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Abstract—To facilitate the development of Internet of Things
(IoT) applications, numerous middleware protocols and APIs
have been introduced. Such applications built atop reliable or
unreliable protocols and they expose different characteristics.
Additionally, with regard to the application context (e.g., emer-
gency response operations), several Quality of Service (QoS)
requirements must be satisfied. To study QoS in IoT applications,
the provision of a generic performance analysis methodology
is required. Queueing network models offer a simple modeling
environment, which can be used to represent IoT interac-
tions by combining multiple queueing model types for building
queueing networks. The resulting networks can be used for
performance analysis through analytical or simulation models.
In this paper, we present several types of queueing models
that represent different QoS settings of IoT interactions, such
as intermittent mobile connectivity, message drop probabilities,
message availability/validity and resource constrained devices.
Using MobileJINQS, we simulate our models demonstrating the
significant effect on response times and message success rates
when varying QoS settings.

Index Terms—Queueing Models, Mobile Connectivity, Internet
of Things, QoS Analysis

I. INTRODUCTION

The Internet of Things (IoT) promises the integration of
the physical world into computer-based systems. IoT devices,
featuring sensing capabilities, are deployed in a variety of ap-
plication domains, such as smart buildings, community spaces,
intelligent transportation to name a few. By exploiting their
information, there are new opportunities to improve peoples’
safety and quality of life. For instance in [1], [2], IoT devices
are used by volunteers to monitor homes/offices for possible
indications of seismic activity. Such an application generates
critical information and is expected to function correctly,
timely and reliably. Hence, identifying a general methodology
for the performance modeling and analysis of IoT applications
is of prime importance.

IoT devices can be mobile, low-powered, inexpensive and
with regard to the environmental context, the resulting appli-
cations expose different characteristics. In particular, several
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Quality of Service (QoS) constraints can be identified: i) inter-
mittent connectivity of mobile devices; ii) limited memory of
inexpensive devices; iii) limited availability of data in emer-
gency response scenarios, etc. Furthermore, IoT applications
built atop reliable/unreliable protocols and Application Pro-
gramming Interfaces (APIs) which introduce additional QoS
constraints [3], [4]. Hence, these constraints raise important
challenges for the supporting of IoT performance analysis.

Existing efforts [5]–[7] concerning the design and evaluation
of mobile systems under specific constraints (e.g., intermittent
availability, limited resources, etc) and for specific use cases
rely on the field of Queueing Theory [8]. Key IoT protocols
have been evaluated with regard to performance metrics such
as response times and delivery success rates [9], [10]. How-
ever, such efforts are protocol-specific and thus, the research
community has analyzed the performance of well known in-
teractions paradigms [11], [12] that may abstract different IoT
protocols. The publish/subscribe paradigm has been analyzed
using formal models [13] and evaluated using models such as
Queueing Petri Nets [14] or Queueing networks [15].

Queueing networks have been extensively applied to rep-
resent and analyze communication and computer systems. A
queueing network is a network of connected service centers
which provides analytical or simulation solutions for perfor-
mance measures (e.g., response time). Combining separate ser-
vice centers in order to form a queueing network, enable us to
model and represent an IoT interaction. Towards this, in [16]–
[19] we have identified a methodology where middleware
protocol nodes (clients, servers, brokers, etc) are represented
as queues and the exchanged messages as jobs served. To
model QoS settings such as the intermittent connectivity [20]
of mobile Things, we have investigated a separated queueing
center via the so called ON/OFF queueing model in [16], [17].
Then, we demonstrated the applicability of our approach by
modeling the performance of publish/subscribe [16], [18] and
data streaming protocols [17]. In [19] we applied our approach
to analyze the performance of IoT devices with heterogeneous
QoS settings. In this paper, we provide additional queueing
models that represent the aforementioned QoS constraints of
IoT applications. The key contributions of this work are:
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(a) M/M/1 queue.
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(b) ON/OFF queue.

