to MPI_Comm_split_type with the MPI_COMM_
TYPE_SHARED parameter. However, the implementation might also decide to create an
intermediate level between MPI_COMM_WORLD and this one to represent a level of network
switches. In our case, we suppose that all nodes are connected to the same switch and no
such intermediate level is created.

For the sake of simplicity, and without loss in generality, we shall now focus only on the
communicators created on node number 0 in the remaining steps described below.

� step 2: Since all processes are now located on the same node, newcomm[0] encompasses the
whole node. As newly created communicators have to be strictly "included" in their parent
communicator, the next communicator should correspond to a level strictly smaller than
the "Machine" level. The next meaningful hardware level in the target hierarchy is then the
NumaNode/Package/L3 level and since the lowest level is chosen in case of redundancies,
the "L3" level is chosen. As a consequence, two new communicators are created, one for
the �rst L3 cache and one other for the second L3 cache. More precisely, the two newly
created communicators are composed by the following processes:

newcomm[1] = {p4i, p4i+1, p4i+2, p4i+3}
(for each L3 cache number i ∈ [0, 1])

� step 3: In this next step, we shall split the communicators created during step 2, the L3
communicators now are the parents communicators in the next call to MPI_Comm_split_type.
Since there are two L2 caches/L1 caches per L3, these physical entities are the ones for
which new communicators are created. Once again, the lowest level is chosen and in this

6A "by node" mapping policy in conjunction with a "by core" binding policy for processes.

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 17

second step, the new communicators correspond to the L1 caches. Practically, a new call
to MPI_Comm_split_type with a newcomm[1] communicator as input will produce the fol-
lowing four communicators in node 0:

newcomm[2] = {p2i, p2i+1} ( for each L1 number i ∈ [0, 3] )

� step 4: In the next step, a total of eight communicators are created, since two cores/processing
units (a.k.a PU) share a single L1 cache. At this step, a total of eight communicators are
created, one per process. These communicators are the following:

newcomm[3] = {pi} (for each Core number i ∈ [0, 7])

It is to be noted that if pi called:

MPI_Comm_compare(newcomm[3],MPI_COMM_SELF,&result),

then result would have MPI_CONGRUENT for value.

� step 5: In this last step, since we have reached the bottom of the hierarchy, no new valid
communicators are produced. Therefore, all calls to MPI_Comm_split_type yield:

newcomm[4] = MPI_COMM_NULL ( for each Core number i ∈ [0, 7])

In the code snippet shown above, if the call to MPI_Comm_split_type is replaced by MPI_Comm_hsplit_with_roots,
another hierarchy of communicators is also produced, that is, the roots communicators. That is,
rootscomm[i] is created during the same step as newcomm[i].

� step 1: Since four communicators are created (one for each Node), the roots communicator
contains four processes. Since the ranks are retained in the new communicators, this means
that the root in each communicator is the process with the lowest rank. Therefore:

rootscomm[0] = {p8k}, k ∈ [0..3]

As in the previous case, we now examine the next step for a single node only.

� step 2: Since two communicators are created (one for each L3), the single roots commu-
nicator contains two processes. Therefore:

rootscomm[1] = {p0, p4}

Please note that the root of rootscomm[1] is also a member of rootscomm[0].

� step 3: Each "L3" communicator is split into two "L1" subcommunicators. Hence, two
roots communicators are created during this step and they contain two processes each:

rootscomm[2] = {p0, p2}(for L3 number 0)
rootscomm[2] = {p4, p6}(for L3 number 1)

As expected, the roots of both rootscomm[2] communicators are the members of rootscomm[1].

� step 4: The same logic of step 3 is applied: each "L1" communicator is split into two
"Core" subcommunicators. A total of four roots communicators are then created at this
step, which two processes each. That is:

RR n° 9077



18 Goglin et al.

rootscomm[3] = {p0, p1} (for L1 cache number 0)
rootscomm[3] = {p2, p3} (for L1 cache number 1)
rootscomm[3] = {p4, p5} (for L1 cache number 2)
rootscomm[3] = {p6, p7} (for L1 cache number 3)

Once again, the roots of rootscomm[3] are members of either one of the rootscomm[2]

communicators.

