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Abstract— The positional inaccuracies associated with the 

GPS/INS measurements make the terminal phase of the normal 

GPS/INS landing system imprecise. To solve this problem, an 

adaptive fuzzy data fusion algorithm is developed to obtain more 

accurate state estimates while the vehicle approaches the landing 

surface. This algorithm takes the translational displacements in x 

and y from the mounted Optical Flow (OF) sensor and fuses them 

with the INS attitude measurements and the altimeter 

measurements. This low cost adaptive algorithm can be used for 

vertical landings in areas where GPS outages might happen or in 

GPS denied areas. The adaptation is governed by imposing 

appropriate assumptions under which the filter measurement 

noise matrix R is predicted. The R matrix is continuously adjusted 

through a fuzzy inference system (FIS) based on the Kalman 

innovative sequence and the applied covariance-matching 

technique. This adaptive fuzzy Kalman fusion algorithm (AFKF) 

is used to estimate the vehicle’s states while landing is being 

commanded. AFKF results are compared with these obtained 

using a classical Kalman estimation technique. The AFKF 

algorithm shows better states estimates than its conventional 

counterpart does. Compared to prior landing systems, the 

proposed low cost AFKF has achieved a precision landing with less 

than 10 cm maximum estimated position error. Real precision 

landing flights were conducted to demonstrate the validity of the 

proposed intelligent estimation method.     

Index Terms—Precision Landing; Quadrotor, Intelligent 

Adaptive Estimation; Sensor Fusion; Optical Flow Sensor; Sensor 

Modeling. 

I. INTRODUCTION  

successful utilization of unmanned aerial Vertical Takeoff 

and Landing (VTOL) vehicles in missions that require a 

high degree of autonomy necessitates accurate and fast updated 

measurements from the onboard navigational sensors. For exa- 
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-mple, the quality of the Global Positioning System (GPS) 

becomes low when the Unmanned Aerial Vehicle (UAV) is 

approaching the ground, and a landing with few meters error 

might result. Therefore, the use of other more precise sensors is 

needed for the development of the sensor fusion design [1, 2, 3, 

4]. 

Vision sensors have been employed in designing autonomous 

landing systems in recent years due to their precision and high 

update rate measurements [5, 6]. A vision-based helicopter-

landing algorithm was proposed in [7]. The study achieved a 

precise landing with an average position error equal to 47 cm. 

However, their solution is computationally heavy and ill-suited 

for vehicles that have smaller payloads. In [8], a pattern of 

InfraRed (IR) LEDs organized in a T-shape and a Wii camera 

was utilized to perform an indoor auto takeoff, hovering and 

landing. The algorithm performs well at 60 cm height; however, 

at higher altitudes, the positional error will be large and 

inaccurate TOL might occur. In [9], a vision off-the-shelf 

hardware was used to provide real time estimates of the UAV 

orientation and the position relative to the landing position. 

Similarly, [10] studies the 6 Degree of Freedom (DOF) pose 

estimation of a Miniature Air Vehicle (MAV) using on-board 

monocular vision solutions. 

 OF sensors are considered robust low cost navigational 

sensors for UAVs applications [11]. OF sensors are used to 

avoid collision, measure the altitude and for position 

stabilization during the landing stage. Furthermore, OF sensors 

are used for height estimation and terrain navigation [12]. In 

[13], the OF measurements were used to control the vertical 

landing on a non-stationary platform. Whereas, In [14], an OF 

sensor was utilized for the position estimation of a quadrotor, 

and an auto-landing with 30 cm position error was performed. 

In [15], PX4FLOW optical sensor was used to perform hovering 

in an outdoor flight trajectory for Cheetah quadrotor. The 

optical flow components measured by the PX4FLOW sensor 

are compensated for the 3D rotations and transformed to the 

metric scale.  

Precise state estimation is needed for the UAV to perform 

successful autonomous flight. However, obtaining accurate 

states estimate is challenging due to the sensor drifts, noise on 

the onboard Commercial off-the-shelf (COTS) sensors and 

measurement bias [16]. Low cost COTS sensors with such 

expected errors are usually utilized in UAVs because of their 

lightweight, low power consumption and compact size. By 

fusing the measurements of different precise sensors, the chance 

of obtaining accurate estimates would be definitely higher. For 

example, in [17], the readings of the kinematic OF model are 

fused with the measurements of the GPS/INS to estimate the 3D 

velocity states and position of an object. In [18, 19, 16], a high-
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accuracy helicopter’s attitude and flapping states estimation 

was addressed using the Kalman filter. The unmeasured 

flapping angles of the Maxi Joker 3 helicopter were estimated 

with maximum error not exceeding 0.3°.  

