
HAL Id: hal-01801276
https://hal.archives-ouvertes.fr/hal-01801276

Submitted on 28 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiling Programs and Proofs: FoCaLiZe Internals
François Pessaux, Damien Doligez

To cite this version:
François Pessaux, Damien Doligez. Compiling Programs and Proofs: FoCaLiZe Internals. [Research
Report] Ensta ParisTech. 2018. �hal-01801276�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/158179855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01801276
https://hal.archives-ouvertes.fr

Compiling Programs and Proofs:
FoCaLiZe Internals

François Pessaux˚

ENSTA ParisTech - U2IS, 828 bd des Maréchaux, 91120 Palaiseau, France

Damien Doligez

INRIA Paris - Gallium, 2 rue Simone Iff, 75589 Paris Cedex 12, France

Abstract

Designing a tool to ease the development of high-level security or safety systems
must consider to facilitate not only design and coding but also formal demonstrations
of correctness and compliance to standards. This entails some requirements on the tool
as these demonstrations ask to link together computational and logical aspects of the
development. These requirements are briefly considered and a solution is proposed:
functions, statements and proofs are handled in a unique language, offering inheritance
and parametrized modules. The FoCaLiZe environment implements this language,
which remains simple enough to be used in a usual engineering process. The code
generation produces an executable functional code (in OCaml) and a checkable term
of a logical Type Theory (verified by Coq), close enough to truly ease traceability.
It ensures that OCaml and Coq produced codes are error-free and provides compact
generated code.

The main contribution of this paper is a detailed presentation of the compilation
scheme, which is supported by an original treatment of the dependencies induced by
the combination of computational and logical constructs. As the whole source code is
translated to a logical term verified by Coq, we get a strong assurance in the correctness
of the generated code, hence avoiding the need to prove correctness of the compiler
itself.

Keywords: Formal Method, Compilation, Dependency Analysis, FoCaLiZe, Coq

1. Introduction

Formal methods have demonstrated their usefulness in software engineering, at
least for high safety or security systems. But formal methods have not totally spread
upon the software industry: while it is widely recognized that they decrease debugging

˚Corresponding author
Email addresses: francois.pessaux@ensta.fr (François Pessaux),

damien.doligez@inria.fr (Damien Doligez)

Preprint submitted to Elsevier May 28, 2018

time by a large amount, they also have the reputation of increasing development time.
A way to encourage the use of formal methods is to provide a dedicated development
environment, which integrates formal methods all along the development process. An
ideal development environment should at least address together specification, design,
programming, and proving in a unified language to ease the formal development pro-
cess. It should also provide checkable verifications/proofs to ease the assessment pro-
cess, and obviously it should generate runnable code. There already are environments
offering some of these features. One can cite Z [1], Maude [2], Dafny [3, 4], Why3
[5, 6, 7] and B [8], largely used in transports.

Theorem provers also provide such environments as they allow declaring specifica-
tions and functions and relating them, even by extracting functions from proofs. One
can cite Isabelle [9, 10, 11], Nuprl [12], PVS [13, 14] and Coq[15]. For example,
CompCert [16, 17, 18] is developed with Coq and the resulting compiler is obtained
using extraction.

All these tools still require some real expertise and not all developers are really ac-
quainted with them [19]. Of course, there is no hope of using formal methods without
some knowledge of logics but one cannot expect that most developers know more than
first-order logic. Thus an ideal environment should allow writing code, properties and
their proofs in a FOL style, possibly with features easing programming (inheritance,
parametrization, etc.). Paradoxically, it should also allow to link external code and to
state some properties as axioms, for example contracts on external code or physical
characteristics. It is clearly unsafe from a logical point of view, must be documented
and submitted to a severe review process. But it is unavoidable in real life develop-
ments.

The FoCaLiZe [20] environment is an attempt to bring a common answer to two
aspects of formal methods integration. The first one addresses developers needs, spe-
cially when a high level of safety is required. The second one is directly linked to
the safety and security assessment process, as required by regulation authorities before
commissioning. FoCaLiZe developments contain at the same level logical properties,
programming features (pure functional, i.e. without imperative constructs) and mech-
anized proofs. The compiler emits both executable code and checked proofs together
with automatic documentation facilities and ensures strong links between these outputs
to increase confidence and to ease assessment. This is achieved by a common trunk of
compilation until the concrete computational and logical syntaxes are emitted. Since
some safety standards [21, 22] require source code and proof code review by assessors
before commissioning, links between source code, object code, properties and proofs
must remain very visible at the syntax level. An important point is that logical and
computational parts of a program depend on each other. First, these dependencies must
be controlled to avoid logical inconsistencies and production of code depending on
proofs. Second, dependencies may serve to increase code sharing. Managing these
two points is the cornerstone of the compilation process and is the main subject of the
paper. They guarantee that the OCaml and Coq emitted codes contain no errors (i.e.
any error detected by the target compilers is due to a bug of the FoCaLiZe compiler).

FoCaLiZe has already been used to develop a library of mathematical algebraic
structures up to multivariate polynomial rings, a library of security policies [23] and to
certify airport security regulation [24].

2

The remaining of this paper is organized as follows. Section 2 recalls our require-
ments on the design of the language and explains the choices underlying it. Section
3 gives a first approach of the dependency analysis. Section 4 introduces the syntac-
tic elements of the language and some preliminary definitions (4.1), then presents the
formalization of the normalization (4.5) and the typechecking (4.6) of species. Sec-
tion 5 explores various code generation models and justifies the adopted one, which
aims at maximizing code sharing and traceability between source and generated code
and proofs. Then is sketched the compilation process, which deeply relies on λ-lifting
techniques. This demonstrates the need for a more complex dependency calculus. Sec-
tion 6 addresses the complete dependency calculus. The code generation is formalized
in 7. Section 8 discusses some other possible choices and why we did not adopt them.
Finally, a comparison with related works is done in Section 9.

Although definitions are given in a as formal as possible language, the paper inten-
tionally contains no theorem to keep it shorter. The focus is put on a precise description
of all the aspects of the compilation process, to ease some reuse in other projects. The
study of dependencies was first presented in [25]. We give here a completely revised
and extended presentation.

2. Analyzing the design of FoCaLiZe

FoCaLiZe is a “laboratory language” designed to study how to help the develop-
ment of high integrity software from the double sight of developers and assessors. It is
also conceived to be suitable for extensions, experiments, in order to test and progress
toward constructs and analyses to make “formal development” easier. This section
presents some design choices we considered and the adopted solutions.

The idea is to keep the language simple, pretty close to programming languages
usually practiced by engineers, providing commonly used flavors like inheritance, mod-
ularity but also allowing to deal with formal properties and proofs. Logical aspects of
the language are tried to be kept simple, with human-readable proofs (not only check-
able by a machine), making possible interfaces with theorem provers to help the user
in carrying on her/his proofs.

2.1. Choice of the Semantical Framework

High level security/safety standards such as EN-61508, CC2[21, 22] ask specifica-
tions to be as much as possible formally stated, that is, expressed in a logical language.
And the assessment process requires a — as formal as possible — proof that these
specification (or design) requirements are satisfied by the implementation.

If the semantics of the specification and programming languages differ too much,
errors can arise when mapping logical concepts onto programming ones or vice-versa.
These inconveniences can be avoided by choosing a single semantical framework for
code, specifications and proofs. This choice is influenced by the one of the program-
ming style which constrains a lot the logical style.

Targeting an imperative language usually leads to the use of Hoare logic style (sep-
aration logic, B logic. . .) to express properties. But proofs cannot freely unfold func-
tions and procedures due to the possible side-effects. This is a real drawback.

3

Targeting a functional language can ease the choice if the needed side-effects (at
least inputs-outputs) can be easily isolated into dedicated modules and separately han-
dled. Then, in any first-order or higher-order logic, due to their referential transparency,
functions (of the pure part) can be consistently unfolded when making proofs and thus,
can be used without restriction to express properties and proofs. Properties of func-
tions making side-effects can be separately demonstrated and rendered as contracts.
For example, ERLANG and SCADE adopt this functional approach, however with-
out logical counterpart. Note that the LAFOSEC study [26], ordered by the French
National Security Agency (ANSSI), recommends the use of functional languages to
develop high-level cyber-security tools.

Since static strong typing is known to ease error detection, we choose to target a
strongly typed functional language for the generation of computational aspects. Now
the kernel of any strongly typed functional language is a typed λ-calculus, which is
a sub-language of any Type Theory, the correspondence between computations and
logics being given by the Curry-Howard isomorphism. It relates programming types
with types of the theory. Thus, we target a Type Theory as logical language. We choose
OCaml (to get an executable program) and Coq (to check consistency of the global
development).

2.2. Incremental Specification and Development

We now discuss the features to be offered to the user within the retained semanti-
cal framework. To illustrate coming discussions, we gradually introduce our running
example. It is a “monitor” which inputs a value and outputs a validity flag indicating
the position of the value with regards to two thresholds, and this value or a default one
in case of problem. It is a simplification of a generic voter developed in FoCaLiZe for
critical software [27].

Notation. Technical words denoting features and concepts have their first occurrence
written in italic while keywords are written in bold.

To serve incremental development and reusability, FoCaLiZe allows inheritance,
i.e. the ability of introducing, at any stage of the development, properties, functions
and proofs. The rule of visibility is kept simple (no tags private, friend, member, etc.):
all inherited elements are visible. Multiple inheritance is available and the choice of
the last mentioned element is done in case of name conflict.

The formalized parts of specifications are rendered into (roughly speaking) first-
order statements, called here properties (property), which will receive proofs (proof
of). Declarations (signature) introduce names and types of functions. Defini-

tions (let) give functions bodies. Theorems (theorem) are methods embedding a
property and its proof at once.

Now, only the name of a function is needed to express a (specification) property
on it and its body must be known only when unfolded in certain proofs. Thus dec-
larations and definitions may be given separately. And a given function may receive
different definitions, enhancing reusability (but function types, which are a true part of
functions specification, must be kept). However, because definitions can be unfolded

4

in proofs, each effective definition must be known at compile-time. This static reso-
lution of methods is sometimes called early-binding and the proof management must
consider this point (studied further).

Structured data types and pattern-matching are known to ease the management of
complex algorithms. We choose a type language à la ML (product and union types,
pattern-matching) with a slight different handling of polymorphism (see Section 2.3).
We are now ready for a first example.

species Data =
let id = "default" ;
signature fromInt :
int -> Self ;

end ;;

species OrdData =
inherit Data ;
signature lt : Self -> Self -> bool ;
signature eq : Self -> Self -> bool ;
let gt (x, y) =
˜˜ (lt (x, y)) && ˜˜ (eq (x, y)) ;

property ltNotGt :
all x y : Self, lt (x, y) -> ˜ gt (x, y) ;

end ;;

The component Data (introduced by species) simply defines an “identifier” id
and declares a function fromInt converting an integer to a value of the type Self
which denotes a not yet known internal representation of Data. The species OrdData
inherits from Data, it declares two functions (lt and eq), defines a derived function
gt and states a property ltNotGt which uses both declared and defined names. Note
the use of ˜˜, the “not” operator on booleans, in contrast to ˜ which applies to logical
formulae.

Species are components of a modular development. They do not collect only types,
declarations and definitions but also related properties and proofs. Inside a species, the
manipulated data-types have a double role: a programming one used in type verification
and a logical one used with the chosen Type Theory, as studied in the following. To
simplify the model, all the data-types introduced in a species are grouped (by the way of
product and union types) into a single data-type called the representation (rep). It can
be just a type variable, whose name (Self) serves in declarations, and be instantiated
by inheritance (but not redefined) to allow typing of definitions. It gives to species
a flavor of Algebraic Data Type, a notion which has proved its usefulness in several
formal frameworks (see [2], CASE tools).
species TheInt =

inherit OrdData;
rep = int ;
let id = "native int" ;
let fromInt (x) : Self = x ;
let lt (x, y) = x < y ;
let eq (x, y) = x = y ;
proof of ltNotGt = by definition of gt property int_ltNotGt ;

end ;;

The species TheInt defines the representation (as an int, which is a type of
FoCaLiZe standard library) and methods already declared in OrdData, then proves
the property by unfolding gt and using a property found in the standard library (this
proof, which could be done in OrdData, will be used later).

2.3. Parameterization
Parameterization is a more general way to use components material as exempli-

5

fied by functors. Two kinds of parameters are often considered, the component ones
and the value ones (e.g. integers modulo n). We adopt this feature with the notion
of parametrized species. It has however to be adapted to reflect the link between a
parametrized component and its parameters at the logical level. This is one of the roles
of the dependencies of a Dependent Type Theory, hence it reinforces our choice of the
target logical language.

The species IsIn below owns one collection parameter V (roughly speaking a
component parameter) which provides the methods present in any component having
at least those of OrdData. The species also owns two entity parameters minv and
maxv whose type is the underlying rep of V. Calling a method of a collection param-
eter is done using the “bang notation”: V!gt stands for the method (property) gt of
the collection parameter V.
type statut_t = | In_range | Too_low | Too_high ;;

species IsIn (V is OrdData, minv in V, maxv in V) =
rep = (V * statut_t) ;
let getValue (x : Self) = fst (x) ;
let getStatus (x : Self) = snd (x) ;

let filter (x) : Self =
if V!lt (x, minv) then (minv, Too_low)
else

if V!gt (x, maxv) then (maxv, Too_high)
else (x, In_range) ;

theorem lowMin :
all x : V, getStatus (filter (x)) = Too_low -> ˜ V!gt(x, minv)

proof =
<1>1 assume x : V,

hypothesis H: snd (filter (x)) = Too_low,
prove ˜ V!gt (x, minv)
<2>1 prove V!lt (x, minv) by definition of filter type statut_t

hypothesis H
<2>2 qed by step <2>1 property V!ltNotGt

<1>2 qed by step <1>1 definition of getStatus ;
end ;;

The main question on the design of the modularity mechanism is about the rep-
resentation of the component parameter: should its definition be exposed or encapsu-
lated? There are two conflicting answers:

• Inheritance requires exposure as total encapsulation can make the development
task tedious (permanent use of “getters” and “setters”).

• A component “seeing” the data representation of its parameters can manipulate
it without using the provided functions, hence breaking invariants, structural as-
sumptions and theorems brought by parameters. Hence parameterization asks
for abstraction. The abstraction of types, as it is usually done via module inter-
faces, is not sufficient since properties can still reveal the exact definition of the
representation. Thus the compiler also has to forbid properties revealing it by a
dependency analysis (c.f. Sections 3, 6).

Our solution is to introduce two notions of components, clearly identified at the
syntax level by different names (not by attributes drown in code) with very different
semantics:

6

• Species, which expose their representation, and which can be only used along
inheritance during design and refinement.

• Collections, built from species by encapsulation of the representation, used as
effective species parameters during the integration process.

To avoid link-time errors, any call to an effective species parameter imposes that all
the functions exported by this parameter are already defined. To preserve consistency,
all exported properties must have received proofs. Thus collections must be obtained
by encapsulation of the so-called complete species, i.e. those which only contain defi-
nitions and theorems. The encapsulation builds an interface hiding the representation
and only exposing the declarations of the functions and the properties of this com-
plete species. The compiler must guarantee that all the corresponding definitions and
theorems have been checked. The interface is then the only way to access them.
collection IntC = implement TheInt ; end ;;
collection In_5_10 =
implement IsIn (IntC, IntC!fromInt (5), IntC!fromInt (10)) ; end ;;

collection In_1_8 =
implement IsIn (IntC, IntC!fromInt (1), IntC!fromInt (8)) ; end ;;

The species TheInt, being complete, is submitted to encapsulation (implement
) to create the collection IntC. IntC is used as the effective argument of IsIn’s
parameter V. Its method fromInt is used to provide effective values for the minv
and max parameters. The species IsIn (IntC, IntC!fromInt (5), IntC
!fromInt (10)) is then abstracted to create the collection In 5 10. Idem for
In 1 8.

2.4. Parameterization Versus Polymorphism

Polymorphic method types are forbidden to prevent inconsistency coming from
redefinition of methods along inheritance like in:
species Poly =

let id (x) = x ;
end ;;

species AsInt =
inherit Poly ;
rep = unit ;
let id (x) = x + 1 ;
end ;;

species AsBool (P is Poly) =
rep = unit ;
let elt = P!id (true) ;
end ;;

collection CInt = implement AsInt end ;;
collection Err = implement AsBool (CInt) end ;;

where AsInt inherits from Poly and redefines idwith the type intÑ int. AsBool
uses Poly assuming its id has type bool Ñ bool. Both types are correct instances
of the scheme @α.α Ñ α. AsInt inheriting from Poly, it can be used to create a
collection CInt. This collection then should be usable as an effective parameter of
AsBool to create Err. However, in this latter Err!elt evaluates in true + 1
which is ill-typed.