� step 5: Since the bottom of the hierarchy is reached, no roots communicators are produced
during this last step. As expected:

rootscomm[4] = MPI_COMM_NULL (8 times, one per process)

5.2 A more complicated case

This second example demonstrates the �exibility of our proposal and its ability to cope with more
complicated cases than the straightforward example described in the previous section. Even if
we do not expect such cases to be commonplace, we emphasize that they do not raise any issue
practically. In this example, we launch an application on a single 8-core node where the various
processes follow their own binding policy. As a consequence, the processes are not uniformly
bound on the machine. Figure 2 depicts such a case involving 8 processes in MPI_COMM_WORLD:
processes rank 0 and 1 are bound to core 0 and 1 respectively, while processes 2 and 3 are bound
on the L2 cache number 1. This means that during the application execution, these processes can
execute on either core number 2 or 3, since both cores share the L2 cache number 1. Processes
4, 5, 6 and 7 are bound to NumaNode number 1. In this case they can use any of the cores that
belong to this NumaNode, that is, either core 4, 5, 6 or 7. Here again, nothing prevents the core
to change during the application execution.

Figure 2: A case of non-uniform binding policy for processes

In this case, and according to the properties of the hierarchical communicators, we shall have
the following results if the code snippet shown previously is executed by all processes:

� step 1: All processes are located within the same node, hence MPI_
COMM_WORLD encompasses the whole node. This original communicator is the "Ma-
chine" communicator (the blue one) on Figure 2. We use this input communicator for
the split operation and since the next meaningful level in the hardware hierarchy is the

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 19

NumaNode/Package/L3 one, two new communicators are created, since there are two Nu-
maNodes below the "Machine" level. As in the previous example, the lowest level is chosen,
that is, the "L3 cache" level.

newcomm[0] = {p4i, p4i+1, p4i+2, p4i+3}
(for L3 number i ∈ [0, 1])

These communicators are the red ones on Figure 2.

� step 2: In this step, the newcomm[0] communicators are handled di�erently as the pro-
cesses belonging to them have di�erent binding policies. In the case of the communicator
that covers L3 number 0, all processes are bound to at least a L1 cache, this step is sim-
ilar to the second step of the �rst example. However, the case of L3 number 1 is very
di�erent, as the hierarchy cannot be determined since all processes can potentially move
inside their L3 from one core to the other during the application execution, as explained
in Section 3.2.4. As a consequence, no new valid communicator is created during this step
for L3 number 1. Therefore only two subcommunicators are created:

newcomm[1] = {p2i, p2i+1} (for each L1 number i ∈ [0, 1] )
newcomm[1] = MPI_COMM_NULL (for each L1 number i ∈ [2, 3] )

These communicators are the green ones on Figure 2.

� step 3: From this step on, only the valid communicators can be split again, that is, the L1
communicators of L3 number 0. Since processes rank 0 and 1 are bound to core, it is possible
to create new subcommunicators that correspond to this level. However, since processes
rank 2 and 3 are not bound "deeper" than the L1 cache level, no new communicator can
be created. Once again, only two new valid communicators are created:

newcomm[2] = {pi} (for each Core number i ∈ [0, 1])
newcomm[2] = MPI_COMM_NULL (for each Core number i ∈ [2, 3] )

These communicators are the brown ones on Figure 2.

� step 4: In this last step, the bottom of the hierarchy is �nally reached for processes rank
0 and 1. For all other processes, the bottom has been reached in one of the previous steps.
Therefore:

newcomm[3] = MPI_COMM_NULL (for each Core number i ∈ [0, 1])

Let us now examine the case where the MPI_Comm_hsplit_with_roots function was to be
called instead of MPI_Comm_split_type. Nothing would change as far as the subcommunicators
creation is concerned. However, fewer roots communicators would be created:

� step 1: In the �rst step, since one communicator corresponding to each L3 is created, the
single roots communicator would contain two processes:

rootscomm[0] = {p0, p4}

� step 2: In the second step, no roots communicator is created for L3 number 1. The roots
communicator for L3 0 contains only two processes, the roots of the L1 cache subcommu-
nicators. That is:

RR n° 9077



20 Goglin et al.

rootscomm[1] = {p0, p2} (for L3 number 0)
rootscomm[1] = MPI_COMM_NULL (for L3 number 1)

Once again, we can verify that the root process of the valid rootscomm[1] communicator is
also a member of rootscomm[0].

� step 3: In this step, only the roots communicator of the L1 cache number 0 can be created,
as processes rank 2 and 3 are not bound deeper that the L1 level in the machine. Therefore:

rootscomm[2] = {p0, p1} (for L1 cache number 0)
rootscomm[2] = MPI_COMM_NULL (for L1 cache number 1)

The root process of rootscomm[2] is also a member of rootscomm[1].

� step 4: The bottom of the hierarchy is reached, two non-valid roots communicators are
produced during this step, as this has already been done in previous steps for the rest of
the processes in the node.

rootscomm[3] = MPI_COMM_NULL

(two times, for processes 0 and 1)

This demonstrates that our proposal is �exible enough to accommodate the case of non-
uniform binding policies within the same MPI application. This is possible because our approach
does not depend on the binding policy applied to the various processes of the application.

