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ABSTRACT
Weak gravitational lensing depends on the integrated mass along the line of sight.
Baryons contribute to the mass distribution of galaxy clusters and the resulting mass
estimates from lensing analysis. We use the cosmo-OWLS suite of hydrodynamic sim-
ulations to investigate the impact of baryonic processes on the bias and scatter of weak
lensing mass estimates of clusters. These estimates are obtained by fitting NFW pro-
files to mock data using MCMC techniques. In particular, we examine the difference
in estimates between dark matter-only runs and those including various prescriptions
for baryonic physics. We find no significant difference in the mass bias when baryonic
physics is included, though the overall mass estimates are suppressed when feedback
from AGN is included. For lowest-mass systems for which a reliable mass can be ob-
tained (M200 ≈ 2 × 1014 M�), we find a bias of ≈ −10 per cent. The magnitude of
the bias tends to decrease for higher mass clusters, consistent with no bias for the
most massive clusters which have masses comparable to those found in the CLASH
and HFF samples. For the lowest mass clusters, the mass bias is particularly sensitive
to the fit radii and the limits placed on the concentration prior, rendering reliable
mass estimates difficult. The scatter in mass estimates between the dark matter-only
and the various baryonic runs is less than between different projections of individual
clusters, highlighting the importance of triaxiality.
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1 INTRODUCTION

In the 1930s, Fritz Zwicky discovered that most of the mass
in galaxy clusters is in the form of dark matter (Zwicky
1937). After the advent of X-ray telescopes, it was estab-
lished that X-ray emitting plasma comprises most of the
normal luminous mass in clusters. Our current best estim-
ate is that typical clusters are composed of more than 80%
dark matter, about 17% plasma, and at most a few percent
in the form of stars in galaxies (e.g., Allen et al. 2011).

Since their properties provide important tests of our
cosmological model and our understanding of structure
formation, galaxy clusters are targets of many ongoing and
upcoming surveys. Clusters are also testbeds for investig-
ating the large-scale properties and physics of dark matter

? E-mail: bel072000@utdallas.edu

and the more complex physics of luminous matter (Randall
et al. 2008).

Estimating cluster masses from survey observables is
crucial to using clusters as cosmological probes (for a review
of cluster observations in the context of cosmology see Allen
et al. 2011). The two key steps in this are relative calib-
ration of cluster masses and absolute calibration of cluster
masses. The former involves identifying cluster observables
from multi-wavelength data that provide a low-scatter proxy
for cluster mass. X-ray measurements, for example, show a
scatter of 10 per cent (e.g., Kravtsov et al. 2006). Even if
only a small fraction of clusters have associated low-scatter
mass-proxy measurements, constraints on cosmology are im-
proved by a factor of a few (e.g., Wu et al. 2011). For ab-
solute mass calibration, weak gravitational lensing measure-
ments are critical. Gravitational lensing, which uses strongly
and weakly lensed background galaxies, is well-established
as a tool to map and weigh galaxy clusters. Lensing enables
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masses to be estimated irrespective of whether the matter is
luminous or dark, and without assumptions about a cluster’s
dynamical state.

Navarro, Frenk & White (1996) used computer sim-
ulations of cosmological structure formation to determine
that haloes formed from cold dark matter (CDM) are well
described by a particular family of density profiles known
as the NFW profile. Due to the computational intensity of
modeling baryons, many cosmological simulations include
only the gravitational forces between particles. Studies of
such dark matter-only clusters have shown that weak lensing
masses typically underestimate the true mass by ≈ 5 − 10%,
with the bias improving for higher mass (Becker & Kravt-
sov 2011; Oguri & Hamana 2011; Bahé et al. 2012). Analyses
of more recent, high-resolution simulations have shown that
the Einasto profile (Einasto 1965) tends to be a better fit
to simulated clusters, particularly in the inner regions. How-
ever, given the fact that observers typically exclude the in-
ner, strong lensing region, the Einasto profile only slightly
improves the weak lensing mass bias (Henson et al. 2017).

More recently, simulations of structure formation have
either included baryons and their more complex physics, or
they have extracted massive haloes from dark matter-only
simulations and re-simulated them with baryonic processes.
Although dark matter dominates the mass of clusters, hy-
drodynamic simulations have shown that baryons can have
a significant impact on the structure of low-mass clusters
and result in fewer high-mass clusters (Henson et al. 2017;
Velliscig et al. 2014, 2015; Bryan et al. 2013; Martizzi et al.
2012; Mummery et al. 2017; Cusworth et al. 2014). Sim-
ulations neglecting AGN feedback suffer from over-cooling,
since in the absence of efficient heating the central regions of
such clusters have overly efficient heat dissipation, resulting
in much higher stellar fractions than observed (e.g., Borgani
& Kravtsov 2011).

Constraints on the nature and properties of dark energy
may be derived from a census of the number of clusters as a
function of mass and redshift. Often, the results of surveys
are interpreted by comparison with cosmological simulations
carried out with only dark matter. However, recent work
with hydrodynamical simulations has shown that cosmolo-
gical parameter estimations calculated from either the halo
mass function (Velliscig et al. 2014; Cusworth et al. 2014;
Bocquet et al. 2016) or the matter power spectrum (Sem-
boloni et al. 2011; van Daalen et al. 2011) are sensitive to
the presence of baryons at the per cent level. Therefore, in
the era of precision cosmology, baryons must be accounted
for. While the presence of baryons is sub-dominant, we con-
sider the impact they have on the determination of cluster
mass from gravitational lensing studies.

