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Abstract—In this paper, we investigate the memory properties
of two popular gated units: long short term memory (LSTM) and
gated recurrent units (GRU), which have been used in recurrent
neural networks (RNN) to achieve state-of-the-art performance
on several machine learning tasks. We propose five basic tasks
for isolating and examining specific capabilities relating to the
implementation of memory. Results show that (i) both types of
gated unit perform less reliably than standard RNN units on
tasks testing fixed delay recall, (ii) the reliability of stochastic
gradient descent decreases as network complexity increases, and
(iii) gated units are found to perform better than standard RNNs
on tasks that require values to be stored in memory and updated
conditionally upon input to the network. Task performance is
found to be surprisingly independent of network depth (number
of layers) and connection architecture. Finally, visualisations of
the solutions found by these networks are presented and explored,
exposing for the first time how logic operations are implemented
by individual gated cells and small groups of these cells.

I. INTRODUCTION

Language modeling is the term used to describe the cal-

culation of a probability distribution over the next word or

character given the context of previous text [1]. These models

include purely statistical n-gram models, as well as those

building on some understanding of concept labels, including

many variations of recurrent neural networks, which have been

applied successfully to tasks such as statistical machine transla-

tion (a sequence-to-sequence task that requires a representation

of meaning in one language to be successfully translated to

a representation of the same meaning in another), sentiment

analysis (mapping from raw text in the source language onto

a sentiment space), and document classification [2].

Several benchmarks have been proposed to test the per-

formance of models on each of the above tasks. However,

each benchmark was simultaneously testing an integrated

combination of abilities with each task requiring a machine to

learn how to extract and represent the syntactic and semantic

information contained in language models and apply some

operation or reasoning on this information to give a useful

solution to the task. In this paper, the distinct components

of this challenge are isolated and investigated systematically

for the first time, towards a better understanding of the

fundamental memory properties of the current state-of-the-art

language models based on recurrent neural networks (RNNs).

This paper proposes five basic tasks for isolating and

examining specific capabilities relating to the implementation

of memory in RNNs, and analyses the ability of such networks

to solve these problems in order to gain insight into the

fundamental intra-cell and inter-cell mechanisms that RNNs

learn to employ, thus contributing to the research on the use

of RNNs, and focusing particularly on work in the last two

years addressing the ability of RNNs to implement memory

and perform symbol grounding as well as reasoning [3], [4],

[5]. Specifically, the long short term memory (LSTM) cell [3],

originally developed to address the vanishing gradient problem,

is evaluated in comparison with the gated recurrent unit (GRU)

[4]. LSTMs have been shown capable of learning simple

context-free and context-sensitive grammars [6][7]. LSTMs

and GRUs have been claimed capable of learning to model

grammars because their units can choose to be either linear or

non-linear through multiplicative gating mechanisms [8]. Nev-

ertheless, Karpathy et al. [9] highlight that although LSTMs

have recently demonstrated exceptional results on several tasks,

the source of their abilities remains poorly understood. Related

work also includes the study by Boedecker et al. [10] on self-

organized optimization of recurrent neural network connectiv-

ity, by White et al. [11] on short-term memory properties in

orthogonal neural networks, and the study of Jaeger [12] on

short term memory in echo state networks.

Our results focus not on the absolute level of performance

achieved, but rather on the mechanisms by which individual

or small groups of cells encode computational logic that

implements memory, and the ability of different network and

cell types to learn these mechanisms. We therefore do not

present performance comparisons with existing works, but

make largely qualitative observations based on our studies.

We show that gated networks perform less reliably compared

to standard RNN units on a task testing fixed delay recall,

indicating that the reliability of stochastic gradient descent in

finding solutions decreases as network complexity increases.

