
The Cryosphere, 12, 1699–1713, 2018
https://doi.org/10.5194/tc-12-1699-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Tidal bending of ice shelves as a mechanism for large-scale
temporal variations in ice flow
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK

Correspondence: Sebastian H. R. Rosier (sebastian.rosier@northumbria.ac.uk)

Received: 4 September 2017 – Discussion started: 18 October 2017
Revised: 25 April 2018 – Accepted: 27 April 2018 – Published: 18 May 2018

Abstract. GPS measurements reveal strong modulation of
horizontal ice shelf and ice stream flow at a variety of tidal
frequencies, most notably a fortnightly (Msf) frequency not
present in the vertical tides themselves. Current theories
largely fail to explain the strength and prevalence of this sig-
nal over floating ice shelves. We show how well-known non-
linear aspects of ice rheology can give rise to widespread,
long-periodic tidal modulation in ice shelf flow, generated
within ice shelves themselves through tidal flexure acting at
diurnal and semidiurnal frequencies. Using full-Stokes vis-
coelastic modelling, we show that inclusion of tidal bending
within the model accounts for much of the observed tidal
modulation of ice shelf flow. Furthermore, our model shows
that, in the absence of vertical tidal forcing, the mean flow of
the ice shelf is reduced by almost 30 % for the geometry that
we consider.

1 Introduction

Ocean tides are known to greatly affect the horizontal flow of
both ice shelves and adjoining ice streams, even far upstream
of grounding lines (GLs) (Doake et al., 2002; Brunt et al.,
2010; Makinson et al., 2012; Legresy et al., 2004; King et al.,
2011; Bindschadler et al., 2003a, b; Anandakrishnan et al.,
2003; Alley, 1997; Gudmundsson, 2006; Marsh et al., 2013;
Minchew et al., 2016; Rosier et al., 2017a). In some cases the
horizontal ice flow responds at a different frequency to the
tidal forcing; for example on the Rutford Ice Stream (RIS)
the primary response is at a fortnightly (Msf) frequency that
is not measurable in the vertical tidal motion (Gudmundsson,
2006). More recent observations have shown that theMsf sig-
nal actually increases in strength on the adjoining ice shelf

(Minchew et al., 2016; Rosier et al., 2017a) and also exists
on isolated ice shelves which do not have large ice streams
feeding into them (King et al., 2011; Gudmundsson et al.,
2017).

A multitude of mechanisms have been proposed which
could lead to a fortnightly modulation in ice flow: a non-
linear basal sliding law (Gudmundsson, 2007, 2011; Rosier
et al., 2014), tidal perturbations in subglacial water pres-
sure (Thompson et al., 2014; Rosier et al., 2015), ground-
ing line migration (Rosier et al., 2014; Robel et al., 2017)
and changes in the effective ice shelf width (Minchew et al.,
2016). Identifying the mechanism whereby ocean tides gen-
erate the observed tidal modulation in ice flow is impor-
tant for several reasons. The amplitude of these perturbations
is often a significant fraction of mean flow speed, and the
perturbations are widespread, impacting ice flow on a large
number of ice streams and several ice shelves. Not knowing
the root cause of these tidal modulations therefore implies a
significant lack in our understanding of the forces controlling
the large-scale ice flow of the Antarctic Ice Sheet. Further-
more, there are good reasons to believe that the tidal response
is significantly affected by the rheology of ice or mechan-
ical conditions at the base of ice streams, or possibly both
in combination. Hence, once the mechanism has been fully
identified, one can expect to be able to make inferences about
ice rheology and/or basal conditions from observations of
tidal modulations in ice flow. The Filchner–Ronne Ice Shelf
(FRIS) is a particularly good natural laboratory for obtaining
these insights because of the considerable tidal range, which
can be as large as 9 m (Padman et al., 2002).

Previous modelling studies have focused almost exclu-
sively on tidal modulation of ice stream flow (Gudmunds-
son, 2007, 2011; Walker et al., 2012, 2016; Thompson et al.,
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2014; Rosier et al., 2014, 2015; Rosier and Gudmundsson,
2016; Sergienko et al., 2009), whereas tidal modulation of
the flow of ice shelves has received much less attention. This
is possibly because it has often been assumed that the Msf
signal observed on ice shelves is driven by processes occur-
ring on neighbouring ice streams; indeed these make up the
bulk of the proposed mechanisms listed above. Now that new
observations show the Msf signal strengthening downstream
of GLs (Minchew et al., 2016; Rosier et al., 2017a), it has
become clear that an alternative mechanism is needed which
can generate this signal, independent of anything occurring
on grounded ice (Minchew et al., 2016; Rosier et al., 2017a;
Robel et al., 2017).

Here, we will show how the observed widespread tidal
modulation in ice flow can be generated within ice shelves
themselves through tidal flexure. We begin with a descrip-
tion of this simple mechanism, which results directly from
the well-known non-linear aspect of the flow law of glacier
ice and hence does not require an ice stream to act as a source
of the observed tidal signals. Then in Sect. 3, using elastic
beam theory, we derive a simple mathematical description
of this mechanism that yields some insights into its impor-
tance for various ice shelf configurations. Finally in Sect. 6,
we present results from a 3-D full-Stokes viscoelastic model
of a confined ice shelf, with a similar geometry to the RIS,
that incorporates the new mechanism and is capable of repli-
cating many of the observed characteristics of the tidal re-
sponse of the Ronne Ice Shelf. These results will show that
this mechanism has important implications for both the time-
varying and mean flow of ice shelves subjected to strong ver-
tical ocean tides.

2 Flexural ice-softening mechanism

The Filchner–Ronne, Larsen and to a lesser extent Ross ice
shelves are situated in tidally energetic regions and thereby
subjected to large vertical motion at tidal frequencies. By far
the largest tidal amplitudes are in the Weddell Sea region,
particularly at the grounding line of large ice streams such as
Rutford and Evans (Padman et al., 2002). In the grounding
zone (here defined as a band along the grounding lines that
extends several kilometres into the main shelf) the ice bends
to accommodate these large vertical tidal motions. This bend-
ing generates longitudinal and shear stresses within the ice
which contribute to the effective stress and are strongest near
the grounding line during high and low tide. Since ice is a
non-Newtonian shear thinning fluid, its effective viscosity
will be altered by these tidal stresses. A schematic showing
how vertical tidal motion can lead to a reduction in effective
viscosity of ice shelf shear margins is shown in Fig. 1. This
effect, which we will call “flexural ice softening”, leads to
an increase in ice velocity during high and low tide. We will
show that this is a direct consequence of the non-linearity of
Glen’s flow law.
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Figure 1. Schematic showing the flexural ice-softening mechanism
for a confined shelf, together with the geometry of the problem de-
scribed in Sect. 3. The top panel (a) shows the situation with no tidal
uplift, and the bottom panel (b) shows how ice flow is enhanced as
ice is softened in the shear margins due to flexural stresses gener-
ated by a vertical tidal motion (wa).W denotes ice shelf half-width,
and h is local ice thickness.