Fig. 1: M/M/1 and ON/OFF queues.

1) The description of a generic ON/OFF model extended
with message join probabilities and message losses.

2) The introduction of additional features for queueing
models representing resource constrained devices and
message availability.

3) The comparison of different queueing models in terms
of response time and message success rate through
simulation-based experiments.

The rest of this paper is organized as follows: Section II,
provides a description of our queueing models that represent
a variety of QoS settings found in IoT applications. In Sec-
tion III, we compare the performance of queueing models
when applying message join probabilities, message availabil-
ities and finite buffer capacities. We finally complement this
paper with a brief conclusion and future work in Section IV.

II. QUEUEING MODELS

In this section, we define the individual queueing models
that are used as part of the simulation-based queueing net-
works of our methodology.

A. M/M/1 model

This queue models uninterrupted serving (transmission,
reception or processing) of messages as part of an end-to-end
IoT interaction. It corresponds to the most common M/M/1
queue (see Fig. 1a), featuring Poisson arrivals and exponential
service times.

An M/M/1 queue (qm/m/1) is defined by the tuple:

qm/m/1 = (λ, µ). (1)

where λ is the input rate of messages to the queue and µ
is the service rate for the processing of messages. Let D be
the service demand for the processing delay of each message
(i.e., D = 1/µ). Based on standard solutions for the M/M/1
queue [15], the time that a message remains in the system
(corresponding to queueing time + service time; we also call
it mean response time) is given by:

∆m/m/1 =
D

1 − λD
. (2)

B. ON/OFF model

To deal with the mobile peer’s connections and disconnec-
tions we introduce the Intermittent (ON/OFF) queue, which is
depicted in Fig. 1b. Messages arrive according to a Poisson
process with rate λ > 0, and are placed in a queue waiting
to be “served” (waiting area in Fig. 1b). Messages are served
with rate µ >0, which is exponentially distributed.
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(a) Probabilistic ON/OFF queue.
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(b) ON/OFF loss queue.

Fig. 2: Probabilistic and loss ON/OFF queues.

We assume that the server is subject to an on-off procedure.
That said, it remains in the ON-state for an exponentially
distributed time with parameter θON, during which it serves
messages (if any). Let TON be the time the server is ON – i.e.,
TON = 1/θON. Upon the expiration of this time the server
enters the OFF-state during which it stops working (stops
serving relevant messages) for an exponentially distributed
time period with rate θOFF. Let TOFF be the time the server
is OFF – i.e., TOFF = 1/θOFF. Accordingly, an ON/OFF
queue qon/off is defined by the tuple:

qon/off = (λ, λon/off , µ, TON, TOFF). (3)

where λ is the input rate of messages to the queue, λon/off

is the output rate of messages, and µ is the service rate for
the processing of messages (if any) during TON. The output
process λon/off is intermittent, because no messages exit the
queue during TOFF intervals. Without loss of generality, we
make the following assumption: if TON expires and there is
a message currently being served, the server interrupts its
processing and will continue in the next TON period.

Let ∆on/off be the the mean response time (the time that a
message remains in the system) for the qon/off queue. In our
recent works [16], [17], we have investigated an analytical so-
lution for estimating ∆on/off by considering average periods
of connections and disconnections (TON, TOFF). This is given
by:

∆on/off =
E(n)on/off

λ
. (4)

where E(n)on/off is the average number of messages in the
system (server + queue). Its formula is defined in [17].