Forbidding polymorphic methods is not a real restriction and is even wanted. A
polymorphic method taking an argument of type α cannot rely on any property on this
type (it can be any effective type). Conversely, let S be a species having a collection pa-
rameter C. Any method of S can rely on the properties and the functions of C. Now C

7

can be instantiated by any effective collection issued from a complete species, in which
the representation has been defined and these properties have received proofs. Hence
parameterization is a way to retrieve a kind of “polymorphism with proved properties”.

For instance, a basic species implementing finite sequences of elements with a mem
function and a theorem taking benefit from a property of its elements could be written
as:
species FSeq (E is OrdData) =
rep = list (E) ;
let rec mem (e, l : Self) =
match l with | [] -> false | h :: q -> E!eq (h, e) || mem (e, q) ;

theorem mem_eq_compatible :
all l : Self, all e1 e2 : E,
E!eq (e1, e2) -> mem (e1, l) -> mem (e2, l)

proof = ... ;
end ;;

2.5. Properties and Proofs

We choose a usual first-order syntax to express properties, however built upon
names of types, functions and other properties known in the logical context defined
by the species construction. Our experience shows that this simple language is suffi-
cient to express most requirements. It is indeed a sub-language of a dependent type
theory, providing only certain forms of dependencies.

Proof writing is based on natural deduction as it is reminiscent of mathematical
reasoning and is accessible to a non-specialist without too much effort. Then, the proof
is conceived as a hierarchical decomposition into intermediate steps [28] unfolding
definitions, introducing sub-goals and assumptions in the context until reaching a leaf,
that is, a sub-goal which can be automatically handled by a prover. When all the leaves
have received proofs, the compiler has to translate the whole tree to the target logical
language and to build the context needed for checking this proof.

Solving leaves in FoCaLiZe is done by the prover Zenon [29]. It is a first-order
automated theorem prover, based on the Tableaux method, developed by D. Doligez.
Zenon can translate its proofs into Coq proofs, to be inserted in the appropriate context
computed by the compiler.

We illustrate the decomposition with the following example. A list of steps is
always ended by a qed step, whose goal is just the parent goal.
theorem t : all a b c : bool, a -> (a -> b) -> (b -> c) -> c
proof =

<1>1 assume a b c : bool,
hypothesis h1: a, hypothesis h2: a -> b, hypothesis h3: b -> c,
prove c

<2>1 prove b by hypothesis h1, h2
<2>2 qed by step <2>1 hypothesis h3

<1>2 qed by step <1>1

The proof has two outer steps <1>1 and <1>2. Step <1>1 introduces hypotheses
h1, h2, h3 and the sub-goal c. It is proved by a 2-steps sub-proof. Step <2>1 uses
h1 and h2 to prove b. Step <2>2 uses <2>1 and h3 in order to prove c. Step <1>2
ends the whole proof.

Proofs done in a given species are shared by all the species inheriting from this
one. As early-binding allows redefinition of functions, proofs using an “old” definition

8

are no longer valid. They must be detected by the compiler as soon as the redefinition
is done, reverted to the property status and must be done again. This link between
proofs and definitions is an example of dependencies between elements of the user
development. Sections 3,4.4 and 6 study them.

Specification requirements such as the safety/security ones need to be proved early
in the development cycle, assuming that some functional properties will be satisfied.
This helps an early detection of specification errors [30]. Thus, FoCaLiZe allows to
do proofs using properties not yet proved. The compiler guarantees that they will be
proved later in a derived complete species. This is a way to do the proofs just in time
and to maximize proof sharing [31].

2.6. Requirements and Choices on the Compilation Process

The target languages and the language features being chosen, it remains to conceive
the compilation process.

Code generation has to translate the user code to a source code of the target com-
putational language (called here simply computational code) and to a term of the target
logical language (called here logical code). Computational code does not contain prop-
erties and proofs. In the logical code, data types and properties have to be translated
to types of the Type Theory while definitions and proofs are translated to terms. More-
over, the user code, the computational and logical codes are to be scrutinized along the
assessment process, as imposed by some safety and security standards. So the design
of the compilation must ensure a good traceability between these three files. It has also
to maximize code sharing between different parts of a development, to decrease the
amount of code review.

The target languages’ compilers typecheck the emitted codes. But on one hand
these checks arrive too late. On the other hand, these errors found by the target com-
pilers should be “de-compiled” to be conveyed to the developer. This is not an easy
task. The best solution is that the target codes produced by the compiler contain no
errors. We choose to include a typing pass during the compilation to early detect com-
putational and logical typing errors and to emit comprehensive diagnostics. This is
achieved by a common trunk of compilation for both target languages, the differentia-
tion between them being done only in the very last pass of code generation, at concrete
syntax emission. Logical aspects (methods, proofs, and logical dependencies “arti-
facts”) which contribute to Coq code are simply discarded when producing OCaml
code. The choice of not relying on an extraction mechanism is discussed in Section 8.

The management of inheritance and early-binding could rely on the internal mech-
anisms of a functional language providing these features [32] but most of Type The-
ories do not have them. Thus, an ad hoc translation into the logical target would be
needed. But this choice would lead to two different compilation schemes, jeopardizing
traceability. Moreover, preserving logical consistency requires a strict control of re-
definitions. Therefore we decide to resolve inheritance and early-binding before code
generation.

9

3. Dependencies in User Code

In this section we introduce a first notion of dependencies, one of the cornerstones
of the compilation process. This notion is extended along the study of the code gen-
eration model in Section 5.2 then completed into the sections 4.4 and 6, which give a
formal presentation of it. A first description of dependencies was done in [33].

In a Dependent Type Theory, terms and types may depend on terms or types. S.
Boulmé [34] formalized the semantics of an early version of the language in Coq and
identified two kinds of dependencies between methods. Either typing a method m may
need to know the term corresponding to a method n. We call such a dependency a
def-dependency of m on n. Or, typing m may only need to know the type of n. We call
this kind of dependency a decl-dependency of m on n.

S. Boulmé also shown that def-dependencies, combined with other features, may
introduce inconsistencies. Some of them can be avoided by syntactical restrictions:
function bodies cannot contain property names nor keywords for proofs. Thus a func-
tion cannot def-depend on a proof. There remain only two possibilities. First, proofs
with a by definition of m step (which unfolds the definition of m) def-depend
on m. If m is redefined, these proofs must be invalidated. Second, functions and proofs
can safely def-depend on the representation. But properties must not def-depend on it
as explained by the following example.

The collection Bad encapsulates the complete species Wrong, its interface con-
tains the statement of the theorem theo. When translated into logical code, this state-
ment should be well-typed but typing x + 1 in theo requires to know that Self is
indeed (unifies with) int. The encapsulation of the representation, turning Self into
an abstract type, prevents it. Thus, the species Wrong must be rejected by the com-
piler as typing theo would reveal the concrete type rep (a very bad point for security
purposes, see [26]).
species Wrong =

rep = int ;
let inc (x) : Self = x + 1 ;
theorem theo :
all x : Self, inc (x) = x + 1 ;

collection Bad = implement Wrong ;
end ;;

Bad interface

rep : self
inc (x) : Self -> int
theorem theo :
all x : Self, inc (x) = x + 1 ;

Note that function calls do not create def-dependencies and that encapsulation of
collections prevents any def-dependency on methods of collection parameters. Thus,
the analysis of def-dependencies must ensure that proofs remain consistent despite re-
definitions and that properties have no def-dependencies on the representation (in other
words, interfaces of collections should not reveal encapsulated information).

The different forms of decl-dependencies are the following. A function m decl-
depends on a function p if m calls p, a property m decl-depends on a function p if
the typing of m in the logical theory requires p’s type, a proof decl-depends on p
if it contains a step by property p or an expression whose typing needs p and,
recursively, m decl-depends on any method upon which p decl-depends and so on.
Def-dependencies are also decl-dependencies. The method p can come either from
the species itself or from a collection parameter. The following example gives another
motivation for decl-dependencies analysis.

10

species S =
signature odd : int -> bool ;
let even (n) = if n = 0 then true

else odd (n - 1) ;
end ;;

species T =
inherit S ;
let odd (n) = if n = 0 then false

else even (n - 1) ;
end ;;

In S, even is at once declared and defined, so its type can be inferred by the type-
checker, using the type of odd. Thus, even decl-depends on odd but odd does not
depend on even. In T, defining odd creates a decl-dependency of odd on even and
an implicit recursion between them. To keep the logical consistency, such an implicit
recursion must be rejected. Recursion between entities must be declared (keyword
rec). The compiler has to detect and forbid any cycle in dependencies through the
inheritance hierarchy.

4. Dependencies and Normalization

A well-formed species must not have several methods of the same name and must
not change the types of methods along inheritance. The normal form of a species is
obtained by regrouping its explicitly given methods and its inherited ones, removing
the inherit clauses. Computing this normal form is resolving the inheritance, how-
ever without unfolding methods (see Section 4.5). This inheritance resolution phase is
important since it is required to check the consistency of the dependencies brought by
inherited methods (c.f. Section 3).

Species typechecking, verification, normalization, computation of abstractions were
first described by V. Prevosto [25]. We resume this presentation, adding clarifications
and extensions. It serves as a basis for a complete study of dependencies and for the
code generation model.

4.1. Syntax

In the following, we shortly introduce the syntax of the language, intentionally
skipping constructs that do not add any specific points to the code generation model.

Definition 4.1. Types

τ :“ a | C | Self | prop | τ Ñ τ | α
˛

In addition to types à la ML, Self denotes the representation of the current species
(defined or not), C the abstracted representation of a collection parameter and prop the
type of logical statements. Basic type constructors are denoted by a. In the following,
we identify the syntax of the types with the type algebra.

Definition 4.2. Core Expressions

long-ident :“ ident | upper-ident!ident
e :“ literal | long-ident | fun identp, identq˚ Ñ e

| let rrecs ident = e pand ident = eq˚ in e | e (ep, eq˚) ˛

11

literal denotes the usual constants, ident represents basic lowercase identi-
fiers, used to name methods, functions/properties bound variables, and upper-ident
stands for uppercase identifiers used to name species and collections. Note that partial
applications of functions should be named. The syntax forbids to nest a proposition
into an expression.

Definition 4.3. Logical Expressions (Propositions)

p :“ e | p_ p | p^ p | p ñ p | „ p | all ident: τ , p | ex ident: τ , p
˛

all stands for the universal quantification and ex for the existential one. Note that
logical expressions fully embed core expressions.

Definition 4.4. Proof Script

proof ::“ proof-step˚ qed-step | leaf-proof
leaf-proof ::“ by fact` | conclude | assumed
qed-step ::“ bullet qed proof
proof-step ::“ bullet assumption˚ prove p proof
assumption ::“ assume ident: τ | hypothesis ident: p
fact ::“ definition of ident` | hypothesis ident`

| property ident` | type type-ident`
| step bullet` ˛

A script describes a hierarchical sequence of proof goals (i.e. logical expressions)
with their related proof hints (combination of assumptions and facts). A bullet is a
syntactic element representing the nesting level and the name of a step. The assumed
keyword represents an admitted proof (c.f. discussion in Section 8); assume serves to
introduce typed variables as assumptions in the context of the proof.

Definition 4.5. Species and Collection Expressions

sarg :“ e | upper-ident
se :“ upper-ident | upper-ident pppsarg`qqq
prm :“ upper-ident is upper-ident

| upper-ident is upper-ident pppupper-ident˚qqq
| ident in upper-ident

field :“ inherit se` | rep “ τ | signature ident: τ
| logical let ident “ p | let rrecs ident “ e pand ident = eq˚

| property ident : p | proof of ident : = proof
| theorem ident : p proof = proof

s :“ species upper-ident pppprm˚qqq = field˚
c :“ collection upper-ident = implement se ˛

Note. A logical let definition names a function taking expressions only (not logical
expressions) as arguments and returning a logical formula, moreover it can be only
applied to all its arguments. It serves as a “macro” as shown by the definition

12

of reflexive: logical let reflexive (r)=all x:Self, r (x, x
) allows to state the properties reflexive (leq), reflexive (geq), . . . No
quantification is available over names introduced by logical let, which types are func-
tions to prop (not a logical term). Thus, such definitions bring no higher-order logic
features and their applications receive the same treatment as expressions of type prop.
So they are not further considered and, as any logical method, they generate no code in
OCaml.

Definition 4.6. Names of a Field
Let φ be a field, the set of bound names introduced by φ, written N pφq, is defined

by:

N plet m = eq “ N psignature m: τq “ N plogical let m = pq “ tmu
N plet rec m1 = e1 and ... mn = enq “ tm1; . . . ;mnu

N prepq “ N prep = τq “ trepu

N pproperty m : pq “ N ptheorem m : p proof = proofq “ tmu
N pproof of m = proofq “ tmu ˛

The difference between a field and a method appears with a let rec field which
possibly introduces several methods. Note the constant name rep denoting the repre-
sentation.

4.2. Preliminary Definitions

Definition 4.7. Defined Names of a Field
Let φ be a field, the set of defined names introduced by φ, written Dpφq, is defined

by:

Dpsignature m: τq “ Dprepq “ Dpproperty m : pq “ H
Otherwise, Dpφq “ N pφq

˛

The complete typechecking process of a species S is the construction of a normal
form. It first computes the flat form of S, then typechecks its fields and finally en-
sures its well-formedness. This global process can be refined into 8 consecutive steps
detailed in the next sections:

1. Typechecking parameters;
2. Typechecking the inherit clause;
3. Typechecking the fresh methods of the species;
4. Appending inherited methods and methods defined in the species;
5. Flattening the species (resolve inheritance and early-binding to determine which

are the effective methods present in the species, collapsing proof of fields
with their related logical properties);

6. Ensuring that methods do not have a polymorphic ML-type;
7. Computing the def and decl-dependencies;
8. Ensuring that the obtained species is well-formed.

13

Definition 4.8. Species in Flat Form
A species S is said in flat form if all the following conditions are satisfied:

• It contains no inherit clause.
• It contains no proof of field (i.e. all of them have been combined with a

related property to lead to a theorem, see definition 4.26).
˛

In such a species, inheritance and selection among available methods (early-binding)
have been resolved (c.f. 4.5). This implies that its fields do not introduce several times
a same name: @i, j, i ­“ j ñ N pφiq XN pφjq “ H.

Definition 4.9. Normal Form of a Species
A species S is said in normal form if all the following conditions are satisfied:

• It is in flat form;
• Its fields are well-typed and not polymorphic (however, they can contain “type

variables” quantified at the species level);
• It is well-formed, i.e. a field only depends on names introduced in previous fields

(c.f. 4.25). In other words, fields are ordered (by the compiler) according to their
dependencies which cannot be circular (except between explicitly let rec-
bound methods).

˛

4.3. Type of Fields, Species and Collections

We denote by Φ the field φ annotated by its (inferred) ML-type τ . The type of a
species is defined only for a species in normal form.

Definition 4.10. Type of Species

ts :“ t
ÝÑ
Φ u | pC is tÝÑΦ uq ts | pC in τq ts

˛

The type of a species, ts, is represented by the type of its parameters (C’s), followed
by the list of the typed fields ({ ÝÑΦ }) contained in the normal form of the species. We
call atomic species type a type without parameters, i.e. of the form tÝÑΦ u.

Notation. In the rest of this paper, we use a covering arrow to denote a finite ordered
sequence of items: ÝÑ‚ stands for a sequence of “‚” of the form ‚1; . . . ; ‚n.

When collection and entity parameters (c.f. 2.3) are not distinguished, we shorten
C is t orC in τ by the notationC ‚t. For brevity, cascading parameters pC1‚t1qppC2‚

t2qppC3 ‚ t3qtsqq are shortened by a comma-separated notation: pC1 ‚ t1, C2 ‚ t2, C3 ‚

t3qts.

Definition 4.11. Type of Collection

tc :“ xÝÝÝÑm : τy
˛

14

The type of a collection, tc, is the list of the names and types of the methods present
in the normal form of its underlying complete species.

Definition 4.12. Typechecking Environments

• ΓS : pS ÞÑ tsq or pC ÞÑ tcq maps a species name S onto its species type and a
collection name C onto its collection type.

• Γe : px ÞÑ @ÝÑα .τq maps an identifier or a method x onto its type-scheme.
˛

4.3.1. Core Expressions Typechecking
The typechecking of expressions is based on a slightly modified Hindley-Milner

algorithm [35, 36, 37]. As usual, the typing rules rely on two usual functions, Gen
and ď. The inference algorithm and fields fusion (c.f. Section 4.26) rely on a slight
modification of the most general unifier of two types Mgu .

In the coming definitions, all the rules are given to provide a self-contained presen-
tation, but those not differing from a usual type system à la ML are written in smaller
fonts.