Since it is the magnitude of stresses and not their sign that
contributes to the effective viscosity, there is no difference in
the flexural ice-softening effect between high and low tide.
The only time that the effective viscosity of an ice shelf sub-
jected to large tides will increase to that of an ice shelf with-
out tides is when the vertical deflection is small, i.e. between
high and low tide or during neap tides. As a consequence
there are two other important repercussions for the ice shelf
flow that arise from this mechanism, aside from the direct
increase in velocity at high and low tide. Firstly, the mean
flow of an ice shelf is greater in the presence of large tides
because, even at its slowest, it will be flowing at least as fast
as an ice shelf without tides. Secondly, because the change in
velocity (due to flexural ice softening) during spring tide is
larger than during neap tide, the ice shelf flow will be mod-
ulated at an Msf period (provided the rheology is non-linear,
as is the case for glacier ice). Since many large ice shelves
are confined on three sides by grounded ice, the bending
stresses are generated along their entire length. This mech-
anism could therefore explain how the Msf signal increases
in strength downstream of ice stream grounding lines, as ev-
idenced by recent GPS and satellite observations (Minchew
et al., 2016; Rosier et al., 2017a).
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3 Analytical solution for flexural ice softening

Elastic beam theory provides a useful starting point for eval-
uating the magnitude of these tidal bending stresses on an
ice shelf and their impact on its effective viscosity. We start
from a simple confined ice shelf whose geometry is invariant
across flow (in the y direction) and with a constant ice thick-
ness gradient in the down-flow x direction. The ice shelf is
symmetrical about the centreline, which is distance W from
the two sidewalls at y = 0 and y = 2W (Fig. 1). For this an-
alytical solution we assume that the portion of the ice shelf
that we investigate is sufficiently far from the GL such that
the only bending occurs across-flow. The situation near the
main GL of a narrow confined shelf will be a complex combi-
nation of along- and across-flow stresses that we shall ignore
for now. Deviatoric stresses are defined as

τij = σij − δijσkk/3, (1)

where σij are the components of the Cauchy stress tensor, δij
is the Kronecker delta and p =−σkk/3 is the isotropic pres-
sure. We use the comma to denote partial derivatives and the
summation convention, in line with standard tensor notation.

We immediately make the simplifying assumptions (moti-
vated by full-Stokes calculations presented below) that τxx =
τxz = 0; hence τyy =−τzz, σzz =−p− τyy and σxx =−p.
Furthermore, we assume that the only important contribu-
tions to τyy and τyz are due to tidal bending. The force bal-
ance equations in x and z reduce to the following form:

−∂xp+ ∂yτxy = 0, (2a)
∂yτyz+ ∂zσzz = ρg. (2b)

Note that in this system σzz is not cryostatic, unlike in the
shallow-shelf and shallow-ice approximations. We are inter-
ested in finding an expression for the across-flow variation in
downstream velocity, u(y), for which we need an expression
for τxy . As we show in Appendix A, τxy is essentially inde-
pendent of the tidal stresses (as well as x and z) and can be
approximated by

τxy = Fd(W − y), (3)

where Fd = ρg∂xs.
Linear elastic beam theory gives us an expression for the

elastic stresses that will arise due to tidal bending (Robin,
1958). Although strictly derived for an infinitely long ice
shelf (or, in the orientation of bending that we consider, in-
finitely wide), we show in Appendix B that the equations in
Robin (1958) provide a good approximation for the geome-
try that we are interested in. The two contributing stresses, re-
lated to the bending moment and its derivative, are the across-
flow longitudinal bending stress,

τyy =
−6waρwgz
h3λ2 e−λy

[
cos(λy)− sin(λy)

]
, (4)

and the across-flow shear bending stress,

τyz =
6ρwgwa
h3λ

e−λy cos(λy)
[
h2

4
− z2

]
, (5)

where

λ4
=

3ρwg(1− ν2)

Eh3 . (6)

wa is the vertical tidal motion, E is Young’s modulus of ice,
ν is Poisson’s ratio, h is local ice thickness and ρw is the
density of seawater. The vertical coordinate, z, is defined as
the vertical distance above the neutral axis of the ice shelf,
which we assume to be halfway through its thickness.

At this stage we employ a Maxwell rheological model
consisting of a linear elastic spring and a non-linear viscous
dashpot, whose behaviour is modelled by Glen’s law (Glen,
1955), connected in series. With this viscoelastic model the
total strain is the sum of the viscous and elastic strains, and
the stress is equal in the two components. In this way, we can
express the horizontal shear strain rate as

ėxy = Aτ
n−1
E τxy +

1
2G

τ̇xy, (7)

where

G=
E

2(1+ ν)
(8)

and, based on the assumptions given above,

τE ≈

√
τ 2
yy + τ

2
xy + τ

2
yz. (9)

Motivated both by our findings in the Appendix that τ̇xy ≈ 0
and by the fact that this elastic term can only ever yield a lin-
ear response to the tidal forcing, we discard it and focus only
on the non-linear viscous response. We are concentrating on
the non-linear response because only this can explain modu-
lation of horizontal ice shelf flow at an Msf frequency, given
that the Msf constituent is absent in the vertical tidal forcing.