In this paper, we assess how baryonic physics modifies
the distribution and estimation of cluster mass with respect
to clusters composed of only dark matter. We consider how
the impact of baryons on cluster mass estimation compares
with intrinsic factors such as cluster shape and choices of fit
radius and priors on cluster parameters during data analysis.

In Section 2, we describe the NFW density profile and
general weak lensing formalism. In Section 3, we describe the
cosmo-OWLS (Le Brun et al. 2014) hydrodynamical simu-
lation suite from which our cluster sample is extracted, as
well as our process for producing mock weak lensing ob-
servations of these clusters. We then discuss our methods

of mass estimation in Section 4. We use a Markov Chain
Monte Carlo (MCMC) algorithm to compute the posterior
probability distribution for the lensing M200 of individual
clusters. These distributions then serve as input to an addi-
tional MCMC step to calculate the bias and scatter of the
mass estimates. In Section 5, we present mass estimations
of our cluster sample for two different noise levels and three
inner fit radii. We also show the sensitivity of cluster mass
estimation on the concentration prior, and additionally the
relative uncertainty of parameter estimation due to prescrip-
tions of baryonic physics as compared to projection effects.
We discuss the results and future work in Section 6.

2 NFW DENSITY PROFILE AND WEAK
LENSING

2.1 NFW density profile

As is common in weak lensing surveys, we obtain mass
and concentration estimates using the spherically symmetric
NFW profile described in Navarro et al. (1996). This allows
a straightforward comparison between the true parameters
of the simulated clusters and those derived from lensing ob-
servables. The NFW profile has analytic expressions for the
convergence and shear. It is given as a function of radius, r,
as

ρNFW (r) =
δcρc

(r/rs)(1 + r/rs)2
(1)

where ρc is the critical density of the universe, and the
parameters δc and rs are the cluster’s central over-density
and the scale radius, respectively. We may parameterize the
profile with the dimensionless concentration parameter, c,
which satisfies

δc =
200
3

c3

ln (1 + c) − c/(1 + c) (2)

and the radius r200 = rs · c, which defines a sphere within
which the average density is 200 · ρc(z). The mass contained
within this sphere, M200, is then given by

M200 = M(r < r200) =
800π

3
ρc(z)r3

200. (3)

M500 is similarly defined as the mass contained within a
sphere in which the average density is 500·ρc(z). In this form,
the NFW profile has two parameters. It is possible to reduce
this to a one parameter problem by utilizing a power-law
mass-concentration (M-c) relation. However, studies have
shown that M-c relations are sensitive to baryons, since the
inclusion of efficient feedback results in reduces the NFW
concentration and the amplitude of the M-c relation (e.g.,
Duffy et al. 2010; Mummery et al. 2017). We therefore al-
low the concentration parameter to vary freely in order to
capture the changes in concentration resulting from the in-
clusion of baryonic physics. It may also be possible to include
a M-c relation prior broad enough to capture the impact of
baryons, but we do not attempt this in this study.

2.2 Weak lensing formalism

We consider the cluster as a two-dimensional lens, where
the surface mass density can be obtained by integrating the
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Impact of baryons on lensing by clusters 3

three dimensional density along the line-of-sight,

Σ(®r) =
∫ ∞
−∞

ρ(®r, z)dz (4)

where ®r is a position vector in the lens plane. In the standard
weak lensing notation, κ(®r) denotes the convergence, i.e. the
dimensionless surface mass density of the lens. It is defined
as κ(®r) = Σ(®r)/Σc , where

Σc =
v2
c

4πG
Ds

DdDds
(5)

is the critical mass density (Subramanian & Cowling 1986).
Dd, Ds, and Dds are the angular diameter distances from
the observer to the lens, the observer to the source, and the
lens to the source, respectively. vc is the speed of light and G
is the gravitational constant. The convergence is related to
the deflection potential, ψ(®r), through the Poisson equation,
∇2ψ = 2κ.

The deflection potential is also related to the complex-
valued shear, through γ = γ1 + iγ2 = ψ,11 −ψ,22 +iψ,12 where
the indices denote the derivatives with respect to the posi-
tion in the lens plane. Noting that κ and γ are combinations
of second derivatives of the potential, the convergence and
shear may easily be related to each other by use of the Four-
ier transform,

γ̃ =

(
k̂2

1 − k̂2
2

k̂2
1 + k̂2

2
κ̃,

2k̂1 k̂2
k̂2

1 + k̂2
2
κ̃

)
, (6)

where γ̃ and κ̃ respectively denote the shear and conver-
gence in Fourier space, and k̂i denotes the components of
the corresponding wave vector. For the case of the spherical
NFW profile, the convergence and shear may be calculated
analytically (Bartelmann 1996).