At the same time, gated units are found to perform categori-

cally better on two tasks that require conditional logic to be

implemented. In particular, RNNs with gated units are found

to perform better than standard RNNs on tasks that require

values to be stored in memory and updated conditionally

upon input to the network. Visualisations of the solutions



found by the networks are also proposed, exposing for the

first time how logic operations are implemented by individual

gated cells and small groups of these cells. These experiments

also raise questions that may provide opportunity for further

research since: task performance is found to be surprisingly

independent of network depth (number of layers) and con-

nection architecture, and significant variance in performance

due to different random initialisations is found, implying that

stochastic gradient descent struggles to find good minima for

these tasks, as discussed in detail in Section IV. Given the

small scale of these experiments, another important line of

research would be to examine the relevance of these results to

larger scale tasks.

The remainder of the paper is organised as follows. Back-

ground and related work are outlined in Section II. The

proposed series of experimental methods are presented in

Section III. Results are presented and discussed in Section IV.

Conclusions and directions for future work are summarised in

Section V.

II. BACKGROUND AND RELATED WORK

A valid criticism of RNNs is that they mainly have two ways

to encode and represent information: firstly in their activations

which are recomputed in full and can change radically from

step to step, and secondly in their weights which are learned

during training but often set after training has completed and

represent fixed knowledge about the statistical distribution of

patterns. A third way to encode information is using various

plasticity mechanisms [13], where synergetic effect of 3 differ-

ent of these mechanisms leads to internal representations that

are able to increase performance of recurrent neural networks.

Memory cell approaches such as LSTMs and GRUs are one

way to give networks the capacity for a short term memory

that responds to recent context to retain information over a

longer time-span.

The long short-term memory unit (LSTM) [3] was proposed

as a solution to the problem of the vanishing gradients when

training standard RNNs. It does this by replacing the typical

neural cells that integrate their inputs and apply a non-linear

activation function (typically a logistic or tanh sigmoid), with

units that add a perfect integrator (referred to as cell state),

between the integration of inputs and output activation, effec-

tively allowing them to maintain a persistent memory vector

alongside their hidden state vector. At each time step, the

LSTM can reset or modify its memory and choose to expose or

suppress communication of its contents using explicit gating

mechanisms. At each time-step, the new value of the memory

vector is computed by multiplying its previous state by a forget

gate f , and adding new memory content g, gated by an input

gate, i. The candidate hidden state that is passed onto the next

layer is a tanh-squashed version of the cell contents. However

this candidate output may be suppressed by the output gate

o. The gated recurrent unit (GRU) was proposed in [4] as a

simpler gated unit than the LSTM. The GRU cell receives an

input x, computes a candidate output vector, and outputs an

activation h, according to the activity of two gates, a reset

gate and an update gate. The update gate interpolates between

the old output and a new candidate hidden state to yield the

new activation. The reset gate determines whether the previous

hidden state is ignored when calculating the candidate. Unlike

the LSTM, the activation h is always exposed to higher layers

in the network.

In comparison to the LSTM, the update gate can be thought

of as replacing the input and forget gates and imposing an

additional restriction that input + forget = 1. There is no

equivalent of an output gate, meaning that the GRU always

communicates its state upwards to the next layer in the

network. These certainly represent simplifications. However

the candidate vector calculation is more complicated than for

the LSTM. In the LSTM, the candidate vector (the cell input,

g) is calculated as per a standard RNN, with a tanh function

squashing a simple weighted sum of recurrent and feedforward

inputs. In the GRU, the candidate vector input also uses a

tanh activation function, but the integration of inputs is further

dependent on the reset gate, which calculates a multiplicative

weighting factor that is applied to the recurrent inputs alone.

This gives the candidate vector a non-linear relation to the

combined (feedforward + recurrent) input, and makes it harder

to assign an interpretation to the activity of the reset gate.

Several other structural modifications to the standard RNN

have been proposed recently. The standard recurrent network

is extended in [14] by adding a hidden “context” layer that is

restricted to change more slowly than the standard fast hidden

layer it acts as an input to, effectively forcing them to act

as an exponentially decaying bag of words representation of

the input history. They demonstrate perplexity performance on

the Penn Treebank and Text-8 corpuses that are comparable

with LSTM nets with the same number of units (and therefore

approximately four times as many parameters). This casts

doubt on the desirability of using gated units to perform

language modeling, given that they are more complicated, take

longer to train and are harder to inspect and understand.