By assuming that n= 3, we can separate the velocity into
unperturbed and time-varying components. Integrating with
respect to z and y then gives the depth-averaged velocity u
as

u(y, t)=
2A
h

( u0︷ ︸︸ ︷
y∫

0

hτxy
3dy+

ulong︷ ︸︸ ︷
y∫

0

hτxy

s∫
b

τ 2
yy dzdy

+

ushear︷ ︸︸ ︷
y∫

0

hτxy

s∫
b

τ 2
yz dzdy

)
, (10)

where s is the surface elevation, b is the bed elevation and
τxy is the depth-averaged shear stress. We have split this
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into the three components, denoted as the unperturbed (u0),
long(itudinal) bending stress and shear bending stress con-
tributions to ice flow. Evaluating the integrals for each term
and neglecting the overbar since everything is now depth-
averaged yields

ulong =
3AFd(ρwgwa)2

2h4λ6[
e−γ

(
1− 2ξ + ξ sin(γ )+ cos(γ )

[
ξ −

1
2

])
+ λW −

1
2

]
, (11)

where ξ = λW − γ
2 and γ = 2λy;

ushear =
3AFd(ρwgwa)2

10h2λ4[
e−γ

(
1− 2ξ − ξ cos(γ )+ sin(γ )

[
ξ −

1
2

])
+ 3λW − 1

]
; (12)

and

u0 =
1
2
AF 3

d

(
W 4
− (W − y)4

)
. (13)

The shear and across-flow longitudinal components can be
combined, such that the total (time-varying) velocity u=
u0+1u. Along the centreline at y =W , the change in ve-
locity due to tides (1u) is

1u= w2
aB, (14)

where

B =
3AFdρ2

wg
2

2h2λ2

(
e−γ

[
1
5
−

sin(γ )
10
+

1
h2λ2 −

cos(γ )
h2λ2

]
+

3λW
5
−

1
3
+
W

h2λ
−

1
2h2λ2

)
. (15)

To illustrate the consequences of a typical tidal action for
the ice shelf flow, we assume that the time-varying sea level
wa(t) can be written as the sum of two cosines of amplitude
aM2 and aS2 and angular frequency ωM2 and ωS2 , i.e.

wa(t)= aM2 cos(ωM2 t)+ aS2 cos(ωS2 t). (16)

These two cosines represent the principal lunar (M2) and so-
lar (S2) semidiurnal tides, which dominate in the area of in-
terest. Crucially, because the velocity is a function of tidal
deflection squared, new frequencies emerge which, if we as-

sume it takes the form of Eq. (16), expands as follows:

w2
a =

a2
M2
+ a2

S2

2
+

M4︷ ︸︸ ︷
a2
M2

4
cos(2ωM2 t)+

S4︷ ︸︸ ︷
a2
S2

4
cos(2ωS2 t)+

MS4︷ ︸︸ ︷
aM2aS2

2
cos(ωMS4 t)+

Msf︷ ︸︸ ︷
aM2aS2

2
cos(ωMsf t), (17)

where ωMsf = ωS2 −ωM2 and ωMS4 = ωM2 +ωS2 . The four
emergent frequencies that we expect to see are labelled ac-
cording to their respective tidal constituent names. Depend-
ing on the relative size of theM2 and S2 vertical tidal forcing,
different frequencies will dominate in the horizontal ice flow
response. In the case of the Filchner–Ronne ice streams, the
amplitude of the S2 constituent is typically about half that
of the M2 constituent. As a result, the S4 frequency will be
much smaller than the other three. In terms of velocities, the
amplitudes of the Msf and MS4 components will be equal,
and larger than the M4 component as long as aS2 > aM2/2.

Several useful results are now easily obtained with
Eqs. (17) and (14); for example the amplitude of the Msf
component in ice shelf velocity is simply (BaM2aS2)/2. In-
tegrating with time gives an expression for displacements,
which are more readily measured with in situ GPS. Once
again, the amplitude of the Msf component in displacements
in this case becomes (BaM2aS2)/2(ωS2 −ωM2). Even more
interesting is the result of the first term of Eq. (17), which
acts to increase the time-averaged ice shelf velocity (umean).
The size of this effect, which we call the nshift, is given by

nshift =
B(a2

S2
+ a2

M2
)

2
, (18)

such that umean = u0+nshift. Interestingly, within this frame-
work all tidal energy at the original (vertical) semidiurnal
forcing frequencies disappears (as can be seen by squaring
the tidal forcing, Eqs. 16–17). In reality linear elastic effects
and changes in damming stresses would be expected to pro-
duce some response at these frequencies, and these terms are
included in the 3-D model described in Sect. 4. Note that
from Eq. (10) onwards these results have been derived un-
der the assumption that n= 3. For n= 1 bending stresses
have no impact on the ice shelf viscosity, and so theMsf flow
modulation and nshift would be identically equal to zero.

Using the simple set of equations outlined above, we can
easily explore the parameter space to see how the strength of
the tidal response changes. Of particular interest is how the
nshift leads to an increase in the mean speed of the ice shelf.
In Fig. 2 we show speed-up along the ice shelf medial line
(solid black contour) as a percent of the baseline speed with
no tides, i.e. umean/u0 (the parameters chosen are shown in
Table 1). This shows that, for a given tidal amplitude, the
nshift effect will be most strongly felt on a narrow, thin ice
shelf. Conversely, the amplitude of theMsf signal in ice shelf
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Figure 2. Contour plot of ice shelf speed-up due to tides, as a per-
cent of the baseline speed, predicted by the analytical solution in
Eq. (18). Speed-up is predicted along the ice shelf medial line us-
ing parameter values given in Table 1. Also shown are contours of
the amplitude of the Msf signal in ice shelf displacements (dashed
contours).

displacements (dashed contour) is strongest for wide, thick
ice shelves. The apparent discrepancy is because, with all
other parameters held constant, a wider ice shelf will flow
much faster, and so the increase in speed as a percent of the
baseline is much less.

Note that we use a different value of E to obtain bend-
ing stresses for analytical solution than in our full-Stokes
model. Using the instantaneous Young’s modulus of 9 GPa
(suggested by laboratory experiments) would result in bend-
ing stresses that are too large. This is because ice behaves
viscoelastically at tidal frequencies and E is frequency-
dependent. This behaviour is captured by our full-Stokes
model, but, since the much simpler elastic beam model does
not include this complexity, instead we treat this value as a
tuning parameter and pick a value of E that best matches our
modelled bending stresses, which turns out to be 800 kPa.