6 Bene�ts of the hierarchical model for parallel applications

In this section we propose to model the class of MPI applications that can leverage our hierar-
chical abstraction to enhance the performance of their communications. Let us suppose that an

Figure 3: Superstep of MPI application family based on native collective communications

MPI application features pMPI processes. The application execution model we focus on is in the
form of a repetitive phasis of super-steps including communication operations C followed by ex-
ecution operations E as shown by Figure 3. Each process needs to terminate its communication
operation to start the processing of data as shown on Algorithm 3.

If the communication operations C include collective operations, then the application can take
advantage of the hierarchical model described by Algorithm 4, where L is the number of levels in
the hierarchy allowed by the target architecture and generated automatically by our approach.
Figure 4 illustrates the application communication model based on a three-level communicator
hierarchy.

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 21

Algorithm 3: MPI algorithm covered by our hierarchical model

1 MPI_Initialization(); (// Initialisation part) foreach s← S − 1..0 do
// Algorithm super-steps

2 MPI_Collective_Communication_Operations(); MPI_Processing_Operations();

Figure 4: Superstep of MPI application family based on hierarchical collective communications

Applying a hierarchical model can improve the communication times and thus the total time
of the application. As a matter of fact, by exploiting more parallelism in the hierarchy levels,
it is possible to enhance the scalability and performance of collective operations. In order to
illustrate this claim we propose a short discussion to highlight the important features which can
explain this bene�t.

The collective communications are modeled with well-known works such as the Hockney [6],
the LogP [3] or the PlogP [11] model. These models express the maximum time taken by a
collective communication operation as a linear f unction depending on several variables such as:

� p: The number of processes performing the collective communication operation c.

� m: The size of the data exchanged between processes.

� The collective algorithm used.

� α: The hardware latency that may be a function of m and p.

� β: The hardware bandwidth that may be a function of m and p.

For example, the processing time of the simple Flat Tree broadcast is expressed with the
Hockney [6] model as equal to :

Algorithm 4: MPI algorithm based on a hierarchical communication model

1 MPI_Initialization();(// Initialisation part) while L 6=MPI_Comm_NULL do
2 L←MPI_Comm_hsplit_with_roots(); // Topological Communicators

creation

3 foreach s← S − 1..0 do // Algorithm super-steps

4 foreach l← L− 1..0 do // Hierarchy levels

5 MPI_Collective_Communication_Operations(l);

6 MPI_Processing_Operations();

RR n° 9077



22 Goglin et al.

(p− 1)× (α+mβ)

As shown by Algorithm 4 L levels of communications are present in the topology-aware
hierarchical model according to the structure of the architecture. Thus, the time of collective
operations will be represented as a sum of L functions depending on the previous cited features
but where each level is characterised by a set of speci�c parameters: pi, αi, βi and mi. As a
consequence, the Flat Tree broadcast example shall be expressed as:∑L−1

i=0 (pi − 1)× (αi +mβi)

The hardware topology-aware hierarchical model could reduce the processing time of collective
operations by exploiting the following points:

� Fewer processes per level: in most applications, it is enough to use a pyramidal structure
in the hierarchical model of computation. In fact, as illustrated by Figure 4, the structure
based only on the roots of hierarchical communicators in upper levels is enough to perform
the communication. Such a structure implies to use fewer processes pi by level, which
reduces the processing time of the collective.

� Parallelism by level: this point regards the exploitation of parallelism at each level of the
hierarchy. Indeed, and except for the top level of the hierarchy, the communications inside
the communicators of the same level are carried out in parallel.

� Data locality and process a�nity: This point highlights the advantage of using hardware-
aware communicators. Indeed, taking into account the hardware a�nity of processes place-
ment in the machine, the communication between them is enhanced thanks to the cache
optimizations.

� Improved latency and bandwidth per level: this point concerns the physical latency and
bandwidth which could be improved when the number of processes is small. In fact,
because of the contention phenomenon, the higher the number of processes involved in the
communication at the same time through an interconnect, the higher the latency and the
lower the bandwidth delivered to each process.

From all the above points, collective communication operations could be improved depending
on the execution conditions. For instance, if we take the Flat Tree broadcast of a single message
(m = 1) and operated in the simple context of 8 processes and the three-level hierarchy as
described by Figure 4 then the result is:

The simple case: Time = (8− 1)(α+ β)

The hierarchical case: Time = (2− 1)(α0 + β0) + (2− 1)(α1 + β1) + (2− 1)(α0 + β1)

If we compare both expressions, it is clear that the hierarchical approach enhances the simple
collective with the factor of at least (7/3) times when latencies and bandwidths are equal in
both the simple and the hierarchical cases. However, in the real situation, the simple execution
could generate more contention on the interconnects of each level than the hierarchical execution.
Thus, the factor of enhancement of collective time could be greater than (7/3).

