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ABSTRACT - The objective of this study was to evaluate the use of probit and logit link functions for the genetic
evaluation of early pregnancy using simulated data. The following simulation/analysis structures were constructed: logit/logit,
logit/probit, probit/logit, and probit/probit. The percentages of precocious females were 5, 10, 15, 20, 25 and 30% and were
adjusted based on a change in the mean of the latent variable. The parametric heritability (h2) was 0.40. Simulation and genetic
evaluation were implemented in the R software. Heritability estimates (ĥ2) were compared with h2 using the mean squared error.
Pearson correlations between predicted and true breeding values and the percentage of coincidence between true and predicted
ranking, considering the 10% of bulls with the highest breeding values (TOP10) were calculated. The mean ĥ2 values were under-
and overestimated for all percentages of precocious females when logit/probit and probit/logit models used. In addition, the mean
squared errors of these models were high when compared with those obtained with the probit/probit and logit/logit models. Considering
ĥ2, probit/probit and logit/logit were also superior to logit/probit and probit/logit, providing values close to the parametric heritability.
Logit/probit and probit/logit presented low Pearson correlations, whereas the correlations obtained with probit/probit and logit/logit
ranged from moderate to high. With respect to the TOP10 bulls, logit/probit and probit/logit presented much lower percentages
than probit/probit and logit/logit. The genetic parameter estimates and predictions of breeding values of the animals obtained
with the logit/logit and probit/probit models were similar. In contrast, the results obtained with probit/logit and logit/probit
were not satisfactory. There is need to compare the estimation and prediction ability of logit and probit link functions.

Key Words: beef cattle, early pregnancy, genetic parameters, GLMM, link function

Revista Brasileira de Zootecnia
© 2012  Sociedade Brasileira de Zootecnia
ISSN 1806-9290
www.sbz.org.br

Introduction

One of the factors that determine the economic viability
of sustainable beef cattle enterprises is the reproductive
performance of the herd. Therefore, the identification and
evaluation of reproductive traits that can be easily measured
and present a potential for selection are essential. In this
respect, early pregnancy is an easily measured trait since it
comprises only two categories (pregnant and non-pregnant).
In addition, the evaluation of phenotypic expression does
not result in additional costs, since the diagnosis of pregnancy
is a routine practice in beef cattle farming.

However, one of the main challenges of using categorical
traits in breeding programs is the development of adequate
statistical methods for the estimation of parameters and the
prediction of breeding values. One of the methods frequently
used for this purpose is generalized linear mixed models
(GLMM) (Thompson, 1979; Gianola & Foulley, 1983;

Harville & Mee, 1984; Gilmour et al., 1985, 1987; Tempelman,
1998; Pereira et al., 2006, 2007). According to McCullagh &
Nelder (1989), these models can be defined based on the
specification of three components: i) a random component
represented by independent random variables that belong
to the same distribution, which is part of an exponential
family such as binomial and Poisson; ii) a systematic
component, called linear predictor, in which explanatory
variables enter in the form of the linear sum of their effects;
iii) a link function that combines the random and systematic
components, i.e., relates the mean to the linear predictor and
thus permits modeling, for example, the probability of a
female being precocious.

The link function for binary data most widely used in
animal breeding is the probit link, also known as the
threshold model (Gianola & Foulley, 1983; Abdel-Azim &
Berger, 1999; Kadarmideen et al., 2000, 2001; Silva et al.,
2005; Shiotsuki et al., 2009) Other functions can also be
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(i) 

(ii) 

where Φ (.) is the standard normal distribution.
Once parametric values are assumed for β and σ2

u, the
probabilities of early pregnancy can be derived from [4] and
[5] and are then used in the Monte Carlo simulation to
generate phenotypic expressions of the early pregnancy
trait. These expressions correspond to values 0 and 1,
which are generated from binomial distributions, with the
probability of success being given by P[Yi = 1] = πi.

According to the method used, the source of variation
not explained by the model in the generation of phenotypic
expressions, which may be called residual, is implicit in the
randomness of the values generated for Yi by the binomial
distributions with probability πi.Therefore, when a probit
link function is used, the residual variance (σ2

ep), since it is
unknown, is generally assumed to be 1. The objective of this
value is to render the likelihood function, which is
constructed based on the approach of probit regression,
identifiable (Sorensen & Gianola, 2002). For the logit function,
the residual variance is an approximation based on the
variance of the logistic distribution (Southey et al., 2003)
and is described by expression [6]:

[6]

where b is the standard deviation of the logistic distribution,
which is generally assumed to be 1 (Southey et al., 2003), as
in the present study.