4 Full-Stokes model description

In order to explore the idea of flexural ice softening in more
detail, we undertook modelling experiments on an idealised
ice stream/shelf domain using the commercial finite-element
software MSC.Marc, which has been used extensively in the
past to explore the tidal response of ice streams (Gudmunds-
son, 2011; Rosier et al., 2014, 2015; Rosier and Gudmunds-
son, 2016). The idealised ice stream is 28 km wide (to match
the approximate average width of the RIS) and consists of a
150 km floating shelf and 80 km grounded ice (Fig. 3). Al-
though data now exist showing tidal modulation on other ice
streams, the RIS lends itself well to an idealised study of this
kind because of its relatively simple geometry and because its

flow has remained largely unchanged over the measurement
period (Gudmundsson and Jenkins, 2009). Surface and bed
slopes of the ice stream and ice shelf portions of the model
are approximate averages of the slopes found on RIS, and ice
thickness at the downstream limit of the domain is 1420 m.
The model is run forward in time for 60 days in order to re-
solve theMsf signal. The grounding line position is fixed and
cannot migrate at tidal frequencies, since our focus is only on
the effects of tidal bending stresses. We investigate several
test cases (Sect. 5), some of which require a slightly different
model set-up, which we describe in the relevant sections.

4.1 Field equations

The full-Stokes solver MSC.Marc uses the finite-element
method in a Lagrangian frame of reference to solve the field
equations

Dρ
Dt
+ ρvi,i = 0, (19)

σij,j + fi = 0, (20)
σij − σji = 0, (21)

representing conservation of mass, linear momentum and an-
gular momentum, respectively. In the above equations, D/Dt
is the material time derivative, vi are the components of ve-
locity, σij are the components of the stress tensor, ρ is the ice
density and fi are the components of the gravity force.

We use a non-linear Maxwell viscoelastic rheology in a
slightly modified form to Eq. (7), which can be written as

ėij =
1

2G
O
τ ij +Aτ

n−1
E τij , (22)

where the full stress tensor contributes to the effective stress,
i.e.

τE =
√
τij τji/2, (23)

and the superscript O denotes the upper-convected time
derivative:

O
τ ij =

D
Dt
τij −

∂vi

∂xk
τkj −

∂vj

∂xk
τik (24)

(Christensen, 1982). We use the same rheological parame-
ters as in Gudmundsson (2011), which are found to repli-
cate the behaviour of the more complex Burgers model at
tidal frequencies, i.e. E = 4.8 GPa and ν = 0.41, where E =
2G(1+ ν) (Shames and Cozzarelli, 1997).

4.2 Boundary conditions

At the downstream limit of the domain we prescribe the ice
shelf stresses

σxx =−ρg(s− z)+
ρgh

2

(
1−

ρ

ρw

)
−pb (25)
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Table 1. Choice of parameters used in Eq. (18) to produce Fig. 2.

Parameter Value Unit

n 3 –
aM2 1 m
aS2 1 m
ρ 910 kg m−3

ρw 1030 kg m−3

g 9.81 m s−2

A 1× 10−24 Pa−3 s−1

ν 0.3 –
E 8× 105 Pa
∂xs 5× 10−4 –

and

τxz =−ρgz

(
∂s

∂x
−

1
2
∂h

∂x

(
1−

ρ

ρw

))
, (26)

where pb is a buttressing term. A value of 250 kPa was cho-
sen for pb, in order to reproduce ice shelf velocities similar
to those observed at the outlet of the RIS. At the upstream
boundary we apply the cryostatic pressure σxx = ρg(s− z).
At the ice surface, a stress-free boundary condition (BC) of
the form σijnj = 0 is used, where nj is the outward unit vec-
tor normal to the surface.

The ocean pressure normal to the ice–ocean interface (pw)
is applied as an elastic foundation (see Gudmundsson, 2011
for details). This is exactly equivalent to a normal stress of

pw =−ρwg(z−wa(t)), (27)

where z is the depth below sea level and wa(t) is the time-
varying vertical tidal motion (Sect. 5.1).

Upstream of the grounding line, along the ice–bed inter-
face (green and orange shaded regions in Fig. 3), we use a
Weertman style sliding law of the form

u= cτmb , (28)

where c is basal slipperiness, τb is the along-bed tangential
component of the basal traction and m is a stress exponent.
In all of our experiments we use a non-linear sliding law with
m= 3. Similarly, slipperiness values beneath the ice stream
are kept fixed in all experiments to a value that approximately
matches the mean flow velocity of the RIS. Beneath the mar-
gin, slipperiness is made several orders of magnitude smaller
to restrict ice flow in this portion of the model.

We treat one side of the model ice stream as the medial
line, since the problem is symmetrical (∂yh= 0), meaning
we only need to model half of the ice stream with no lat-
eral flow as the appropriate BC. The other side is treated as a
grounded sidewall with no slip, such that u= v = w = 0 (re-
ferred to hereafter as the clamped BC). In one of the experi-
ments (n3xy) the constraint on vertical velocity is removed,
as explained in Sect. 5.

4.3 Discretisation

The model uses 20-node isoparametric hexahedral (brick) el-
ements with a 27-point Gaussian integration scheme. These
quadratic elements allow accurate representation of stresses
and strains with far fewer numbers of elements than would
otherwise be needed when using linear elements. Element
size varies from a maximum horizontal dimension of ∼2 km
to a minimum of ∼300 m around the grounding line and in
the shear margins. The finite-element mesh is unstructured,
with a GL that curves to avoid an unnatural grounding zone
corner. The ice is three elements thick vertically, resulting in
nine integration points through its depth. The model mesh is
shown in Fig. 3. The n3xyz simulation (Sect. 5) was repeated
with double the horizontal resolution to check if this affected
results. Msf amplitude changed by a maximum of 3 %, and
ice velocity by a maximum of 2.5 %, and so the default reso-
lution was deemed sufficient.

5 Model experiments

We conduct three simple model experiments to investigate
the effects of flexural ice softening within our model. Model
runs are named such that n1 or n3 denotes whether we use
a linear or non-linear ice rheology and xy or xyz signi-
fies which degrees of freedom are clamped on the sidewall
boundary.

n3xyz In the first experiment we run the model with non-
linear ice rheology and sidewalls clamped in x, y
and z. This is designed to simulate the “Rutford”
case whereby the margins are essentially stagnant
and flexure occurs all along the GL, both where the
main body of the ice stream meets the ocean and
downstream of this point along the sides. In order
to approximately match the observed 1 m d−1 flow
velocities of the floating portion of RIS, we adjust
the ice rate factor (A) uniformly.

n3xy For the second experiment we run the model as in
n3xyz, but the sidewalls downstream of the GL are
not clamped vertically (z direction). With this set-up
there is no bending along the sidewalls downstream
of the GL, so flexural stresses are only generated in
the grounding zone around x = 0. This experiment is
akin to a fast-flowing ice shelf bounded by stagnant
floating ice, as can be found on the floating portion
of some fast-flowing outlet glaciers.