In the regime κ, γ � 1, the lensing signal is found by
measuring the distortion by the deflector of the the source
galaxy ellipticities. We use the complex-valued ellipticity ε

with modulus |ε | = (1 − q)/(1 + q), where q is the axis ra-
tio. The locally linearized relationship between the intrinsic
source ellipticity, εs, and the observed image ellipticity, ε , is

ε =
εs + g

1 + g∗εs
, (7)

where g = γ/(1 − κ) is the reduced shear, and g∗ indicates
the complex conjugate of g. Since the galaxies are randomly
distributed, 〈εs〉 = 0, hence the locally averaged image ellipt-
icities are related to the reduced shear through

〈ε〉 ≈ 〈g〉 +
〈
εs

〉
= 〈g〉 . (8)

3 SIMULATIONS

3.1 Cosmo-OWLS

Cosmo-OWLS, described in Le Brun et al. (2014), is a
suite of large-scale hydrodynamical simulations consisting
of periodic boxes of 400 h−1 comoving Mpc on a side.
The simulations use initial conditions based on maximum
likelihood parameter values derived from either Planck
(Planck Collaboration et al. 2014) or WMAP7 data (Ko-
matsu et al. 2011). In this work, we use runs produced
with the WMAP7 cosmology, where {Ωm,Ωb,ΩΛ, σ8, ns, h} =

Figure 1. This figure shows the mean ratio of the projected dens-
ity profiles of all baryonic clusters to their corresponding DMO

clusters as a function of r/r200, where the r200 are from the 3D
spherical over-density mass definition.

{0.272, 0.0455, 0.728, 0.81, 0.967, 0.704}. Each run contains 2×
10243 particles with masses ≈ 3.75 × 109h−1M� and ≈ 7.54 ×
108h−1M� for dark matter particles and baryons, respect-
ively. The prescription of Eisenstein & Hu (1999) was used
to compute the transfer function, and the software N-GenIC
was used to generate the initial conditions.

The simulations were run using a version of the Lag-
rangian TreePM-SPH code gadget3 (last described in
Springel 2005). The haloes were identified after running an
on-the-fly friends-of-friends (FOF) algorithm with a linking
length of 0.2 times the mean interparticle separation. The
spherical over-density masses and radii for each of the FOF
haloes were calculated using spheres centered on the halo’s
most-bound particle.

We use four of the six runs produced by Le Brun et al.
(2014), all of which used identical initial conditions. The
models we use are:

• DMO: a dark matter-only run that simulates only the
gravitational interaction between particles.
• REF: in addition to gravity, this run also implements

a UV/X-ray photoionizing background (Haardt & Madau
2001), element-by-element radiative cooling (Wiersma et al.
2009a), star formation (Schaye & Dalla Vecchia 2008), stellar
evolution and chemical enrichment (Wiersma et al. 2009b),
and kinetic wind from supernova feedback (Dalla Vecchia &
Schaye 2008).
• AGN 8.0 and 8.7: these runs implement all of the pro-

cesses included in REF with the addition of the growth of
supermassive black holes (BH) and AGN feedback (Sprin-
gel et al. 2005; Booth & Schaye 2009). During the simu-
lation, FOF haloes with at least 100 dark matter particles
were seeded with a BH with an initial mass of 0.001 times
the initial gas particle mass. The BHs were allowed to grow
either through mergers with other BH particles or by scaled
Eddington-limited Bondi-Hoyle-Lyttleton accretion as de-
scribed in Booth & Schaye (2009). Initially, the BHs store
this additional energy until they gain enough mass so that
they are able to increase the temperature of neighbouring
gas particles by a pre-defined temperature, ∆Theat . This
temperature is set to ∆Theat = 108.0 K and ∆Theat = 108.7

K for the AGN 8.0 and 8.7 models, respectively. There is
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Figure 2. The panel on the left shows the ratio of M200 of the baryonic clusters to their DMO counterparts, where the M200 are calculated

using the 3D spherical over-density mass definition. The panel on the right shows the similarly for M500. Both are as a function of the

M200 of the corresponding DMO cluster to maintain the same bins.

additionally an AGN 8.5 model with ∆Theat = 108.5 K, but
we do not analyze this in this work.

In comparison with Henson et al. (2017), who studied
one implementation of baryonic physics in addition to the
DMO run, we consider three such implementations. This
allows us to consider a wide range of possibilities for the
impact of AGN feedback and other physical processes.

Le Brun et al. (2014) found that several observables,
such as various global hot gas properties and the density
profiles of the ICM, are bracketed by AGN 8.0 and AGN
8.5 when assuming the WMAP7 cosmology that is adop-
ted here. 1 The AGN 8.7 run is a somewhat extreme model,
yielding significantly lower gas mass fractions than observed.
Thus, AGN 8.0 and AGN 8.7 encompass the possible cluster
observables. REF omits AGN feedback entirely, resulting in
clusters with extremely high central densities from cooling.
AGN 8.7 and REF are included in this study for comparison
as different extremes of AGN feedback. The cosmo-OWLS
suite has been employed to study, the alignments of baryonic
components with dark matter haloes (Velliscig et al. 2015),
the effects of baryon physics on large-scale structure (Mum-
mery et al. 2017), the implications of the Planck CMB best-
fit parameters on the thermal Sunyaev-Zel’dovich (tSZ) ef-
fect power spectrum (McCarthy et al. 2014), and the tSZ-
lensing cross-correlation (Hojjati et al. 2015).