The accuracy of the estimation algorithm in the Kalman filter 

is linked with the accuracy of the a priori information of the 

process and measurement noise statistics which are represented 

by the R and Q matrices [20, 21]. Practically, inaccurate priori 

information will degrade the performance of the estimator, and 

a divergence of the filter might result. Therefore, the adaptive 

Kalman filter has been devised to tackle the problem of having 

imperfect a priori information [22, 23, 24]. The Kalman filter 

can be adapted using different procedures, i.e., Innovative-

based Adaptive Estimation (IAE) and Multiple Model Adaptive 

Estimation (MMAE) [20]. The IAE technique depends on the 

enhancement of the filter performance via the adaptation of the 

matrices R and Q which are based on the filter innovation 

sequence. In [21, 25, 26], the IAE adaptation approach proves 

its capability of working with unknown measurement noise 

characteristics in the Kalman filter. Moreover, applying the 

fuzzy logic rules to adjust the statistical matrices has been 

studied in a number of published research papers. The fuzzy-

adapted Kalman filter shows better performance in rejecting the 

measurement noise and estimating the navigational states 

accurately [27, 28, 29].   

In this paper, the problem of precision terminal landing phase 

has been tackled using intelligent adaptive low cost multi-

sensor data fusion architecture. This architecture proposes a 

novel multi-sensor data fusion between the experimentally 

obtained OF sensors’ model, altimeter and INS solution for 

vertical precision landing applications. Compared to prior 

landing systems, the proposed integrated solution has succeeded 

in performing an autonomous precision landing in GPS denied 

environments with less than 5cm estimated altitude error. 

Moreover, the proposed intelligent estimation technique has 

shown high degree of robustness in the presence of external 

disturbances compared to the normal estimation techniques.  

 

The following sections of the paper are organized as follows. 

Section II describes the quadrotor model used in this study and 

the optical flow modeling design. Section III represents the 

design of the proposed sensor fusion algorithm architecture. 

Simulation results are presented in Section IV while Section V 

demonstrates the experimental validation. Finally, Section VI 

concludes the paper. 

II. QUADROTOR MODEL 

Quadrotor has been increasingly studied as a preferred UAV 

platform for various applications. It is sustained in the air by the 

lift of four actuators, and it has six degrees of freedom. A typical 

quadrotor incorporated in multi-rotor cross platform is 

composed of four symmetrical arms. Each of its four actuators 

is connected to a propeller with fixed-pitch blade, and the axes 

of rotation of the four propellers are fixed and parallel to each 

other (see Figure 1). The system state variables can be 

controlled using different movements directly related to the 

propellers velocities, which allow the quadrotor to reach a 

desired altitude and attitude [30] . 

 

A. Reference frame  

This section describes the various reference frames and 

rotation matrix that are used to describe the position and the 

orientation of the quadrotor. In addition, it shows the nonlinear 

dynamic equation of the quadrotor. The linear position (Γ) is 

determined using the vector between the origins of the B-frame 

and E-frame. The attitude of the vehicle is represented by the 

Euler angles (𝚯 = [𝜙 𝜃 𝜓]𝑇). These angles are defined by 

the orientation of B-frame with respect to the E-frame. 

 

 
Figure 1: Quadrotor system 

To map the orientation of a vector from B-frame to E-frame, 

a rotation matrix is needed [31]. This rotation matrix is given 

by: 

 

 

Where 𝑐𝑥 = cos(𝑥) and s𝑥= sin(𝑥). 

Along with the rotation matrix, a transfer matrix is needed to 

map the relation between the angular velocity (𝝎) in the B-

frame and Euler angles rates (�̇�) in the E-frame. This matrix is 

defined as follows [31]: 

 �̇� = 𝑻𝝎 
(2) 

 
𝑻 = [ 

1 𝑠𝜙𝑡𝜃    𝑐𝜙𝑡𝜃 

0 𝑐𝜙 −𝑠𝜙

0 𝑠𝜙/𝑐𝜃 𝑐𝜙/𝑐𝜃

 ] (3) 

Where  tx = tan(x). 

B. Dynamical Model  

Several dynamical models can be used to characterize the 

quadrotor dynamics. These models differ due to the various 

assumptions and simplifications that can be made to reduce the 

model complexities. As an illustration, having the vehicle 

aerodynamics into consideration would complicate the 

dynamical model to a high extent. Another well-used 

simplification is to consider the small angle assumption for 

miniature quadrotors. Reference [32] reviews dynamic models 

and controls of the quadrotor. A typical dynamical model of the 

quadrotor in E-frame could be derived using Newton’s second 

law as follows: 

 𝑅 = [

𝑐𝜃𝑐𝜓 −𝑐𝜙𝑠𝜓 + 𝑐𝜓𝑠𝜙𝑠𝜃     𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃 

𝑐𝜃𝑠𝜓     𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑐𝜓𝑠𝜙 + 𝑐𝜙𝑠𝜃𝑠𝜓

−𝑠𝜃 𝑐𝜙𝑠𝜃 𝑐𝜙𝑐𝜃

] 
(1) 
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(4) 

where �̈�, �̈� and �̈� represent the linear acceleration in x, y and z 

axes in E-frame, respectively.  𝑚 is the quadrotor’s mass, and 𝑔 

is the gravitational acceleration acting along the z-axis with 

respect to E-frame. �̈�, �̈� and �̈� represent the angular 

acceleration around x, y and z axes, respectively, with respect to 

E-frame. 𝐽𝑃 denotes the total rotational moment of inertia 

around the propeller axis. Equation 5 defines the inputs of the 

quadrotor system, which represent the thrust force, roll torque, 

pitch torque and yaw torque, respectively. 