The parametric heritability used in the simulation was
0.40 and reflects the results of recent studies involving
Nellore animals, which reported moderate to high estimates
(Eler et al., 2002; Silva et al., 2003; Eler et al., 2004; Silva
et al., 2005; Pereira et al., 2007; Shiotsuki et al., 2009).
Different additive genetic variances were employed
according to the link function to be used in the analysis of
the simulated data. Thus, expressions [7] and [8] can be
used to calculate the respective additive genetic variances

explored, such as the logit link, which is widely used in the
area of Biometrics (Breslow & Clayton, 1993; Demétrio,
2001; Nunes et al., 2004). When modeling a random variable
using probit and logit functions, it is assumed that the latent
variable (liability) possesses a standard normal and logistic
distribution, respectively. Although important, studies
comparing these functions are scarce and are based on the
analysis of true data (Gilmour et al., 1987; Kadarmideen et al.,
2004). Therefore, an interesting alternative to evaluate the
estimation and prediction ability of probit and logit link
functions is the use of simulated data.

The objective of the present study was to evaluate the
application of a GLMM to the estimation of genetic
parameters and prediction of breeding values for early
pregnancy by comparing probit and logit link functions
using simulated data.

Material and Methods

The simulated population was structured based on the
random mating of 50 bulls to 1500 unrelated cows, resulting
in 1500 females derived from 50 groups of 30 half-sibs,
which were submitted to the evaluation of early pregnancy.

Fixed and random effects were introduced into the
simulation through the specification of a linear predictor
given by:
ηηηηη = Xβββββ + Zu, [1]
where ηηηηηpx1 is the linear predictor and p is the number
of heifers (1500); βββββ3x1 is the vector of fixed effects,
βββββ’ = [μ,β1,β2], whose values adopted for the simulation
were β1 = 1and β1 = –1, and μ is the overall mean (Table 2);
upx1 is the vector of additive genetic values, with
u ~Np(0, Aσ2

u), where A is the relationship matrix between
animals and σ2

u is the additive genetic variance of the
population; Xpx3 and Xpxp are incidence matrices of effects
β and u, respectively.

Considering that πi = P[Yi = 1] is the probability of heifer
i (i = 1,2,…,1500) to be precocious, the logit and probit link
functions are given by expressions [2] and [3], respectively:

[2]

g(πi) = Φ-1 (πi), [3]
where Φ-1(.) is the inverse function of the standard normal
cumulative distribution.

According to the theory of GLMM, the probabilities
of interest (πi) can be isolated by matching the linear
predictor [1] to the link functions [2] and [3]. Considering
the logit and probit link functions, these probabilities are
given by expressions [4] and [5]:

[4]

[5]



Generalized linear mixed models for the genetic evaluation of binary reproductive traits: a simulation study54

R. Bras. Zootec., v.41, n.1, p.52-57, 2012

for the logit (σ2
ul) and probit (σ2

up) link functions:

[7]

[8]

The simulation was structured based on the following
components (Table 1): i) inverse of the link function
(expressions [4] and [5]); ii) link function used for estimation
and prediction (expressions [2] and [3]).

One practical aspect that can influence the estimation
of genetic parameters and prediction of breeding values
for categorical traits when GLMM are used is the variation
in the frequencies of observations for each category
(Abdel-Azim & Berger, 1999). For this reason, different
percentages of precocious females were adopted in the
simulation since the results obtained with the logit and
probit functions may vary depending on these percentages,
which were modeled according to the values assumed for
μ (Table 2). The following percentages of precocious
females were adopted: 5, 10, 15, 20, 25, and 30%.

The different simulation scenarios were defined by
combinations of the distinct models (logit/logit, probit/
logit, logit/probit and probit/probit) and percentages of
precocious females. This simulation process was
implemented in the R software (R Development Core

Simulation/Analysis1 Link function σ2
u u Predictor π

Inverse Analysis

LL logit ηL1 πLL
logit 2

ulσ u l
P L probit ηL2 πPL

L P logit ηP1 πLP
probit

2
upσ u p

P P probit ηP2 πPP

1 Structures of the simulation/analysis: logit/logit (LL), logit/probit (LP), probit/logit (PL) and probit/probit (PP); σ2
u is the additive genetic variance; u is the vector

of breeding values.