3.2 Cluster selection and matching

The haloes included in our sample were selected by first ex-
tracting all the clusters above 1014M� at z = 0.25 from the
DMO run in boxes 30 Mpc on a side. The size of the ex-
tracted boxes was selected to include correlated large-scale
structure (e.g., filaments connected to the clusters). Both
Bahé et al. (2012) and Becker & Kravtsov (2011) found little

1 Note that in the Planck cosmology, AGN 8.0 best reproduces

the observables.

variation in weak lensing mass estimates for LOS integra-
tion lengths from 10 h−1 Mpc to 50 h−1 Mpc for the mass
range we consider here. Much longer integration lengths to
include uncorrelated large-scale structure would require the
use of ray-tracing algorithms which is beyond the scope of
this work.

The haloes were matched between the runs by finding
clusters located within the distance of five times the can-
didate cluster’s r500 in DMO and were within a factor a
third of its M500. This simple selection criterion allowed for
95 per cent of the clusters to be uniquely matched between
the four runs. The remaining 5 per cent mostly occurred
when two clusters from a baryon run satisfied the matching
criteria for a given DMO cluster. In these cases, we checked
the positions and masses of the candidate clusters and found
that one was always much closer to the corresponding DMO
cluster’s location and mass than the other. We therefore in-
cluded these clusters in our sample. The remaining 5 cases
were low-mass clusters at the edge of the simulation box
which failed to match with any candidate clusters. We dis-
carded these from our sample. The total number of clusters
in our sample for each of the simulations is 1,157.

Figure 1 shows the relative density profiles of the differ-
ent baryon runs with respect to DMO, and Figure 2 shows
the differences in cluster M200 and M500 as a function of
the M200 of the matched DMO clusters. Clusters from AGN
8.0 and 8.7 tend to have lower inner densities, with some of
the matter being pushed outward to the cluster periphery.
This also results in a smaller M200, with the effect more pro-
nounced when the AGN feedback is stronger. This impact
declines for higher mass, with little mass difference between
high-mass AGN 8.0 and DMO clusters. Clusters in REF are
dense toward the center, though beyond r/r200 ≈ 0.1 mat-
ter tends to be pushed out, which is due to SN feedback as
determined by Le Brun et al. (2014). The M500 of the AGN
models are more suppressed with respect to DMO, though
the overall trend is similar to the M200. This is due to the fact
that M500 corresponds to a smaller radius than M200, so this
mass definition does not capture as much of the matter cast

MNRAS 000, 1–11 (2018)
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into the periphery from AGN feedback. The REF clusters
tend to have slightly higher M500 compared to their DMO
counterparts. This is because the REF clusters tend to have
higher central densities, and because some of the regions in
which REF clusters are less dense than DMO clusters are
outside of the r500.

3.3 Catalog generation

Each of the extracted clusters were projected along three
orthogonal axes to enhance our sample size, as well as to
provide information about the scatter in mass estimations
between projections. We generate convergence maps by di-
viding each surface mass density map by Σc calculated for a
cluster redshift of zl = 0.25 and a source redshift of zs = 1 in
the WMAP7 cosmology. We then produced shear maps by
using the relationship in Fourier space described in equation
6.

For each projection, a set of randomly placed back-
ground galaxies at redshift zs = 1 were generated. Follow-
ing Geiger & Schneider (1998), the ellipticity components of
each galaxy were randomly drawn from the distribution,

psε (εs) =
exp(−|εs |2/σ2

ε )
πσ2

ε (1 − exp(−1/σ2
ε ))

, (9)

where σε is the dispersion of the intrinsic ellipticity distri-
bution, which we set to σε = 0.05 when studying algorithm
performance at low noise levels and σε = 0.25 for more real-
istic noise.

We use an unlensed galaxy number density of n0 = 30
gal/arcmin2, the approximate expected number density of
the LSST in the absence of lensing magnification. The total
number of galaxies is a realization of a Poisson distribution
with mean N = n0 A, where A is the area of the sky. Following
Schneider et al. (2000), the galaxy number density must also
be adjusted due to the effects of lensing magnification. While
Equation 7 describes the distortion of the source shapes,
we must also numerically account for the magnification of
space around the sources as well as the change in the lensed
galaxies’ brightness. The lensed number density satisfies

n(®r) = n0µ
−0.5, (10)

where ®r is again a position vector in the lens plane and
µ is the magnification at that position. µ is calculated for
each source galaxy’s position from the lens shear and conver-
gence. A uniform variate η ∈ [0, 1] is drawn, and the galaxy
is only included in the catalog if [µ]−1/2 ≥ η; otherwise, it is
discarded.

4 MASS ESTIMATION

4.1 Likelihood function

To calculate the best-fit values and the confidence intervals
for the cluster parameters, we make use of the likelihood and
log-likelihood functions. The likelihood function is defined
as the probability that a set of parameters will result in the
given observables. The likelihood and log-likelihood func-

tions are given by

L =
Ngal∏
i=1

pε (εi |g(®xi))

` =

Ngal∑
i=1

ln pε (εi |g(®xi)),

(11)

where εi and ®xi are respectively the measured image el-
lipticity and image position in the lens plane, and Ngal is
the total number of source galaxies for which the image el-
lipticities have been measured. From Geiger & Schneider
(1998), the probability distribution of the image ellipticities
can then be written as

pε (ε |g) = psε (εs(ε |g))
���� ∂2εs

∂2ε

���� = psε (εs(ε |g))
(|g |2 − 1)2

|εg∗ − 1|4
. (12)