Another structural modification that partitions the hidden

layer into separate modules each having a distinct temporal

processing rate or clock speed is proposed in [15]. This fixes

the activation of the slower partitions between updates, while

the quicker partitions continue to process incoming data with

access to the context provided by the slower partitions. The

authors demonstrate that their approach outperforms RNN and

LSTM networks on two audio tasks. It is perhaps unsurprising

that this architecture which effectively samples an input signal

at different rates performs well on audio patterns which are

intrinsically amenable to frequency analysis.

A general architecture for a new class of learning models

called memory networks is also introduced in [16]. Similar

in inspiration to the methods presented in [8] and the Neural

Turing Machines of [17], these combine the pattern recogni-

tion, inference and learning capabilities of machine learning

approaches such as neural networks with a long term memory

component that can be read from and written to. Several state

of the art results on reasoning, language modeling, sequence

modeling and sentiment analysis tasks [18], [19], [20] have



Fig. 1. Example FDR pattern: input range 3 i.e. allowed values [0, 1, 2] | delay
(N ) = 2 steps back. The red and blue pairs of outlined cells each illustrate a
target value and the corresponding input.

recently been achieved by approaches that allow iterative

interaction of these networks with their memory.

III. METHODS

In this section, we present a series of experimental methods

aimed to isolate and measure the important dimensions of

memory for networks with various cells types and architec-

tures, in order to help describe their fundamental memory

capacity. Additional aims are to test their ability to perform

simple operations on this memory which are fundamental to

solving specific tasks; and to explore and characterise the ap-

parent algorithmic and logic solutions learned by the networks,

and to highlight the intra-cell and inter-cell mechanics that

give rise to these solutions. The dimensions of memory the

experiments are designed to explore are: 1) Length of time

delay over which memory extends; 2) Number of memory

items that are stored; 3) Amount of information contained in

each memory item. The simple operations the experiments are

designed to test are: 4) Writing to memory conditional upon

current input and/or previous state; 5) Access of memory (fixed

time delay or a memory “location” conditional upon input).

Fixed Delay Recall (FDR): The FDR task is designed to

test the ability of a network to accurately output the input it

observed a fixed number N steps previously. This is a test of

memory capacity as all intervening inputs between the current

input and the input N steps previous need to be stored. The

difficulty of the task was modified by changing two variables:

the range of possible input values, which determines the

theoretical amount of memory required to store one input; and

N , the number of steps in the fixed delay, which determines

how many inputs need to be stored. An example pattern for

the FDR task can be seen in Fig. III, with the target sequence

for a network trained on the inputs in the top row.

Examination of networks that successfully complete this

task should reveal both how they encode the information

contained in the inputs, and how they manage the storage

of this information, in order to keep track of the delays

corresponding to each stored value. In particular, this task

will reveal how efficiently the blocks are able to encode the

input. E.g. for an input dimension of 4 (possible input values

[0, 1, 2, 3]), the network could theoretically learn to encode this

in several ways: i) as a one-hot vector requiring four units; ii)

as a binary code requiring two units with on/off activations; or

iii) using the space of the activation function to encode more

than two values in a single unit’s output potential.

As for the algorithm, theoretically a large enough single

layer RNN should be able to learn to solve this task by

passing the input through a series of incremental delays to

Fig. 2. Example DDR pattern: input dimension 4, i.e. allowed values
[0, 1, 2, 3] | delay = X + 1 steps back. The red and blue pairs of cells each
illustrate a target value and corresponding input it is derived from. The delay
between each pair of cells is conditional upon the shaded cell.

successive blocks of units in its hidden layer (through a block-

wise-identity recurrent connection weight matrix) with the

output layer retrieving the values stored in the final delay

block. This implies memory capacity will be limited by the

size of the hidden layer and that it should not require more

than one layer to learn the task. Neither should gating be

necessary to successfully solve this task, as the computational

logic required to solve it is fixed and not conditional on the

input. However experimental results will be analysed to reveal

whether multi-layer and/or gated networks better able to learn

in practice.