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 23

7 Experimental Results

In this section we present the experimentations we carried out and their results to demonstrate the
bene�ts of our proposal. We modi�ed two benchmarks by introducing our hierarchical model of
communicators and we compared their executions on three architectures. In all cases we used the
roots communicators hierarchy generated by calling the primitive described in subsection 3.2.3.
In addition, we used all cores of a targeted architecture and bound an MPI process on each of
them.

7.1 Platforms and architectures

For our study, we used tree architectures: a network of 10 nodes (NTW10E5) and two SMP
machines (SMPE12E5, SMP20E5) from the Plafrim platform [17]. The characteristics of these
architectures are given in Table 1.

Table 1: Characteristics of the used architectures. NUMA nodes are grouped by pairs based on
distance in large SGI platforms. These pairs correspond to the physical blades.

Name SMP12E5 SMP20E7 NTW10E5 NTW24E5

OS RHEL7 SLES11 CentOS 7 Red Hat 4.8

Kernel 3.10.0 2.6.32.46 3.10.0 3.10.0

Nodes 1 1 10 24

NUMA nodes 12 (6 pairs) 20 (10 pairs) 4 4

Sockets 12 20 2 2

Cores per NUMA 8 8 6 6

Socket E5-4620v2 E7-8837 E5-2680v3 E5-2680v3

Clock rate 2600Mhz 2660Mhz 2600Mhz 2600Mhz

Hyper-Threading Yes No No No

L1 cache 32K 32K 32K 32K

L2 cache 256K 32K 256K 256K

L3 cache 20480K 24576K 15360K 15360K

Mem Interconnect NUMAlink6 NUMAlink5 QPI QPI

Node Interconnect N/A N/A In�niBand In�niBand

Hierarchical levels 3 3 4 5

GCC 5.1 5.1 5.1 5.1

OpenMPI 2.0.1 2.0.1 2.0.1 2.0.1

Hwloc 2.0-git 2.0-git 2.0-git 2.0-git

7.2 Collective Communications

The �rst benchmark is the broadcast and the reduce collective communication operations which
we chose to test the proposed hierarchical communication model. There has been other works
that aimed at exploiting hierarchy in the hardware in order to improve collective communications.
In [23] a distinction is made between inter-node and intra-node communication, because shared-
memory based communications are expected to be faster than their network-based counterparts.
In this case, the hierarchy was limited to two levels (intra vs. inter-node) and sometimes three
(intra. vs inter-cluster). We generalized this approach and make no assumption about the
number of levels. Moreover, we are able to exploit the memory hierarchy inside the nodes of a
cluster which is not addressed at all by these works. However, the aim here is not to rewrite

RR n° 9077



24 Goglin et al.

collectives or to propose some new algorithms. Our goal is merely to experiment our abstraction
in order to assess the potential gains achievable by optimizing communication and data locality.

We compared two implementations:

� Native: this is the OpenMPI implementation of the considered collective.

� Hierarchical : this is a loop over the levels of the hierarchy calling the OpenMPI version of
the collective. Hence, we do not rewrite the collective but just call it through our hierarchy.

Figure 5: Enhancement factor of hierarchical approach for OpenMPI Broadcast implementations
on NTW10E5 (240cores)

Figures 5, 6 and 7 show the enhancement factor of the hierarchical-based implementation
of six broadcast algorithms: Linear, Chain, Pipeline, Split Binary, Binary and Binomial. This
factor is obtained by comparing the maximum time of processing several data sizes on the archi-
tectures described in Table 1 with the hierarchical broadcast and the native version of OpenMPI
broadcast. It is possible to note that the hierarchical approach we propose enhances almost all
broadcast executions on the three architectures. In fact, the maxima achieved are roughly equal
to 21x on NTW10E5, 11x on SMP20E5 and 22x on SMP12E5. This performance gain is due
to two majors factors: �rst, our hierarchical approach allows to better exploit the parallelism
and to reduce the complexity of broadcast algorithms. Second, the hardware topology-based
communicators enhance the data locality and the hardware a�nity between processes perform-
ing communications. Third, the communications are better pipelined over the network and the
interconnect which reduce their total time.