Definition 4.13. Free Type Variable, Type Generalization and Type Scheme Instantia-
tion

• The set FV of free type variables in a type or a type scheme is defined by :

FV pCq “ FV pSelfq “ FV ppropq “ H

FV pαq “ tαu
FV pτ1 Ñ τ2q “ FV pτ1q Y FV pτ2q
FV p@α1 . . . αn.τq “ FV pτqztα1 . . . αnu

• The set of of free type variables in a typing environment is defined by :

FV pΓeq “
ď

xPDompΓeq

FV pΓepxqq

• The type generalization creates a type scheme from a type τ by universally quan-
tifying the unconstrained variables in the environment Γe. It is defined as usual
by:

Genpτ,Γeq “ @α1 . . . αn.τ with tα1 . . . αnu “ FV pτqzFV pΓeq

• τ 1 is an instance of the type scheme σ “ @α1 . . . αk.τ (and we write σ ď τ 1)
if there exists a substitution ϕ from type variables to types such as Dompϕq “
tα1 . . . αku and τ 1 “ ϕpτq.

˛

15

We modify the usual notion of most general unifier [38] in order to keep the repre-
sentation visible for some steps of the unification process and hide it when types need
to be explicited by the compiler (when building interfaces of collections for example).

We first introduce an auxiliary function, Mgpτ1, τ2q to determine if τ1 and τ2 are
unifiable under the hypothesis that the representation of the species is either τrep if
defined or Self otherwise. Trying to unify two types may require to know what Self
is equivalent to (i.e. what definition is assigned to the representation) as shown in the
following definition:

[MGID] τrep $ Mgpτ, τq “ τ, id if τ ­“ τrep

[MGSELFL] τrep $ MgpSelf, τrepq “ Self, id

[MGSELFR] τrep $ Mgpτrep, Selfq “ Self, id

[MGVARL] τrep $ Mgpα, τq “ τ, rαÐß τs with α R FV pτq

[MGVARR] τrep $ Mgpτ, αq “ τ, rαÐß τs with α R FV pτq

[MGARR]
τrep $ Mgpτ1, τ

1
1q “ τ

2
1 , θ1 τrep $ Mgpθ1pτ2q, θ1pτ

1
2qq “ τ

2
2 , θ2

τrep $ Mgpτ1 Ñ τ2, τ
1
1 Ñ τ

1
2q “ τ

2
1 Ñ τ

2
2 , θ2 ˝ θ1

Note that no type apart τrep is unifiable with Self. The rules [MGSELFL] and
[MGSELFR] return the type Self although they could return τrep. This choice allows
to keep the representation hidden. As usual, the cases not handled by the rules fail.

Definition 4.14. Most General Unifier and Unification
Mgupτ1, τ2q, the most general unifier of τ1 and τ2, is defined by using Mg as fol-

lows. If the computation Γeprepq $ Mgpτ1, τ2q returns τ3, θ, then Mgupτ1, τ2q “
θpτ3q.

˛

Definition 4.15. Typechecking Rules for Expressions
Typechecking computational expressions follows the usual rules with only the call

to (species or collection) methods added.

Γepmq “ @ÝÑα .τ
1 @ÝÑα .τ 1ďτ

ΓS ,Γe $ Self!m : τ
[SELFM]

ΓSpCq “ xÝÝÝÝÑmi : τiy m : τ P ÝÝÝÝÑmi : τi

ΓS ,Γe $ C!m : τ
[COLLM]

Γepxq “ @ÝÑα .τ
1

@ÝÑα .τ
1
ďτ

ΓS ,Γe $ x : τ
[VAR]

ΓS ,Γe ‘ px1 : τ1q ‘ . . .‘ pxn : τnq $ e : τ

ΓS ,Γe $ fun x1, . . . , xn –>e : τ1 Ñ . . .Ñ τn Ñ τ
[FUN]

ΓS ,Γe $ e : τ1 Ñ . . .Ñ τn Ñ τ ΓS ,Γe $ e1 : τ1 . . . ΓS ,Γe $ en : τn

ΓS ,Γe $ epe1, . . . , enq : τ
[APP]

ΓS ,Γe $ e1 : τ1 ΓS ,Γe ‘ px : Genpτ1,Γeqq $ e2 : τ2

ΓS ,Γe $ let x “ e1 in e2 : τ2
[LET]

ΓS ,Γe ‘ pxi : @H.τiq $ ei : τi ΓS ,Γe ‘ pxi : Genpτi,Γeqq $ e : τ

ΓS ,Γe $ let rec x1 = e1 and ... xn = en in e : τ
[LETREC]

16

Logical expressions are expected to have the type representing logical properties
prop, which differs from the type of boolean values bool. Since logical expressions
fully embed computational ones, a conversion from bool to prop is allowed by the
rule [REGEXPR] where the inferred bool is turned into prop as illustrated by the
following figure.

bool

theorem t:

let le (x, y) =

int −> int −> bool int −> int −> bool

le (x, y) −> ~ le (y, x)

x < y

prop −> prop −> propbool

ΓS ,Γe $ e : bool

ΓS ,Γe $ e : prop
[REGEXPR]

ΓS ,Γe $ p : prop

ΓS ,Γe $„ p : prop
[NOT]

ΓS ,Γe $ p1 : prop ΓS ,Γe $ p2 : prop

ΓS ,Γe $ p1 b p2 : prop
[OR/AND/IMPLY] pfor b “ _,^,ñq

ΓS ,Γe ‘ px : Genpτ,Γeqq $ p : prop

ΓS ,Γe $ all x : τ, p : prop
[ALL]

ΓS ,Γe ‘ px : Genpτ,Γeqq $ p : prop

ΓS ,Γe $ ex x : τ, p : prop
[EX]

Definition 4.16. Typed Fields
Let S be a species and φ a field of S. The typed field Φ is obtained by annotating φ

with its inferred type. Judgments are of the form ΓS ,Γe $ φ : Φ. ˛

The rules for typechecking fields are presented below. As explained in Section 2.4,
polymorphic methods are forbidden. However, typechecking rules do not enforce this
restriction which is verified afterwards.

$ rep : rep : Self $ rep “ τ : rep : τ

$ signature m : τ : signature m : τ
ΓS ,Γe $ e : τ

ΓS ,Γe $ let m = e : let m : τ = e

ΓS ,Γe ‘ @i P r1 . . . ns, pmi : Genpτi,Γeqq $ @i P r1 . . . ns, ei : τi

ΓS ,Γe $ let rec m1 = e1 . . . and mn = en : let rec m1 : τ1 = e1 . . . and mn : τn = en

The types of computational definitions, thanks to the Curry-Howard isomorphism,
are directly embedded into the logical type theory. The type of a property (or a theorem)
is definitively not a “ML-like” type but a logical formula: the statement itself of the
property (or of the theorem).

ΓS ,Γe ‘ prep : Selfq $ p : prop

ΓS ,Γe $ property m : p : property m : p

17

As stated in Section 3, def-dependencies of properties and theorems on Self are
forbidden by clearing the representation in the typechecking environment (Γe‘prep :
Selfq). The proof of a theorem is typechecked by checking all the expressions
located in the proof tree although no type is issued. This ensures that all its sub-goals
(which are expressions) are well-typed. No “logical typing”, i.e. verification of the
correctness of the proof is done at this stage.

ΓS ,Γe ‘ prep : Selfq $ p : prop proof is well-typed
ΓS ,Γe $ theorem m : p proof = proof : theorem m : p proof = proof

The last rule typechecks the list of fields of a species. Each field is typechecked in
the environment extended with the bindings issued by the previous typechecked fields.

ΓS ,Γe $ φ : Φ

Φ “ ÝÝÝÝÑmi : τi Γ1e “ Γe ‘ pmi : Genpτi,Γeq |mi : τi P Φq ΓS ,Γ
1
e $

ÝÑ
ψ :

ÝÑ
Ψ

ΓS ,Γe $ φ;
ÝÑ
ψ : Φ;

ÝÑ
Ψ

Definition 4.17. Body of a Method
Let S be a species in flat form and m P N pSq a method name. The body of m,

written BSpmq, is defined as follows:

BSpmq “ K if m R DpSq
BSprep = τq “ τ
BSplet m = eq “ e
BSplet rec m1 : τ1 = e1 and ... m : τ = e and ... mn : τn = enq “ ei
BSptheorem m : p proof = proofq “ proof ˛

Definition 4.18. Logical Type of a Method
Let S be a species in flat form, with fields well-typed according to rules of Section

4.3.1 and not polymorphic. We define the type TSpmq of a method m P N pSq by
embedding computational types into logical ones thanks to the Curry-Howard isomor-
phism. Hence, logical types are logical statements (i.e. abstract syntax of p’s).

TSplet m : τ = eq “ TSpsignature m: τq “ τ
TSplet rec m1 : τ1 = e1 and ... m : τ = e and ... mn : τn = enq “ τ
TSprep : τq “ τ
TSpproperty m : pq “ TSptheorem m : p proof =...q “ p ˛

Note that if the representation is not defined, the typing rules of 4.3.1 naturally give
it the type Self. Note also that the type of a proof of field is not addressed. Such
fields are assumed to have been merged with a property in order to become a theorem
as later described in the definition 4.26.

4.4. Notion of Dependencies: First Stage

The rules of 4.3.1 described the typing rules for species fields. In order to obtain
the type of a species, the normal form of the species must be computed.

18

To introduce well-formed species and their normalization, a first notion of depen-
dencies is needed : dependencies of methods on Self and on methods of the species,
decl-dependencies of expressions, def-dependencies of a proof and dependencies ob-
tained by transitive closure. This notion of dependencies will be extended in the Section
6.

Definition 4.19. Dependencies of Methods on Self

• A method m decl-depends on the representation if its type or the type of a sub-
expression of its body is Self.

• A method m def-depends on the representation if typechecking m uses the rules
[MGSELFL] or [MGSELFR] in the unification process.

˛

A decl-dependency means that some parts of the method require the existence of
a representation, whatever is its effective definition. A def-dependency means that the
particular definition of rep is required to typecheck the method (changing the effective
type of rep would cause typechecking to fail).

Technically, the detection of dependencies on the representation is done at two
points of the analysis: once during typechecking and once during typed fields fusion
(c.f. definition 4.26).

Definition 4.20. Syntactic Decl-Dependencies of an Expression
Let e be an expression, the set *e+ is defined by:

*x+ “ H pIf x is a variableq
*C!m+ “ H pIf C ­“ Selfq

*Self!m+ “ tmu
*fun x1, . . . , xn Ñ e+ “ *e+
*e pe1, . . . , enq+ “ *e+Y *e1+Y . . .Y *en+
*let x1 “ e1 in e2+ “ *e1+Y *e2+
*let rec x1 “ e1 and . . . and xn “ en in en`1+ “

Ť

i“1...n`1 *ei+

*p1 _ p2+ “ *p1 ^ p2+ “ *p1 ñ p2+ “ *p1+Y *p2+
*„ p+ “ *all x : τ, p+ “ *ex x : τ, p+ “ *p+ ˛

*e+ collects all the decl-dependencies of e on the methods of the current species by
a syntactical walk along the Abstract Syntax Tree of e. As stated in Section 3, this is
collecting the names of methods of the species called in e.

Definition 4.21. Syntactic Def-Dependencies of a Proof
Let p be a proof. The set of syntactic def-dependencies of p is defined by:
** p ++ “ tm | by definition of m is a step of p u. ˛

Definition 4.22. Names in a Same Field
Let S be a species in flat form, L the list of its fields and m and n two methods of

S. m8n if it exists φ P L such that m P N pφq and n P N pφq. ˛

19

This –reflexive – relation is used to compute the effective dependencies on other
methods of the species and the well-formedness of the species.

Definition 4.23. Dependencies of a Method in a Species
Let S be a species in flat form and m P N pSq. We define the decl-dependencies

(*m+S) and the def-dependencies (**m ++S) of a method m on the methods of S by
cases on the form of m.

• If m is a signature or is rep, *m+S “ **m ++S “ H.
• If m is a let, *m+S “ *BSpmq+ and **m ++S “ H.
• If m is a let rec, *m+S “ p

Ť

n *BSpnq+ | n8 mq z tn | n8 m u and
**m ++S “ H.

• If m is a property, *m+S “ *TSpmq+ and **m ++S “ H.
• If m is a theorem, *m+S “ *BSpmq+Y *TSpmq+ and **m ++S “ ** BSpmq ++.

˛

If a field is a let rec m1 =..., all themi have the same set of decl-dependen-
cies, obtained by removing the names mi from the union of the decl-dependencies of
the mi’s bodies. Note that these rules do not consider dependencies on the representa-
tion which were already addressed in the definition 4.19.

Definition 4.24. Transitive Dependencies
Let S be a species in flat form. The methodm1 of S has a transitive decl-dependency

on the method m2 of S, denoted by m1 ă
decl
S m2 (resp. a transitive def-dependency

denoted by m1 ă
def
S m2) if:

m1 ă
decl
S m2 ô D a, b such as a8 m1 ^ b8 m2 ^ Dt pi ui“1...n such as

$

&

%

a “ p1

pn “ b
@j ă n, pj P *pj`1+S Y ** pj`1 ++S

m1 ă
def
S m2 ô Dt pi ui“1...n such as

$

&

%

p18 m1

pn8 m2

@j ă n, pj P ** pj`1 ++S ˛

In other words, a and m1 are in a same field (i.e. let-rec bound), so are b and
m2, and there exists a dependency path between m1 and m2, hence between a and b.

To check if m1 ă
decl
S m2 (resp. m1 ă

def
S m2), one builds the decl-dependencies

(resp. def-dependencies) graph of all the methods of S, and searches a path from m1

to m2. These graphs are also used to properly order λ-liftings when building method
generators and collection generators as described further.

4.5. Normalization

Definition 4.25. Well-Formed Species
A species S is said well-formed if @m P N pSq, pm ădeclS mq. ˛

20

In a well-formed species no field has a circular dependency on itself by transi-
tivity. The following examples show several errors detected by the analysis of well-
formedness.

First, 8 can reveal a latent dependency between a let rec bound name m1
having no direct dependency on a namem3. Indeed,m1 depends onm2 which depends
on m3.

species A =
let rec m1 = ... m2
and m2 = ... m1 ;

end ;;

species B =
inherit A ;
let m3 = ... m1 ;
let m2 = ... m3 ;

end ;;

Once in flat form, the species B would have the form:
species B =

let m3 = ... m1 ;
let rec m1 = ... m2
and m2 = ... m3 ;

end ;;

where m3 depends on m1 and m1 depends on m3 via m2,
mutually defined with m1. Hence, m3 depends on itself al-
though it was not defined as recursive.

In the definition of ădeclS , the conditions a8 m1 and b8 m2 are important since
decl-dependencies of names introduced by a mutual let rec method exclude these
names. In the figure below, omitting the condition m18 a would prevent detecting
the transitive dependency of m1 on p4 (hence on m2).

(b)

p
2

p
3

p
4

p
11

m
2

m

(a)

Since 8 is reflexive, we also ensure that two names do not have mutual depen-
dencies (set m1 “ p1 and p2 “ m2 in the definition of ădeclS) as shown the following
example:

species A =
signature m1 : ...
let m2 = ... m1 ;

end ;;

species B =
inherit A ;
signature m2 : ... ;
let m1 = ... m2 ;
end ;;

Once in flat form, the species B would have this form
species B =

let m1 = ... m2 ;
let m2 = ... m1 ;

end ;;

which is not well-formed. Indeed, taking p1 “ m1, we have
m18 m1, taking p2 “ m2, we have m28 m2. Then we
have m1 P **m2 ++B and m2 P **m1 ++B hence m1 ădeclB

m1.

Definition 4.26. Typed Fields Fusion
Let Φ1 and Φ2 be two typed fields such as N pΦ1q XN pΦ2q ­“ H. The fusion of

two typed fields, Φ1 = Φ2, is defined by case. Note that = is not symmetric.

signature m : τ1 = signature m : τ2 = signature m : Mgupτ1, τ2q
signature m : τ1 = let m : τ2 = e2 = let m : Mgupτ1, τ2q = e2

signature m : τ1 = let rec m : τ2 = e2

and ni : ρi = eni
=

let rec m : Mgupτ1, τ2q = e2

and ni : ρi = eni

21

let m : τ1 = e1 = signature m : τ2 = let m : Mgupτ1, τ2q = e1

let m : τ1 = e1 = let m : τ2 = e2 = let m : Mgupτ1, τ2q = e2

let m : τ1 = e1 = let rec m : τ2 = e2

and ni : ρi = eni
=

let rec m : Mgupτ1, τ2q = e2

and ni : ρi = eni
let rec m : τ1 = e1

and ni : ρi = eni
= signature m : τ2 =

let rec m : Mgupτ1, τ2q = e1

and ni : ρi = eni
let rec m : τ1 = e1

and ni : ρi = eni
= let m : τ2 = e2 =

let rec m : Mgupτ1, τ2q = e2

and ni : ρi = eni

let rec mi : τi = emi

and ni : ρi = eni
= let rec mi : σi = em1i

and oi : πi = eoi
=

let rec mi : Mgupτi, σiq “ em1i
and ni : ρi = eni
and oi : πi = eoi

property m : p1 = property m : p2 =
property m : p2

if p1
α
“ p2

property m : p1 = theorem m : p2 = pr =
theorem m : p2 = pr
if p1

α
“ p2

theorem m : p1 = pr = property m : p1 =
theorem m : p1 = pr
if p1

α
“ p2

theorem m : p1 = pr1 = theorem m : p2 = pr2 =
theorem m : p2 = pr2

if p1
α
“ p2

property m : p = proof of m = pr = theorem m : p = pr
theorem m : p = pr1 = proof of m = pr2 = theorem m : p = pr2

˛

α
“ is the usual syntactical identity modulo α-conversion between expressions.
Because the fusion relies on α

“ and Mgu which can fail, this function is partial.
Moreover, because fields are not polymorphic, a successful application of Mgu means
that the type of a field has not been modified by redefinitions.