Dynamic delay recall (DDR): The DDR task modifies the

FDR task by making the delay conditional upon the current

input. Specifically, the target output required to solve the task

is the input value from (X + 1) steps back, where X is

the current input. The difficulty of the task was modified

by adjusting the range of possible input values. This range

determines both the theoretical amount of memory required

to store one input and the maximum delay, which determines

how many inputs need to be stored. An example pattern for

the DDR task can be seen in Fig. III. This task adds an

additional requirement to the FDR task: all previous inputs

up to a maximum delay still need to be stored and “indexed”

by delay, but the output must retrieve the correct stored value

based conditionally upon the current input, as opposed to

retrieving the value corresponding to the same fixed delay

each time. This experiment aims to reveal whether networks

using gated units learn to perform better by modifying the

computation graph through the activities of their gates. It also

aims to determine whether the LSTMs ability to suppress

output gives it an advantage over the GRU which always

passes its activation up to the next layer.

Multiswitch: This task assigns a switch or flag to each

possible input value, which flips its state between 0 and 1 each

time that input value is seen. The target is the new value of the

switch. The difficulty of the task was modified by adjusting

the range of possible input values. This range determines the

number of switches that need to be maintained in memory. An

example pattern for the multiswitch task can be seen in Fig. III.

This task is motivated by the observation in [9] that several of

the interpretable cells appear to be acting as binary flags that

indicate a certain state of the sequence they are processing, e.g.

“inside parentheses”, “near end of line”. This synthetic task

isolates the ability to accurately maintain and switch a given

number of such flags, and aims to reveal whether networks

with gated units learn to solve the problem in different ways

and whether this enables them to outperform simple RNNs.



Fig. 3. Example multiswitch pattern: input range 3 i.e. allowed values [0, 1, 2],
corresponding to three switches. Each time a 1 is seen as input, the target
output flips.

Fig. 4. Example SVB pattern: input range 3 i.e. allowed values [0,1,2]. In
this case, every time a 2 is observed by the input, the target is refreshed with
the value that immediately preceded that 2, and maintained until another 2 is
observed.

Single variable binding (SVB): The SVB task requires a

network to maintain a constant memory that is only updated

when a certain trigger event occurs. The trigger “event” in

this case is observation of a specific possible input value, here

arbitrarily chosen to be the maximum allowed value. The value

to be stored is the input that immediately preceded the trigger

value. The difficulty of the task was modified by adjusting the

range of possible input values. An example pattern for the SVB

task can be seen in Fig. III. This task is analogous to an (over-

simplified) co-reference resolution task in natural language,

where for example the word “she” needs to be resolved to

the last female entity mentioned. In order to correctly resolve

this co-reference, a memory must be maintained of the last

female entity, and refreshed whenever a new female entity is

mentioned. It has been argued that such a form of variable

binding and addressing mechanism must be implicated in the

operation of the brain [21], which further motivates this task

which aims to isolate the ability of networks to bind a value

to a single specific handle, and to examine whether gating

mechanisms allow LSTMs and GRUs to outperform simple

RNNs.

Multiple variable binding (MVB): The MVB task extends

the SVB task to multiple variables. Each distinct input value

now corresponds to a memory item. Two operations are

required when each input is processed: firstly, the memory

corresponding to that input needs to be recalled - this is the

target output; secondly, the memory needs to be refreshed. As

for the SVB task, the new memory to be stored is the value

of the preceding input. The difficulty of the task was modified

by adjusting the range of possible input values. This range

determines both the theoretical amount of memory required

to store one input and the total number of inputs that need

to be stored. An example pattern for the MVB task can

be seen in Fig. III. This task tests the ability of a network

to simultaneously maintain a memory of multiple multi-bit

values. This can be thought of as an extension to the SVB

task to multiple variables, or as an extension of the multiswitch

task to multi-bit values. Analysis and comparison of results on

these three tasks should reveal which of these abilities can be

learned by each network, and how they use their network and

cell dynamics to implement them.