Figures 8, 9 and 10 present the same results for the Reduce collective with six algorithms:
Linear, Chain, Pipeline, Binary, Binomial and In-order Binary. In this case also the enhance-
ment factor is obtained by comparing the maximum time for executing the reduction collective
of several data sizes on the architectures described in Table 1 with both hierarchical and na-
tive OpenMPI reduce. Here, we note that the hierarchical approach we propose considerably
enhances the �rst three algorithms: Linear, Chain, Pipeline. In fact, the maxima achieved are
roughly equal to 39x on NTW10E5, 11x on SMP20E5 and 8x on SMP12E5. These performances
are achieved by the hardware-aware and hierarchical decomposition of the communications. In-
deed, the algorithms are better parallelized, the data-locality is enhanced and the communications
are better pipelined. However, we note that the three last algorithms (e.g. Binary, Binomial and
In-order Binary) are less improved than the others if not at all. This phenomenon is due to the
structure of the algorithms since they are already based on a hierarchical, tree-based structure.
Therefore, the algorithm complexity is not enhanced by our approach. The small performances
obtained for these algorithms are only due to the hardware optimisations and could be more
signi�cant with a larger number of processes.

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 25

Figure 6: Enhancement factor of hierarchical approach for OpenMPI Broadcast implementations
SMP20E7 (160 cores)

Figure 7: Enhancement factor of hierarchical approach for OpenMPI Broadcast implementations
SMP12E5 (96 cores)

Figure 8: Enhancement factor of hierarchical approach for OpenMPI Reduce implementations
on NTW10E5 (240cores)

7.3 Hierarchical Matrix Multiplication

The second benchmark we carried out is a two-dimensional, hierarchical matrix multiplica-
tion [18]. This application is a hierarchical extension of the SUMMA [21] algorithm based on two
levels of hierarchy. Its implementation is hardware oblivious and is based on exploring several
hierarchy con�gurations i.e. di�erent number of communicators on each two levels. Hence, the
programmer needs to manually specify the con�guration at each execution by giving a con�g-
uration �le as an input argument. With our approach, we abstract the manual speci�cation of
the hierarchy con�guration. As a consequence we do not need to specify the con�guration of

RR n° 9077



26 Goglin et al.

Figure 9: Enhancement factor of hierarchical approach for OpenMPI Reduce implementations
on SMP20E7 (160 cores)

Figure 10: Enhancement factor of hierarchical approach for OpenMPI Reduce implementations
on SMP12E5 (96 cores)

the hierarchy in our implementation. It is based on the targeted architecture topology and au-
tomatically generated by using our proposed set of functions. The implementations we compare
are:

� Simple: this is the implementation of the SUMMA algorithm based on broadcasting the
blocks over rows and columns.

� Hierarchical (xgroups): this is the hierarchical implementation of the SUMMA algorithm
of matrix multiplication. The broadcasts of blocks are performed hierarchically over two
levels. The hierarchy con�guration is set by the user through a con�guration �le for each
execution.

� Hierarchical topological : this is the same implementation but leveraging our communicators
hierarchy. The hierarchy con�guration is based on the underlying hardware topology and
automatically build using our primitives.

Figures 11, 12 and 13 present the total processing times of several implementations: Simple
(without hierarchy), Hierarchical with various con�gurations and Hierarchical with a topological
con�guration. The total time represents the needed time to process one block of 8 doubles per
process and is composed of the average computing time represented by the blue part of the
bar and the average communication time of processes by the red part. The used broadcast
algorithm is the OpenMPI implementation of Binary algorithm. We note that the Topological
implementation (last bar) represents the minimum total time and achieve the better speed-ups
of the simple implementation: 12x on NTW10E5, 5x on SMP20E7 and 6x on SMP12E5. Indeed,

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 27

Figure 11: Comparison of execution time of simple, topology-oblivious hierarchical and topo-
logical matrix multiplication implementations on NTW10E5. 240 processes process 1 block of 8
doubles

Figure 12: Comparison of execution time of simple, topology-oblivious hierarchical and topo-
logical matrix multiplication implementations on SMP20E7. 160 processes process 1 block of 8
doubles

Figure 13: Comparison of execution time of simple, topology-oblivious hierarchical and topo-
logical matrix multiplication implementations on SMP12E5. 96 processes process 1 block of 8
doubles

all implementations feature the same processing time (the blue part) but the communication
time (the red part) is optimally reduced by the last implementation (Topological). This is due
to the optimal hardware con�guration matching with the topology. In fact, the communications
inside hardware topology-aware communicators are more e�cient thanks to the data locality
and the MPI processes a�nity. In addition, pipelining the communication enhances processors
occupation time and reduces the global time.

RR n° 9077



28 Goglin et al.

7.4 Hierarchical complex vectors processing

The third benchmark we used in order to validate our approach is a simulation of hierarchical
complex processing. This kind of application processes hierarchically a large set of data with
di�erent processing schemes at each level and for each process. Several Big Data domains such
as hierarchical data labeling or hierarchic data hashing use the same idea to manage large sets
of data. Algorithm 5 illustrates the functioning of this application where the users need to apply
a function (func) on a local vector (lvec) as input argument on each rank to process gathered
values from a ranks subset. In the implementation we use below, the function func is a simple
vectors addition with normalization by value of a local vector lvec.