 

[ 

𝑇𝑧

𝜏𝜙

𝜏𝜃

𝜏𝜓

 ] = [

   1    1 1    1
−𝑙    0 𝑙    0
   0    𝑙 0 −𝑙
   𝑑 −𝑑 𝑑 −𝑑

] [

𝑓1
𝑓2

𝑓3

𝑓4

] 

𝑓𝑖 = 𝑘 ∙ 𝜔𝑖
2 

𝛺 = − 𝜔1 + 𝜔2 − 𝜔3 + 𝜔4 

(5) 

 

Where 𝑙 is the quadrotor’s arm length, 𝑑, 𝑘 and Ω𝑖  represent the 

thrust factor, the drag factor and propellers speed respectively.  

C. Control Development 

This section describes the control system that is used to 

control the quadrotor through the simulation tests. Like any 

highly nonlinear system, quadrotors suffer from different 

constrains that compromise the quadrotor controller 

performance. Those constraints are not limited to strong 

subsystems coupling, model uncertainties, measurement noise 

and nonlinear dynamics. The underactuation problem is 

considered the main constraint that the quadrotors suffer from. 

In other words, the system cannot achieve instant acceleration 

in all arbitrary directions of its configuration space. Studies [33] 

and [34] show a comprehensive introduction on (VTOL) 

vehicles with basic control design ideas and principles. These 

articles explain system modelling of a general VTOL vehicle 

and consider different closed-loop control algorithms. 

In this work, the researchers are interested in using a simple, 

yet sufficient, controller that achieves trajectory tracking for the 

desired command signal [𝑥c, 𝑦c, 𝑧c, 𝜓c]; a more advanced 

control development can be found in [35, 36]. Using dynamic 

inversion technique, the system can be divided into two main 

subsystems [37]. The first subsystem includes the internal 

dynamics, which are described by applying the feedback 

linearization technique and it is known by: 

 [ 

ẍ

ÿ
 ] = [

θ

−ϕ
 ]  g 

(6) 

 

Simple PD and PID controls are used to control the subsystems 

signal defined as: 

 𝑃𝐷(𝑒𝑖) =  𝑃𝑖𝑒𝑖 + 𝐷𝑖

𝑑

𝑑𝑡
(𝑒𝑖) 

 

(7) 

 
𝑃𝐼𝐷(𝑒𝑖) =  𝑃𝑖𝑒𝑖 + 𝐼𝑖 ∫𝑒𝑖 + 𝐷𝑖

𝑑

𝑑𝑡
(𝑒𝑖) 

(8) 

where 𝑒𝑖 represents the tracking error signal. For the first 

subsystem, two PD controllers are used to generate the 

command signal [𝜙𝑐 , 𝜃𝑐]. The tracking error is defined as: 

 

 [
𝑒𝑥

𝑒𝑦
] = [

𝑥 − 𝑥𝑐

𝑦 − 𝑦𝑐

] 
(9) 

 

Using the PID controller, the command signal could be found 

as: 

 
𝜙𝑐 = 𝑃𝐷(𝑒𝑦)

𝜃𝑐 = 𝑃𝐷(𝑒𝑥)
 

 

(10) 

The fully actuated subsystem shown in equation 11 represents 

the second main subsystem and it is defined as: 
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(11) 

 

The altitude and attitude states [𝑧, 𝜙 , 𝜃 , 𝜓] are controlled using 

simple PD and PID controllers. On the other hand, the tracking 

error of the second subsystem is defined as: 
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(12) 

 

The control signals for the second subsystem are defined as: 

 

 

𝜏𝜙 = 𝑃𝐷(𝑒𝜙)

𝜏𝜃 = 𝑃𝐷(𝑒𝜃)

𝜏𝜓 = 𝑃𝐼𝐷(𝑒𝜓)

𝑢𝑧 = 𝑃𝐼𝐷(𝑒𝑧) + 𝑔

 
(13) 

 

The overall control scheme is illustrated in Figure 2.  



 

 

Figure 4. Landing pad [39] 

 

 
Figure 2: Quadrotor control scheme 

D. Optical flow sensor Model  

A special testing setup is designed to conduct the OF sensor’s 

modeling experiment. The PX4FLOW kit is attached to the 

free-end of the pendulum, and a high accuracy encoder with 

10,000 pulses per resolution (ppr) [38] is attached to the other 

end. This encoder measures the velocity of the pendulum while 

swaying. A distinguished landing pad with black stripes is 

placed underneath the OF sensor (see Figures 3 and 4). This 

allows the PX4FLOW sensor to recognize the moving features 

and obtain an accurate velocity measurement based on a fast 

image processing technique at 400 Hz.  