Substituting equations 9 and 12 into equation 11, the
likelihood function becomes

L =
Ngal∏
i=1

exp
(
−|εs

i
|2/σ2

ε

)
πσ2

ε (1 − exp
(
−1/σ2

ε

)
)
(|gi |2 − 1)2��εig∗i − 1

��4 , (13)

where εs
i

is included by inverting equation 7 for each of the
galaxies,

εsi =
εi − gi

1 − g∗
i
εi
. (14)

The log-likelihood function is then

` =

Ngal∑
i=1

ln
[
(|gi |2 − 1)2

]
−
|εs
i
|2

σ2
ε

− ln |εig∗i − 1|4, (15)

where the constant additive term has been dropped. Note
that the εs

i
in the likelihood is what the ith galaxy’s intrinsic

ellipticity would be for a given set of model parameters and
the observed image ellipticity, since the true intrinsic ellipt-
icity is unknown.

4.2 MCMC

Our method of cluster parameter estimation involves the
use of Markov Chain Monte Carlo (MCMC) which is based
on Bayesian statistics. Bayes’ theorem states that given the
data, D, the probability distribution of a set of parameters,
Θ, is

p(Θ|D) = p(D|Θ)p(Θ)
p(D) , (16)

where p(Θ|D) is the posterior probability distribution, p(D|Θ)
is the likelihood, p(Θ) is the prior, and p(D) is the evidence.

MCMC methods involve a guided random walk through
the posterior probability distribution, returning a represent-
ative set of sample points. The density of sample points in a
region of the posterior is directly proportional to the prob-
ability that the region contains the true parameter value.
This sample subset approximates the full posterior distri-
bution, which can then be marginalized over to obtain the
mean most likely parameter values without making a priori
assumptions about the form of the posterior.

In general, the MCMC sampler walks through para-
meter space, with steps governed by some transfer func-
tion which depends on the particular method employed.

MNRAS 000, 1–11 (2018)
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We use emcee, the Python implementation of the affine-
invariant MCMC ensemble sampler (Goodman & Weare
2010; Foreman-Mackey et al. 2013). In short, rather than
producing a single MCMC chain, this method utilizes mul-
tiple ‘walkers’, each exploring parameter space from different
starting positions. Candidate samples are selected for each
walker using the ‘stretch move’, wherein a point is chosen
along the vector between the current position of the walker
and of another randomly selected walker. One of the bene-
fits of this method is that the autocorrelation time, an im-
portant test of convergence, tends to be much shorter than
for the generic Metropolis-Hastings method. Additionally,
affine-invariant samplers perform equally well when there is
covariance between parameters. A more detailed explana-
tion of emcee and of affine-invariant ensemble samplers can
be found in Foreman-Mackey et al. (2013) and Goodman &
Weare (2010), respectively.

For our particular problem, we wish to obtain a repres-
entative set of samples from p(M200, c), the posterior prob-
ability distribution for the mass and concentration. For each
individual cluster, the dataset on which we do the analysis
stays constant, so we may neglect the evidence term in 16.
We impose flat priors for both M200 and c such that

c ∈ U(1, 30)

M200 ∈ U(∼ 1.45 × 1011M�,∼ 1.81 × 1016M�).
(17)

The inner and outer limits on M200 correspond to r200 = 0.1
Mpc and 3 Mpc, respectively. We use the log-likelihood func-
tion from equation 15. Using the MCMC sampler previ-
ously described above, we start 20 walkers centered in a
tight Gaussian ball around the best-fit maximum likelihood
mass and concentration calculated using the previously pro-
duced mock WL catalogs. Each walker has a 200 step burn-in
period, and the following 500 samples are combined across
all walkers for a total of 10000 samples from the posterior
distribution for each cluster projection. We then make use of
these MCMC chains to calculate the bias and scatter in M200
as described in the next section. To ensure that parameter
space has been properly explored by the MCMC algorithm,
we perform a test by selecting ten clusters at random from
our sample, each with three projections for a sample size
of thirty. We place the twenty walkers at random around
parameter space within the allowed range of the priors and
verify that the mean change in the estimated masses is less
than 1 per cent.

4.3 Bias and scatter calculation

We again make use of MCMC methods to calculate the vari-
ous statistics of mass estimates for each mass bin by utilizing
the MCMC chains produced for each cluster. For a given set
of data, ®gi , corresponding to the ith cluster in a mass bin,
the probability distribution of the resulting mass bias is

pi
(
µ, σ | ®gi

)
∝

[∫
dMlensp(®gi |Mlens)p(Mlens |µ, σ)

]
p(µ, σ),

(18)

where µ and σ are measures of bias and scatter in the estim-
ated mass (denoted here as Mlens). Applying Bayes’ theorem

to p(®gi |Mlens), we have

pi(®gi |Mlens) ∝
p(Mlens | ®gi)

p(Mlens)
. (19)

Since the mass prior, p(Mlens), is constant in the range of
allowed Mlens, neglecting it yields no difference in equation
18. The distribution p(Mlens | ®gi) is the posterior of the estim-
ated mass from which we already sampled following Section
4.2. We expect p(Mlens |µ, σ) to take the form of a log-normal
distribution (see discussion in Stanek et al. 2010) and im-
plementation in Schrabback et al. (2016)). The probability
distribution of Mlens is then

p (Mlens |µ, σ) =
1

Mlens

√
2πσ2

exp
(
−(ln Mlens − ln µMtrue)2

2σ2

)
.