Algorithm 5:

1 rcomms ← root_based_hierarchic_communicators

2 func ← local_operation

3 lvec ← local_vector

4 foreach l← 0 .. (size_h) do // process in each level

5 MPI_Comm_rank(rcomms[l],&rank)

6 MPI_Gather(lresult[l], size_v, MPI_TYPE, temp[l], size_v, 0, rcomms[l])

7 if !rank then
8 lresult[l+1] ← func(temp[l],lvec)

We compare two implementations:

� H_topo: is an implementation based on our topology-aware communicator hierarchy where
the communicators are generated by taking into account both the network and the node
memory hierarchies. Therefore, in this implementation, the generated topology of com-
municator is based on the whole hardware topology including the number and levels of
network switch, the number of compute nodes, the number of cores on each node and
their memory hierarchy. For instance, in the experiment we carried out using NTW24E5,
our topology of communicators contains in level number 1, 2, 3, 4 and 5 respectively: 1
communicator of 4 processes corresponding to the network switches, 4 communicators of
various sizes (12, 6, 4 and 2 processes) corresponding to the physical nodes connected to
each switch, 24 communicators of 2 processes corresponding to the sockets, 48 communi-
cators of 2 processes corresponding to the NumaNodes and the last 96 communicators of
6 processes corresponding to the L2 cache level.

� H_conf(i): is the same implementation based on a tailor-made communicator hierarchy
where the user manually build the hierarchy without taking into account the target un-
derlying architecture. Since it is not easy to retrieve and understand the speci�cs of the
target architecture topology, one can decide to use several possible con�gurations:

Number of MPI process in communicator at level number 1, 2, 3, 4 and 5 :

� H_conf1: 3, 4, 2, 3, 8

� H_conf2: 6, 2, 2, 3, 8

� H_conf3: 3, 2, 2, 8, 6

� H_conf4: 3, 2, 4, 6, 4

Inria



A Hierarchical Model to Manage Hardware Topology in MPI Applications 29

Figure 14: Comparison of execution times of topo-oblivious vs. topological implementations on
NTW24E5. 576 processes process data size (x4B) with 5 hierarchical levels

Figure 14 shows the processing times (in log scale) of both implementations processing di�er-
ent data size. We can see that the implementation (blue curve) based on our hierarchy of com-
municators scales well and outperforms the rest of the other executions and reaches a speedup
of about 10x. This is explained by the reduction of communication times (since the execution
time is the same on each core because they process the same amount of data). In fact, thanks
to our communicators topology we optimize the communication hierarchy by matching it with
the hardware's. As opposed to this, the tailor-made communicator hierarchy is not hardware
aware which implies no optimized communications. Indeed, it is di�cult for the user to know
the speci�cs of the hardware when the resources are allocated by a batch scheduler and to build
the communicator hierarchy accordingly. Our approach proposes a good abstraction to the MPI
user to optimize its communications over a large and complex cluster.

8 Conclusion and Future Work

In this paper, we have presented an abstraction that can help the programmer to structure
their application in order to take into account the hardware topology while designing it. We also
presented how this model and abstraction could �t into an existing programming model/standard:
the widely-used Message Passing Interface. One strength of our approach relies on its ability
to address both network and nodes memory hierarchies at the same time. That is, if both
cases are disjointed from an implementation point of view, they are not conceptually di�erently
handled. Nodes memory hierarchy is seen as natural extensions of the network hierarchy. At the
expense of light changes and a few new features introduction, we have shown that performance
improvements can be achieved in MPI implementations themselves, but more importantly in
parallel applications directly. Indeed, we introduced our topology-based communicators in two
collective communication operations (Broadcast and Reduce) and showed that in the cases where
hierarchy could improve performance, taking into account the physical topology improves things
even further. Tested on four di�erent architectures, our approach enhances the performance of
the tested collective communications by factors up to 21x, 11x and 22x for the broadcast and 39x,
11x and 8x for the reduce. It also reduces the total time of hierarchical matrix multiplication
with the factors of 12x, 5x and 6x. Experiments in which the network topology is also taken into
account demonstrate very good results. Even if these gains of performance are considerable, the
additional e�ort to use our approach is negligible and highly portable. In fact, thanks to the
proposed abstraction automatically generating an hierarchy of communicators, the user does not
have to deal with the details of hardware characteristics or manipulating low-level tools. He only
deals with high-level MPI objects: communicators.