 

 
Figure 3. Optical flow sensor’s pendulum test stand [39]. 

The optical flow readings are acquired via the serial port of 

the microcontroller. PX4FLOW data was acquired using the 

MAVlink protocol at 115200 baud rate [40] and transformed to 

the dSPACE system using another serial port. The encoder 

velocity and position measurements [38] were also read through 

the dSPACE system. By knowing these measurements, the 

translational velocities of the pendulum can be computed. The 

OF sensor’s velocities along the x-axis and y-axis are measured 

and sent to a dSPACE unit utilizing the Real-Time Interface 

(RTI). The DS1104 R&D Controller Board [41] was used to 

record the measurements of both sensors in real time. 

A model for the PX4FLOW sensor was identified based on a 

system identification process. The system identification 

MATLAB toolbox (ident) was used to identify the dynamics of 

the optical flow sensor. The encoder measurements were used 

as the input to the OF model, and the OF sensor measurement 

was used as the output of the model, as shown in Figure 5.  

 

 
 

 

 

 
Figure 5. System identification scheme of OF model [39]   

To obtain a precise model of the OF sensor that is robust to 

the change in the vehicle’s altitude, the researchers have 

designed a pendulum with adjustable length to allow the OF 

sensor to be tested at several heights. The OF sensor was tested 

at four different heights (60, 80, 100 and 150 cm) to 

characterize the variation of the accuracy with the change in 

altitude. The pendulum was displaced from its lowest height by 

a certain angle and the motion profile was recorded for both 

sensors subsequently. 

The OF sensor dynamics are represented by a second order 

model which has a natural frequency of 13.85 rad/sec and a 

damping ratio of 0.53 [39]. This model was validated at the four 

different heights. This was done by inputting the encoder (truth) 

reading to the selected transfer function and comparing its 

output with the encoder’s readings and the real PX4FLOW 

readings. As shown in Figure 6, the obtained OF model shows 

significant matching with the performance of the real 

PX4FLOW sensor. 

 
Figure 6: Validation test of the OF sensor's model. 

As computed in Table 1, the selected model has small mean 

errors and small SD errors at various heights in comparison with 

the real PX4FLOW measurements. 

 

System ID Tool
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PX4FLOW
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Model
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Output



 

 

Table 1: Analytical comparison between the readings of the 

OF model and PX4FLOW at different heights. 

 

Height 

(cm) 

Mean 

error 

(ME) 

(m/sec) 

Standard 

deviation 

error 

(SDE)(m/sec) 

60 0.0064 0.0354 

80 0.0186 0.0642 

100 0.0613 0.1815 

150 0.0950 0.2815 

III. MULTISENSOR DATA FUSION ARCHITECTURE 

The COTS GPS/INS unit provides position estimates with 

few meters error [42, 43]. This estimation error is due to 

GPS/INS position measurement characteristics, such as the 

quality of the GPS receiver, multipath errors and the number of 

satellites in view. The resulting estimation error makes the 

GPS/INS insufficient as a stand-alone positional feedback 

system. Therefore, the precision landing is unguaranteed and an 

accurate augmentation for the GPS/INS measurements is 

needed. In [44], a precision landing with 27 cm maximum 

position error for the Maxi-Joker 3 helicopter was done using 

low cost GPS/INS/OF integrated solution. A PX4FLOW OF 

sensor was used to enhance the estimation accuracy of the 

GPS/INS system. In this study, the researchers assume that this 

algorithm is activated at the last few meters before touching the 

ground. Conventional and intelligent sensor fusion approaches 

have been implemented to obtain high-accuracy estimates of the 

dynamic states during the landing flight (see Figure 7). A 

model-based Kalman filter uses the attitude measurements of 

IMU 𝛹𝑚 = [𝜙𝑚 𝜃𝑚 𝜓𝑚 ] 
𝑇and Ω𝑚 = [𝑝𝑚 𝑞𝑚 𝑟𝑚 ] 𝑇 , 3-

axis body linear velocities 𝑉𝑚 = [𝑢𝑚 𝑣𝑚 𝑤𝑚 ] 𝑇 from the 

OF and the Altimeter readings 𝑧𝑚to obtain an accurate estimate 

for the position, velocity and the attitude states while landing is 

being performed. Furthermore, an adaptive fuzzy sensor fusion 

is designed to adapt the measurement noise matrix R through a 

well-tuned fuzzy inference system to obtain more accurate 

position estimates.   