n1xyz The third experiment uses the same set-up and
boundary conditions as in n3xyz except that ice rhe-
ology is made linear, such that n= 1 in Eq. (22).
This experiment is done to demonstrate the differ-
ence in response due only to changing n from one
to three. In this experiment therefore, the ice vis-
cosity is not stress-dependent, such that the bending
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Figure 3. Finite-element mesh used in the full-Stokes viscoelastic model (Sect. 4). Note that x and y horizontal scales have been reduced by
a factor of 10 and 2, respectively.

stresses do not cause a reduction in the effective vis-
cosity of ice. As such, it is not a “realistic” situation
(since ice is known to have a non-linear rheology)
but serves to emphasise that this non-linearity is the
important one at play in our model. In order to pro-
duce sensible ice shelf velocities, the rate factor A
is adjusted uniformly so that the background flow
speed (denoted umean in the previous analysis) is ap-
proximately the same as the other experiments.

5.1 Tidal forcing

The time-varying vertical tidal forcing is implemented as a
stress acting normal to the ice shelf base (Eq. 27). For all
the experiments described above the model is forced with
the principal semidiurnal (M2, S2) and diurnal (O1,K1) tidal
constituents, i.e. the four tidal constituents which are gen-
erally largest beneath the Ronne Ice Shelf. Their amplitudes
are derived from GPS measurements of vertical ice shelf mo-
tion 20 km downstream from RIS GL (Gudmundsson, 2006).
The tidal forcing is kept intentionally simple to avoid com-
plicating any interpretation of our full-Stokes model results.

6 Model results

We now present results from our viscoelastic 3-D full-Stokes
model of an idealised ice stream/shelf system. We begin by
examining the modelled response at Msf frequency, since
previous models do not reproduce observations of this non-
linear effect on floating ice shelves. Msf amplitude in hori-
zontal surface ice displacements is shown in plan view for
the three experiments in Fig. 4. For the n3xyz experiment,

which can be thought of as the typical situation for a con-
fined ice shelf subjected to large vertical tides, Msf ampli-
tude increases continuously downstream of the GL (Fig. 4a).
In the across flow (y) direction the amplitude increases to-
wards the medial line. Also shown are contours of ice shelf
velocity (u), which increase from 1 m d−1 upstream of the
GL to more than 3 m d−1 on the shelf.

In the n3xy experiment the only change with respect to the
n3xyz experiment is to remove the vertical clamp BC act-
ing along the sidewall of the floating portion of the model.
With this change in sidewall BC theMsf amplitude is similar
at the x = 0 GL where bending stresses are still generated.
Downstream of this region however the Msf amplitude de-
cays rapidly to zero with distance (Fig. 4b), whereas in the
n3xyz experiment the amplitude continues to increase with
distance. Ice velocities on the floating shelf are lower than
in the n3xyz experiment, and across-flow shear is less pro-
nounced, such that the ice velocity contours are further apart.

For the n1xyz experiment, (Fig. 4c), where the only
change compared to the n3xyz experiment is to change the
value of n from one to three, the Msf response is even more
localised to the GL region and the amplitude is close to zero.

Other tidal frequencies in the n3xyz experiment that
emerge from the frequency doubling (Eq. 17), such as MS4 ,
show very similar spatial patterns to theMsf responses shown
in Fig. 4a. In the n1xyz experiment, these frequencies are
completely absent.

Running the standard n3xyz experiment with and without
tides reveals how the mean ice shelf flow is affected by tidal
bending stresses. Averaging over the entire floating portion
of the shelf, mean velocity is increased by ∼ 35 % when the
experiment is run with a vertical tidal forcing equivalent to
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that experienced near the RIS GL, as opposed to no tidal
forcing.

To explore the role of flexural stresses in more detail,
we plot across-flow profiles for each component of the de-
viatoric stress tensor (Fig. 5). Stresses are taken from the
n3xyz experiment at x = 100 km, to avoid the 2-D bending
stresses at x = 0, and for a positive vertical tidal deflection
of 2 m. The stress is normalised by the depth-averaged hor-
izontal shear stress at the margin ρgW∂xs, as predicted by
the analysis in Sect. 3 (for the ice shelf surface slope in the
model of 5.4× 10−4 the stress scale is 67.5 kPa). Distance
from the margin is normalised by the ice shelf half-width
(W = 14 km). Surface and bed across-flow bending stresses
(τyy) are equal in amplitude but opposite in sign, and so all
the stresses are plotted as the depth averages of their absolute
values. This is more relevant for our purposes, since it is the
absolute amplitudes of these stresses, and not their signs, that
impact the effective stress.

Our numerical results show that the contributions of
across-flow and shear bending stresses to the effective stress,
and therefore their relative impacts on effective ice viscos-
ity, change significantly with increasing distance away from
the ice shelf margins. At the margins, both across-flow and
shear bending stresses contribute about equally to the to-
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Figure 5. Across-flow transects of depth-averaged non-dimensional
stress from the full-Stokes viscoelastic model (Sect. 4) for experi-
ment n3xyz. Profiles are taken 100 km downstream of the GL at
high tide (wa = 2 m). The stress scale is given by τij /ρgW∂xs, and
the length scale by y/W .
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tal effective stress. With increasing distance away from the
margins, both bending stress terms behave as damped cosine
waves (Eqs. 4 and 5); however the resulting “waveforms” are
phase-shifted with respect to one another. This can be seen
in Fig. 5, where τyy shows a clear minimum at a distance of
y/W ≈ 0.2 before increasing again, whereas the minimum
for τyz is discernible at y/W ≈ 0.4. As a consequence of
this damped behaviour, bending stresses are largest near the
grounding line but, for this geometry, have very little impact
on effective viscosity along the ice shelf medial line, where
they have decayed to almost zero (the fact that the τyy term
is relatively large at the medial line is a result of ice shelf
spreading, not bending in the grounding zone). Note that,
since λ is a function of ice thickness, the location of the bend-
ing stress minima will shift as the thickness changes.