RR n° 9077



30 Goglin et al.

The hardware-agnosticism nature of MPI might seem paradoxical with our goal, as we pre-
cisely seek to o�er the programmer means to better understand and exploit the underlying hard-
ware. We believe that the independence from hardware considerations is an important strength
of the MPI standard. We intend to keep MPI hardware-agnostic but we also believe that giving
the programmer more hints about this same hardware can be very bene�cial performance-wise.
The predicament is therefore to �nd the relevant level of abstraction for such a new functional-
ity. Indeed, if an MPI application should be able to gather and use speci�c pieces of information
about the hardware, this information should nevertheless be abstract enough to not be tailored
for a particular class of hardware. This work is available as an external library that features
all the functions presented in this paper7 We plan to further discuss this proposal at the MPI
Forum in order to standardize it. We also plan to address non-hierarchical topologies, especially
regarding the network. For instance, the graph representing a non-hierarchical network can al-
ways be partitioned (according to a criterion to de�ne) and the split operation could then be
performed accordingly. More generally, our proposal does not impose the underlying hardware
to be hierarchically organized, as the same partitioning method can be employed to split the var-
ious application processes into the communicators. Also, expressing the topology with a distance
function seems a promising idea and we would like to explore it.

Another future work deals with thread support. Currently our proposition relies on MPI
processes making the relevant calls. However, it is possible with hwloc to retrieve information
for each thread within a process. This issue is then to �nd the suitable MPI entity making the
call to the split function. If MPI endpoints could be used to "represent" threads within a process,
then this would be possible. However, this needs some clari�cations regarding MPI processes
and endpoints which is not in the scope of this paper nor this proposal.

Last, we believe that other objects in MPI implementations besides communicators could
bene�t from a knowledge of the underlying physical topology, for instance memory windows.
Generalizing our approach could be of interest.

Acknowledgements

This work has partially been supported by the PIA ELCI project of the French FSN and by the
ANR MOEBUS project ANR-13-INFR-0001.

Experiments presented in this paper were carried out using the PlaFRIM experimental
testbed, being developed under the Inria PlaFRIM development action with support from Bor-
deaux INP, LABRI and IMB and other entities: Conseil Régional d'Aquitaine, Université de
Bordeaux, CNRS and ANR in accordance to the programme d'Investissements d'Avenir (see
https://www.plafrim.fr/).

The authors would like to thank the MPI Forum for its feedback, especially Daniel Holmes, as
well as Cyril Bordage from implementing the netloc extension for retrieving network coordinates
of nodes.

References

[1] B. Brandfass, T. Alrutz, and T. Gerhold. Rank Reordering for MPI Communication Opti-
mization. Computer & Fluids, January 2012.

7 The code is available for download from https://gforge.inria.fr/frs/download.php/file/36832/

hsplit-rc-0.1.tar.gz and from git at https://scm.gforge.inria.fr/anonscm/git/mpi-topology/

mpi-topology.git

Inria

https://www.plafrim.fr/
https://gforge.inria.fr/frs/download.php/file/36832/hsplit-rc-0.1.tar.gz
https://gforge.inria.fr/frs/download.php/file/36832/hsplit-rc-0.1.tar.gz
https://scm.gforge.inria.fr/anonscm/git/mpi-topology/mpi-topology.git
https://scm.gforge.inria.fr/anonscm/git/mpi-topology/mpi-topology.git


A Hierarchical Model to Manage Hardware Topology in MPI Applications 31

[2] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier, S. Thibault,
and R. Namyst. Hwloc: a Generic Framework for Managing Hardware A�nities in HPC
Applications. In Proceedings of the 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP2010), Pisa, Italia, February 2010. IEEE
Computer Society Press.

[3] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice
Santos, Ramesh Subramonian, and Thorsten von Eicken. Logp: Towards a realistic model
of parallel computation. SIGPLAN Not., 28(7):1�12, July 1993.

[4] Brice Goglin, Joshua Hursey, and Je�rey M. Squyres. Netloc: Towards a comprehensive
view of the HPC system topology. In 43rd International Conference on Parallel Processing
Workshops, ICPPW 2014, Minneapolis, MN, USA, September 9-12, 2014, pages 216�225.
IEEE Computer Society, 2014.

[5] T. Hatazaki. Rank Reordering Strategy for MPI Topology Creation Functions. In V. Alexan-
drov and J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, volume 1497 of Lecture Notes in Computer Science, pages 188�195.
Springer Berlin / Heidelberg, 1998. 10.1007/BFb0056575.

[6] Roger W. Hockney. The communication challenge for mpp: Intel paragon and meiko cs-2.
Parallel Comput., 20(3):389�398, March 1994.

[7] J. Hursey, J. M. Squyres, and T. Dontje. Locality-Aware Parallel Process Mapping for
Multi-core HPC Systems. In 2011 IEEE International Conference on Cluster Computing
(CLUSTER), pages 527�531. IEEE, 2011.