  

Quadrotor
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Sensor Fusion 
Algorithms 
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Altimeter
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IMU

AFKF

KF

 
Figure 7: The sensor fusion scheme 

A. Kalman Filter design 

Considering the Gaussian assumption for the initial state error 

and all the noises associated with system model, the Kalman 

filter is considered an optimal Minimum Mean Square Error 

state estimator (MMSE) [20, 21, 16]. It provides an optimal 

estimation of the unknown states based on its recursive data 

processing algorithm. This estimation algorithm consists of the 

following two groups of equations: 

1) State and measurement prediction equations 

 �̂�𝑘+1|𝐾 = 𝐴𝐾�̂�𝑘|𝐾 + 𝐵𝐾𝑈𝐾 (14) 

 𝑃𝐾+1|𝑘 = 𝐴𝐾𝑃𝐾|𝑘𝐴𝐾
𝑇 + 𝑄𝐾  (15) 

 

2) State update equations 

 

 𝑣𝐾+1 = 𝑧𝐾+1 − 𝐻𝐾+1�̂�𝑘+1|𝐾 (16) 

 𝑆𝐾+1 = 𝑅𝐾+1 + 𝐻𝐾+1𝑃𝐾+1|𝑘𝐻𝐾+1
𝑇  (17) 

 𝑊𝐾+1 = 𝑃𝐾+1|𝑘𝐻𝐾+1
𝑇 𝑆𝐾+1

−1  (18) 

 �̂�𝑘+1|𝐾+1 = �̂�𝑘+1|𝐾 + 𝑊𝐾+1𝑣𝐾+1 (19) 

 𝑃𝐾+1|𝐾+1 = 𝑃𝐾+1|𝑘 − 𝑊𝐾+1𝑆𝐾+1𝑊𝐾+1
𝑇  (20) 

 

Equations 16 and 17 update the current state and error 

covariance estimates from time step 𝐾 to 𝐾 + 1. These 

estimates are used as a priori estimates for the next cycle. 

Equation 16 is referred to as the innovation sequence which 

provides the filter by the additional information about the states 

in consequence to the new measurement 𝑧𝐾+1. Equations 16-18 

combine the measurement updates into the a priori estimate to 

obtain and enhance the a posteriori estimate and estimate 

covariance (see equations 19 and 20).   

Assuming that matrices 𝐴𝐾, 𝐵𝐾 , 𝐻𝐾 , 𝑅𝐾 and 𝑄𝐾  noise 

matrices are known, the Kalman filter begins its state estimation 

cycle and a correction of the estimates is recursively performed 

as new measurements 𝑧𝐾 become available.  

The design of such linear state estimator dictates linearizing 

the dynamic state space model of the quadrotor. The dynamic 

model has been linearized at hover where the Euler rates body 

velocities are around zero. As a result, the linear dynamic 

system is rewritten as follows: 
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(21) 

The linear system is rewritten in state space form as: 

 

𝑑

𝑑𝑡
𝑥 = 𝐴𝑥 + 𝐵𝑢 − 𝐺 

 

(22) 

 𝑦 = 𝐶𝑥 
(23) 

where: 

𝒙 = [𝜙 𝜃 𝜓 𝑥 𝑦 𝑧 𝑝 𝑞 𝑟 𝑢 𝑣 𝑤]T, 
 



 

 

 

𝐮 = [τϕ τθ  τψ uz]T

 𝐲 = [x y ψ z]T

𝐀 = [
𝟎6×6 𝑰6×6

𝑎 𝟎10×6
] , a =

[
 
 
 
 0

𝑔

𝑚

−
𝑔

𝑚
0

0 0 ]
 
 
 
 

𝐵 =  [  
𝟎8×4

𝑏
  ]

  𝑏 =

[
 
 
 

  

1 𝐼𝑥⁄ 0 0 0

0 1 𝐼𝑦⁄ 0 0

0 0 1 𝐼𝑧⁄ 0

0 0 0 1 𝑚⁄

  

]
 
 
 

𝐺 = [
𝟎11×1

𝑔
]

 
 

 

𝐶 =  [  
𝟎8×4

0
  ] 

The diagonal measurement noise covariance matrix Rk is 

given as: 

  (24) 

The diagonal process noise covariance matrix Qk is also 

represented as: 

 

 
 

(25) 

The variances of Rk and 𝑄𝑘 are chosen carefully while 

designing the Kalman estimator. Knowing that the OF sensor is 

more precise than GPS/INS, the variances of the velocity states 

are chosen to be smaller than the variances of the position states. 

A model of a low cost MIDG GPS/INS unit has been 

considered for obtaining the attitude and the body rates 

measurements at 50 Hz [45]. The measurements specifications 

of this unit are listed in Table 2.  

Table 2: MIDG GPS/INS Measurements specifications. 