(20)

This equation allows us to interpret ln µ and σ2 as respect-
ively the mean and variance of the normally distributed
ln (Mlens/Mtrue). We may translate these variables into the
various statistical quantities we wish for the corresponding
log-normally distributed variable Mlens/Mtrue. Its median,
mean, and variance are respectively

med = exp(ln µ) = µ

mean = exp
(
µ + σ2/2

)
var =

[
exp

(
σ2

)
− 1

]
exp

(
2µ + σ2

)
.

(21)

The remaining term in equation 18, p(µ, σ), represents the
prior on µ and σ which is both independent of the mass
samples and is the same for each cluster.

Again using Bayes’ theorem, the probability that all the
clusters in a bin have a particular bias and scatter satisfies

p
(
µ, σ | ®g

)
∝ p

(
®g |µ, σ

)
p (µ, σ) = L(µ, σ) p (µ, σ) , (22)

where L(µ, σ) is the likelihood function for µ and σ given the
MCMC mass samples for all the clusters in the bin. To ob-
tain L(µ, σ), we multiply the probabilities pi

(
®gi |µ, σ

)
for all

of the clusters in the mass bin. Each of the pi
(
®gi |µ, σ

)
may

be identified as the term in the square brackets of equation
18. Replacing the integral with a summation and substitut-
ing in the mass samples, the likelihood function for µ and σ

is therefore

L(µ, σ) =
Nc∏
i=1

pi
(
µ, σ | ®gi

)
=

Nc∏
i=1


1

Ns

Ns∑
j=1

[
1

Mlens, j,i

√
2πσ2

×

exp

(
−
(ln Mlens, j,i − ln µMtrue,i)2

2σ2

)]}
,

(23)

where Nc is the number of clusters in a given bin, Ns is the
number of samples, Mlens, j,i is the jth mass sample of the
ith cluster’s MCMC chain, and Mtrue,i is the cluster’s true
spherical over-density mass. In practice, we use the natural
logarithm of equation 23. We assume flat priors on ln µ and
lnσ such that

ln µ ∈ U(−1, 1)
lnσ ∈ U(ln 0.05, ln 10).

(24)
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There are many differences between our approach and
that of Henson et al. (2017), who also investigated the im-
pact of baryonic matter on weak lensing mass estimates.
Apart from considering a wider range of prescriptions of
baryonic physics, we directly fit to the ellipticities of back-
ground galaxies in synthetic lensing catalogues following the
procedure of Bahé et al. (2012) rather than fitting to ideal
azimuthally averaged shear profiles. This then includes the
impact of finite sampling as well as shape noise. This also
allows us to estimate the confidence contours on parameters
in the mass model which we do using an MCMC approach.

5 RESULTS

We calculate the bias and scatter in the MCMC fits to our
cluster sample using a variety of fit radii and two differ-
ent noise levels. We set the intrinsic source ellipticity to
σε = 0.05 for low-noise fits and σε = 0.25 for a more real-
istic intrinsic source ellipticity dispersion. To test sensitivity
to the inner fit radius, we perform three separate fits for
inner fit radii set to rin = 0.1, 0.25, and 0.5 Mpc with an
outer fit radius of rout = 3 Mpc. This is motivated by, for
example, Gao et al. (2008) who found that the fit radius has
an impact on the NFW concentration when fitting directly
to spherically averaged density profiles of dark matter haloes
from cosmological simulations. It is also motivated by Bahé
et al. (2012), who demonstrated that the extent of the data
field over which lensing data analysis is performed impacts
on the estimated NFW parameters using dark matter-only
cosmological simulations. Since baryonic physics impacts the
concentration of mass relative to dark matter-only simula-
tions, we examine how varying the inner fit radius changes
NFW parameter estimates.

We begin by producing MCMC chains of mass and con-
centration for each of the cluster projections as described
in Section 4.2, allowing mass and concentration to vary
freely. Figure 3 shows confidence contours for several ex-
ample clusters across the entire mass range with varying
inner fit radii and intrinsic ellipticity dispersions (e.g., see
x-axis of Figure 2 for lowest mass cluster in each bin). At
higher masses, the MCMC fits are typically able to con-
strain M200 and c at realistic noise levels regardless of the
selection of inner fit radius. When σε is lowered to 0.05,
the parameter constraints narrow as one would expect. The
distributions peak at different values since a different popu-
lation of background galaxies was used for each cluster pro-
jection. At lower masses, the parameter constraints signific-
antly worsen, as illustrated in the top rows of Figure 3. In
these examples, the confidence intervals of the parameters
remain open for every tested value of rin when σε = 0.25.
For these three runs, the MCMC algorithm typically over-
samples regions of unrealistically high concentration. These
samples often correspond to lower M200 values, since for a
given signal, higher concentration leads to lower mass estim-
ates due to the degeneracy between mass and concentration.
The parameters become well-constrained with low-noise, as
we expect given the significantly higher signal-to-noise.