As introduced in 4.19, dependencies on the representation are checked again during
the fusion process which uses Mgu , possibly unifying Self with other types, adding
decl and/or def-dependencies on the representation.

As inheritance allows re-definitions, a proof can be invalidated because the defini-
tions it relies on have been changed. In such a case, the theorem owning the proof
has to be reverted into a property. Detection of changes in a method, i.e. of conflicts
between its different definitions is the starting point of proof invalidation (c.f. definition
4.29).

Definition 4.27. Conflict Between Fields
Let Φ1 and Φ2 be two typed fields sharing a same namem. We say that Φ1 conflicts

with Φ2 in one of the following cases:

Φ1 is let m : τ = e1 and Φ2 is let m : τ = e2

Φ1 is theorem m : p proof = proof1 and Φ2 is theorem m : p proof = proof2

Φ1 is let m : τ = e1 and Φ2 is let rec m : τ = e2 and . . .
Φ1 is let rec m : τ = e1 and . . . and Φ2 is let m : τ = e2

22

˛

No conflict exist between theorem and property (resp. let vs signature)
since property and signature only show types, through which no def-dependency
is possible.

Redefinitions can invalidate proofs, which must be erased if they have def-depen-
dencies on the redefined method. Def-dependencies on the representation can arise in
any kind of methods but since methods must keep their type along redefinitions, the
representation cannot be changed, hence cannot require erasure.

Definition 4.28. Erasure of Theorems

Eptheorem m : p proof = proofq “ property m : p
Epmq “ m otherwise

˛

Definition 4.29. Erasure in a Context
Let N be a list of methods names, m be a typed field and l a list of typed fields.

The erasure in the context of N is defined by:

EN pHq “ H

EN pm ; lq “ Epmq ; ENYN pmqplq if **m ++XN ­“ H

EN pm ; lq “ m ; EN plq if **m ++XN “ H ˛

In the second case of this definition, if m def-depends on names present in N , then
m is erased first, and then all the proofs having a def-dependency onm in the remaining
context are erased.

We now present the normalization algorithmNF which is used after the typecheck-
ing of all the fields. Let us consider S a species defined by:

species SÝÝÝÝÑpC ‚ tq = inherit S1, . . . , Sn “ φ1 . . . φm end
The call to NF to normalize S is done under the hypotheses that the Si are in normal
form, the types of parameters methods are known in the environment and the fields of
S are typed. The input,W1, of NF is a list containing all the typed fields ÝÝÑΦSi

of the
inherited species Si in normal form, in the same order as specified in the inherit
clause, and ended by the fields directly defined in the species S. This ordering ofW1

is an invariant of the algorithm.

W1 “
ÝÝÑ
ΦS1

@ . . .@
ÝÝÑ
ΦSn

@rΦ1 . . .Φms

W1 can contain several occurrences of a same name in different fields because
of multiple inheritance and methods redefinition. The algorithm returns a listW2 of
typed fields such that each name of W1 appears only once in W2 (i.e. resolution
of inheritance). W2 represents the list of fields already processed by the algorithm
and (possibly temporary) accepted as members of the normalized species. Hence, at
any moment, they are “older” according to the inheritance order than the currently
processed Φ.

To do that, the algorithm recursively extracts the first field, Φ, ofW1 and appends
it toW2, if no field ofW2 shares a name with Φ. Otherwise, Φ is fusioned with the

23

first field, Ψi0 , ofW2 which shares a name with it. The result of fusion is re-inserted
as the head ofW1 to look for other possible conflicts with the fields ofW2 following
Ψi0 . The field Ψi0 is removed fromW2 and, in case of conflict between Ψi0 and Φ,
erasing is propagated in the remainder ofW2. Doing that, all the theorems recorded in
W2 which def-depend on a name of Φ are reverted into properties.

Definition 4.30. Normalization Algorithm

NF pW1q =
W2 ÐH

WhileW1 ­“ H do
Φ Ð hdpW1q and XÐ tlpW1q

If N pΦq XN pW2q “ H then
W1 Ð X and W2 ÐW2@rΦs

Else
Assume thatW2 is of the form rΨ1; . . . ; Ψms

Let i0 be the smallest index such as for i P r1 : ms, N pΦq XN pΨiq ­“ H

W1 Ð pΨi0=Φq :: X
If Φ conflicts with Ψi0 then
W2 Ð rΨ1; . . . ; Ψi0´1s @ EN pΨi0 q

pΨi0`1, . . . ,Ψmq

Else
W2 Ð rΨ1; . . . ; Ψi0´1s @ rΨi0`1; . . . ,Ψms

˛

4.6. Typechecking Species and Collections

Definition 4.31. Sub-species Relation
Let S1 and S2 be two species in normal form. S1 is a sub-species of S2, written

S1 ď S2, if:

N pS2q Ă N pS1q ^ @x P N pS2q, TS1pxq “ TS2pxq
˛

By construction, if S1 inherits from S2, then S1 ď S2. This intuitively means that
S1 has at least all the methods of S2, with the same types. This relation is used to
check that the instantiation of a collection parameter of interface P by a collection of
interface C is sound, that is C has at least the methods required by P .

Let ts be a species type and C a collection parameter name. We define Apts, Cq
the abstraction operation turning an atomic species type (i.e. without parameters) ts
into a collection type by replacing the occurrences of Self by C in the types of the
methods of ts.

Definition 4.32. Abstraction of a Species Type w.r.t. a Collection Parameter Name

AptÝÑΦ u, Cq “ xmi : τirSelfÐß Csy @mi : τi P t
ÝÑ
Φ u

˛

24

The abstraction operation allows hiding the structure of the representation when
creating a collection from a species.

Follow the rules for the typechecking of a species expression se, which issues a
species type. We use the “overloaded” operator ‘ standing for the extension of an
environment Γe with the bindings coming from the names bound in a typed field Φ.

Definition 4.33. Rules of Typechecking Species Expressions

ΓS ,Γe $ se1 : t
ÝÑ
Φ 1u . . . ΓS ,Γe $ sei : t

ÝÑ
Φ iu Γ1e “

ÝÑ
Φ 1 ‘ . . .‘

ÝÑ
Φ i

ΓS ,Γ
1
e $

ÝÑ
φ :

ÝÑ
Φ

ÝÑ
Φ2 “ NF p

ÝÑ
Φ 1@ . . .@

ÝÑ
Φ i,

ÝÑ
Φ q

@m : τ P Φ2, τ is not polymorphic
ÝÑ
Φ2 is well-formed

ΓS ,Γe $ species S = inherit ÝÑsei;
ÝÑ
φ : t

ÝÑ
Φ2u

[NO-PRM]

ΓS ,Γe $ se : t
ÝÑ
Φ u

ΓS ‘ pC : AptÝÑΦ u, Cqq $ species Spprmsq = inherit ÝÑsei;
ÝÑ
φ : ts

ΓS ,Γe $ species SpC is se, prmsq = inherit ÝÑsei;
ÝÑ
φ : pC is tÝÑΦ uq ts

[COLL-PRM]

τ “ C ΓS ,Γe ‘ px : τq $ species Spprmsq = inherit ÝÑSi;
ÝÑ
φ : px in τq ts

ΓS ,Γe $ species Spx in C, prmsq = inherit ÝÑSi;
ÝÑ
φ : px in τq ts

[ENT-PRM]

ΓS ,Γe $ se : px in τq ts ΓS ,Γe $ e : τ

ΓS ,Γe $ sepppeqqq : tsrxÐß es
[ENT-INST]

ΓS ,Γe $ se : pC1 is tÝÑΦ uq ts ΓSpC2q “ tc2 tc2 ď AptÝÑΦ u, C2q

ΓS ,Γe $ sepppC2qqq : tsrC1 Ðß C2s
[COLL-INST]

ΓSpSq “ ts

ΓS ,Γe $ S : ts
rSPEC-IDENTs

˛

The rule [COLL-PRM] requires that se has an atomic type: there is no higher-order
species. This verification is performed during the typechecking. This restriction also
appears in [COLL-INST] since the effective argument C2 of se has to be a collection
name (enforced by the syntax of the language) and not an arbitrary species expression.

In the rule [ENT-INST], τ can only be a name of a collection denoting the repre-
sentation of this collection. This is syntactically enforced by the grammar of species
parameters (c.f. prm in the definition 4.5).

Proposition. The important property of a typechecked species is that its type does not
show anymore inheritance: the species is in normal form, with all the methods brought
by inheritance and kept according to the early-binding mechanism (the most recent
method is always kept in case of redefinition).

Definition 4.34. Rule of Typechecking Collections

ΓS ,Γe $ se : t
ÝÑ
Φ u se represents a complete species

ΓS ,Γe $ collection C = implements se end : AptÝÑΦ u, Cq ˛

25

5. Code Generation Model

In this section we outline the chosen code generation model and show the advan-
tages of the dependencies analysis for this model. In Section 8 other possibilities, not
adopted, for the code generation are discussed.

Our first choice is to encapsulate the species and collection translations into OCaml
and Coq modules to take benefit from a name-space, modularity and later, abstraction
by module signature. We use a flat module model where species methods lead to
module fields.

5.1. Generating Code for only Collections

As explained before, FoCaLiZe design makes a neat distinction between the code
writer (of species) and the code user (of collections). This entails that collections are
the only mean given to developers to ultimately create computational and logical codes.
Thus we may decide to emit target code only when a collection is created. This is
indeed possible as FoCaLiZe provides only static object features. But this choice has
a major drawback explained below.

Let S be a complete species defined by species S (C is S1). Let C1 cre-
ated by C1 implement S(D1) and C2 created by C2 implement S(D2). Let
m be a method of S. C1 and C2, compiled independently, have their own copy (m1
and m2) of m. m1 and m2 share the body of m up to their calls to methods of D1 and
D2. Moreover let SE be a complete species inheriting from S and let C3 a collection
created from SE. C3 contains a copy m3 of SE!m. If m is not redefined in SE then
m1, m2 and m3 share the body of S!m, up to the calls of methods of S redefined in
SE and the calls of parameters’ methods. This sharing cannot be capitalized, due to
the independence of the compilation of collections.

Thus compiling only collections leads to the duplication of the methods bodies in
each created collection. It increases the size of the generated code. It prevents separate
compilation since the code is only generated at the “end of the development”, requiring
the re-examination of all the species underlying each collection. At last, it duplicates
code review.

5.2. Incremental Code Generation

Our goal is to maximize code sharing between all the collections issued from
species created along a given inheritance chain. In these collections, methods hav-
ing the same name can differ either because some ones have been redefined or because
they call methods which have been redefined or provided by different effective collec-
tion parameters. In this last case, the changes are located only at these calls: the core
of the algorithm remains the same.

On the example of Section 2.3, whatever are the collections created from IsIn, the
core of the filter method always applies comparisons. The only differences are the
used parameters method lt and the parameters values minv and maxv. In the same
way, the statements and the proofs of the theorem lowMin only differ by the effective
used method filter of the species and those of its parameters V, minv and maxv.

26

5.2.1. Method Generator
We decide to generate the code of a method as soon as the method is defined in

order to share it all along the inheriting species and the derived collections. Let m be
a method whose body contains a call to a method p. Suppose that p is only declared
or provided by a collection parameter. Then we λ-lift the name p in the body of m.
On the opposite, calls to methods on which m has a def-dependency are directly done.
Hence, we use def- and decl-dependencies to determine if a name should be λ-lifted.

If the target language requires explicit types representation (as in Coq), the only
declared reps (from the species itself or from its parameters) appearing in the type of
the method are also λ-lifted (suffixed by T in the following figure).

let gt (x, y) =
˜˜ lt (x, y) && ˜˜ eq (x, y)

let filter (x) : Self =
if V!lt (x, minv) then

(minv, Too_low)
else
if V!gt (x, maxv) then
(maxv, Too_high)
else (x, In_range)

Let gt (abst_T : Set)
(abst_eq: abst_T -> abst_T -> bool)
(abst_lt: abst_T -> abst_T -> bool)
(x: abst_T) (y: abst_T) : bool :=
not (abst_lt (x, y)) &&
not (abst_eq (x, y))

Let filter (V_T: Set)
(V_lt: V_T -> V_T ->bool)
(V_gt: V_T -> V_T -> bool)
(minv: V_T) (maxv: V_T)
(abst_T := V_T * statut_t)
(x: V_T) : abst_T :=
if V_lt (x, minv) then (minv, Too_low)
else
if V_gt (x, maxv) then (maxv, Too_high)
else (x, In_range)

The function generated from a given method m by λ-lifting its decl-dependencies
is called the method generator of m. It is emitted as soon as m is (re-)defined in
a species S, and is shared by all the children of S in the inheritance tree to avoid
code duplication. Thus, introducing the notion of method generators allows maximal
sharing of the methods bodies. Then, the value ofm in a given species will be obtained
by applying its method generator to the effective values of its decl-dependencies.

5.2.2. Collection Generator
If the species is not yet complete, its compilation produces only the set of method

generators of the methods defined by this species. If the species is complete, it may be
used to create collections and its compilation has a last step, which is the production of
its collection generator.

27

C1

PS

g_m4 =

m3 :

g_m1 =

g_m2 =

P

m_M1 =

m_M2 =

m_M3 =

m_M4 =

S1

g_m3 =

P

m_M3 =

m_M2 =

m_M1 =

m_M4 =

S2

g_m2 =

g_m3 =

m3

m4
C

C’

m1

m2

m3

m4

C21

m1

m2

m3

m4

C22

m1

m2

In the above figure, the shapes representing the methods vary in size. The initial
size represent the body of the method. As long as the code sharing increases, the shapes
get smaller still keeping their contour to remind the original method they implement.
Thin arrows represent in some sense pointers to the code of the related method. The
dark gray methodm3 is only declared. λ-lifted symbols are in pale gray to remind they
indeed represent unknown (a kind of declared) methods.

Let m be a method of a complete species S, thus a method of all the collections Ci
created upon S. m may have decl-dependencies on a set M of methods of S and a set
of decl-dependencies P on collection and entity parameters. Note that the values of the
called methods of M by m are already known. Therefore the method generator g m
of m can be applied to these values before any creation of one Ci. Let us call m M
the value of this application. It only remains in m M the λ-liftings of the names in P .
Indeed the values of the different occurrences of m in the Ci differ now only by the
values of the called methods from P .

All the m M ’s values of methods of S are grouped into a record while their ab-
stractions are lifted outside the record as abstractions on the whole set of collection
parameters methods (dashed rectangles in the figure). This is the definition of the col-
lection generator of S. Doing this way, all the Ci share the m M ’s bodies.

The value m M itself is obtained by first searching the method generator of m in
the inheritance tree of S to find its most recent version, say in the species S1. Sup-
pose that the method m1 of M was λ-lifted from the body of m because m1 was an
only declared method in S1. Now m1 has received a definition at some place in the
inheritance tree (S is complete) so its method generator g m 1 is known. To obtain
the effective value of m1, it remains to eliminate the λ-liftings of g m 1 by applying
them to the corresponding effective values. This process is well-founded as there is no
circular dependencies.

28

Now let CC be a collection obtained from S. The values of CC are obtained by
applying the collection generator of S to the effective values of the collection parame-
ters methods. Their search is as follows. Let p1 be a method of P . It was λ-lifted from
the body of m because provided by a collection parameter C of S1. C has been instan-
tiated by a collection D to create the complete species S, through a chain of parameter
instantiations along the inheritance tree, which at a node gives the effective value of
p1. Note that lifting parameters at the record level instead doing it at each method level
simplifies the generated code structure and increases its readability (a good point for
assessment).

As a conclusion, providing material from the species parameters to create a collec-
tion is hence done once, at the point where the collection generator is called. The usage
of the method generators ensures code sharing between all the species of a same in-
heritance tree. The usage of collection generators ensures code sharing between all
the collections implementing a given species.