Measurements Mean error (ME)  

𝐀𝐧𝐠𝐮𝐥𝐚𝐫 𝐫𝐚𝐭𝐞𝐬 

Range ±300°/𝑠 

Non-Linearity 0.1% of FS 

Noise Density 0.05°/𝑠/√𝐻𝑧 

3 dB Bandwidth 20 Hz 

𝐀𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧 

Range ±6 𝑔 

Non-Linearity 0.3% of FS 

Noise Density 150 𝜇𝑔/√𝐻𝑧 

3 dB Bandwidth 20 Hz 

Attitude Accuracy (Tilt) 
𝟎. 𝟒° (𝟏𝝈) 

Position Accuracy 
𝟐 𝒎 𝑪𝑬𝑷,𝑾𝑨𝑨𝑺/𝑬𝑮𝑵𝑶𝑺 

B. Adaptive Fuzzy Kalman fusion 

The adaptive estimation approach is based on recursive 

updating process for the diagonal elements of the statistical 

matrices Rk and/or 𝑄𝑘. Assuming that the 𝑄𝑘 matrix is totally 

known, an adaptive estimation to adapt Rk has been designed 

based on an innovation adaptive estimation (IAE) approach. 

This approach is based on a covariance-matching algorithm 

which investigates the consistency of the actual covariance of 

the residual with its theoretical value. As shown in equations 

16-18,  𝑆𝐾+1 represents the theoretical covariance of the 

innovation sequence 𝑣𝐾+1. The actual covariance of the 

innovation sequence can be approximated using the following  

equation [20]:  

 �̂�𝑘+1 = (1\𝑁) ∑ 𝑣𝑖𝑣𝑖
𝑇

𝑁

𝑖=𝑖𝑜

 (26) 

where N is the size of the estimation window and 𝑖𝑜 = 𝑘 − 𝑁 +
1 represents the first sample inside the estimation window. The 

window size has been chosen experimentally to be 50, which 

gives a satisfactory smoothing of the statistical matrix.  

As a covariance-matching approach is used in this study, a 

new variable has to be declared to represent the degree of 

matching between (DoM) 𝑆𝐾+1 and 𝑣𝐾+1 [20, 21] as follows: 

 𝐷𝑜𝑀 =  𝑆𝐾+1 − �̂�𝑘+1 (27) 

After evaluating the discrepancy between the actual and the 

theoretical value of the covariance of the innovation sequence, 

a Fuzzy Inference System (FIS) has been tuned to compute the 

adjustment of the measurement noise matrix Rk+1 at each state 

estimation cycle. According to equation 19, any change in Rk 

leads to a change in 𝑆𝐾+1 accordingly. Hence, the discrepancy 

between 𝑆𝐾+1 and �̂�𝑘+1 can be reduced by varying the value of 

𝑆𝐾+1 through adjusting the value of Rk+1. This nonlinear 

adjustment is governed by a set of IF-THEN fuzzy linguistic 
description rules as follows [21] : 

1. If DoM is positive, this implies that 𝑆𝐾+1 is greater than 

�̂�𝑘+1; then decrease Rk+1.  

2. If DoM is negative, this implies that 𝑆𝐾+1 is smaller than 

�̂�𝑘+1; then increase Rk+1.  

3. If DoM is equal to zero (this implies that 𝑆𝐾+1 and �̂�𝑘+1 

are equal; then maintain Rk+1.  

Hence, Rk+1 can be adjusted as follows: 

 𝑅𝑘+1 = 𝑅𝐾 + Δ𝑅𝑘+1 (28) 

Where Δ𝑅𝑘+1is the adaptation value which adjusts the 𝑅𝑘+1at 

each estimation cycle. The proposed FIS takes the DoM value 

as an input and provides the adjustment value Δ𝑅𝑘+1 as an 

output. The Mamdani inference engine is used to provide the 
required Δ𝑅𝑘+1 from all the rules using min-max operators for 

composition, minimum operation for implication, as follows: 
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𝜇∆𝑅𝑘+1
= ⋃(𝜇𝐷𝑜𝑀𝑖 

∧ 𝜇𝑅𝑘+1𝑖 
) (29) 

where  is the membership function used to represent the fuzzy 

linguistic terms for the input and output variables. Three 

different Gaussian bell-shaped membership functions are 

utilized to describe the DoM input variable linguistic terms: 

negative, zero and positive {N,Z,P}, respectively, as shown in 

Figure 8. For the output variable Δ𝑅𝑘+1, shown in Figure 9,  

three different Gaussian bell-shaped membership functions are 

utilized to describe the variable linguistic terms as: decrease, 

maintain and increase {D,M,I}, respectively. 

 

A final crisp value for Δ𝑅𝑘+1 is fused from the accumulated 

output membership function from all the rules 𝜇∆𝑅. For this 

process, a centroid defuzzification function is used: 

  

Δ𝑅𝑘+1 = 
∫ Δ𝑅𝑘+1 𝜇(Δ𝑅𝑘+1) dΔ𝑅

∫  𝜇(Δ𝑅𝑘+1) dΔ𝑅
 

 

(30) 

 
Figure 8: DoM linguistic terms 

  
Figure 9: 𝚫𝑹𝒌+𝟏,linguistic terms 

Figure 10 below illustrates the graphical representation of the 

Adapted fuzzy sensor fusion algorithm. In each Kalman cycle, 

each variance of the diagonal variances of the R matrix is 

adjusted separately.   
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Figure 10: Graphical representation of AFKF algorithm 

IV.  SIMULATION RESULTS 

A simulation environment was used to test the performance 

of the proposed sensor fusion method. The simulated data of 

real states were considered in controlling the landing process. 