We then randomly extract a subset of 2000 samples
from each of the individual cluster’s MCMC chains to serve
as input for the bias and scatter calculations on each mass
bin as described in Section 4.3, the results of which are shown

in Figure 4. Selecting 2000 samples instead of the full 10000
from each cluster does result in a significant difference in
the calculated bias. The top left panel of Figure 4 shows
the median bias and standard deviation of the log-normally
distributed mass estimates with respect to true mass using
an inner fit radius of rin = 0.1 Mpc and an intrinsic galaxy
ellipticity dispersion of σε = 0.25. For the same galaxy el-
lipticity dispersion, the top right (bottom left) panel shows
the same quantities using an inner fit radius of rin = 0.25
Mpc (0.5 Mpc), respectively. Given the poor constraints on
mass and concentration of individual clusters in the lowest
mass bins for data of this quality, the first three bins in
these subplots can be disregarded. Note that the bias does
not significantly vary for different inner fit radii for clusters
beyond the lowest mass bins (to the righthand side of the
black vertical line in the subplots). The bottom right panel of
Figure 4 shows the low-noise analog for an inner fit radius
of 0.5 Mpc. Our fits underestimate the M200 by ≈ 5% for
low masses, consistent with previous literature (e.g., Bahé
et al. 2012). The bias trends slightly upward, closer to 0
per cent for higher masses, though the error bars are larger
since the higher mass bins contain fewer clusters. The bias
seen in Figure 4 can be explained by the short-comings of
the NFW profile in describing cluster profiles, since realistic
clusters (such as those considered here from simulations)
are often non-spherical, contain substructure, and are em-
bedded in correlated and uncorrelated large-scale structure
not captured by the NFW profile (for the factors that cause
deviations in estimates of mass and concentration, see Bahé
et al. 2012). The low-noise fits for the other fit radii we con-
sidered are not shown as they look essentially identical to
the lower right panel of Figure 4.

Considering the fourth lowest mass bin, where indi-
vidual cluster masses are well-constrained, the right panel
of Figure 5 illustrates that changing the upper bound of the
prior on concentration from 30 to 10 changes the bias by
only a few per cent. For lower mass bins, where the concen-
trations of individual clusters are poorly constrained, the
limits on the concentration prior and the selection of the in-
ner fit radius significantly impact the resulting bias, shown
for the first bin in the left panel of Figure 5. Lowering the
upper limit on the concentration prior may artificially im-
prove the mass estimates, as regions of high concentration
(and correspondingly low mass) are excluded from the al-
lowed parameter space. Therefore, we do not consider mass
estimates below the vertical black line to be reliable.

We then perform fits using the same catalog of galax-
ies for each projection of each cluster in each simulation
run. The left panel of Figure 6 shows the magnitude of the
average relative difference in mass estimates between pro-
jections calculated pairwise for each cluster. The right panel
shows the relative difference in mass estimates between the
clusters containing only dark matter and their corresponding
baryonic clusters. These results indicate that scatter from
differences in cluster projections (and hence cluster shape)
dominate over the scatter due to the presence of baryons:
we return to this in the conclusions.

MNRAS 000, 1–11 (2018)
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Figure 3. This figure shows the distribution of fit mass and concentration samples for 4 example clusters across the mass range. The left

three panels on each row correspond to σε = 0.25 and rin = 0.1, 0.25, and 0.5 Mpc for the leftmost panels, the centre-left panels, and the

centre-right panels respectively. The rightmost panel corresponds to rin = 0.5 Mpc and σε = 0.05. We do not include the other low-noise
distributions as they are all similar. The mass range covered is the same along each row. The concentration range is the same except for

the rightmost panels which are zoomed in. This figure was produced using the corner python module (Foreman-Mackey 2016).

6 CONCLUSIONS

We have studied the sensitivity of the masses of clusters
derived from weak lensing measurements to the presence of
baryonic physics in comparison with the presence of dark
matter only. Our conclusions are:

(i) There is no significant difference in WL mass bias
and scatter between dark matter-only and galaxy clusters
with baryons included, for clusters of mass M200 ≥ 1014M�
. This specifically applies to parameterised mass models of
the NFW form, obtained while allowing the concentration
parameter to vary freely, since M-c relations are sensitive to
the presence of baryons.

(ii) Lower mass clusters are especially sensitive to the
value of the inner fit radius and limits on the concentra-
tion prior. Mass and concentration parameters are poorly
constrained for individual clusters below M200 ≈ 3×1014M�.
Stacking or use of an M-c relation is necessary to obtain
parameter estimates for these low-mass clusters.

(iii) We confirm the -5 to -10 per cent bias and scatter
in NFW mass estimates found in previous work (Becker &
Kravtsov 2011; Oguri & Hamana 2011; Bahé et al. 2012) and
show that this holds true for simulated clusters including

baryonic processes. For higher mass clusters, we find that
this bias improves somewhat.

(iv) We confirm that the masses of clusters taken directly
from the simulations differ between DMO and the baryonic
runs that include AGN feedback, with the latter on average
having lower masses. This is consistent with Velliscig et al.
(2014) and Cusworth et al. (2014). We also demonstrate sim-
ilar differences between cluster masses derived from the syn-
thetic weak lensing measurements. The difference between
the dark matter-only and AGN 8.0 clusters is of order 10 per
cent for the lowest mass clusters, tending to zero per cent
difference for the highest mass. This is likely a reflection of
the greater efficiency of AGN feedback for the lower mass
clusters. As discussed by e.g. Cusworth et al. (2014) this is
a very important consideration when cluster mass functions
are used as cosmological probes. This will be the topic of a
future study.