C. Probabilistic ON/OFF model

To reduce queueing delays in the ON/OFF model (see sub-
section II-B), we introduce the probabilistic ON/OFF model
which is depicted in Fig. 2a. In such a model, messages arrive
in the system according to a Poisson process with rate λ.
If the server is online (ON) then messages are placed in a
queue waiting to be served. Otherwise, if the server is offline
(OFF), messages decide to join the queue with probability
ζ or leave the system with probability 1−ζ. A probabilistic
ON/OFF queue qprobon/off is defined by the tuple:

qprobon/off = (λ, λon/off , µ, ζ, TON, TOFF). (5)

where λ is the input rate of messages, ζ is the probability of
joining the queue, λon/off is the output rate of messages and



µ is the service rate for the transmission of messages (if any)
during TON. It is worth noting that if ζ = 1, then all messages
join the system during OFF periods. This is equivalent with the
ON/OFF model presented in the subsection II-B. Hence, the
probabilistic ON/OFF model generalizes the ON/OFF model.

∆
on/off
prob is the the mean response time (the time that a

message remains in the system) for the qprobon/off queue. We
are currently working on identifying an analytical model for
estimating ∆

on/off
prob .

Using the probabilistic ON/OFF model, system designers
will be able to appropriate tune/improve delays of components
that may disconnect for an average period TOFF and transmit
messages during TON over a limited bandwidth. Reducing
the arrival rate of messages during TOFF, decreases queueing
delays and prevents network flooding during TON. Such a
component may be a resource-constrained (in terms of energy
and memory) IoT sensor that transits messages over limited
bandwidth and may be on sleep-mode periodically (ON/OFF).
This probabilistic behavior (i.e., the probability of transmitting
messages during TOFF) must be defined from the correspond-
ing application-layer of the IoT device.

D. ON/OFF loss model

The ON/OFF models defined in the above subsections do
not assume message drops (or losses) from the system –
any message is either served or buffered and then served.
The probabilistic ON/OFF model assumes messages losses,
however such messages do not enter the queue since they
decide to join the queue with probability ζ.

To model message losses we introduce the ON/OFF loss
queue (see Fig. 2b). Similarly to the above ON/OFF queues,
the arrival rate (λ) of messages to the system is Poisson. If
the server is ON then messages are placed in a queue waiting
to be “served” with service rate µ. Otherwise, (i.e., server is
OFF) all messages that join the queue (ζ = 1), are “served”
with service rate µloss and afterwards they exit the system
(i.e., we have lost messages). We assume that lost messages
are “served” with service rate µloss > µ.

The latter assumption is introduced due to the following
reason: we have identified the ON/OFF loss queue in order
to model the performance of an IoT mobile device that
employs a middleware protocol. Such a protocol introduces
message losses since it builds atop UDP and it does not
setup any logical session between the sender and the receiver
IoT devices. Messages are sent without any guarantee to the
other endpoint. As already defined, the service rate µ can be
parameterized based on the network transmission delay of the
corresponding end-to-end interaction (sender to receiver). On
the other hand, to parameterize the µloss we must identify at
which point of the network messages are lost. For instance,
assuming that the ON/OFF loss queue models a wireless
receiver and its intermittent connectivity, then µloss can be
parameterized through the corresponding network transmission
delay. This delay can be defined based on the interaction
between the sender and the access point that the receiver
connects and disconnects.
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(a) Applying lifetime periods to
a queue.
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(b) Applying a buffer size (K) to a
queue.

Fig. 3: Queues with event expirations and finite capacity.

An ON/OFF loss queue qlosson/off is defined by the tuple:

qlosson/off = (λ, λout, λloss, µ, µloss, TON, TOFF). (6)

where λ is the input rate of messages, λout and µ are the output
and processing rates of messages during the ON periods, λloss

and µloss are the lost and processing rates during the OFF
periods. The λout/λloss rates are both exponential, since arrived
messages split based on the TON/TOFF intervals. ∆

on/off
loss

is the the mean response time for the qlosson/off queue. We
are currently working on identifying an analytical model for
estimating ∆

on/off
loss .