Table 1 - Simulation/analysis structures used according to the inverse function applied to obtain the probabilities of early pregnancy
in heifers (πi) and the link function used in the analysis

Team, 2009), considering 100 repetitions per scenario.
The mvrnorm function of the MCMCpack was used to
generate additive genetic values (u) in [1] of a multivariate
normal distribution. The numerator relationship matrix A,
which comprises the covariance matrix of this distribution,
was obtained with the kinship function of the same
package. The rbinom function was used to determine to
which fixed effect of the female it would be submitted,
with a probability of 0.5 of the animal being under the
effect of  β1 or β2 . Values of ηi were then determined
based on the sum of fixed effects and the breeding value
(x´iβ + ui). These values of ηi were used to calculate the
probabilities P[Yi = 1] = πi derived from the inverse link
functions (expressions [4] and [5]) through a binomial
function, considering the specifications (l ink =
“probit”)$linkinv and (link = “logit”)$linkinv for probit
and logit links, respectively. These probabilities
corresponded to the parameters of the binomial distribution
necessary for the generation of binary data obtained
with the rbinom function.

The data sets generated for each scenario,
corresponding to 100 repetitions, were analyzed by the
GLMM method using the pedigreemm package (Vazquez
et al., 2009) of the R software (R Development Core Team,
2009). This package uses the restricted maximum likelihood
method for the estimation of variance components. In the
present study, due to the adoption of a sire model, the sire

Percentage of precocious females Simulation/Analysis structures1

P P L P P L LL

5 -2.40 -3.35 -3.10 -3.95
10 -1.95 -2.60 -2.55 -3.00
15 -1.60 -2.00 -2.00 -2.32
20 -1.41 -1.69 -1.58 -1.98
25 -1.12 -1.40 -1.30 -1.56
30 -0.91 -1.07 -0.96 -1.20

1 PP: probit/probit; LP: logit/probi; PL: probit/logit; LL: logit/logit.

Table 2 - Mean values (μ) used to determine the percentage of precocious females for each simulation/analysis structures
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variance estimates correspond to ¼ of the estimated value
for the additive genetic random component.

Isolation of 2ĥ  from expressions [9] and [10], which
correspond to the logit and probit link functions,
respectively, was necessary to obtain the estimates of h2

and to compare them with the parametric value of 0.40:

[9]

[10]

where   2
tσ̂ is the sire variance.

The heritability estimates obtained were compared
with the parametric value using the mean squared error.
According to Casela & Berger (1990), it is a function that
quantifies the expected value of the squared difference
between the estimator ( 2ĥ ) and parameter ( 2h ). The mean
squared error is defined as follows:

, [11]

where N is the number of repetitions per scenario, in this
case 100.

The predictions of additive breeding values were
compared with parametric values using Pearson
correlations. In addition, the percentage of coincidence
between true and predicted ranking, considering only
the 10% of bulls with the highest breeding values (TOP10)
was measured.

Results and Discussion

The logit/probit and probit/logit simulation/analysis
structures yielded mean estimates of h2 below and above
the parametric value, respectively, for all percentages of
precocious females (Table 3). In addition, the mean squared

errors obtained with these models were high when compared
with those obtained with the probit/probit and logit/logit
models. Considering only bias, the last two structures also
showed a better performance than probit/logit and logit/
probit since they provided estimates that were much closer
to the parametric value.

The ĥ2 values that showed the greatest bias in the
probit/probit (0.3658) and logit/logit (0.3554) simulation/
analysis structures were obtained at percentages of
precocious females of 25 and 30%, respectively. However,
these estimates can be considered close to the simulated
parametric value (0.40). For these models, the highest mean
squared error was obtained at a percentage of precocious
females of 5% (0.0478 for probit/probit and 0.0392 for
logit/logit), indicating that a lower proportion of early
pregnancy success may increase the variation in h2

estimates.
The logit/probit and probit/logit models presented low

correlations (close to zero), indicating a poor ability of
prediction (Table 4). In contrast, the probit/probit and logit/
logit models showed correlations ranging from moderate to
high. The correlations obtained with the logit/logit model
were slightly higher than those obtained with the probit/
probit model, except for the percentage of precocity of 5%
(0.5936 and 0.6025). These differences are probably related
to the fact that inadequate likelihood functions are used
when the data are analyzed as probit and logit, and vice-versa.
It is understood that the use of an inadequate distribution
for the data (likelihood functions) may compromise the
predictions of breeding values.

