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Finite-time and fixed-time stabilization for integrator chain of arbitrary
order*

Konstantin Zimenko1, Andrey Polyakov1,2, Denis Efimov1,2 and Wilfrid Perruquetti2

Abstract— In the present paper, homogeneous control laws
are designed for finite-time and fixed-time stabilization of
integrator chains of arbitrary order. Provided analysis is
based on Lyapunov function method and homogeneity concept.
Fixed-time convergence is achieved by use of hybrid control
algorithm with homogeneity degree changing. Performance of
the resulting finite-time and fixed-time feedbacks is illustrated
by numerical simulations.

I. INTRODUCTION
Motivated by modern control applications, the finite-time

and fixed-time stabilization feedback design is continuing
to be the subject of numerous studies (see, for example,
[1]-[18]). Among these studies and many others, particular
attention is paid to finite/fixed-time stabilization of integrator
chains as a basic model for demonstration and further ex-
tension for multi-input multi-output linear plants. Interest to
the disturbed integrator chain control systems is additionally
motivated by different mechanical and electromechanical
applications (see, for example, [20], [22]). However, most
of existing control laws are discontinuous (as, for example,
in [6], [7]), designed to stabilize the chain of integrators only
of a certain order (for second order [14], [15] for third order
[16], [17], etc.), or even depending directly on the initial
conditions ([17]).

The present paper is devoted to Lyapunov-based controller
design which stabilizes the arbitrary order integrator chain in
finite/fixed time. Presented control algorithms are obtained
with use of Lyapunov function method and homogeneity
concept.

The paper [1] is related to development of robust finite-
time and fixed-time stabilization controllers, which depend
on implicitly defined homogeneous Lyapunov function. For
practical implementation of these control algorithms it is
required to use special computational procedures for calcu-
lating Implicit Lyapunov Function (ILF). In [11] the finite-
time control law has been modified to explicit form, where
instead of ILF the homogeneous norm is used. Then the dif-
ference between ILF and homogeneous norm is considered as
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additional external disturbance, that has led to a more com-
plex analysis and parameters tuning procedure. The present
paper provides the analysis based on an explicitly defined
Lyapunov function for the similar control law. This analysis
allows to get simple parameters tuning procedure and obtain
new estimates for settling-time function. It is also shown
that fixed-time convergence can be achieved by changing the
homogeneity degree in hybrid control algorithm.

The paper is organized in the following way. The problem
formulation is presented in Section II. Section III recalls
some basics on finite/fixed-time stability and weighted ho-
mogeneity. Section IV presents the main result on finite-
time and fixed-time controllers design. Simulation results are
shown in Section V for performance illustration of proposed
control algorithms. Finally, concluding remarks are given in
Section VI.

Through the paper the following notation will be used:
R is the set of real numbers; R+ = {x ∈ R : x > 0};
diag{λi}ni=1 is a diagonal matrix with elements λi; for P ∈
Rn×n the relation P > 0 (P < 0, P ≥ 0, P ≤ 0) means that
the symmetric matrix P = PT is positive (negative) definite
(semidefinite); a series of integers 1, 2, . . . , n is denoted by
1, n.

II. PROBLEM FORMULATION

Consider a chain of n integrators

ẋ = Ax+ bu, (1)

where x ∈ Rn is the state vector, u ∈ R,

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 and b =


0
0
...
0
1

 .

The objective of the present paper is to design Lyapunov-
based controllers, which stabilize the arbitrary order sys-
tem (1) to the origin in finite/fixed time.

III. PRELIMINARIES

A. Finite-Time and Fixed-Time Stability

Let us consider the system

ẋ = f(t, x), x(0) = x0, (2)

where x ∈ Rn is the state vector, f ∈ R+ × Rn → Rn
is a vector field. If the vector field f is discontinuous with
respect to x, then the solutions of (2) fall into the area of



differential inclusions and need to be understood in the sense
of Filippov [23]. For any x0 ∈ Rn denote a corresponding
solution by X̃(t, x0) for the instants t ≥ 0 for which it exists,
X̃(0, x0) = x0.

Definition 1 [3], [4]
The origin of (2) is said to be globally finite-time stable if

it is globally asymptotically stable and any solution X̃(t, x0)
of (2) reaches the equilibrium point at some finite time
moment, i.e., X̃(t, x0) = 0, ∀t ≥ T (x0), where T : Rn →
R+ ∪ {0} is the settling-time function.

Definition 2 [8]
The origin of (2) is said to be fixed-time stable if it

is globally finite-time stable and the settling-time function
T (x0) is bounded, i.e., ∃Tmax > 0: T (x0) ≤ Tmax, ∀x0 ∈
Rn.