(v) We find that differences in cluster projections, a res-
ult of triaxial, non-spherical, clusters, tend to dominate over
the impact of baryons on WL mass estimation for individual
massive clusters. However, there are two important facts to
note here. Firstly, while scatter from cluster shape is lar-
ger, stacking many clusters together will effectively average

MNRAS 000, 1–11 (2018)
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Figure 4. The top left panel of this figure shows the median bias with respect to the true mass and the standard deviation of the

estimated masses as a function of true mass using an inner fit radius of rin = 0.1 Mpc and an intrinsic ellipticity dispersion of σε = 0.25.
The top right and bottom left panels show the same quantities using an inner fit radius of rin = 0.25 Mpc and rin = 0.5 Mpc, respectively.

The lower right panel shows the low-noise analog.

out their individual shapes, whereas baryonic processes (spe-
cifically AGN feedback), impact all clusters in more or less
the same way. Therefore stacking clusters will not smooth
out the impact of baryons. Secondly, we emphasize that al-
though the mass estimation bias is unchanged between simu-
lation runs of DMO and various baryonic models, the overall
masses of the haloes differ between the simulation runs. This
is important for constraints on cosmology from the cluster
mass function (e.g., Cusworth et al. 2014) and will be the
topic of future work.
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M., 2008, ApJ, 679, 1173
Schaye J., Dalla Vecchia C., 2008, MNRAS, 383, 1210

Schneider P., King L., Erben T., 2000, Astron. Astrophys., 353,
41

Schrabback T., et al., 2016, preprint, (arXiv:1611.03866)

Semboloni E., Hoekstra H., Schaye J., van Daalen M. P., Mc-
Carthy I. G., 2011, MNRAS, 417, 2020

Springel V., 2005, MNRAS, 364, 1105

Springel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776
Stanek R., Rasia E., Evrard A. E., Pearce F., Gazzola L., 2010,

ApJ, 715, 1508

Subramanian K., Cowling S. A., 1986, MNRAS, 219, 333
Velliscig M., van Daalen M. P., Schaye J., McCarthy I. G., Cacci-

ato M., Le Brun A. M. C., Dalla Vecchia C., 2014, MNRAS,

442, 2641
Velliscig M., et al., 2015, MNRAS, 453, 721

Wiersma R. P. C., Schaye J., Smith B., 2009a, MNRAS, 393, 99
Wiersma R. P. C., Schaye J., Theuns T., Dalla Vecchia C., Tor-

natore L., 2009b, MNRAS, 399, 574

Wu H., Allen S., Wechsler R., Blandford R., Church S., of Phys-
ics S. U. D., 2011, Precision Cosmology with Galaxy Cluster

Surveys. Stanford University, https://books.google.com/

books?id=GATwV0D12fcC

Zwicky F., 1937, ApJ, 86, 217

van Daalen M. P., Schaye J., Booth C. M., Dalla Vecchia C., 2011,

MNRAS, 415, 3649

This paper has been typeset from a TEX/LATEX file prepared by

the author.

MNRAS 000, 1–11 (2018)

http://dx.doi.org/10.1093/mnras/stx1469
http://adsabs.harvard.edu/abs/2017MNRAS.471..227M
http://dx.doi.org/10.1086/177173
http://adsabs.harvard.edu/abs/1996ApJ...462..563N
http://dx.doi.org/10.1111/j.1365-2966.2011.18481.x
http://adsabs.harvard.edu/abs/2011MNRAS.414.1851O
http://dx.doi.org/10.1051/0004-6361/201321591
http://adsabs.harvard.edu/abs/2014A%26A...571A..16P
http://dx.doi.org/10.1086/587859
http://adsabs.harvard.edu/abs/2008ApJ...679.1173R
http://arxiv.org/abs/1611.03866
http://dx.doi.org/10.1111/j.1365-2966.2011.19385.x
http://adsabs.harvard.edu/abs/2011MNRAS.417.2020S
http://dx.doi.org/10.1088/0004-637X/715/2/1508
http://adsabs.harvard.edu/abs/2010ApJ...715.1508S
http://dx.doi.org/10.1093/mnras/219.2.333
http://adsabs.harvard.edu/abs/1986MNRAS.219..333S
http://dx.doi.org/10.1093/mnras/stu1044
http://adsabs.harvard.edu/abs/2014MNRAS.442.2641V
http://dx.doi.org/10.1093/mnras/stv1690
http://adsabs.harvard.edu/abs/2015MNRAS.453..721V
https://books.google.com/books?id=GATwV0D12fcC
https://books.google.com/books?id=GATwV0D12fcC
http://dx.doi.org/10.1086/143864
http://adsabs.harvard.edu/abs/1937ApJ....86..217Z
http://dx.doi.org/10.1111/j.1365-2966.2011.18981.x
http://adsabs.harvard.edu/abs/2011MNRAS.415.3649V

	1 Introduction
	2 NFW density profile and weak lensing
	2.1 NFW density profile
	2.2 Weak lensing formalism

	3 Simulations
	3.1 Cosmo-OWLS
	3.2 Cluster selection and matching
	3.3 Catalog generation

	4 Mass estimation
	4.1 Likelihood function
	4.2 MCMC
	4.3 Bias and scatter calculation

	5 Results
	6 Conclusions