In this section, the estimation results of the conventional and 

adaptive fuzzy sensor fusion approaches are presented. The 

presented approaches use the modeled measurements to 

estimate the attitude, velocity, altitude and the unknown 

position states of the quadrotor. A precision landing test was 

performed to validate the proposed estimation method. The 

velocity and the position are controlled and estimated in the 

quadrotor’s body frame where the Z-axis is positive down (see 

Figure 1). In the landing test, the quadrotor is commanded to 

start descending from -3m altitude until it reaches the ground 

with a slope of 0.3 m/s. The quadrotor took approximately 10 

seconds to land safely and precisely.  

A. Conventional state estimation  

The attitude, linear and angular velocities and the position 

states are estimated using a linear Kalman estimator in this 

section. The linear estimator shows a significant performance in 

estimating the quadrotor states while landing.  

 

1)  Attitude estimation 

Figures 11 and 12 present the estimation of the attitude and 

the body rates states while landing is being performed. During 

the landing stage, the attitude angles are controlled to be around 

zero degrees to ensure safe landing. Figure 11 shows the real, 

measured and estimated attitude angles. It can be discerned that 

the proposed method estimates roll, pitch and yaw angles 

accurately. Figure 12 demonstrates the estimator’s ability in 
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terms of rejecting the associated measurement’s noise and 

matching the real body rates of the quadrotor.  

 
Figure 11: Attitude estimation. 

 
Figure 12: Angular body rates estimation 

2) Velocity estimation  

 

Figure 13 shows the estimated velocity profile during the 

landing stage. As the filter takes precise PX4FLOW 

measurements in m/sec as velocity measurements, precise 

velocity estimates are expected. 

The quadrotor performs slight velocity in 𝑋 and 𝑌 while 

landing and these small velocities are estimated accurately as 

shown in Figure 13. As discerned, the measurement noise of the 

velocity has been significantly rejected.  

 

 
Figure 13: linear body velocities estimation 

3) Position estimation   

Figure 14 exhibits the state estimation of the unknown 𝑋 and 

𝑌 position states. From the Figure, it is clear that the 𝑋 position 

estimation converges to the real value of the state. On the other 

hand, the conventional KF has estimated 𝑌 position with a 

maximum drift of 7.5 mm. Similarly, as shown in Figure 15, the 

conventional estimator performs well in estimating the 𝑍 

position. The quadrotor is controlled to start descending from -

3m in Z body frame until it reaches the ground with a slope of 

0.3 m/s. The quadrotor took approximately 10 seconds to land 

safely and precisely (see the dashed red ellipse in Figure 15). 

The conventional Kalman estimator has succeeded in obtaining 

an accurate estimation of the altitude with 7 cm RMSE 

estimation error. 

 
Figure 14: X and Y position estimation 

 
Figure 15: Altitude estimation 

B. Adaptive fuzzy state estimation  

The AFKF estimator has been developed in this study to 

obtain more accurate position state estimates while precision 

landing flight is being performed. The results of AFKF state 

estimation for the precision landing flight are presented in this 

section. Practically, the AFKF proves its superiority over the 

conventional filter in terms of estimating the unknown position 

states, body velocities and, most importantly, the altitude. 

 Figures 15 and 16 demonstrate the adaptation of the altitude 

measurement variance during landing. Figure 16 shows the 

adjustment amount Δ𝑅𝑘+1 of the altitude measurement 

variance; Figure 17 illustrates the adjusted R variance for the 

altimeter measurements while landing. Figure 18 shows the 

adjusted R variances for the PX4FLOW measurements. 

Figure 19 presents the X and Y position states estimation 

during the landing phase. Both estimators have obtained 

accurate estimates of the X and Y axes. Knowing that no 

measurements are obtained for these states, from the figure, it 

can be observed that the AFKF still outperforms the normal KF 

in terms of having smaller divergence with the unmeasured real 

states. This means that the AFKF enhancement in estimating the 

other states has improved the estimation of the X and Y position 

states indirectly. Figure 20 shows that the AFKF estimated 



 

 

altitude has a significant matching with the real altitude. 

Statistically, the AFKF has obtained an altitude estimation with 

a Root Mean Square Estimation Error (RMSEE) of 0.04544m 

while the KF has performed the altitude estimation with 

RMSEE of 0.06977m. This means that the AFKF has improved 

the altitude estimation by 34.87%. Figure 21 presents the 

estimation errors of the position states. 