Fig. 5. Example MVB pattern: input range 3 i.e. allowed values [0, 1, 2].
The target is calculated by looking for the previous instance of the current
input value, and retrieving the memory associated with it. The blue arrows
illustrate how the target value of 1 is arrived at in timestep 6. Firstly the
previous instance of the input value (0) is located. The memory associated
with this instance (1) is the target value to be recalled. Finally, the memory
is updated with the value from the previous timestep (2; dotted line).

IV. EVALUATION

A. Experimental Setup

Three main aspects of the models were varied: network

architecture, the synthetic training sets used to train and test

the networks, and the training regime. With a total of 17

effective hyperparameters across these three categories, the

combinatorial explosion of possible experiments meant that

it was critical to establish early on which of these factors

led to meaningful and interesting variance in the task being

examined, which were choices to be optimized for experimen-

tal performance (run-time, convergence), and which had little

impact on either. Therefore “beam” or “grid” searches across

a small number of parameters at a time were conducted to

determine which hyperparameters could be fixed and the best

values to fix them at.

In all cases, the overall network architectures tested con-

tained a “one-hot” input layer and softmax output layer of

dimension determined by the task. Between input and output

layers, there were 1 to 3 hidden layers. Five different hidden

layer sizes were tested (5, 10, 15, 25, and 50 units per layer).

These were composed of one of five different unit types. In

addition to the LSTM and GRU cells which were the primary

focus of investigation, three different simple (non-gated) units

were tested, with hyperbolic tangent (tanh(
∑

iWjixi)), lo-

gistic sigmoid (σ(
∑

iWjixi)) and rectified linear activation

function (max(0,
∑

iWjixi)), where σ() corresponds to the

logistic sigmoid function.

These were chosen to explore whether performance was

affected by: 1) the ability of the units to maintain negative

activation, which hyperbolic tangent units can do but the other

two can not; 2) the ability of the units to maintain unbounded

activations, which the rectified linear units can, whilst the

others are bounded; and 3) the simpler learning afforded by the

rectified linear units, which have recently been shown to yield

equal or better performance than hyperbolic tangent networks

[22] and seem suited to the logical nature tasks given their

ability to learn sparse representations with true zeros.

The output layer was connected to a “bias unit” allowing

it to maintain a bias input. Early experiments showed that

this increased performance, and also showed that allowing

the hidden layers to maintain a bias had little impact on

performance. This was surprising, given that in [23] the

importance of fixing the bias of the LSTM forget gate to a



high number (effectively forcing it to remember by default)

was highlighted.

A further set of permutations concerns the inter-layer con-

nection graph. Four configurations are tested, with a) skip

connections to all hidden layers from the inputs, b) skip

connections to the outputs from all hidden layers; c) both

sets of skip connections; and d) no skip connections (as

per standard RNN). This is motivated by a claim [24] that

skip connections mitigate vanishing gradients by reducing the

number of processing steps between the bottom and top of

a network. All layer-layer connections were fully connected

where present.

A GRU layer was implemented as an extension to the

popular PyBrain library1 and PyBrain’s RPropTrainer2 was

used for training. This applies full batch training using the

RProp algorithm [25], adjusting the learning rates for each

parameter individually according to whether the error gradient

with respect to that parameter has changed sign compared

to the previous training epoch (in which case the learning

rate is reduced) or has stayed the same (in which case it is

increased). It requires the factors determining learning rate

increases (etaplus) and decreases (etaminus) to be specified,

as well as the initial learning rate (delta0). Factors of 1.2 and

0.5 for etaplus and etaminus were shown to work effectively in

[26], and these were adopted here. Values of {0.1,0.03,0.01}
were used for delta0.