At this stage we can briefly evaluate the validity of the
assumptions made in Sect. 3. The expression for the across-
flow variation in τxy , given by Eq. (3), varies from the value
calculated by our full-Stokes model by a maximum of 5 %.
The assumption that τyy ≈−τzz holds near the margin – as
shown in Fig. 5, where the modelled absolute values of these
two stresses are approximately equal – but begins to break
down at a distance of W/2, where the τxx becomes increas-
ingly large due to ice shelf spreading. Finally, the vertical
shear stress (τxz) is approximately zero everywhere apart
from within one ice thickness of the GL, where the effects
of neighbouring ice shearing vertically in the grounded mar-
gin are felt. Nevertheless, even in this region τxz contributes
less than 2 % of the total effective stress.

Figure 6 shows the phasing of velocity, effective stress and
strain heating rates in the model shear margin relative to ver-
tical tidal motion (vertical motion is taken along the medial
line to show the undamped tidal amplitude). Strain heating

rate is calculated as ėEτE/ρCp, using a specific heat capacity
of 1955.4 J K−1 (equivalent to an ice temperature of−20 ◦C;
Cuffey and Paterson, 2010). This shows that modelled ice
velocity, effective stress and strain heating are greatest just
before high and low tide, as would be expected from a vis-
coelastic rheology. Effective stress in the shear margin is in-
creased by over 50 % during the highest tides of the spring
cycle. Strain heating rate in the shear margin is enhanced by
vertical tidal motion, and so this mechanism could enhance
the shear heating effect which has been invoked to explain the
inferred softness of Ronne Ice Shelf shear margins (Larour
et al., 2005).

7 Discussion

The analysis of Sect. 3, together with full-Stokes viscoelastic
modelling, suggests that flexural ice softening could play an
important role in the generation of theMsf signal that is read-
ily observed across the entire Ronne Ice Shelf (Rosier et al.,
2017a). Flexural stresses due to vertical tidal motion can gen-
erate a fortnightly modulation in ice flow along any GL based
only on the fact that ice is non-Newtonian. This mechanism is
felt most strongly for a confined ice shelf, where bending oc-
curs in the margins along the entire length of the shelf. New
observations reveal that the Msf signal is generally larger on
ice shelves than on the adjoining ice streams and tends to in-
crease in amplitude in the downstream direction towards the
ice front (Minchew et al., 2016; Rosier et al., 2017a). Further-
more, the Msf signal has now been observed to lead in phase
on the ice shelf, casting some doubt on previous mechanisms
that acted only on grounded ice (Minchew et al., 2016). Our
modelling work shows that flexural ice softening can repli-
cate this phasing and amplification of the Msf signal down-
stream of ice stream GLs. Furthermore, these tidal bending
stresses will lead to a net speed-up of the ice shelf.

Two alternative mechanisms have been proposed to ex-
plain the Msf amplification on ice shelves, both reliant on
GL migration. Minchew et al. (2016) argues that, if the side-
wall GL migrates over a tidal cycle, this will lead to a change
in the effective width of the ice shelf as proportionally more
of it ungrounds. Observed changes in the distance between
the two maxima of lateral shear strain rate between high
and low tide are interpreted as being caused by grounding
line migration (Minchew et al., 2016). An alternative ex-
planation is that flexural ice softening in the shear margins
leads to a steepening of the across-flow velocity profile at
the boundary, thereby shifting the apparent margin as defined
above. Calculating lateral shear strain rate 100 km down-
stream of the n3xyz simulation shows that each peak can
shift by ∼ 500 m over a tidal cycle, leading to an apparent
widening of 1 km even though there is no grounding line mi-
gration in the model. Alternative evidence of GL migration
does exist in other parts of the FRIS (Brunt et al., 2011),
and this mechanism could be locally important; however, it
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seems unlikely that it could explain the pervasiveness of the
Msf signal across the entire shelf, since it is so reliant on local
bedrock topography.

A previous modelling study has shown that GL migration
is itself a strong non-linearity which can generate an Msf re-
sponse in ice flow (Rosier et al., 2014). Robel et al. (2017)
explored this idea in more detail and suggested that temporal
variability in the area in which an ice shelf contacts the bed
(due to GL and pinning point migration) is the dominant non-
linearity on RIS leading to the observedMsf response. Within
their framework, flexural stresses are ignored and the tidally
varying ice shelf strain is a function of competing hydrostatic
and buttressing stresses. The Robel et al. (2017) model was
flexible enough to allow for many of the observed aspects of
the tidal modulation to be replicated. However, in the absence
of a physically motivated model of GL migration, knowledge
of the sub-shelf bathymetry or even strong evidence for GL
migration in the area, the extent to which this mechanism
plays an important role remains an open question.

The flexural ice-softening mechanism produces a fre-
quency doubling in the response of the ice shelf, since the
marginal ice will be softest just preceding high and low tide.
This is evident in the analysis of Sect. 3, which reveals that
ice shelf velocity modulation will be dominantly at M4 and
MS4 frequencies in contrast to the Msf frequency, which
dominates the displacements. In order to check that our 3-D
viscoelastic model reproduces this behaviour, we performed
a tidal analysis on modelled displacement and velocity at the
ice stream medial line, 100 km downstream from the GL.
Figure 7 shows the results of this tidal analysis as a fre-
quency power spectrum, showing only constituents with a
high signal-to-noise ratio. Surface horizontal displacements
show a dominantly Msf response, with almost no clear re-
sponse at other frequencies (Fig. 7a). In the horizontal ice
velocity (Fig. 7b) theM4 andMS4 frequencies emerge, with
similar amplitudes to the Msf in agreement with Eq. (17).
Other non-linear frequencies such as Mf , arising from inter-
action of the two diurnal tidal constituents, should be present
but are not resolvable with a simulation time of 60 days.

As stated above, alternative mechanisms for generating an
Msf signal on floating ice assume that GL migration is the
dominant process. Ice shelf velocities from the viscoelastic
model proposed by Robel et al. (2017) (using the parame-
ters selected to match observations on RIS) are dominated by
M2 and S2 frequencies. Since the mechanism is non-linear,
higher frequencies such as M4 and MS4 are also generated,
but in that model they are of a lower amplitude than the
semidiurnal frequencies. In order to determine which mech-
anism is most likely responsible for observations on the RIS,
therefore, we can look at whether short-term ice shelf veloc-
ity modulation is dominantly M4 and MS4 or M2 and S2.