E. Additional Features

Up to now, we have defined queueing models having
buffers with infinite capacity and arriving messages with
infinite lifetime (i.e., a time-to-live period which defines
the message’s availability inside the queueing network). This
certainly affects the response time but also the rate of messages
successfully served over the total number of arriving messages.
However, modeling IoT interactions with such characteristics
may not be realistic. For instance, upon a long disconnec-
tion period (e.g., 30 mins) of an IoT sensor, the produced
data/messages may exceed the sensor’s buffer capacity and/or
some of the oldest data may become obsolete for the receiving
application/user. Accordingly, in this subsection we introduce
the corresponding features that take into account the above
constraints. These features can be applied to the queueing
models defined in the previous subsections.

1) Queueing network with lifetime messages: As already
pointed out, a queueing network is a network of connected
queues which can be used to model the performance of a
system. For instance, in the context of our work, we model
IoT interactions by creating queueing networks which consist
of queueing models presented in the previous subsections. As
depicted in Fig. 3a, messages arrive with a rate λ in order
to be processed in the first queue of the queueing network.
An arriving message carries a lifetime period attributed
to it upon its creation, which represents the message validity
inside the queueing network. Hence, a message may enter the
queueing network and as soon as its lifetime elapses, the
message leaves the network and is considered as expired.

To consider a message as expired, we take into account
the time the message spends in both queue and server at
each queue. Assuming that a queueing network consists of a
single M/M/1 queue, a message reneges if its service does
not begin by a certain lifetime period (which includes



its expected service demand as well). Based on the queueing
theory literature, such a model is studied as an M/M/1 queue
with reneging or impatient customers [21]–[23]. In this work,
we provide the simulation of the above M/M/1 model through
our simulator. Furthermore, we enrich the ON/OFF models
to support reneging or impatient customers. Hence, system
designers are able to create queueing networks that may
include different queueing models (described in the previous
subsection) enriched with lifetime periods.

2) Queues with finite capacity: This is a well known
queueing model feature, where a specific buffer size is applied
to the queue that ensures having max K messages in the
system (queue + server). This prevents from storing too
many messages for too long in devices with limited hardware
capacity (memory, hard disk). In particular, as depicted in
Fig. 3b, messages arrive in the queue with λin. Before a
message enters the queue the following condition is checked:
new queue size + message in service > K. If the condi-
tion is true, the message is dropped. Otherwise, the message
enters the queue to be processed.

Based on the literature, an M/M/1 queue with finite capacity
is notated as M/M/1/K [8]. In our models, we represent M/M/1
and the ON/OFF queues presented in the previous subsections
with finite capacity by adding the system size (K) to the
corresponding definition (see tuples 1, 3, 5, 6).

III. EXPERIMENTAL RESULTS

In [17], we presented our simulator – MobileJINQS, which
is an extension of the Java Implementation of a Network-
of-Queues Simulation (JINQS) [24]. In this work we further
extend MobileJINQS to implement the ON/OFF models de-
scribed in Section II.

For our experimental setup, each different ON/OFF model
is utilized to represent a mobile sender with different QoS
settings when sending messages. Such a mobile peer generates
approximately 7,500,000 messages to accurately calculate per-
message mean response times and success rates. It connects
and disconnects in the scale of seconds. To represent such
behavior for any experiment, we set the ON/OFF model
parameters as follows: i) the server remains in the ON and
OFF states for exponentially distributed time periods TON =
TOFF = 20 sec, thus, the server changes its state every 20
sec; ii) messages are processed with a mean service demand
D = 0.125 sec and iii) messages arrive to the queue with a
mean arrival rate λ, varying from 0.05 to 3.9 messages per
sec (λmax = 3.9 messages/sec). Then, we setup 4 different
experiments which correspond to different ON/OFF models by
applying the following QoS settings: 1) join probability (ζ) =
1, message availability (lifetime) = ∞ and buffer capacity
(K) = ∞; 2) ζ = 1, lifetime = 30 sec, K = ∞; 3) ζ =
0.75, lifetime = ∞, K = ∞; and 4) ζ = 1, lifetime =
∞, K = 100.