By default, PyBrain initialises weight parameters by sam-

pling from the standard normal distribution. A grid search

over a range of values showed that GRU networks converged

best when initialised with lower absolute weights - networks

initialised with higher weights often exhibited unstable be-

haviour with performance getting worse, whereas LSTM and

RNN networks performed better when their weights were

initialised with larger absolute values. An adequate balance

for comparison was achieved by initializing weights with a

zero-mean Gaussian of variance 0.3, and this was adopted for

the main experimental work.

All the tasks were tested using datasets containing synthet-

ically generated sequences. It was expected that larger sets

should be less prone to overfitting but would take longer

to train on. Another experimental choice was the length of

sequences. Given that all tasks had deterministic outcomes,

and networks were fully unfolded for error backpropagation,

it was unclear how this would affect performance. Initial

experiments found that performance on datasets containing 64

sequences of length 20 was similar to performance on larger

sets (in both dimension). Therefore this size of dataset was

adopted for the main experiments. The training set consisted

of 36 sequences, 12 were used as a validation set for early

stopping, and 16 were used as a test set. The seed used by

random number generators was set for both dataset generation

and model training scripts, to ensure that all results were

repeatable.

1https://github.com/pybrain/pybrain/pull/176
2http://pybrain.org/

B. Experimental Results

A summary of best and mean task performance, alongside

standard deviation (std) by network type is shown in Table I,

as measured by prediction error on the test set. The minimum

error demonstrates the best performance that was possible

across a range of network configurations and several random

weight initialisations for each configuration. This indicates

the best practically findable solution within the time and

resource constraints of the experiment, and in particular shows

whether any network was able to perfectly learn the logic

required to solve the problem. The mean and std errors are

useful for understanding the typical performance of networks

built with each cell type relative to other types. Note that

divergence between mean and minimum performance is driven

in this case by a conflation of: i) the variety of network

sizes and configurations present in the average; and ii) the

variance of performance across different random instantiations

of each configuration; and should therefore not be interpreted

as meaningful.

It can be seen that the best performing cell types vary by

task. For the fixed delay recall task, simple recurrent networks

containing tanh units provided the best performing networks

for all permutations of input dimension and memory span. On

this measure, standard recurrent networks (RNNs) comprised

of rectified linear units were second best in all cases except

one. RNNs with tanh units were also the most consistently

performing networks (with lowest mean error). RNNs with

logistic sigmoid units were the worst performing on both

measures, with the two gated cell types giving intermediate

performance. This advantage disappears when the recall task

is made conditional on the input (dynamic delay).

For the single variable binding task, the results for harder

versions (with greater input dimension) indicate that the clear

performance advantage of tanh simple recurrent networks

(SRNs) on the FDR task is not apparent for this task where

the target value is conditional on the input. The gated units

perform slightly better than simple recurrent networks as the

input dimension is increased to 4 and 5, however while they

close the performance gap on this task, they are not able

to learn to perform categorically better than the SRNs. This

may indicate that their ability to dynamically modify their

computation graph through the activities of their gates either

is not relevant for this task, or that a solution utilising this

ability was not practically findable by the stochastic gradient

descender used here. There is also no evidence to show that

the LSTM’s ability to suppress output gives it an advantage

over the GRU.

Results for the multiswitch task show that gated cell

networks are able to solve the 2 switch problem perfectly,

whereas SRNs are not. Note that the average results here cover

all permutations of skip connectivity, with several different

random initialisations for each permutation. No specific skip

architecture was found to perform consistently better than the

others. The discrepancy between minimum and mean error

therefore indicates that the ability of these networks to find



All configurations Minimum test set error Mean test set error Std test set error

Task Steps back Input dimension gru lstm sig relu tanh gru lstm sig relu tanh gru lstm sig relu tanh