On the example of Section 2.3, the collection generator of the species IsIn (where
some types are omitted) can be represented by:
Let collection_create (V_T : Set) (minv : V_T) (maxv : V_T)

V_lt V_gt V_ltNotGt :=
let t_filter := gen_filter V_T V_lt V_gt minv maxv in
let t_getStatus := gen_getStatus V_T in
let t_getValue := gen_getValue V_T in
let t_lowMin :=
gen_lowMin V_T V_lt V_gt V_ltNotGt minv maxv t_filter t_getStatus in

{ filter = t_filter ;
getStatus = t_getStatus ;
getValue = t_getValue ;
lowMin = t_lowMin }

where gen xxx stands for the method generator of the method xxx and t xxx for the
temporary application of its method generator to its required arguments (either already
t yyy or λ-lifted collection / entity parameters material).

To now summarize, a species is compiled toward an OCaml and a Coq module
made of the ordered sequence of method generators. Only declared or inherited meth-
ods do not lead to generated code. When a species has all its methods defined (complete
species), this module also contains a record type definition and a collection generator
returning, when applied, a value of this type.

To later create a collection, the collection generator is applied to the methods, types
and values passed as effective arguments. As previously stated, a collection being
opaque, it will be represented by a module with a constraint signature forcing to only
export methods and an abstract type representing the collection’s rep.

6. Dependency Calculus: Second Stage

As explained in this section, the notion of dependencies introduced in Section 4.4
is not sufficient to emit code that Coq can typecheck. We must now address the pro-
duction of terms correctly typed at the logical level.

29

6.1. Dependencies on Methods of the Species

Let m be a well-typed method. Creating its method generator requires to know the
types of the λ-lifted names. If m is a function of body e, only are needed the types of
the methods appearing in the decl-dependencies *e+ of e. Since these types are “ML-
like” types, they cannot bring any other dependencies. Theorems bodies (i.e. proofs)
can introduce def-dependencies, whose definitions must be well-typed in the logical
target. Proofs may also introduce decl-dependencies on logical methods, whose types
are logical statements: methods appearing in such types must also be well-typed in the
logical target language. This is illustrated by the following example, which considers
the theorem ltNotGt of Section 2.2.

Convention on generated code. : In the method generator of a method m, the meth-
ods n of the species on which m depends are always named abst n. They are either
λ-lifted (decl-dependency) or bound by the := construct (def-dependency) to their ef-
fective generator. abst T corresponds to the dependency on the representation (which
is a type).
theorem ltNotGt :

all x y : Self, lt (x, y) -> ˜ gt (x, y)
proof = by definition of gt property int_lt_not_gt ;

ltNotGt syntactically decl-depends on gt, lt, the representation and def-depends
on gt. As stated in 5.2.1, def-dependencies are not λ-lifted and their corresponding
definitions are directly used. Since the proof contains a def-dependency on gt, it
means that the Coq term issued by the external prover contains eq (coming from the
body of gt), assumed to be λ-lifted as abst eq. Now λ-lifting only methods found
in the syntactic def- and decl- dependencies (e.g. forgetting transitive dependencies)
would lead to a generated code looking like:
Theorem ltNotGt (abst_T : Set) (abst_lt := lt)

(abst_gt := OrdData.gt abst_T abst_eq abst_lt) :
forall x y : abst_T, Is_true (abst_lt x y) -> ˜Is_true (abst_gt x y).

apply ”Large Coq term generated by Zenon”;

In this generated code, abst eq which is unbound represents eq. But, eq has a
def-dependency on the representation: it should also be propagated to ltNotGt.

Thus only considering dependencies coming from the syntax is not sufficient. The
same incompleteness of syntactic dependencies arises for collection parameters meth-
ods. Hence, omitted until now, a process of “completion” of these dependencies has to
be applied before really λ-lifting them. This point is carried out by computing:

1. the visible universe of a method;
2. its minimal logical typing environment;
3. dependencies on the parameters methods (indeed, these methods are not defined

until an effective collection instantiates the parameter: they will be λ-lifted as
well – they are decl-dependencies).

The visible universe of a methodm is the set of other methods of the species that are
needed to ensure that the translation of the method generator of m will be well-typed
by the two target languages. The minimal logical typing environment of a method m
is obtained by picking the methods of the visible universe and abstracting them or not,

30

i.e. determining if one just needs to keep their type (hence λ-lifting) or also their body
(hence “:=-binding”). They are formally defined below.

The visible universe of a method m contains all the methods p on which m has a
transitive def-dependency and the methods on which the p decl-depend.

Definition 6.1. Visible Universe of a Method
The visible universe of a method m, | m | is defined as follows:

m1 P *m+S
m1 P | m |

m1ă
def
S m

m1 P | m |

m2 ă
def
S m m1 P *m2+S

m1 P | m |

m2 P | m | m1 P *TSpm2q+S
m1 P | m | ˛

From the notion of visible universe, one defines the minimal logical typing envi-
ronment of a method m of a species S. It contains the other methods of S needed to
have the method generator of m well-typed in the target languages.

• Methods not present in the visible universe are not required.
• Methods present in the visible universe on which m doesn’t def-depend are re-

quired but only their type is needed.
• Methods present in the visible universe on which m def-depends are required

with both their type and body.

Definition 6.2. Minimal Logical Typing Environment of a Method
Let S be a species in normal form of type:

ÝÝÝÝÑ
pC ‚ tq tni : τi “ eiu. Let m be a

method name P N pSq. The minimal typing environment of m is obtained by the \

operation defined by:

H\m “ H
n R | m | tni : τi “ eiu\m “ Σ

tn : τ “ e ; ni : τi “ eiu\m “ Σ

n P | m | n ădefS m tni : τi “ eiu\m “ Σ

tn : τ “ e ; ni : τi “ eiu\m “ tn : τ “ e ; Σu

n P | m | n ­ădefS m tni : τi “ eiu\m “ Σ

tn : τ “ e ; ni : τi “ eiu\m “ tn : τ ; Σu ˛

6.2. Dependencies on Parameters Methods

We now compute the dependencies of an expression on parameters methods.

Definition 6.3. Dependencies of an Expression on a Species Parameter
Let C be a collection parameter of a species S in normal form. t e uS,C the set of

direct dependencies of an expression e of S on methods of C is defined by:

31

t C uS,C pIf C is an entity parameterq “ tCu
tm uS,C pIf m is a variableq “ H

t C 1!m uS,C “ H pIf C 1 ­“ Cq
t C!m uS,C “ tmu
t fun x1, . . . , xn Ñ e uS,C “ t e uS,C
t e pe1, . . . , enq uS,C “ t e uS,C

Ť

i“1...n t ei uS,C
t let x “ e1 in e2 uS,C “ t e1 uS,C Y t e2 uS,C

t let rec x1 “ e1 . . . and xn “ en in en`1 uS,C “
Ť

i“1...n`1 t ei uS,C

t p1 _ p2 uS,C “ t p1 ^ p2 uS,C “ t p1 ñ p2 uS,C “ t p1 uS,C Y t p2 uS,C

t „ p uS,C “ t all x : τ, p uS,C “ t ex x : τ, p uS,C “ t p uS,C ˛

This definition is similar to 4.20 except it tracks calls on methods of a parameter.
Note that if C is an entity parameter, the identifier of the parameter itself is considered
as its only method.

Let C be a parameter of the species S. We now address computing the minimal set
of methods of C required to typecheck the method generator of the method m of S.

rBodystm uS,C “ t BSpmq uS,C rTypestm uS,C “ t TSpmq uS,C

rDef stm uS,C “
ď

t BSpnq uS,C for all n such as n ădefS m

rUnivstm uS,C “
ď

t TSpnq uS,C for all n such as n P| m |

The rule [BODY] (resp. [TYPE]) collects the syntactical dependencies on methods
in the body (resp. type) of a definition. Note that the rule [TYPE] collects dependencies
of properties and theorems upon only computational methods of C since properties
cannot depend on properties.

The rule [DEF] collects dependencies of a method m on C searching them in the
set of transitive def-dependencies of m’s body in S. The rule [UNIV] collects depen-
dencies of a method m on C searching them in the types of the methods belonging to
the visible universe of m. These first four rules can be used before the following rule
[PRM].

ΓSpSq “ p. . . , Cp is ..., . . . , Cp1 is S1p. . . , Cp, . . .qq
ΓSpS

1q “ p. . . , C 1k is I 1k, . . .q

o P rTypestm uS,Cp1 _ o P rBodystm uS,Cp1 pn : τnq P
rTypest o uS1,C1

k

pn : τnrC
1
k Ðß Cpsq P

rPrmstm uS,Cp

The rule [PRM] takes into account dependencies of a method on a previously in-
troduced parameter, Cp, used as argument to build the current parameter Cp1 . [PRM]
returns a set of names with their type. The type τn coming from the rule rTypest o uS1,C1

k

is the type computed during the typechecking and the rule [PRM] modifies it. We ex-
plain it with the following example.

32

species Sprim (K is Base) =
theorem prm_reflex: all z : K, K!equal (z, z) proof = ...

end ;;

species S (Cp is Base, Cpprim is Sprim (Cp)) =
theorem prm_reflex2 : ... proof = by property Cpprim!prm_reflex ;

end ;;

In Sprim, the type of K!equal in the dependency of prm reflex is its inferred
one: K Ñ K Ñ bool. In the species S, the method prm reflex2 depends on
Cpprim!prm reflex which, in turn, depends on equal, but which equal? It
does not depend on the one of K since this parameter is the formal one of Sprim. It
depends on equal coming from the effective collection used to instantiate K, i.e. Cp.
Hence, the type of this equal is no more K Ñ K Ñ bool as above, but Cp Ñ Cp Ñ

bool. A substitution is required to replace K by Cp. Indeed, rTypest o uS1,C1
k

computes
the dependencies in S1, hence relatively to the parameters of S1. There is a dependency
of prm_reflex in Sprim on K!equal. However, in S, the effective dependency
is on the collection parameter Cp used to instantiate the formal parameter K of Sprim
. This information is especially important because the code generation needs to emit
typed identifiers to λ-lift dependencies.

Note that the methods n added as new dependencies of m by [PRM] only come
from the type of o. Indeed Cp being a collection parameter, only the types of its meth-
ods are visible. These types can be “ML-like” ones, which contain no method names.
They can also be logical formulae and the only names appearing in them are those
of computational methods (since properties cannot depend on properties) which have
“ML-like” types. Hence there is no risk that (logically) typing such an n needs to
transitively add other methods.

None of these rules take into account decl-dependencies that methods of parameters
have inside their own species and that are visible through their types. This is the role
of the rule [CLOSE] which is applied once the five previous ones have been applied.
The following example shows that, using P!th0 to prove th1 (which only makes
reference to P!f) however needs to add P!g in the logical typing context, which is
done by [CLOSE].
species A =

signature f : Self -> int ;
signature g : Self -> int ;
property th0: all x : Self, f (x) = 0 /\ g (x) = 1 ;

end ;;

species B (P is A) =
theorem th1 : all x : P, P!f (x) = 0 proof = by property P!th0 ;

end ;;

Omitting the application of this rule would lead to the following incorrect generated
code where _p_P_g is unbound:
Theorem th1 (_p_P_T : Set) (_p_P_f : _p_P_T -> int)

(_p_P_th0 :
forall x : _p_P_T, Is_true (_p_P_f x = 0) /\ Is_true (p P g x = 1)) :

forall x : _p_P_T, Is_true (_p_P_f x = 0).

although _p_P_g should also be λ-lifted to get a well-typed term like in the following
(and correct) generated code:

33

Theorem th1 (_p_P_T : Set) (_p_P_f : _p_P_T -> int)

(p P g : p P T -> int)
(_p_P_th0 :
forall x : _p_P_T, Is_true (_p_P_f x = 0) /\ Is_true (p P g x = 1)) :

forall x : _p_P_T, Is_true (_p_P_f x = 0).

The following and last rule serves to build the complete set of dependencies D`
upon an initial set of dependencies D.

ΓSpSq “ p. . . , Cp is Ip, . . .q
o P DpS,Cpqrms pn : τnq P *TIppoq+Ip
pn : τnrSelfÐß Cpsq P D`pD, S, Cpqrms

CLOSE

This rule does not consider def-dependencies because only types of parameters are
visible (encapsulation of collections) and they have no def-dependencies. Moreover,
for the same reasons given for [PRM], new dependencies brought by this rule cannot
themselves require applying this rule again to make them logically typecheckable.

7. Code Generation

Code generation strongly relies on the computation of dependencies, done after the
normalization of the species. Species lead to code only through their defined meth-
ods. For collections, the produced code comes from the aggregation of the methods of
species, taking into account instantiations of parameters.

As stated in Section 2.6, the code generation model is the same for both the com-
putational and the logical target languages. A common intermediate form is elaborated
from which concrete syntaxes are finally emitted. Dependencies are indeed tagged to
determine whether they come from only logical or also computational methods. The
emission of computational code simply ignores logical methods, dependencies they in-
duce and explicit polymorphism. We only present the logical code generation (Coq
as target language) since the computational code (OCaml as target language) is just
obtained by forgetting logical parts and minor syntactical adjustments.

Remember that a species is compiled into a module containing the generators of
its methods. If the species is complete, this module also hosts a record type and the
collection generator. A collection is also compiled into a module, containing a call
to the collection generator of its underlying species, followed by the definitions of the
methods coming from the application of the collection generators to the effective values
of its parameters.

We present code generation for species and then, for collections. We adopt a top-
down approach to first present the global shape of the code before refining details at
each step. All along the code generation rules, we use the grayed typewriter font
to denote code emitted in Coq syntax.

7.1. Species
The code emitted for a species S is a module (also named S) which possibly con-

tains a record type definition (R), then the code (M) issued from the methods of S and
possibly a collection generator (C).

34

Definition 7.1. Species Generation

R “ GenRecordpSq M “ GenMethsGenspSq ΓSpSq “ p
ÝÝÑ
C ‚ tqt

ÝÑ
Φ u

C “ if @m P N pΦq, m P DpΦq then GenCollGenpSq elseH
S ÝÑ Module S.RM C End S. ˛

The procedures GenRecord, GenMethsGens and GenCollGen are given in the
following, according to the chosen top-down presentation.

As exposed in Section 5.2.2, the record contains all the applications already done
of the method generators of the complete species being compiled. The record type ex-
poses their types rf mk : τk. Only the representations Ci of the parameters followed
by those of the methods of the parameters mj remain λ-lifted in this record type, as
follows:

Record me as species (Ci T : Set) (p Cj mj: τj) : Type :=
mk record {
rf T : Set ;
rf mk : τk ;
}

Note that the representation of the species (rf T : Set) is always the first field
of the record since it cannot depend on any other method of the species.

7.1.1. Record Type Generation
Definition 7.2. Lifting Parameters in the Record Type

Let m be a method of a species S. Let C be a parameter of S. We define :
rRtypestm uS,C “ D`prTypestm uS,Cq ˛

rRtypestm uS,C is computed from the rule [TYPE] completed by application of the
rule [CLOSE] for this parameter C.

It is indeed the set of dependencies of m on the methods of C which have to be
λ-lifted in the record type definition. Since the record type only shows the types of
methods, the dependencies collected by the rule [BODY] are not needed. Moreover,
def-dependencies do not appear in types, hence dependencies from the rules [DEF]
and [UNIV] are also not relevant. Finally, the rule [PRM] is also not relevant since
in the types present in the record, the methods of a parameter, even built by a species
expression “application”, are always abstracted relative to this parameter’s name : the
provided effective argument never appears. Let’s consider the following example:
species Base =

signature one : Self ;
signature eq : Self -> Self -> bool ;
property eq_spec: all x : Self, eq (x, x) ;

end ;;

species Sprim (K is Base) =
let param_one = K!one ;
theorem prm_refl: all z : K, K!eq (z, z) proof = by property K!eq_spec ;

end ;;

species S (Cp is Base, Cpprim is Sprim (Cp)) =

35

rep = unit ;
theorem prm_refl2 : Cp!eq (Cpprim!param_one, Cpprim!param_one)
proof = by property Cpprim!prm_refl ;

end ;;

in which prm_refl2 depends on Cpprim!param_one. There is no need to know
that Cpprim!param_one is Base!one: it is lifted as _p_Cpprim_param_one:
Module S.

Record me_as_species
(Cp_T : Set) (Cpprim_T : Set) (_p_Cp_eq : Cp_T ->Cp_T -> bool)
(_p_Cpprim_param_one : Cp_T) : Type :=

mk_record {
rf_T : Set ;
rf_prm_refl2 :

Is_true (_p_Cp_eq _p_Cpprim_param_one _p_Cpprim_param_one)
}.

Later, when a collection will be built from S, the parameters Cp and Cpprim will
be instantiated to determine the effective methods to apply to the collection generator.
At this moment, _p_Cpprim_param_one will be instantiated by the effective value
one of the collection used to instantiate Cp.