[8] J. L. Trä�. Implementing the MPI Process Topology Mechanism. In Supercomputing `02:
Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages 1�14, Los Alami-
tos, CA, USA, 2002. IEEE Computer Society Press.

[9] Emmanuel Jeannot, Guillaume Mercier, and François Tessier. Process Placement in Multi-
core Clusters: Algorithmic Issues and Practical Techniques. IEEE Trans. Parallel Distrib.
Syst., 25(4):993�1002, 2014.

[10] Jesper Larsson Trä�. Implementing the MPI process topology mechanism. In Supercom-
puting `02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages 1�14,
Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[11] Thilo Kielmann, Henri E. Bal, and Kees Verstoep. Fast Measurement of LogP Parame-
ters for Message Passing Platforms, pages 1176�1183. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2000.

[12] Andi Kleen. A NUMA API for Linux. Novel Inc, 2005.

[13] G. Mercier and J. Clet-Ortega. Towards an E�cient Process Placement Policy for MPI
Applications in Multicore Environments. In EuroPVM/MPI, volume 5759 of Lecture Notes
in Computer Science, pages 104�115, Espoo, Finland, September 2009. Springer.

[14] G. Mercier and E. Jeannot. Improving MPI Applications Performance on Multicore Clusters
with Rank Reordering. In EuroMPI, volume 6960 of Lecture Notes in Computer Science,
pages 39�49, Santorini, Greece, September 2011. Springer.

RR n° 9077



32 Goglin et al.

[15] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 3.0.
Technical report, September 2012.

[16] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Programming.
O'Reilly & Associates, Inc., Sebastopol, CA, USA, 1996.

[17] Plafrim. Plate-forme fédérative pour la recherche en informatique et mathématiques. https:
//plafrim.bordeaux.inria.fr/doku.php.

[18] Jean-Noel Quintin, Khalid Hasanov, and A. Lastovetsky. Hierarchical parallel matrix mul-
tiplication on large-scale distributed memory platforms. In 42nd International Conference
on Parallel Processing (ICPP 2013), pages 754�762, Lyon, France, 1-4 October 2013. IEEE,
IEEE.

[19] M. J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp. Multi-core and Network Aware
MPI Topology Functions. In Y. Cotronis, A. Danalis, D. S. Nikolopoulos, and J. Dongarra,
editors, EuroMPI 2011. Recent Advances in the Message Passing Interface - 18th European
MPI Users' Group Meeting, volume 6960 of Lecture Notes in Computer Science, pages 50�60.
Springer, 2011.

[20] James Reinders and Jim Je�ers. High Performance Parallelism Pearls, volume 2. Morgan
Kaufmann, 1 edition, 2015.

[21] R. A. Van De Geijn and J. Watts. Summa: scalable universal matrix multiplication algo-
rithm. Concurrency: Practice and Experience, 9(4):255�274, 1997.

[22] J. Zhang, J. Zhai, W. Chen, and W. Zheng. Process Mapping for MPI Collective Commu-
nications. In H. J. Sips, D. H. J. Epema, and H.-X. Lin, editors, Euro-Par, volume 5704 of
Lecture Notes in Computer Science, pages 81�92. Springer, 2009.

[23] H. Zhu, D. Goodell, W. Gropp, and R. Thakur. Hierarchical Collectives in MPICH2. In
Proceedings of the 16th European PVM/MPI Users' Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface, pages 325�326, Berlin, Heidelberg,
2009. Springer-Verlag.

Inria

https://plafrim.bordeaux.inria.fr/doku.php
https://plafrim.bordeaux.inria.fr/doku.php


RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Introduction
	Hardware topology management and the MPI Standard
	Interactions with external tools
	Current status in the MPI standard and its implementations
	Shared Memory constructs
	Process topologies and reordering
	MPI Sessions
	Process Managers and process mapping


	Proposed Extensions to the MPI standard
	Guidelines
	Communicators creation
	MPI_Comm_split_type extension
	Properties of the hierarchical communicators
	Creation of Roots Communicators
	Interaction with process mapping/binding policies

	Communicators characteristics query
	Getting information for a hierarchical level
	Getting the minimal level

	Discussion

	Implementation Details
	An hwloc-based implementation
	MPI_Comm_split_type implementation
	 MPI_Comm_hsplit_with_roots implementation
	MPI_Comm_get_hlevel_info implementation
	MPI_Comm_get_min_hlevel implementation

	Network Support Extension with netloc

	Practical examples
	A simple case
	A more complicated case

	Benefits of the hierarchical model for parallel applications
	Experimental Results
	Platforms and architectures
	Collective Communications
	Hierarchical Matrix Multiplication
	Hierarchical complex vectors processing

	Conclusion and Future Work