Fixed Delay Recall

3
3 0.0 0.3 3.8 0.0 0.0 15.0 15.1 41.8 10.1 0.2 15.6 14.2 16.8 15.6 0.3
4 5.3 16.3 23.8 6.3 0.0 26.8 27.5 53.8 32.1 10.2 11.1 8.6 12.8 22.2 15.5
5 20.0 14.7 32.2 3.8 0.0 35.5 39.6 54.3 26.9 5.4 10.2 10.7 13.2 16.7 7.6

4
3 10.6 13.8 48.8 3.4 0.0 29.0 34.3 52.8 30.0 11.6 10.0 9.8 1.6 16.1 16.0
4 28.8 32.2 55.6 11.3 0.3 40.0 42.3 58.4 36.5 18.1 7.9 6.7 1.8 13.9 20.6
5 39.1 38.1 57.8 27.2 1.3 46.7 48.5 63.2 44.8 26.9 5.4 7.3 2.5 9.7 24.2

Dynamic Delay Recall dynamic
3 5.0 3.8 17.8 5.3 2.5 11.6 14.2 29.0 23.1 17.9 4.5 5.7 9.1 13.3 14.4
4 33.4 36.6 41.6 40.3 40.6 39.8 40.9 53.0 49.9 48.0 3.7 2.7 5.5 8.4 4.2
5 42.5 43.4 50.3 50.3 51.9 48.1 51.2 61.7 58.1 56.7 3.4 5.3 6.9 4.9 5.0

Multiswitch dynamic
2 0.0 0.0 10.0 14.4 15.6 21.3 20.4 38.6 37.3 44.3 14.5 15.8 9.0 11.4 6.6
3 14.1 2.5 34.1 30.3 39.1 42.0 42.4 46.7 43.8 45.7 8.1 8.8 3.3 4.5 2.7
4 32.2 32.5 41.3 32.2 40.9 44.6 44.6 44.7 44.8 45.7 4.0 3.7 1.6 1.9 2.8

Single Variable Binding dynamic

3 0.0 0.0 0.0 0.0 0.0 0.4 1.7 8.2 16.3 6.3 0.8 1.7 9.0 12.0 6.1
4 0.0 2.8 5.3 15.9 11.3 6.3 20.9 38.8 37.5 40.5 5.9 12.8 12.5 11.2 10.6
5 0.0 10.3 27.2 30.9 27.5 15.8 30.5 46.1 50.5 48.7 10.7 12.0 9.0 8.9 8.4
6 0.3 24.4 48.4 47.5 38.4 33.6 51.0 60.9 61.8 59.5 14.5 11.6 5.8 7.0 5.9
7 28.1 47.8 52.5 54.1 54.7 48.0 62.2 63.2 66.1 63.6 11.4 4.6 3.6 5.1 4.2

Multiple Variable Binding dynamic
2 0.0 0.0 10.0 0.9 0.6 5.0 6.9 23.4 12.0 3.2 6.7 8.0 9.2 7.0 2.2
3 24.4 29.7 39.7 37.8 30.9 38.9 40.5 53.5 48.1 44.2 8.7 7.9 9.2 7.0 8.3
4 44.7 45.9 53.4 55.9 49.1 52.2 53.4 62.4 61.5 57.9 3.2 3.6 3.0 2.7 4.1

TABLE I
SUMMARY OF PERFORMANCE FOR EACH NETWORK TYPE ON THE FIVE TASKS TESTED.

Fig. 6. Visualisation of the 2-layer LSTM net on the multiswitch task, showing the activity of the LSTM gates (shaded columns labeled i, f and o - darker
shading represent activities closer to 1, lighter shading activity closer to 0), the candidate and resultant cell states and hidden activations for each hidden unit
(g, c and h respectively; red and blue represent negative and positive values of activation relative to the column average respectively), and the activation of
the softmax output layer (argmax = green), which correctly predicts the target in every case in this example.



a solution is sensitive to the random initialisation of weight

parameters. Further investigation into the topography of the

loss function and associated gradient descent mechanics is

required to understand this sensitivity. No network was able

to perfectly solve the 3 switch problem, although an LSTM

network with 2 layers of five neurons and full skip connections

managed to achieve 2.5% error. However the networks with

gated units performed consistently better than SRNs on this

task. Performance on the 4 switch task was worse again, with

no network achieving an error rate below 30%. The differential

between gated and non-gated cells decreased, driven by a

decrease in performance of the gated-cell networks (the SRNs

performed similarly on both 3 and 4 switch tasks with error

rates between 40-50%).