Definition 7.3. Representations of Species Parameters
Let S be a species such that ΓSpSq “ p

ÝÝÑ
C ‚ tqt

ÝÑ
Φ u, the set of parameters represen-

tations of S is defined by:

PReprsp
ÝÝÑ
C ‚ tq “

$

’

&

’

%

H if ÝÝÑC ‚ t “ H

C0 ‘ PReprsp
ÝÝÝÑ
C 1 ‚ t1q if ÝÝÑC ‚ t “ C0 is se ;

ÝÝÝÑ
C 1 ‚ t1

PReprsp
ÝÝÝÑ
C 1 ‚ t1q if ÝÝÑC ‚ t “ c in C0 ;

ÝÝÝÑ
C 1 ‚ t1 ˛

This set represents the first λ-lifted material of the record type definition. In case of
an entity parameter, no representation is recorded. Indeed if this parameter has a type
containing a collection parameter of the species, then this latter inevitably appeared
before the entity parameter and was already recorded. Otherwise, the entity parameter
inevitably has a type containing a toplevel collection. The same remark applies on
species expressions se.

Definition 7.4. Record Type Creation: GenRecord
The generation of the record type, done as follows and presented with some abuses

of notation, is only done for a complete species. This operation relies on rrτ sst the
translation of types in the target language (c.f. definition 7.17).

• Let S be a species in normal form.
• Let ΓSpSq “ p

ÝÝÝÝÑ
Cn ‚ tnqt

ÝÑ
Φmu

• Let C “ (Cj T : Set) for all Cj P PReprsp
ÝÝÝÝÑ
Cn ‚ tnq, the code operating

the λ-liftings of parameters representations.
• Let pm “

Ťn
j“1pCj ˆ

Ťm
i“1p

rRtypest mi uS,Cj qq an association list between a
parameter name Cj and the list of its methods upon which at least one method of
S depends, according to the rule [RTYPE], thus the list of methods of Cj which
must be λ-lifted in the record type. The generated code for theses λ-liftings is
given byM “ @pCj ˆmsq P pm,@m P ms, (p Cj x:rrTCj

pmqsst) .

36

• Let F be the list of the names of methods of S, with their logical types.

The type of the record is built as follows:

ΓSpSq “ p
ÝÝÝÝÑ
Cn ‚ tnqt

ÝÑ
Φmu C “ @Cj P PReprsp

ÝÝÝÝÑ
Cn ‚ tnq, (Cj T : Set)

pm “

n
ď

j“1

pCj ˆ
m
ď

i“1

prRtypest xi uS,Cj qq

M “ @pCj ˆmsq P pm,@m P ms, (p Cj m:rrTCj
pxqsst)

F “ @m : τ P t
ÝÑ
Φmu, rf m:rrτ sst.

S ÝÑ Record me as species CM(abst T: Set): Type :=
mk record {F }.

˛

Note that by C, the record type is λ-lifted by all the species parameters represen-
tations, even if some do not effectively appear inside the record’s fields. It is mostly
uncommon to have species not using their parameters, hence we choose to have a sim-
plified abstraction computation.

Definition 7.5. Dependencies of a Method on Methods of a Parameter: Last Stage
Let m be a method of a species S. Let C be a parameter of S. rGenstm uS,C is the

complete set of dependencies of m on the methods of C. It is defined by:

rGenstm uS,C “
rBodystm uS,C Y

rTypestm uS,C Y

D`prDef stm uS,C Y
rUnivstm uS,C Y

rPrmstm uS,C , S, Cqrms

˛

rGenstm uS,C gathers the dependencies ofm onC’s methods found by applying the
rules [TYPE], [BODY] and the rule [CLOSE] on the union of dependencies obtained by
[DEF], [UNIV] and [PRM]. This function is used to compute the λ-liftings for method
generators (c.f. 7.8), the arguments of the methods they def-depend on (c.f. 7.9), and
for local applications of method generators in collection generators (c.f 7.11). It is
someway the largest set of dependencies.

7.1.2. Parameters Instantiation
Let S be a species, parametrized byCp, containing a method generator for a method

m having dependencies on some methods of Cp. The following rules recursively de-
termine the instantiation of Cp along the inheritance tree of S, i.e. what the formal
parameter Cp refers to.

The following example illustrates the need to follow the instantiations of parame-
ters to know the right effective methods to provide a method generator with.

species P0 =
rep = int ;
let m = 5 ;

end ;;

species S1 (P is P0) =
rep = int ;
let v = P!m ;

end ;;

species S2 (Q is P0) =
inherit S1 (Q) ;

end ;;

The species P0 defines a method m. S1 has a pa-
rameter P of interface P0 and defines a method v de-
pending on its parameter P’s method m. Then S2 also
has a parameter Q of interface P0 and inherits from
S1. During this instantiation, the parameter P of S1

37

is instantiated by the parameter Q of S2. Since S2
inherits from S1, S2 has a method v.

In S1 from where v comes, v depends on the pa-
rameter P. However, once in S2, it now depends on
“by what” P has been instantiated during the inheri-

tance: the parameter Q of S2. Hence, in the collection generator of S2, the method
generator of v must be applied to the λ-lifting of Q!m (i.e. p Q m in the produced
code) and not to something related to (the unbound in S2) parameter P.

species P1 =
inherit P0
let m = 25 ;

end ;;

collection C0 = implement P0 ;;
collection C1 = implement P1 ;;
collection D0 = implement S1 (C0) ;;
collection D1 = implement S1 (C1) ;;

Following the parameters instantia-
tions is also required when creating col-
lections. The species P1 inherits from
P0 and redefines its method m. The col-
lections C0 and C1 are respectively cre-
ated upon P0 and P1. When creating the
collections D0 and D1 upon S1, the pa-

rameter P of S1 is instantiated by two different collections, the first one where m = 5,
the second one where m = 25.

There are three possible kinds of instantiations of parameters: by a collection pa-
rameter (CP), by a toplevel collection (TC) and, for entity parameters, by an expression
(EP).

Intuitively, the search for instantiations starts in the species S0 containing the def-
inition of the method m that depends on a parameter Cp. Then, it recursively walks
along the inheritance tree toward more recent species Si inheriting from Si´1. At each
step the formal parameter (initially Cp) of Si´1 is replaced by the effective argument
provided in Si.

Definition 7.6. Provenance of a Method
Let S be a species of the form species S = inherit ÝÑseÝÑφ and a method m P DpSq.

The provenance of m in S (i.e. along the inheritance tree) is defined as follows.

m P DpSq
m é S “ S

m R DpSq m é sei “ S1 with i the highest index in ÝÑse
m é S “ S1 ˛

These rules search the definition of m in S first, otherwise in the latest inheritance
node definingm (in case of multiple inheritance, the rightmost species in the inherit
clause is considered first as stated in 2.2).

Definition 7.7. Parameter Instantiation
Depending on the kind of expression instantiating a parameter, the methods of this

latter are accessed differently. Note that when instantiating by a toplevel collection,
substitutions have no effect. When instantiating by a collection parameter, the substi-
tution trivially consists in returning this collection parameter. When instantiating an
entity parameter, the substitution takes all its sense since the effective expression used
to instantiate has to replace each occurrence of the formal parameter.

38

m é S “ S

PInstpS,Cp,mq “ CPpCpq

m é S “ S1 with S1 ­“ S

Sp. . . , Cp ‚ tp, . . .q “ inherit S1p. . . , ep, . . .q ΓSpS
1q “ p. . . , C 1p ‚ t

1
p, . . .qt

ÝÑ
Φ u

PInstpS,Cp,mq “ IKindS pepq

m é S “ S2 with S2 ­“ S1 ­“ S
SpC1 ‚ t1, . . . , Cp ‚ tp, . . .q “ inherit S1pe1, . . . , ep, . . .q

ΓSpS
1q “ pC 11 ‚ t

1
1, . . . C

1
p ‚ t

1
p, . . .qt

ÝÑ
Φ u PInstpS1, Cp,mq “ ik

PInstpS,Cp,mq “ ikrCp Ðß eps ˛

IKindS peq “

$

&

%

CPpeq if e is a collection parameter of S
TCpeq if e is a toplevel collection of S
EPpeq if e is an expression (for an entity parameter)

The following functions GenRepType and GenPrmMeth serve to instantiate the
λ-liftings induced by the representations of parameters and the methods, according to
the parameters’ instantiations (by other parameters, toplevel collection, or expression
for entity parameters). The effective definition of the record field me as carrier is
provided by the forthcoming definition 7.14.

GenRepTypepikq “

$

&

%

p e T if ik “ CPpeq
e.me as carrier if ik “ TCpeq
ε if ik “ EPpeq

and:

GenPrmMethpik,ÝÑmsq “

$

&

%

p e m @m P ÝÑms if ik “ CPpeq
e.m @m P ÝÑms if ik “ TCpeq
e if ik “ EPpeq

7.1.3. Method Code Generation
In order to help the intuitive understanding of the relations between the rules, we

illustrate the shape of a generated code for a method in the following figure.
We consider the method lowMin of the example introduced in Section 2.3. In

order to also illustrate decl-dependencies, we voluntarily use an unnecessary method
dummy (a property simply stating @x, x “ x) as a hint of a proof step as shown is the
following listing.

theorem lowMin :
all x : V, getStatus (filter (x)) = Too_low -> ˜ V!gt(x, minv)

proof =
<1>1 assume x : V,

hypothesis H: snd (filter (x)) = Too_low,
prove ˜ V!gt (x, minv)
<2>1 prove V!lt (x, minv) by definition of filter type statut_t

hypothesis H
<2>2 qed by step <2>1 property V!ltNotGt, dummy

<1>2 qed by step <1>1 definition of getStatus ;

39

methods
methods
GenPrmMeth

Methods
of Self

GenSelfDeps

 (_p_V_lt : _p_V_T −> _p_V_T −> bool)

 (_p_V_gt : _p_V_T −> _p_V_T −> bool)

 (_p_V_ltNotGt :

 (_p_minv_minv : _p_V_T) (_p_maxv_maxv : _p_V_T)

 (abst_filter := filter _p_V_T _p_V_lt _p_V_gt _p_minv_minv _p_maxv_maxv)

 (abst_getStatus := getStatus _p_V_T) :

 forall

 Is_true (abst_getStatus (abst_filter x) = Too_low) −>

 ~Is_true (_p_V_gt x _p_minv_minv).

Def−dependencies

 (_p_V_T : Set) lowMin :Theorem

GenRepType

Parameters representations

x : abst_T, Is_true (x = x)

 (abst_T := _p_V_T * statut_t__t)

 forall x y : _p_V_T, Is_true (_p_V_lt x y) −> ~Is_true (_p_V_gt x y))

x : _p_V_T,

(abst_dummy : forall Decl−dependency

Entity parameters

Collection parameters

Parameters

The functionGenMethGen is the entry point for generating the code of the method
generator of a method m belonging to a species S. It relies on three intermediate func-
tions (GenRepType , GenPrmMeth and GenSelfDeps).

The first two rules of GenMethGen state that methods only declared or defined in
an inherited species do not lead to code.

Definition 7.8. Code Generation for Methods

m R DpSq
GenMethGenpS,mq “ ε

[MG-DECL]
m P DpSq m é S ­“ S

GenMethGenpS,mq “ ε
[MG-INH]

Note that in the following rule [MG-METH], depending on the kind of method,
the binder may change: Definition for a computational method, Theorem for a
theorem (not written in the rule).

• Let S be a species in normal form.
• Let ΓSpSq “ p

ÝÝÑ
C ‚ tqt

ÝÑ
Φ u

• Let ppri,msiq “ pCi,
rGenstm uS,Ci

q for all Ci P
ÝÝÑ
C ‚ t, the list of couples

recording each parameter Ci and the list of dependencies of m on Ci.
• Let insts “ pPInstpS,Ci,mq ˆmsiq, the list of couples recording the instan-

tiation of each parameter Ci and the list of dependencies of m on Ci.
• Let C “ GenRepTypepikq for all pik,msq P insts, the code operating the λ-

liftings of parameters representations.
• Let P “ GenPrmMethpik,msq for all pik,msq P insts, the code operating the
λ-liftings of parameters methods.

• Let S “ GenSelfDepsS pt
ÝÑ
Φ u\mq, the code operating the λ-liftings or bindings

for decl- or def-dependencies on other methods of the species S.

40

ΓSpSq “ p
ÝÝÑ
C ‚ tqt

ÝÑ
Φ u @Ci P

ÝÝÑ
C ‚ t, ppri,msiq “ pCi,

rGenstm uS,Ciq

insts “ @Ci P pri, pPInstpS,Ci,mq ˆmsiq
C “ @pik,msq P insts, GenRepTypepikq

P “ @pik,msq P insts, GenPrmMethpik,msq

S “ GenSelfDepsS pt
ÝÑ
Φ u\mq

GenMethGenpS,mq “
Definition m C P S: rrTSpmqsst := rrBSpmqsse .

[MG-METH]

Finally, the last rule, [MG-SPE] iterates on all the methods of the species.

ΓSpSq “ p
ÝÝÑ
C ‚ tqt

ÝÑ
Φ u

GenMethGenspSq “ @m P t
ÝÑ
Φ u, GenMethGenpS,mq

[MG-SPE]
˛

Emitting λ-Liftings and Bindings. The following function GenSelfDeps emits the λ-
liftings due to decl-dependencies and the definitions (:=-bindings) due to def-depen-
dencies. If m has a def-dependency on n, then the method generator of n is applied to
its own dependencies. These dependencies of n are methods either already λ-lifted or
defined (:=-bound) as n is known when m is introduced.

Definition 7.9. λ-lifting Dependencies on Methods of Self

GenSelfDepsS pHq “ ε

GenSelfDepsS pn : τ ; lq “ (abst n : rrτ sst) GenSelfDepsS plq

GenSelfDepsS prep; lq “ (abst T : Set) GenSelfDepsS plq

GenSelfDepsS prep “ τ ; lq “ (abst T := rrτ sst) GenSelfDepsS plq

• Let S be a species in normal form.
• Let ΓSpSq “ p

ÝÝÑ
C ‚ tqt

ÝÑ
Φ u

• Let S1 “ n é S the species in which n is defined.
• LetN be the code emitted to access the method generator of n, depending on its

provenance.
• Let ppri,msiq “ pCi,

rGenst n uS,Ci
q for all Ci P

ÝÝÑ
C ‚ t, the list of couples

recording each parameter Ci and the list of dependencies of n on Ci.
• Let insts “ pPInstpS,Ci, nq ˆmsiq, the list of couples recording the instanti-

ation of each parameter Ci and the list of dependencies of n on Ci.
• Let C “ GenRepTypepikq for all pik,msq P insts, the code operating the λ-

liftings of parameters representations.
• Let P “ GenPrmMethpik,msq for all pik,msq P insts, the code operating the
λ-liftings of parameters methods.

• Let S “ (abst mi: rrτ sst) for all pmi : τiq P t
ÝÑ
Φ u \ n, the code operating

the application of the method generator of n to the dependencies it has on other
methods of S.

41

S1 “ n é S N “ if S1 “ S, then n else S’.n
ΓSpSq “ p

ÝÝÑ
C ‚ tqt

ÝÑ
Φ u @Ci P

ÝÝÑ
C ‚ t, ppri,msiq “ pCi,

rGenst n uS,Ciq

insts “ @Ci P pri, pPInstpS,Ci, nq ˆmsiq
C “ @pik,msq P insts, GenRepTypepikq

P “ @pik,msq P insts, GenPrmMethpik,msq

S “ @pmi : τiq P t
ÝÑ
Φ u\ n, (abst mi: rrτ ss

t)

GenSelfDepsS pn : τ “ e; lq “ (abst n := NC P S) GenSelfDepsS plq ˛

7.1.4. Collection Generator Code
If a species is complete, its collection generator is emitted by the following func-

tion GenCollGen. C is the code for λ-lifting the representations of parameters. pm
is an association list between a parameter name Cj and the list of its methods upon
which at least one method of S depends. Note that C and pm are the same as those in
GenRecord (technically, they are returned by this latter). P is the set of names used
to λ-lift the methods in pm.

The applications of each method generator to its arguments are grouped inside a
record. The code generation for these applications is the same as when these generators
are used for :=-bindings inGenMethGen (c.f. definition 7.1.3). In these applications,
the methods coming from the collection parameters are still not defined hence must be
λ-lifted. Hence the collection generator is the function parametrized by these λ-lifted
methods, which returns a value of the record.

Definition 7.10. Collection Generator Code Generation

• Let S be a species in normal form.
• Let ΓSpSq “ p

ÝÝÝÝÑ
Cn ‚ tnqt

ÝÑ
Φmu

• Let C “ (Cj T : Set) for all Cj P PReprsp
ÝÝÝÝÑ
Cn ‚ tnq, the code operating

the λ-liftings of parameters representations.
• Let pm “

Ťn
j“1pCj ˆ

Ťm
i“1p

rRtypest mi uS,Cj
qq an association list between a

parameter name Cj and the list of its methods upon which at least one method of
S depends, according to the rule [RTYPE], thus the list of methods of Cj which
must be λ-lifted in the collection generator.

• Let P “ p Cj m for all pCj ˆmsq P pm and m P ms, the code operating the
λ-liftings of parameters methods.