A. Response Times

For each one of the above (4) experiments we run its
simulator model (based on the corresponding ON/OFF model)
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Fig. 4: Response Time of different ON/OFF models.
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Fig. 5: Success Rates of different ON/OFF models.

10 times and average across these runs to derive the simulated
curves depicted in Fig. 4. As expected, the highest level of
mean response times (∼10-360 sec) are noticed in the 1st
experiment where all messages must be buffered and served
(without any message losses). At any λ rate, the lowest
level of mean response times (∼5-10 sec) are noticed in
the 4th experiment when applying lifetime periods at every
message. When applying a deterministic buffer capacity (3rd
experiment), we notice mean response times from 10 to 16
sec. Finally, the 4th experiment, provides low mean response
times (∼8-14 sec) for λ = 0.05 - 2 and higher response times
(∼17-49 sec) for λ = 2.5 - 3.9.

B. Success Rate vs. Response Time

In order to study the trade-off between response times and
success rates, we present the rates of successful message
service in Fig. 5 for the same set of experiments. As expected,
there is a 100% of message success rate in the 1st experiment
since there are not message losses. On the other hand, the
lowest rates are noticed when applying lifetime periods, es-
pecially when λ rates increase. In the 3rd experiment, low λ
rates provide high message success rates (∼90%-100%) and
higher λ rates decrease them (∼87%-77%). Finally, a stable
message success rate (75%) can be achieved through the 4th
experiment.

IV. CONCLUSION

Modeling the performance of IoT applications is a tedious
task. Messaging in IoT may result to high message delays or
message losses due to several QoS settings, such as message
availability, intermittent connectivity, resource constrained de-
vices, etc. In this paper, we define simulation queueing models



that represent such QoS settings. Using the simulator we have
developed, we evaluate the trade-off between response times
and message success rates for different queueing models. By
relying on our models, system designers are able to create
queueing networks representing IoT interactions and analyze
their performance or even tune it based on our experimental
results.

In our future work, we intend to identify analytical models
for queueing networks with lifetime periods and finite capacity
buffers, as well as for the ON/OFF probability and loss models.
Then, we plan to model the performance of IoT applications
for domains such as emergency response scenarios.

REFERENCES

[1] “Community Seismic Network.” http://www.communityseismicnetwork.org,
May 2015.

[2] E. Cochran, J. Lawrence, C. Christensen, and A. Chung, “A novel strong-
motion seismic network for community participation in earthquake
monitoring,” IEEE Instrumentation & Measurement Magazine, vol. 12,
no. 6, pp. 8–15, Jan. 2009.

[3] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali, “Com-
parison of two lightweight protocols for smartphone-based sensing,” in
IEEE 20th Symposium on Communications and Vehicular Technology in
the Benelux (SCVT), Namur, Belgium, Nov. 2013.

[4] S. Lee, H. Kim, D.-k. Hong, and H. Ju, “Correlation analysis of mqtt
loss and delay according to qos level,” in International Conference on
Information Networking (ICOIN), Bangkok, Thailand, Jan. 2013.

[5] F. Mehmeti and T. Spyropoulos, “Performance analysis of “on-the-
spot” mobile data offloading,” in Global Communications Conference
(GLOBECOM), 2013 IEEE, Atlanta, GA, USA, Dec. 2013.

[6] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data offloading:
How much can wifi deliver?” in Proceedings of the 6th International
COnference, Philadelphia, PA, USA, Nov. 2010.

[7] H. Wu and K. Wolter, “Tradeoff analysis for mobile cloud offloading
based on an additive energy-performance metric,” in Proceedings of the
8th International Conference on Performance Evaluation Methodologies
and Tools, Bratislava, Slovakia, Dec. 2014.

[8] D. Gross, J. Shortle, J. Thompson, and C. Harris, Fundamentals of
queueing theory. John Wiley & Sons, 2008.