Most of our observations of the short-term velocity fluc-
tuations on floating ice come from GPS units. Tidal analy-
sis of these records is typically done on their measured dis-
placements, rather than the much noisier velocities calculated
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from the time derivative of their measured position. By first
fitting a tidal model to GPS measurements of horizontal ice
flow downstream of the RIS and then calculating the veloc-
ity from this smooth field, we can get a better velocity signal
with which to do further analysis. A convenient measure of
the importance of each tidal constituent is the percent energy
(PE) (Codiga and Rear, 2004). Tidal analysis with UTide
(Codiga, 2011) of the measured horizontal ice displacements
20 km downstream of RIS GL show that theMsf signal domi-
nates with 87 % of PE, followed by the diurnal and semidiur-
nal tidal constituents. Analysis of the velocities, calculated as
described above, reveals that the two largest constituents are
MS4 and M4 with 21 and 11 % of PE, respectively. Based on
the arguments given above, these results provide compelling
evidence that the flexural ice-softening mechanism is respon-
sible for the majority of the observed Msf signal on the RIS.

One consequence of not including GL migration in our
model is to generate artificially large stresses at the GL dur-
ing high tide, where tidal stresses are acting to lift the ice
from the bed but the clamped boundary condition prevents
this from happening. For comparison, stresses were obtained
for a simulation in which the GL was allowed to migrate,
forced by a positive 2 m tidal deflection. At the GL node, ef-
fective stress was 67 % greater in the pinned case, but this ef-
fect is highly localised, and depth-averaged effective stress at
the GL is only 12 % greater. If bed geometry on RIS is such
that the GL can migrate a meaningful distance, our model
would slightly overestimate the reduction in shear margin ef-
fective viscosity due to bending stresses at high tide. Our aim
here is to investigate the flexural ice-softening mechanism in
isolation, and including GL migration would complicate any
interpretation, particularly given the unknown bed geometry
of RIS. GL migration could play a role in generating the Msf
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signal observed across the Ronne Ice Shelf, depending on
whether the local bed geometry permits it. That being said,
both the simplicity of the flexural ice-softening mechanism
and the ease with which it explains many aspects of the ob-
served tidal modulation in ice shelf flow suggest that it is
likely to be the primary mechanism at play.

In all our full-Stokes model experiments theMsf signal de-
cays rapidly upstream of the grounding line, contrary to ob-
servations which show the signal persists at least∼ 80 km up-
stream of the Rutford, Evans and Foundation Ice Stream GLs
(Gudmundsson, 2006; Minchew et al., 2016; Rosier et al.,
2017a). Previous studies have proposed that a non-linear
basal sliding law could generate the Msf signal on grounded
ice (Gudmundsson, 2007, 2011; King et al., 2011; Rosier
et al., 2014). The model presented in this paper also uses a
non-linear sliding law, but when the flexural softening mech-
anism is absent and the non-linear sliding law is the only
mechanism at play (experiment n1xyz) it fails to reproduce
the observed Msf amplitude and decay length scale (Fig. 4c).
Other mechanisms have been suggested which could pro-
mote propagation of this signal far upstream, for example
weakened margins or tidal pressurisation of the subglacial
drainage system (Thompson et al., 2014; Rosier et al., 2015).
Since our focus is on the ice shelf, we do not include any of
these mechanisms in this model.

The flexural softening mechanism which we have de-
scribed acts in the grounding zone which may often coincide
with a shear margin, a portion of the ice sheet that is complex
and remains poorly understood. Shear margins are typically
heavily crevassed due to the intense shear straining, mak-
ing them difficult to access and instrument. These crevasses
change the effective bulk properties of the ice, altering the
flexural profile compared with undamaged ice (Rosier et al.,
2017b). Furthermore, repeated straining will alter the ice
fabric and make it highly anisotropic (Alley, 1988; Azuma,
1994). In the grounding zone, repeated tidal straining may
itself alter the ice fabric, although this has never been inves-
tigated to our knowledge. Finally, lateral and tidal straining
will cause strain heating (Fig. 6d). A consequence is that ice
within floating shear margins subjected to large tides may be
warmer as a result of tidal flexure, although the presence of
crevasses could lead to a complex depth-dependent tempera-
ture profile (Harrison et al., 1998; Perol and Rice, 2015). All
of the processes described above will interact with tidal flex-
ure, and further modelling is required to evaluate their effects
in detail.

Remote-sensing techniques suggest that the amplitude
of the Msf signal shows considerable spatial heterogeneity
(Minchew et al., 2016). There remains some debate about the
correct value for the ice rheological exponent n and whether
it might vary spatially (Cuffey and Paterson, 2010, and ref-
erences therein), although this is often conveniently ignored
in modelling studies. Since the amplitude of the Msf signal
on the ice shelf is highly sensitive to the value of n, fur-
ther modelling of this effect might help to provide new in-

sights into ice rheology. For example, it might be that the
observed spatial pattern and magnitude of the Msf effect on
the shelf downstream of RIS can only be reproduced for cer-
tain choices of n, although it would be difficult to separate
this from other factors at play. In the context of the flexural
ice-softening mechanism, this heterogeneity could also arise
due to variation in ice properties such as thickness, fabric,
and damage.

8 Conclusions

We present results from both analytical and full-Stokes mod-
els, which show that tidal bending stresses in ice shelf mar-
gins can give rise to large-scale temporal variations in ice
flow. The non-linear rheology of ice means that, as an ice
shelf bends to accommodate vertical tidal motion, stresses
generated in the grounding zone reduce the effective viscos-
ity of ice. This leads to modulation of ice shelf velocity at a
number of frequencies, including the Msf frequency, which
is readily observed on many Antarctic ice shelves (King
et al., 2011; Minchew et al., 2016; Gudmundsson et al., 2017;
Rosier et al., 2017a). In addition, the non-linear response
changes the mean flow of the ice shelf when it is subjected to
vertical tidal motion.

This mechanism relies only on the non-linear rheology of
ice and can explain many recent GPS and satellite observa-
tions of tidal effects on ice shelf flow. By causing an increase
in ice velocity twice during one tidal cycle, it leads to a strong
frequency-doubling effect which is potentially diagnosable
from careful measurement of ice shelf velocity with high
temporal resolution and accuracy. Tentative analysis of GPS
measurements from the floating portion of RIS suggests that
these characteristic frequencies can be seen in existing data
and that their relative amplitudes match those of our model.

The bending stresses investigated in this study are typi-
cally ignored and difficult to incorporate into large-scale ice
sheet models; however this work shows that these stresses
have a role to play in the overall flow regime. Full-Stokes
modelling of a tidally energetic region such as the FRIS
would lead to further insights into the importance of this
mechanism, as well as its relevance for ice flow models and
possibly even ice rheology.