• Let G be the code creating the local applications of the methods generators to
their dependencies (from other methods of the species S or from parameters
methods).

• LetM be the code emitted to apply the record constructor to the local applica-
tions built by G.

42

ΓSpSq “ p
ÝÝÝÝÑ
Cn ‚ tnqt

ÝÑ
Φmu C “ @C P PReprspÝÝÝÝÑCn ‚ tnq, (C T : Set)

pm “

n
ď

j“1

pCj ˆ
m
ď

i“1

prRtypestmi uS,Cj qq

P “ @pCj ˆmsq P pm,@m P ms, p Cj m

G “ @Φi P
ÝÑ
Φm, @m P DpΦiq, GenLocalS pmq

M “ @Φi P
ÝÑ
Φm, @m P DpΦiq z rep, local m

GenCollGenpSq “ Definition collection create C P :=
G mk record C P local repM. ˛

Since the representation is the first method of the species λ-lifted in the record type,
local rep is explicitly processed first in GenCollGen. Note that C and pm are the
same as in GenRecord (technically, they are returned by this latter).

Definition 7.11. Local Applications in a Collection Generator

S1 “ m é S N “ if S1 “ S, then m else S’.m
ΓSpSq “ p

ÝÝÑ
C ‚ tqt

ÝÑ
Φ u @Ci P

ÝÝÑ
C ‚ t, ppri,msiq “ pCi,

rGenstm uS,Ci
q

insts “ @Ci P pri, pPInstpS,Ci,mq ˆmsiq
C “ @pik,msq P insts, GenRepTypepikq

P “ @pik,msq P insts, GenPrmMethpik,msq

S “ @pmi : τiq P t
ÝÑ
Φ u\m, local mi

GenLocalS pm : τ “ eq “ let local m = NC P S in ˛

The rule GenLocalS is very similar to GenSelfDepsS . It mostly forgets type an-
notations and prefixes each method name by local instead of abst . This is not
surprising since the rule GenLocalS pmq provides m with the effective methods on
which it depends: these methods have previously be λ-lifted by GenSelfDepsS .

7.2. Collections

The following InstCollGenPrms, in addition to generate code, returns the num-
ber of arguments generated to instantiate the λ-liftings of the record type. This returned
number is used to know how many placeholders must be generated (for Coq) when
generating records access in GenMeths (c.f. definition 7.14).

Definition 7.12. Collection Generation

pP, n rtype argsq “ InstCollGenPrmspS,ÝÑe q

M “ GenMethspC, S, n rtype argsq
ÝÑ
m1 “ SubstInMethspS,ÝÑe q

collection C implement SpÝÑe q ÝÑ Module C.
Let effective collection := C.collection create P .M

End C. ˛

43

Let pm be the list of methods per parameter computed in GenRecord (c.f. pm in
the definition 7.4) (technically it is recorded in an environment, not computed again).
This information represents the arguments expected by the collection generator. The
instantiation of a collection generator’s parameters structurally applies the substitution
σ. In the following rule, C 1 and P 1 represent a collection (toplevel or parameter) name.

Definition 7.13. Collection Generator Parameters Instantiation

• Let S be a species (in normal form).
• Let ΓSpSq “ p

ÝÝÝÝÑ
Cn ‚ tnqt

ÝÑ
Φmu

• Let σ “ rÝÝÝÝÝÑCi Ðß eis, the substitution mapping, for eachCi inÝÝÝÝÑCn ‚ tn, its effective
value ei.

• Let pr “ PReprsp
ÝÝÝÝÑ
Cn ‚ tnq be the list of the parameters representations.

• Let C be the code emitted to instantiate the λ-liftings corresponding to the types
of parameters representations by collections representations if the parameters are
collection parameters. In case of entity parameter no code is emitted.

• LetM be the code emitted to instantiate the λ-liftings corresponding to the meth-
ods of the parameters.

ΓSpSq “ p
ÝÝÝÝÑ
Cn ‚ tnqt

ÝÑ
Φ u pr “ PReprsp

ÝÝÝÝÑ
Cn ‚ tnq

σ “ r
ÝÝÝÝÝÑ
Ci Ðß eis C “ @Cj P pr, if σpCq “ C 1 then C 1.me as carrier

M “ @pP,msq P pm, if σpP q “ P 1 then @m P ms, P 1.m else rrσpCqsse

InstCollGenPrmspS,ÝÑei q “ C M ˛

Note that the application of σ can only return either a collection identifier (denoted
in the above rule by P 1 and C 1) or an expression. The first case corresponds to the
instantiation of a collection parameter. The second case is an instantiation of an en-
tity parameter. In case of entity (“else” case), the instantiation simply translates the
obtained expression.

Definition 7.14. Collection’s Methods Generation

ΓSpSq “ p
ÝÝÑ
C ‚ tqtrep “ τ ;

ÝÑ
Φ u M “ @pmi : τiq P

ÝÑ
Φ ,

Definition mi := effective collection.(mi . . .
loomoon

n rtype args

).

GenMethspC, S, n rtype argsq “
Definition me as carrier := rrτ sst.M

˛

The record type has as many arguments as the collection generator has. The collec-
tion generator λ-lifts the dependencies of the record type. This number of arguments
is recorded when the parameters of the collection generator are instantiated (c.f. defi-
nition 7.13).

Due to explicit polymorphism in Coq, field accesses in records require to explic-
itly mention the arguments of the record that encode polymorphism. We could have
explicitly emitted the type expressions, however hopefully, the Coq type inference is
able to recover them as long as their number is explicit, which is done by providing
anonymous arguments (the placeholders denoted by above the horizontal brace in
mi . . .).

44

7.3. Translation of Types and Core Expressions

Several rules generate target code for both types and expressions.
For expressions, the main difficulty toward Coq is the generation of explicit poly-

morphism. Any polymorphic definition has an extra fresh parameter of type Set to
denote each type variable. Hence, each instantiation of the definition must be provided
with as many arguments of type Set as the definition has polymorphic type variables.
Again, Coq is able to infer these types as long is it provided with the right number of
placeholders (). However, we need to maintain a mapping V between fresh generated
parameters and their related type variables.

Emitting code for methods names needs to discriminate on their provenance which
can be the species itself, a toplevel collection, a collection parameter or an entity pa-
rameter. Entity parameters fall into the regular case of identifiers. We omit the case
where the toplevel collection belongs to another compilation unit, in which case the
name of this unit should be added as prefix with a “dot notation”.

In rr sse, the translation of expressions, we voluntarily omit the code generation of
recursive functions. It requires a very special processing due to the need of termination
proofs, which is addressed in a dedicated paper [39]. Presenting it here should increase
a lot the length of this paper.

Definition 7.15. Translation of Expressions

Γepxq “ @ÝÑαn.τ

Γe,V $ rrxsse “ (x
loomoon

n times

)
ΓS ,Γe,V $ rrSelf!msse “ abst m

ΓS $ C is a toplevel collection
ΓS ,Γe,V $ rrC!msse “ C.m

ΓS $ C is a collection parameter
ΓS ,Γe,V $ rrC!msse “ p C m

Γe $ x1 : τ1 . . . Γe $ xn : τn Γe $ e : τ ΓS ,Γe,V $ rresse : e1

ΓS ,Γe,V $ rrfun x1, . . . , xn –>esse “ (x1rrτ ss
t
1) . . . (xnrrτ ss

t
n) : rrτ sst := e1

ΓS ,Γe,V $ rre pe1, . . . , enqss
e “ (rresse rre1ss

e . . . rrenss
e)

ΓS ,Γe,V $ rrlet x “ e1 in e2ss
e “ let x := rre1ss

e in rre2ss
e

Γe $ e : τ Genpτ,Γeq “ @α1 . . . αn.τ
v1 . . . vn fresh variables ΓS ,Γe,V ‘ pαi ÞÑ viq $ rress

e “ e1

ΓS ,Γe,V $ rresse “ (v1: Set) . . . (vn: Set) e1 ˛

Definition 7.16. Translation of Logical Expressions
Logical expressions of type bool need to be explicitly injected in the type of log-

ical properties (Prop) using Coq’s construct Is true. In effect, expressions of type
bool are computable terms: their value can be computed although logical properties
are not always decidable.

ΓS ,Γe,V $ e : bool

ΓS ,Γe,V $ rressp “ (Is true rresse)

ΓS ,Γe,V $ e : prop

ΓS ,Γe,V $ rressp “ rresse

45

ΓS ,Γe,V $ rr„ pssp “ „rrpssp ΓS ,Γe,V $ rrp1 _ p2ss
p “ rrp1ss

p z{ rrp2ss
p

ΓS ,Γe,V $ rrp1 ^ p2ss
p “ rrp1ss

p {z rrp2ss
p

ΓS ,Γe,V $ rrp1 ñ p2ss
p “ rrp1ss

p –> rrp2ss
p

ΓS ,Γe,V $ rrall x : τ, pssp “ forall x : rrτ sst, rrpssp

ΓS ,Γe,V $ rrex x : τ, pssp “ exists x : rrτ sst, rrpssp ˛

Definition 7.17. Translation of Types
For types, the same particularity as for expressions arises. The translation of the

representations depends on the context: are they collection parameters or toplevel col-
lections? This changes the way to access the type constructor denoting the representa-
tion. We also omit the case where the toplevel collection belongs to another compila-
tion unit, in which case the name of this unit should be added as prefix. Note that the
type prop is ultimately translated into the type Prop of Coq. However, this may only
be required in case of logical let signatures, the only place where the user may
mention this type, since it is impossible for him/her to create values of type prop.

V $ rrasst “ a
V $ @i, rrτisst “ ti

V $ rrppÝÑτi qsst “ p(ÝÑti)
V $ rrαsst “ Vpαq

V $ rrτ sst1 “ t1 V $ rrτ sst2 “ t2

V $ rrτ1 Ñ τ2ss
t “ t1 –> t2

C is a toplevel collection
V $ rrCsst “ C.me as carrier

C is a collection parameter
V $ rrCsst “ C T

V $ rrSelfsst “ abst T
˛

Despite this precise description of the compilation, several precise technical details
have still be untold, like the following examples.

As it would need a deep presentation of Zenon we do not detail the compilation
of proofs and the interaction with Zenon. Technically, it rests upon the dependency
calculus and all the needed material is already computed for the core of the code gen-
eration presented here. The idea is to embed proofs steps invoking Zenon into Coq
Sections to transform the λ-liftings into Parameters to stay with first-order for-
mulae manipulated by Zenon. The compiler must generate the prelude of the section
and its postlude to restore the λ-liftings. It must also give to Zenon the definitions
which are used as Zenon hints.

The λ-lifting of dependencies requires a special care when two collection param-
eters get instantiated by a same collection. Weak polymorphic type variables must be
handled slightly differently from polymorphic ones.

The compilation relies on different environments between passes to avoid comput-
ing several times some same or similar information: this requires slight modifications

46

in a few rules (mostly substitutions in methods for the code generation environment in
order to explicitly provide arguments for record accesses instead of placeholders).

The dependencies are computed once for all the target languages. To ensure that
dependencies coming from logical methods do not flow into the computational code
generated, dependencies must be tagged to remind their provenance.

On a purely practical point of view, the user’s identifiers must not conflict with the
keywords of the target languages, which is ensured by a convenient name mangling.

8. Discussion

The requirements and choices discussed in sections 2 and 5 were considered at the
early beginning of the FoCaLiZe project. First, the intended semantics was specified
in Coq by S. Boulmé [34]. It revealed the need of a careful treatment of dependencies.
Then, a first prototype of the language, developed by V. Prevosto [25], designed the
first concrete syntax and the first FoCaL compiler, whose correctness against FoCaL’s
semantics was proved (by hand) [40]. After these pioneer studies, the compiler has
been fully redesigned and extended to lead to the current FoCaLiZe system with a
common code generation model, by the author. The interface with the Zenon auto-
mated theorem prover, already present in the first compiler, has also been extended a
lot.

λ-lifting Parameters Instead of Methods. We considered also another possibility to ob-
tain a collection generator. Instead of λ-lifting one by one the parameter method names
from the record of collection generators, we could have lifted only the collection pa-
rameters names. Then, a collection generator should be directly applied to an effective
collection. But typing this application needs to attribute a record type to collection pa-
rameters, so to collections and then to species. Since species define a form of subtyping
(allowing a collection with more methods than expected to instantiate a collection pa-
rameter) we would need a kind of subtyping relation on record types. Although this
feature exists in some languages, we prefer to require the minimum of constructs for
target languages, hence leaving our code generation model open to a wider range of
potential targets.

Theorems Versus Axioms. In the Coq model of a collection, since theorems have been
proved should they remain theorems (choice 1) or should they be added as axioms
(choice 2)?

The major drawback of choice 2 is that instead of containing a complete Coq source
file, any FoCaLiZe compilation unit should be split into several intermediate Coq
files, incrementally proving one theorem in the context where previously proved ones
are replaced by axioms. For instance, instead of having Coq verifying one complete
model:

Theorem t1 : ... proof = ...
Theorem t2 : ... proof = ... t1 ...
Theorem t3 : ... proof = ... t1, t2 ...

one should split this model in three parts:

47

Theorem t1 : ... proof = ...

Axiom t1 : ...
Theorem t2 : ... proof = ... t1 ...

Axiom t1 : ...
Axiom t2 : ...
Theorem t3 : ... proof = ... t1, t2 ...

This would clearly seriously degrade readability, traceability and would require for
each compilation unit to analyze several Coq files instead of one.

Using functors. An orthogonal model is also possible, keeping method generators but
avoiding collection generators. Since a species is represented by a module, it may look
convenient to represent parametrized species by functors and inheritance by module
inclusion. This presents two major drawbacks. First, notions of functor and module
inclusion are required in the target languages, hence may restrict target candidates.
Second, even if the inheritance mechanism could be (possibly) simplified, we anyway
still need to have it explicitly resolved by the compiler, at least for typechecking, nor-
mal form computation and automatic documentation generation. Hence, this intuitive
idea of simplifying by using functors would indeed lead to more work than the one
already done by the compiler.

Code Extraction. Since FoCaLiZe generates Coq and OCaml code, one may won-
der why not directly develop in Coq and use the code extraction mechanism to get
executable code.

First, the high-level modeling structures provided by FoCaLiZe are complex to
manually express in Coq. It is just the work of the compiler to do this job: checking
well-formedness of the components, resolving inheritance, early-binding and parame-
terization, generating the effective code, interfacing with the prover(s). Nobody would
appreciate doing this job by hand.

Second, we decided not to impose an extraction mechanism on the target logical
language in order to minimize requirements on it. Moreover, one can imagine to also
emit computational code toward other languages than ML, which would require the
logical target language to also have an extraction mechanism toward several languages.
For instance, a back-end toward Dedukti [41, 42] is currently in progress, taking benefit
from some evolutions of Zenon to handle deduction modulo [43].

External Code. Aside species and collections which serve to make an incremental
development, some primitive notions like booleans, integers, etc. are needed and given
by the standard library of the language. The library can also provide proved properties
on these primitives. It is possible to call FoCaLiZe collections methods from OCaml
code, being aware of their proved properties. Conversely, external OCaml or Coq
libraries can also be accessed via a binding mechanism. Their properties can be granted
by other means (contracts, verification tools, etc). If no formal proof evidence can be
issued for the properties of these external libraries, it is still possible to assume them as
holding, giving them a proof reduced to the keyword assumed.

48

This is a needed but dangerous feature as admitted properties can lead to logical
inconsistencies. Depending on the context of the system, some “only nearly true” but
“well-known theorems” may be safely considered as holding to simplify the problem
and directly deal with “more functional” properties. For instance, @x P N, x ` 1 ą x
doesn’t hold since arithmetic is modulo the number of bits of machine integers, how-
ever some practical considerations can guarantee that no overflow will occur [44].

The use of this keyword is recorded in the automatically done documentation file
provided by the compilation process. The assessment process must ultimately check
that any occurrence of this keyword is harmless.

Contracts. Using contracts to take benefits from external code can be done in two
ways. First, the contract may simply be blindly assumed as holding. In this case its
property must be artificially proved using the keyword assumed as presented in the
previous paragraph.

The second solution is to obtain a real proof, i.e. a λ-term of the target logical
language, then embed it in the global logical model created during the compilation.
Doing this way, the logical verifier is also able to check the proofs of the contracts.
This implies that the contract has already been formally verified externally (for instance
with a WP tool). The aim is then to rebuild a complete proof from the proved pre/post-
conditions. However, it is not yet clear if a deep embedding of the WP logic (and the
foreign language) is unavoidable.

Proofs Writing. To write proofs, another solution could be to use the syntax and the
tools of the chosen prover. We tried the first choice (it is still possible in FoCaLiZe to
insert Coq proofs) and found several drawbacks.

• The user must have a deep knowledge of the prover to powerfully use it and to
understand error messages.

• The user must be aware of the mapping done by the compiler between the con-
crete language and the target logical one.