[9] L. Durkop, B. Czybik, and J. Jasperneite, “Performance evaluation of
m2m protocols over cellular networks in a lab environment,” in 18th
International Conference on Intelligence in Next Generation Networks
(ICIN), Paris, France, Feb. 2015.

[10] K. Fysarakis, I. Askoxylakis, O. Soultatos, I. Papaefstathiou, C. Man-
ifavas, and V. Katos, “Which iot protocol? comparing standardized
approaches over a common m2m application,” in IEEE Global Com-
munications Conference (GLOBECOM), Washington DC, USA, Dec.
2016.

[11] L. Aldred, W. M. van der Aalst, M. Dumas, and A. H. ter Hofstede,
“On the notion of coupling in communication middleware,” in OTM
Confederated International Conferences” On the Move to Meaningful
Internet Systems”, Agia Napa, Cyprus, Nov. 2005.

[12] A. Kattepur, N. Georgantas, G. Bouloukakis, and V. Issarny, “Analysis
of timing constraints in heterogeneous middleware interactions,” in
International Conference on Service-Oriented Computing, Goa, India,
Nov. 2015.

[13] F. He, L. Baresi, C. Ghezzi, and P. Spoletini, “Formal analysis of
publish-subscribe systems by probabilistic timed automata,” in Interna-
tional Conference on Formal Techniques for Networked and Distributed
Systems, Tallinn, Estonia, June 2007.

[14] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann, “A methodology for
performance modeling of distributed event-based systems,” in 11th IEEE
International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), Orlando, FL, USA, May 2008.

[15] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quan-
titative system performance: computer system analysis using queueing
network models. Prentice-Hall, Inc., 1984.

[16] G. Bouloukakis, N. Georgantas, A. Kattepur, and V. Issarny, “Timeliness
evaluation of intermittent mobile connectivity over pub/sub systems,”
in Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering, L’Aquila, Italy, Apr. 2017.

[17] G. Bouloukakis, I. Moscholios, N. Georgantas, and V. Issarny, “Per-
formance modeling of the middleware overlay infrastructure of mobile
things,” in IEEE International Conference on Communications, Paris,
France, May 2017.

[18] G. Bouloukakis, R. Agarwal, N. Georgantas, A. Pathak, and V. Issarny,
“Leveraging cdr datasets for context-rich performance modeling of large-
scale mobile pub/sub systems,” in IEEE 11th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), Abu Dhabi, UAE, Oct. 2015.

[19] G. Bouloukakis, “Enabling emergent mobile systems in the iot: from
middleware-layer communication interoperability to associated qos anal-
ysis,” Ph.D. dissertation, Inria Paris, Aug. 2017.

[20] G. Bajaj, G. Bouloukakis, A. Pathak, P. Singh, N. Georgantas, and
V. Issarny, “Toward enabling convenient urban transit through mobile
crowdsensing,” in IEEE 18th International Conference on Intelligent
Transportation Systems (ITSC), Las Palmas, Canary Islands, Spain, Sep.
2015.

[21] A. Montazer-Haghighi, J. Medhi, and S. G. Mohanty, “On a multiserver
markovian queueing system with balking and reneging,” Computers &
Operations Research, vol. 13, no. 4, pp. 421–425, 1986.

[22] M. Abou-El-Ata and A. Hariri, “The M/M/c/N queue with balking and
reneging,” Computers & Operations Research, vol. 19, no. 8, pp. 713–
716, 1992.

[23] D. Yue, Y. Zhang, and W. Yue, “Optimal performance analysis of an
M/M/1/N queue system with balking, reneging and server vacation,”
International Journal of Pure and Applied Mathematics, vol. 28, no. 1,
pp. 101–115, 2006.

[24] T. Field, “Jinqs: An extensible library for simulating multiclass queueing
networks, v1. 0 user guide,” Aug. 2006.