Definition 3 [8]
The set M is said to be globally finite-time attractive

for (2) if any solution X̃(t, x0) of (2) reaches M in some
finite time moment t = T (x0) and remains there ∀t ≥
T (x0), T : Rn → R+ ∪ {0} is the settling-time function.

Definition 4 [8]
The set M is said to be fixed-time attractive for (2) if it is

globally finite-time attractive and the settling-time function
T (x0) is globally bounded by some number Tmax > 0.

Theorem 1 [3], [6]
Suppose there exists a positive definite C1 function V

defined on an open neighborhood of the origin D ⊂ Rn and
real numbers C > 0 and σ ≥ 0, such that the following
condition is true for the system (2)

V̇ (x) ≤ −CV σ(x), x(t) ∈ D \ {0}.

Then depending on the value σ the origin is stable with
different types of convergence:
• if σ = 1, the origin is asymptotically stable;
• if 0 ≤ σ < 1, the origin is finite-time stable and

T (x0) ≤ 1

C(1− σ)
V 1−σ

0 ,

where V0 = V (x0);
• if σ > 1 the origin is asymptotically stable and, for

every ε, the set B(0, ε) = {x ∈ D : V (x) < ε} is fixed-
time attractive with

Tmax =
1

C(σ − 1)εσ−1
.

If D = Rn and function V is radially unbounded, then the
system (2) is globally stable with respect to the equilibrium
point.

B. Weighted Homogeneity

For ri ∈ R+, i = 1, n, ρ > 2 maxi ri and λ > 0 define
vector of weights r =

(
r1, . . . , rn

)T
, dilation matrix

Dr(λ) = diag{λri}ni=1 and homogeneous norm

‖x‖r =

(
n∑
i=1

|xi|
ρ
ri

) 1
ρ

. (3)

Note that under introduced restriction on ρ the homogeneous
norm is a continuously differentiable function out of the
origin.

Definition 5 [19]
A function g : Rn → R (vector field f : Rn → Rn) is said

to be r-homogeneous of degree d if g(Dr(λ)x) = λdg(x)
(f(Dr(λ)x) = λdDr(λ)f(x)) for fixed r, all λ > 0 and
x ∈ Rn.

Obviously, homogeneous norm is r-homogeneous of de-
gree 1. Introduce the following compact set (homogeneous
sphere) Sr = {x ∈ Rn : ‖x‖r = 1}, then for any x ∈ Rn
there is y ∈ Sr such that x = Dr(λ)y for λ = ‖x‖r.

Theorem 2 [18]
Let f : Rn → Rn be defined on Rn and be a continuous

r-homogeneous vector field with degree d (d < 0). If the
origin of the system

ẋ = f(x) (4)

is locally asymptotically stable then it is globally asymptot-
ically stable (globally finite-time stable) and there exists a
continuously differentiable Lyapunov function V which is
r-homogeneous of degree v > −d.

By definition of homogeneity there exist constants c1, c2 >
0 such that

c1‖x‖vr ≤ V (x) ≤ c2‖x‖vr . (5)

The r-homogeneity presented in Definition 5 is introduced
for some r and all λ > 0. Restricting the set of admissible
values for λ the local homogeneity concept has been intro-
duced in [19], [9], [10].

IV. MAIN RESULT

For µ ∈ (0, 1] and the vector of weights r = (l +
(n − 1)µ, l + (n − 2)µ, · · · , l)T , rmax = l + (n − 1)µ,
rmin = l denote the dilation matrix Dr(λ) = diag{λri}ni=1

and diagonal matrix H̃ = diag{−m + (n + 1 − i)µ}ni=1,
where l ∈ R+ : l ≥ µ, m ∈ R+ : m > nµ.

Theorem 4
If the system of matrix inequalities:

X > 0, (6)

αmax(H̃X+XH̃)+AX+XAT +by+yT bT ≤ −γX, (7)

−αmax(H̃X+XH̃)+AX+XAT+by+yT bT ≤ −γX, (8)

is feasible for some X ∈ Rn×n, y ∈ R1×n, γ ∈ R+ and

αmax =

(
1 +

(∑
|ki|

ρ
ρ−rmin

) ρ−rmin
rmin

) rmin
ρ

×(∑(
1
ri

) ρ
rmax−rmin

) rmax−rmin
ρ

, (9)

P = X−1, k = yX−1, then the control of the form

u = ‖x‖l−µr kDr

(
1

‖x‖r

)
x (10)



stabilizes the origin of the system (1) in a finite time and the
settling-time function estimate has the form

T (x) ≤ 2(m+ l − µ)V µ0
µγcµ1

, (11)

where V0 =
(
xT0 H

(
1

‖x0‖r

)
PH

(
1

‖x0‖r

)
x0

) 1
2(m+l−µ)

,

H(λ) = diag{λ−m+(n+1−i)µ}ni=1 and c1 =

min‖x‖r=1

{
(xTPx)

1
2(m+l−µ)

}
.