Data availability. No experimental data are used in the paper; the
modelling is motivated by data published in a previous data paper
(Rosier et al., 2017a).
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Appendix A: Derivation of across-flow shear stress

We start from the simplified z momentum given in Eq. (2b),
together with expressions for the bending stresses τyy and τyz
(Eqs. 4 and 5, respectively). Applying the surface boundary
condition σ n̂= 0, we find that

−∂ys τyz(s)+ σzz(s)= 0. (A1)

Since τyz = 0 at the surface, this reveals that σzz(s)= 0.
Using this result and integrating the z momentum (Eq. 2b)

from the surface to arbitrary depth z, we arrive at an expres-
sion for p(x,y,z, t):

p = ρg(s− z)− τyy(z)−

s∫
z

∂yτyz dz. (A2)

Inserting this into the x momentum of Eq. (2a) gives

∂yτxy = ρg∂xs− ∂xτyy − ∂x

s∫
z

∂yτyz dz, (A3)

where

∂xτyy =
9wazh−5/2∂xh

√
ρwEg√

3(1− ν2)
e−λy[

sin(λy)+ (λy− 1)cos(λy)
]
, (A4)

∂x

}∫
z

∂yτyz dz=−
3
4
ρwgwa∂xh(h− 2z)h−4e−λy

(
2ζ
[

sin(λy)+ cos(λy)
]
+ λy

[
h2
− ζ

]
sin(λy)

)
(A5)

and ζ = z(h+2z). Note that the x dependence of Eq. (A2) is
through the ice thickness h, which also appears in the expres-
sion for λ (Eq. 6). Integrating from the surface to the bed and
dividing by ice thickness yields the depth-averaged across-
flow gradient in horizontal shear stress:

∂yτxy = ρg∂xs−
1
h

s∫
b

∂x

s∫
z

∂yτxydz. (A6)

With the boundary condition that τxy is zero at the centreline,
we can integrate along y to give an expression for depth-
averaged horizontal shear stress, which is

τxy = ρgh∂xs−
3ρwgwa∂xhe−λyλy sin(λy)

4h
. (A7)

It turns out that the second term on the right-hand side of
Eq. (A7) is much smaller than the other two for any sensi-
ble choice in parameters, and so the horizontal shear stress
is balanced by the driving stress term to a very good approx-
imation. Since the geometry along the x direction does not

change with time, the only temporal variation in τxy enters
through the smaller second term. As such, τ̇xy ≈ 0: a curi-
ous finding given the large changes in centreline velocity but
one that is borne out by examination of the stresses in our
full-Stokes model (Sect. 6).

For a comparison with the idealised system of equations
presented above, we take a 2-D slice through the ice shelf
in the full-Stokes model (presented in Sect. 4) and look at
the deviatoric stresses. We take this slice far away from the
GL at x = 0 to avoid the additional bending stresses in this
region. The lateral shear stress τxy is found to vary linearly
from zero at the medial line to ∼ 70 kPa at the margin and
is approximately constant with depth (see also Fig. 5). Max-
imum variation in τxy over a tidal cycle is ∼ 3 %, despite
the ice velocity doubling at the medial line. This matches
closely with the profile predicted by Eq. (A7) using parame-
ters taken from the model. The main discrepancy in stresses
between the full-Stokes model and the simplified system of
Eq. (2a) is that modelled τxx becomes relatively large near
the medial line; however since this is not the case near the
margins, where most of the lateral shearing takes place, the
approximation appears to not be a bad one.

Appendix B: Analytical solution for double-clamped
elastic beam

Much of the work on tidal bending of floating ice is based
on beam theory, specifically the analysis of elastic beams
on elastic foundations first explored by Hetenyi (1946). The
classical solution for bending of a floating ice tongue was
first derived by Robin (1958) and has since been used exten-
sively in studies of ice flexural process (Holdsworth, 1969,
1977; Lingle et al., 1981; Stephenson, 1984; Vaughan, 1995;
Smith, 1991; Hulbe et al., 2016; Sykes et al., 2009; Rignot,
1998). We will call this set of equations the long-beam model
(LBM). The set of boundary conditions (BCs) chosen in the
LBM are as follows:

w = 0

w′ = 0

}
y = 0

w = wa

w′ = 0

}
y→∞, (B1)

where w(y) is the vertical deflection of the neutral axis and
wa is the change in sea level due to tides. The assumption in
Eq. (B1) that ice is freely floating at the far-field boundary is
valid in many circumstances; however the shelf downstream
of RIS is only ∼ 30 km wide, and so this set of BCs might
not be appropriate. A better set of BCs for a narrow ice shelf
consists of a beam clamped at both ends, such that

w = 0

w′ = 0

}
y = 0

w = 0

w′ = 0

}
y = 2W. (B2)

Starting from the beam equation for a floating ice shelf,

wIV(y)=−
12(1− ν2)

Eh3 ρwg(wa(t)−w(y)), (B3)
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subject to the BCs in Eq. (B2), we arrive at the solution

w(y, t)= wa(t)
[
1− e−λy (C1 sin(λy)+C2 cos(λy))

+ eλy (C3 sin(λy)+C4 cos(λy))
]
, (B4)

where λ is given in Eq. (6) and the constants C1 to C4 are

C4 =
1− e2λW (cos(2λW)+ sin(2λW))
e4λW + 2e2λW sin(2λW)− 1

, (B5a)

C2 = 1+C4, (B5b)

C3 =
e2λW (cos(2λW)− sin(2λW))− 1
e4λW + 2e2λW sin(2λW)− 1

, (B5c)

C1 = 1+
2tan(2λW)

e4λW tan(2λW)+ tan(2λW)+ e4λW − 1

+C4

(
e4λW

+ (3e4λW
− 1) tan(2λW)− 1

e4λW + (1+ e4λW ) tan(2λW)− 1

)
. (B5d)

If the product λW is large (specifically, large in compari-
son to π ), then the hinge zone is narrow compared to the ice
shelf width. In this situation, C1 ≈ C2 ≈ 1 and C3 ≈ C4 ≈ 0,
such that Eq. (B4) reduces to the LBM solution (Robin,
1958). For the RIS where W ≈ 14 km, this turns out to be
the case, and so the simpler LBM differs only very slightly
from the solution given in Eq. (B4). As a result, we can safely
use the LBM to approximate bending stresses on the RIS.
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