Correlations between predicted and true breeding values
increased with increasing percentage of precocious females
when the probit/probit and logit/logit simulation models
were used (Table 4). This behavior can be attributed to the
fact that logit and probit link functions yield better results
when the proportions of zero and one tend to be the same, i.e.,
50%. According to Abdel-Azim & Berger (1999), the quality

%FP Simulation/Analysis structures1

P L P P LL L P

ĥ 2 MSE ĥ 2 MSE ĥ 2 MSE ĥ 2 MSE

5 0.5989 0.0896 0.4118 0.0478 0.4398 0.0392 0.1158 0.0948
10 0.6265 0.0862 0.3823 0.0233 0.4029 0.0275 0.1501 0.0709
15 0.6300 0.0804 0.3753 0.0190 0.3829 0.0138 0.1687 0.0603
20 0.6117 0.0695 0.3952 0.0176 0.3613 0.0167 0.1768 0.0586
25 0.6041 0.0626 0.3658 0.0135 0.3744 0.0165 0.1723 0.0602
30 0.5771 0.0484 0.3886 0.0135 0.3554 0.0112 0.1815 0.0554

1 LP: logit/probit; PP: probit/probit; LL: logit/logit; PL: probit/logit.

Table 3 - Mean heritability estimates (ĥ2) and mean squared errors (MSE) obtained with each simulation structure according to the
different percentages of precocious females (%PF)
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of multicategorical (probit) threshold models increases as
the differences between the frequencies of observations for
each category decrease. Since the percentages of precocious
females adopted in the simulation did not include the value
of 50%, the best results were reported for the closest
percentage, i.e., 30%. The values adopted here were chosen
according to previous studies involving Nellore cattle
(Eler et al., 2002; Silva et al., 2003; Eler et al., 2004; Silva et al.,
2005; Pereira et al., 2007; Shiotsuki et al., 2009).

The percentages of animals coinciding with the TOP10
bulls obtained with the logit/probit and probit/logit models
were lower than those obtained with the probit/probit and
logit/logit models (Table 5). These findings suggest that
comparison between logit and probit link functions is
necessary for the ranking of the best animals, in agreement

with the results obtained for the estimation of heritability
(Table 3) and for the prediction of additive genetic effects
(Table 4). In addition, the most satisfactory results were
observed with increasing percentage of precocious
females, a fact also demonstrated by Pearson correlations
(Table 4).

Taken together, the results obtained with the simulation
models proposed show the need to compare the estimation
and prediction ability of logit and probit link functions,
irrespective of the percentage of precocious females.
Simulating data on the logit scale and smoothing them
using a probit function (logit/probit), or vice-versa (probit/
logit), provided less satisfactory results than those obtained
when the data were generated and analyzed using the same
scale and a link function (probit/probit and logit/logit).

Percentage of precocious females Simulation/Analysis structures1

P L P P LL L P

5 9 .8 42.4 48.0 9 .2
10 9 .8 46.2 50.4 8 .6
15 10.6 53.2 57.2 9 .2
20 8 .2 51.2 57.2 9 .6
25 9 .8 54.4 56.8 10.6
30 9 .4 53.8 57.8 9 .8

1 LP: logit/probit; PP: probit/probit; LL: logit/logit; PL: probit/logit.

Table 5 - Mean percentage of coincidence in top 10% for true and predicted ranking obtained with each simulation/analysis model for
the different percentages of precocious females

Conclusions

The generalized linear mixed models using logit and
probit link functions provided similar genetic parameter
estimates and predictions of breeding values of the animals
when logit/logit and probit/probit simulation/analysis
models were used. However, the results obtained with the
probit/logit and logit/probit models were not satisfactory.
It is therefore necessary to compare the estimation and
prediction ability of link functions in order to determine
which function is the most appropriate for the genetic
evaluation of binary traits.
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