Remark 1 The finite-time control law (10) for l = 1
coincides with the control presented in [11]. In comparison
with [11], presented analysis allows to relax obtained LMIs
and simplify the procedure of parameters tuning. Also, new
estimates for settling-time function is obtained.

Remark 2 Since the inequalities (7), (8) are feasible at
least for sufficiently small α (can be achieved by choosing
sufficiently big l ∈ R+) the presented control scheme
implies simple control parameters tuning: it requires to solve
LMIs (6) and

α̃(H̃X +XH̃) +AX +XAT + by + yT bT ≤ −γX,

−α̃(H̃X +XH̃) +AX +XAT + by + yT bT ≤ −γX,

for some α̃ ∈ R+ and then choose such l for which αmax ≤
α̃.

Remark 3 The parameter m can be chosen large enough
to have H̃X +XH̃ ≤ 0. In this case the inequality (7) can
be reduced.

Remark 4 Parameters l, m, µ and γ allows the upper bound
of the settling time function (11) to be adjusted.

Remark 5 For l = µ ≤ 1 the control (10) is continuous
outside the origin and globally bounded for all x ∈ Rn:

u2 = xTDr

(
1
‖x‖r

)
kT kDr

(
1
‖x‖r

)
x ≤

ς‖x‖−2m
r xTH

(
1
‖x‖r

)
PH

(
1
‖x‖r

)
x =

ς‖x‖−2m
r V 2m ≤ ςc2m2 ,

where ς ∈ R+ : kT k ≤ ςP .
For µ < min{l, 1} the control (10) is continuous in the

state variable x. If µ→ 0 then the feedback (10) becomes a
linear u = kx. If µ = l ≤ 1 the control is discontinuous at
the origin and continuous outside. For practical realization of
the control, the discontinuous feedback law can be replaced
with a high-gain linear feedback if the system state is close
to the origin as in [1].

Remark 6 It can be easily checked that the system (1), (10)
is homogeneous of degree −µ. Thus, the system has such
qualitative stability properties of homogeneous systems as
Input-to-State Stability with respect to additive perturbations
in the right-hand side of (1) and measurement noises in the
feedback.

Remark 7 The controller (10) can also be treated as the
weighted homogeneous version of the unit sliding mode
control [20], [21].

Note that in presented control scheme instead of homoge-
neous norm (3) another homogeneous function of degree 1
can be used. In this case the main difference is in calculating

the parameter α. Also if we choose instead of homogeneous
norm implicitly defined homogeneous function equal to V ,
then for m = l = 1 we obtain implicitly defined Lyapunov
function

Q = xTDr(V
−1)PDr(V

−1)x− 1

and control u = V 1−µkDr(V
−1)x, V ∈ R+ : Q(V, x) = 0

as in [1], [2].
Convergence within a fixed interval of time irrespectively

of its initial conditions can be achieved by changing the
degree of homogeneity in hybrid control algorithm. The
following discontinuous fixed-time controller is based on
time dependent switching scheme for the first time presented
in [24] for an observer.

In this case for m1,m2 ∈ R+ : m1 = m2 +2µ, m1 > nµ,
l > (n − 1)µ, µ ∈ (0, 1] denote vectors of weights r1 =
(l+(n−1)µ, l+(n−2)µ, · · · , l)T , r2 = (l−(n−1)µ, l−
(n − 2)µ, · · · , l)T , homogeneous norms ‖x‖r1 , ‖x‖r2 and
matrices D1(λ) = diag{λr1(i)}ni=1, H̃1 = diag{−m1+(n+
1− i)µ}ni=1, D2(λ) = diag{λr2(i)}ni=1, H̃2 = diag{−m2−
(n + 1 − i)µ}ni=1, H1(λ) = diag{λ−m1+(n+1−i)µ}ni=1,
H2(λ) = diag{λ−m2−(n+1−i)µ}ni=1.

Define homogeneous functions of degree 1:

V1(x) =

(
xTH1

(
1

‖x‖r1

)
PH1

(
1

‖x‖r1

)
x

) 1
2(m1+l−µ)

,

V2(x) =

(
xTH2

(
1

‖x‖r2

)
PH2

(
1

‖x‖r2

)
x

) 1
2(m2+l+µ)

.