• The proofs too deeply depend on this target logical language. Indeed, the proof
format should allow translation of proofs to several theorem provers (based on
type theory).

Recursive Functions. Termination proofs for recursive functions have recently been
integrated in FoCaLiZe [39]. The user can provide a measure (function returning an
integer) or a well-founded relation. In both cases, the compiler automatically generates
proof obligations that must be proved by the user with the usual proof style (i.e. helped
by Zenon). For a measure, the core of the obligations requires a strict decreasing of
the measure at each recursive call. For a well-founded relation, the argument of the
recursive calls must be smaller than the initial argument according to this relation. In
both cases, the user has to write proofs only taking care of the recursive parameter, the
compiler ensures the transformation of the obligations and their proofs to cope with all
the parameters of the function.

Pattern-Matching. The pattern-matching must still be handled in a finer way to hide
the facts that Zenon only handles head-most patterns and that Coq requires expansion
of nested patterns.

49

9. Related Work

Our choice was to consider a pure functional language, leaving side effects outside
the model. Other tools made the choice of directly addressing an imperative language.

Spec7 [45] is such a language, a subset of C7 with an stronger static typing and
a pre/post mechanism to specify properties of the manipulated entities. The compiler
adds runtime verifications for contracts. The language is compiled toward Boogie [46]
which serves as an intermediate verification language. This latter is able to perform
loop-invariants inference and uses the Spec7 program annotations and type properties
to try to statically prove that the inserted runtime checks are always satisfied (hence
useless). Dafny [3] follows the same scheme, also compiling toward Boogie, but ex-
tends the language with built-in sets and sequences, algebraic datatypes and termina-
tion metrics. Differently from us where termination proofs are written like the others,
termination is checked thanks to an annotation (lexicographic tuple). In both cases,
proofs are also done using an external theorem prover [47]. However, no logical term
is produced as witness.

Why3 [7] relies on WhyML, a language with functional features similar to FoCaL-
iZe but also providing references, loops and exceptions. It does not have inheritance
and parametrization but a system of theories allowing modularity. Like for Spec7 and
Dafny, the approach is different from ours, not only by the use of Hoare logic required
to handle imperative programs. Proofs are done from pre/post-conditions and invariants
given by the programmer and not from “lemmas” written outside the implementation
of the functions. Wh3 is able to generate proof obligations and submit them to a large
number of external provers, much more than FoCaLiZe currently does. No witness
term is either produced.

Unfortunately, as far as we know, there is no available details on the implementation
of B. Even if the logical framework differs from ours, it is clear that refinement and
abstract machines have common points with our inheritance and parametrization, hence
may induce questions similar to those presented in this paper.

In [48] D. Leijen presents a type system with effects to separate functional and
imperative components of a program. Such a technique may be of interest since we
also rely on an ML-like type system. This would not solve proof writing for imperative
parts of a program but this could detect and forbid unfolding functions with side effects
in our proofs.

It is clear that our work does not target the compilation of general object languages.
We compile toward high-level target languages and not native code. Hence we do not
care of register allocation, memory allocation, etc. Also, our object-oriented features
are static (no dynamic dispatch). For these reasons, it is difficult to compare our com-
pilation scheme with those of these languages.

Finally, our approach does not aim at proving the compiler unlike, for example,
[49, 50]. The generated code is submitted to an external verifier (Coq). The guarantee
of correctness for the computational target code relies on the common trunk of the
compilation, as long as the logical generated code is accepted by Coq.

50

10. Conclusion and Future Work

The main objective of this paper is the presentation of the compiler which aims
rather differ from those of most compilers of programming languages. This compiler
produces both logical and computational codes tightly linked together. We try to give
a very detailed, and as formal as possible, presentation for several reasons.

First, we consider important to explain the way the compiler produces error-free
Coq and OCaml codes, without requiring the user to manipulate these languages. Er-
rors are handled at the source language level. The proofs are done by the user, helped
by Zenon, and Coq is used as both an “assembly” formal language and a guarantor
which double-checks the complete development, including proofs. Both target codes
are very close to each other, as they are emitted from the same intermediate form, by
only adapting the syntax. The OCaml code is mostly an erasing of the logical parts
of the Coq code. This closeness eases the assessment process when specifications and
code must be compared.

Second, there are few papers on compilers with similar target languages. The sys-
tem B [8] generates proof obligations and C/ADA code. DAFNY [3, 4] allows building
executable or DLL libraries. It features a language with dynamic allocation and generic
classes. WHY3 [5, 6, 7] is able to generate OCaml code, generating proof obligations
and submitting them to various external provers. These languages allow imperative
programming and Hoare logic styles. The user states his/her specifications using pre/-
post conditions, and more generally, invariants. Their goal is not to issue a complete
formal model of the generated code to submit it to a prover.

Third, reading the source code of a compiler is generally not the good way to reuse
some of its features. We hope that this presentation can help other projects with sim-
ilar needs, and we write it with this aim in mind. For instance, developments with
strong safety/security concerns can ask for Domain Specific Languages issuing proofs
of conformance. All these details may also be enjoyed by anybody wishing to extend
FoCaLiZe.

To justify such a compilation process and the induced difficulties, a preliminary
presentation of the design choices was needed. These choices come from the will
to avoid dissociating the computational and logical aspects in a formal development,
while keeping the language palatable. The mix of inheritance, early-binding, encapsu-
lation, inductive data types and unfolding of definitions in proofs creates complex de-
pendencies, which have to be analyzed to ensure programs correctness. This analysis
gives the basis of the compilation process through the notions of method and collection
generators, that we introduced to maximize code sharing. These choices brought the
main difficulties of the compilation process.

Some work remains to be done in order to enhance FoCaLiZe and its compiler. The
Zenon prover greatly contributes to the proof automation. Some works are currently
extending it to handle arithmetic, and other provers than Coq. This may allow to
experiment FoCaLiZe with other target type theories and other kinds of properties.

Temporal properties (à la “always”, “never”, “finally” . . .) cannot currently be ex-
pressed in FoCaLiZe. This must be a point to address since many programs requiring
a high level of confidence are embedded, real-time ones and require such properties

51

to be proved. Zenon is able to handle TLA formulae, hence this direction has to be
investigated.

Acknowledgments

I first want to strongly thank Thérèse Hardin, who greatly contributed to enhance
this paper. I also want to thank people who gave me their comments (and also strongly
participated to the FoCaLiZe adventure), David Delahaye, Damien Doligez, Catherine
Dubois, Mathieu Jaume, Virgile Prevosto, Renaud Rioboo, Pierre Weis.

[1] J. Spivey, An introduction to Z and formal specifications, Softw. Eng. J. 4 (1).

[2] Maude, http://maude.cs.uiuc.edu/ (2015).

[3] K. M. Leino, Dafny: An automatic program verifier for functional correctness,
in: Proceedings of the 16th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, LPAR’10, Springer-Verlag, Berlin, Hei-
delberg, 2010, pp. 348–370.

[4] K. M. Leino, Specification and verification of object-oriented software, in: In
Marktoberdorf International Summer School 2008, Lecture Notes, 2008.

[5] Why3, http://why3.lri.fr/ (2015).

[6] F. Bobot, J. Filliâtre, C. Marché, A. Paskevich, Why3: Shepherd your herd of
provers, in: Boogie 2011: First International Workshop on Intermediate Verifica-
tion Languages, Wrocław, Poland, 2011, pp. 53–64.

[7] J. Filliâtre, A. Paskevich, Why3 – Where Programs Meet Provers, in: ESOP’13
22nd European Symposium on Programming, Vol. 7792, Springer, Rome, Italy,
2013.

[8] Atelier-B, http://www.atelierb.eu/ (2015).

[9] Isabelle Team, The Isabelle/Isar reference manual (2015).
URL http://www.cl.cam.ac.uk/research/hvg/Isabelle/

[10] L. Paulson, The foundation of a generic theorem prover, Tech. Rep. UCAM-CL-
TR-130, University of Cambridge, Computer Laboratory (Mar. 1988).

[11] T. Nipkow, L. Paulson, M. Wenzel, Isabelle/HOL – A Proof Assistant for Higher-
Order Logic, Vol. 2283 of LNCS, Springer, 2002.

[12] R. L. Constable, T. Knoblock, J. L. Bates, Writing programs that construct proofs,
Journal of Automated Reasoning 1 (3) (1984) 285–326.

[13] S. Owre, J. Rushby, N. Shankar, D. Stringer-Calvert, PVS: an experience re-
port, in: D. Hutter, W. Stephan, P. Traverso, M. Ullman (Eds.), Applied For-
mal Methods—FM-Trends 98, Vol. 1641 of Lecture Notes in Computer Science,
Springer-Verlag, Boppard, Germany, 1998, pp. 338–345.

52

http://maude.cs.uiuc.edu/
http://why3.lri.fr/
http://www.atelierb.eu/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/

[14] S. Owre, N. Shankar, Writing PVS proof strategies, in: M. Archer, B. D. Vito,
C. Muñoz (Eds.), Design and Application of Strategies/Tactics in Higher Order
Logics (STRATA 2003), no. CP-2003-212448 in NASA Conference Publication,
NASA Langley Research Center, Hampton, VA, 2003, pp. 1–15.

[15] Coq Team, The Coq proof assistant reference manual, LogiCal Project, version
8.4 (2015).
URL http://coq.inria.fr

[16] S. Blazy, X. Leroy, Formal verification of a memory model for C-like imperative
languages, in: International Conference on Formal Engineering Methods (ICFEM
2005), Vol. 3785 of Lecture Notes in Computer Science, Springer, 2005, pp. 280–
299.

[17] S. Blazy, Z. Dargaye, X. Leroy, Formal verification of a C compiler front-end,
in: FM 2006: Int. Symp. on Formal Methods, Vol. 4085 of Lecture Notes in
Computer Science, Springer, 2006, pp. 460–475.

[18] X. Leroy, Formal certification of a compiler back-end, or: programming a com-
piler with a proof assistant, in: 33rd ACM symposium on Principles of Program-
ming Languages, ACM Press, 2006, pp. 42–54.

[19] J. Etienne, M. Maarek, F. Anseaume, V. Delebarre, Improving predictability, effi-
ciency and trust of model-based proof activity, in: Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume 2, ICSE ’15, IEEE Press,
Piscataway, NJ, USA, 2015, pp. 139–148.

[20] FoCaLiZe, http://focalize.inria.fr/ (2015).

[21] IEC-61508-3, Functional safety of electrical/electronic/programmable electronic
safety-related systems, International Electrotechnical Commission, 2011.

[22] Common Criteria, Common Criteria for Information Technology Security Evalu-
ation, Norme ISO/IEC 15408 – Version 3.1 Rev 4 (2012).

[23] L. Habib, M. Jaume, C. Morisset, Formal definition and comparison of access
control models, Journal of Information Assurance and Security (JIAS) 4 (4)
(2009) 372–381.

[24] D. Delahaye, J. Étienne, V. Viguié, Certifying Airport Security Regulations using
the Focal Environment, in: FM06, Vol. 4085 of LNCS, Springer-Verlag, 2006,
pp. 48–63.

[25] V. Prevosto, Conception et implantation du langage FoC pour le développement
de logiciels certifiés, Ph.D. thesis, Université Paris 6 (sep 2003).

[26] Lafosec, Sécurité et langages fonctionnels,
https://www.ssi.gouv.fr/publication/
lafosec-securite-et-langages-fonctionnels/ (2013).

53

http://coq.inria.fr
http://coq.inria.fr
http://focalize.inria.fr/
https://www.ssi.gouv.fr/publication/lafosec-securite-et-langages-fonctionnels/
https://www.ssi.gouv.fr/publication/lafosec-securite-et-langages-fonctionnels/

[27] P. Ayrault, T. Hardin, F. Pessaux, Development of a generic voter under focal, in:
TAP’09, Vol. 5608 of LNCS, Springer-Verlag, 2009, pp. 10–26.

[28] L. Lamport, How to write a proof, Research report, Digital Equipment Corpora-
tion (1993).

[29] Zenon, http://zenon-prover.org/ (2015).

[30] P. Ayrault, T. Hardin, F. Pessaux, Development life-cycle of critical software un-
der focal, Electron. Notes Theor. Comput. Sci. 243 (2009) 15–31.

[31] V. Prevosto, M. Jaume, Making proofs in a hierarchy of mathematical structures,
in: Proceedings of the 11th Calculemus Symposium, 2003.

[32] T. Hardin, R. Rioboo, Les objets des mathématiques, RSTI - L’objet.

[33] V. Prevosto, D. Doligez, Algorithms and proof inheritance in the Foc language,
Journal of Automated Reasoning 29 (3-4) (2002) 337–363.

[34] S. Boulmé, Spécification d’un environnement dédié à la programmation certifiée
de bibliothèques de calcul formel, Thèse de doctorat, Université Paris 6 (2000).

[35] L. Damas, R. Milner, Principal type-schemes for functional programs, in:
POPL’82, ACM, 1982, pp. 207–212.

[36] R. Milner, A theory of type polymorphism in programming, J. Comput. Syst. Sci.
17 (3) (1978) 348–375.

[37] M. Tofte, Operational semantics and polymorphic type inference, Thèse de doc-
torat CST-52-88, University of Edinburgh (1988).

[38] J. Robinson, A machine-oriented logic based on the resolution principle, J. ACM
12 (1) (1965) 23–41.

[39] C. Dubois, F. Pessaux, Termination Proofs in FOCALIZE, in: Draft Proceedings
of the 2015 Symposium on Trends in Functional Programming, 2015.

[40] V. Prevosto, S. Boulmé, Proof contexts with late binding, in: Typed Lambda
Calculi and Applications, 7th International Conference, TLCA 2005, 2005, pp.
324–338.

[41] M. Boespflug, Design and implementation of a proof verifying kernel for the λΠ-
calculus modulo, Theses, Ecole Polytechnique X (Jan. 2011).

[42] M. Boespflug, Q. Carbonneaux, O. Hermant, The lambda-pi-calculus modulo as a
universal proof language, in: Proceedings of the Second International Workshop
on Proof Exchange for Theorem Proving, 2012.

[43] R. Cauderlier, P. Halmagrand, Checking Zenon Modulo Proofs in Dedukti, in:
Fourth Workshop on Proof eXchange for Theorem Proving (PxTP), Berlin, Ger-
many, 2015.

54

http://zenon-prover.org/

[44] M. Clochard, J.-C. Filliâtre, A. Paskevich, How to avoid proving the absence of
integer overflows, in: A. Gurfinkel, S. A. Seshia (Eds.), 7th Working Conference
on Verified Software: Theories, Tools, and Experiments, 7th Working Confer-
ence on Verified Software: Theories, Tools, and Experiments, San Francisco,
CA, United States, 2015.

[45] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, K. R. M. Leino, Boogie: A
modular reusable verifier for object-oriented programs, in: Proceedings of the
4th International Conference on Formal Methods for Components and Objects,
FMCO’05, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 364–387. doi:10.
1007/11804192_17.

[46] K. R. M. Leino, This is boogie 2, Tech. Rep. MSR-TR-2008-194 (June 2008).

[47] L. De Moura, N. Bjørner, Z3: An efficient smt solver, in: Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08,
Springer-Verlag, Berlin, Heidelberg, 2008, pp. 337–340.

[48] D. Leijen, Koka: Programming with row-polymorphic effect types, Tech. Rep.
MSR-TR-2013-79 (August 2013).

[49] A. Chlipala, A certified type-preserving compiler from lambda calculus to assem-
bly language, in: Proceedings of the ACM SIGPLAN 2007 Conference on Pro-
gramming Language Design and Implementation, San Diego, California, USA,
June 10-13, 2007, 2007, pp. 54–65. doi:10.1145/1250734.1250742.

[50] X. Leroy, A formally verified compiler back-end, J. Autom. Reason. 43 (4) (2009)
363–446. doi:10.1007/s10817-009-9155-4.

55

http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1145/1250734.1250742
http://dx.doi.org/10.1007/s10817-009-9155-4

	Introduction
	Analyzing the design of FoCaLiZe
	Choice of the Semantical Framework
	Incremental Specification and Development
	Parameterization
	Parameterization Versus Polymorphism
	Properties and Proofs
	Requirements and Choices on the Compilation Process

	Dependencies in User Code
	Dependencies and Normalization
	Syntax
	Preliminary Definitions
	Type of Fields, Species and Collections
	Core Expressions Typechecking

	Notion of Dependencies: First Stage
	Normalization
	Typechecking Species and Collections

	Code Generation Model
	Generating Code for only Collections
	Incremental Code Generation
	Method Generator
	Collection Generator

	Dependency Calculus: Second Stage
	Dependencies on Methods of the Species
	Dependencies on Parameters Methods

	Code Generation
	Species
	Record Type Generation
	Parameters Instantiation
	Method Code Generation
	Collection Generator Code

	Collections
	Translation of Types and Core Expressions

	Discussion
	Related Work
	Conclusion and Future Work