For the SVB task, gated cell networks performed better

than SRNs. There was no consistent difference in performance

between the different types of non-gated unit in the SRNs. As

for the gated units, GRUs outperformed LSTM networks, and

were the only networks able to perfectly solve the tasks with

input dimension 4 and 5. Finally, for the multiple variable

binding task, perfect solutions to the 2 variable task were

found by GRU and LSTM networks. However the tanh RNN

came very close to a perfect solution and had a lower mean

error that gated cell networks for smaller hidden layer sizes.

Given the rapid decline in performance of all networks on the

multiswitch and SVB tasks, it is perhaps unsurprising that no

network was able to solve the 3 or 4 variable task.

As a way to visualise network performance, Figure IV-B

details the weights learned by the network that achieved an

error rate of 2.5% on the multiswitch task (3 switches). This

network had 2 layers of five LSTM cells and skip connections

between both the input and second hidden layer, and between

the first hidden layer and the output layer. The figure illustrates

how this network processes an example input sequence, show-

ing the activity of the LSTM gates, the resultant cell states

and hidden activations for each hidden unit, and finally the

activation of the softmax output layer. Inspection of the cell

state of neuron 1 in hidden layer 1 reveals that this cell is

tracking the status of the second switch, flipping from higher

(blue) to lower (red in this case representing zero) activation

and vice-versa whenever the input [0,1,0] is observed. For the

LSTM network that solved the multiswitch task, the input and

forget gates of one cell for each switch worked together to

compute an effective XOR over their previous state and the

current input, allowing the correct state of the switches to be

maintained. The output gate was not found to be important to

solving the task. For the GRU network that solved the single

variable binding task, the interaction between update gate and

candidate inputs was found to be the key mechanism by which

information was either maintained or updated according to the

input. The role of the reset gate was less clear. These results

provide experimental support for the hypothesis that gated

units employ fundamentally different mechanisms to simple

RNNs in order to implement logic that is conditional based

on the input, and indicate which components are crucial to

their ability to do so, shedding light into the mechanisms at

play behind the success of these network models at performing

language modelling. As such, we do not present performance

comparisons with existing works here, rather we hope that

these results suggest a method to interrogate the micro-level

basis of performance gains made by recent works, and hope

that future research can bring together our understanding of

the micro-level and macro-level behaviour of recurrent neural

models.

V. CONCLUSIONS AND FUTURE WORK

We have proposed 5 basic tasks for isolating and examining

specific capabilities relating to the implementation of memory

for two popular gated units used in RNNs. Results show that

gated networks perform less reliably compared to standard

RNN units on a task testing fixed delay recall. Gated units

are found to perform better than standard RNNs on tasks that

require values to be stored in memory and updated condition-

ally upon input to the network. Task performance is found to

be surprisingly independent of network depth and connection

architecture, with significant variance in performance. Finally,

visualisations of the solutions found by these networks were

proposed, exposing for the first time how logic operations are

implemented by individual gated cells and small groups of

these cells.

As future work, we propose the use of the above five basic

tasks to investigate fundamental performance properties of

other alternative recurrent network models, and would regard

as particularly interesting the study of the properties of mem-

ory networks and neural Turing machines, as a result of their

recent success at language modelling and deep reinforcement

learning. We also suggest to study the applicability of the

proposed measures in practice, and their potential relevance to

large-scale problems, by carrying out a systematic comparative

evaluation of results on benchmark datasets.
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