For V1 and V2 according to (5) define c11 , c21 and c12 , c22

correspondingly.
Theorem 5
If the system of matrix inequalities (6),

α1(H̃1X+XH̃1)+AX+XAT +by+yT bT ≤ −γ1X, (12)

−α1(H̃1X +XH̃1) +AX +XAT + by + yT bT ≤ −γ1X,
(13)

α2(H̃2X+XH̃2)+AX+XAT +by+yT bT ≤ −γ2X, (14)

−α2(H̃2X +XH̃2) +AX +XAT + by + yT bT ≤ −γ2X,
(15)

is feasible for some X ∈ Rn×n, y ∈ R1×n, γ1, γ2 ∈ R+,
were α1, α2 are calculated according to (9) with r1 and r2

correspondingly, P = X−1, k = yX−1, then the control of
the form

u =

 ‖x‖l+µr2 kD2

(
1

‖x‖r2

)
x for t ≤ Ts,

‖x‖l−µr1 kD1

(
1

‖x‖r1

)
x for t > Ts,

(16)

for some Ts ∈ R+ stabilizes the origin of the system (1) in
a fixed time

T (x) ≤ 2(m1 + l − µ)µ−1

(
cµ22

γ2Eµ
+

Bµ

γ1c
µ
11

)
, (17)

where E =
(

2(m1+l−µ)cµ22
µγ2Ts

) 1
µ

,

B = max
V2=E

V1. (18)



Note, that the parameter Ts ∈ R+ can be arbitrarily
chosen.

Similarly to finite-time case, remarks analogous to 2-6 can
be presented for fixed-time control algorithm. For example,
the fixed-time controller is constructed by switching homo-
geneity properties of the system: it is homogeneous with
positive degree µ for t ≤ Ts and with negative degree −µ
for t > Ts.

The convergence rate of proposed control algorithms can
be accelerated via time-rescaling in similar way, as in [12],
[6], [13].

Remark 8 For λ > 1 and N = diag{λ1−i}ni=1 rewrite
the control (16) (or control (10)) as ū(x) = λnu(Nx).
Then for x̄ = Nx, t̄ = λt, T̄s = Ts/λ we obtain ˙̄x =
Ax̄(t̄) + bu(x̄(t̄)) and the following estimates of settling-
time function: T (x0) ≤ T1+Ts

λ for the control (16) and
T (x0) ≤ 2(m+l−µ)V (x̄0)µ

µγcµ1λ
for the control (10).

V. SIMULATION RESULTS

Let us demonstrate the performance of presented con-
trol laws using the system of triple integrator with initial
conditions x1(0) = 10, x2(0) = −30, x3(0) = 0. Using
Theorem 4 the finite-time stabilizing controller is designed
for this system in the form (10) with the parameters l = 20,
m = 1, µ = 0.3, ρ = 41.201, where the matrix P ∈ R3×3,
P > 0 and the vector k ∈ R1×3 are obtained from the
inequalities (6)-(8):

P =

23.5107 16.5213 2.9767
16.5213 14.6850 3.0667
2.9767 3.0667 1.0731

 ,

k =
(
−7.0626 −10.5577 −3.9899

)
.

The parameters of the fixed-time stabilizing controller (16)
were selected solving the LMI (6), (12)-(15) with the pa-
rameters l = 40, m1 = 0.91, m2 = 0.31, µ = 0.3,
ρ1 = ρ2 = 81.7:

P =

0.0235 0.0217 0.0064
0.0217 0.0287 0.0082
0.0064 0.0082 0.0045

 ,

k =
(
−20.2539 −21.1388 −6.8414

)
.

The parameter Ts has been chosen equal to 1.5.
Simulations for finite-time and fixed-time convergence

accelerated with λ = 2 have also been carried out. All
simulations results are presented in Fig.1-6.

Fig. 1. System states versus time for finite-time control

Fig. 2. Control law (10) versus time

Fig. 3. System states versus time for fixed-time control

VI. CONCLUSIONS

The paper is focused on finite-time and fixed-time control
for integrator chains of arbitrary order. Obtained finite-time
control design method consist in appropriate modification
of control law presented in [11] and use of analysis based
on explicitly defined Lyapunov function. Based on this result
simple procedure of parameters tuning and new estimates for
settling-time function were obtained. The fixed-time control
algorithm for chain of integrators is presented. It is shown
that fixed-time convergence can be achieved by changing
the homogeneity degree in hybrid control algorithm. The
performance of obtained control algorithms is demonstrated
through simulations.

A detailed study of the presented control algorithms on
robustness analysis with respect to disturbances, uncertain-
ties, delays and extension of these results on wider class of
systems goes beyond the scope of the paper providing the
subject for a future research.
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