    

 
Figure 16: R adjustment for the altitude measurement noise 

variance (𝚫𝑹𝒌+𝟏) 

 
Figure 17: Adapted noise covariance for the altitude 

measurement (𝑹𝒌+𝟏) 

 
Figure 18: Adjusted variances of velocity noise measurements  

 
Figure 19: AFKF position estimation 

 
Figure 20: AFKF altitude estimate 

 
Figure 21: position estimation error during landing 

The velocity states are estimated accurately as shown in 

Figure 22. u and v velocity states are estimated with less than 5 

cm/sec estimation error.  

The used OF dynamic model was developed experimentally 

to include the dynamics of the sensor’s accuracy and divergence 

[46]. Therefore, the OF divergence information was included in 

the obtained second order OF model. Figure 23 presents the 

vertical velocity estimation while landing. The quadrotor is 

descending at a constant speed of 0.3 m/s. As shown, AFKF has 

shown better performance in following the real state while the 

quadrotor is approaching the landing pad.   

 
Figure 22: velocity estimation error during landing 



 

 

 
Figure 23: Vertical velocity estimation 

C. AFKF response to external disturbances  

This section investigates the dynamic response of the 

proposed intelligent estimator and its classical counterpart 

estimator while applying an external disturbance. A step 

disturbance of 5° has been injected to the yaw state as shown in 

Figure 24. The AFKF estimator has shown superiority in terms 

of coinciding with the real state, convergence and settling time 

compared to the classical KF. The AFKF has improved the 

settling time of the KF by 23.3 %. From the Figure, it can be 

realized that the performance of the AFKF is significantly 

getting better as new measurements arrive. This confirms the 

accurate adaptation of the R matrix of the filter. In Figures 25-

26, noisy disturbances of 10° and 20° has been applied 

respectively to the heading state while landing. The AFKF has 

also shown a discerned ability of converging faster than the KF.  

 
Figure 24: Estimators response a 5° disturbance. 

 

 
Figure 25: Estimators response to a 10° disturbance 

 
Figure 26: Estimators response to a 20° disturbance. 

V. EXPERIENTAL VALIDATION 

In this section, a precision indoor landing experiment was 

conducted at different heights to validate the presented adaptive 

estimation technique. An F450 Quadrotor equipped with 

Pixhawk autopilot and PX4FLOW OF sensor was used for the 

precision landing experiment. Taking into account the Center of 

Gravity (CoG) of the quadrotor and the orientation of the 

Pixhawk autopilot, the PX4FLOW sensor was placed at the 

bottom of the quadrotor looking towards the landing pad (see 

Figures 27 and 28). The Pixhawk autopilot sampled the 

calibrated PX4FLOW readings through the I2C communication 

protocol at around 100 Hz .The optimal resolution of the optical 

flow sensor was ensured through adjusting the parameters of the 

OF sensor using the QgroundControl software [15]. Moreover, 

a calibration process has been performed to ensure the clear 

view of the pattern by adjusting the lens position and monitoring 

the captured image by the PX4FLOW sensor using 

QGroundControl software. Using this software, the PX4FLOW 

velocities and vertical distance measurements were used for the 

velocity and the position control loops. A landing pad of 

1.68X1.18 m dimension and horizontal black stripes pattern was 

placed on the ground. The quadcopter was commanded to hover 

at several heights above the landing pad and land smoothly at 

approximately constant descending speed (see Figure 27). 

 

 
Figure 27: OF precision landing Experiment 



 

 

 
Figure 28: Mounted PXFLOW sensor 

The section presents the proposed state estimation results 

while real precision landing is being performed at altitudes of 

1m, 1.5m and 2m. The attitude, body velocities and position 

states are estimated using classical and adaptive state estimation 

techniques at each altitude. 

A. Descending from 1m  

In this section, the state estimation results of the attitude, body 

velocities and position states are illustrated while the Quadrotor 

is performing the precision landing at an altitude of 1m. 

1) Attitude estimation  

Figures 29-31 demonstrate the attitude estimation of the 

quadrotor while approaching the ground from an altitude of 1m. 

The performance of the proposed AFKF shows better 

coincidence with the measurement compared to the classical 

KF. The AFKF shows faster dynamic response and better 

convergence. It moves from its zero initial value and follows the 

measurement updates faster than the normal KF.  

 

 
Figure 29: Roll state estimation  

 
Figure 30: Pitch state estimation 

 
Figure 31: Heading state estimation 

2) Velocity estimation 

The results in Figures 32-34 exhibit the body velocities state 

estimation of the quadrotor while landing from a height of 1m. 

These states are measured by the PX4FLOW OF sensor. As 

shown, the AFKF has shown an agreement with the measured 

velocity states of the quadrotor.      

 
Figure 32: X velocity state estimation 

 
Figure 33: Y velocity state estimation 



 

 

 
Figure 34: Z velocity state estimation 

3) Position estimation  

The quadrotor’s position estimation is illustrated in Figures 

35-37. From the Figures, it can be seen that both estimators has 

succeeded in obtaining estimates of the unmeasured slight 

motion in X and Y position states while precision landing is 

being carried out.  

 
Figure 35: X position estimation 

 
Figure 36: Y position estimation 

Figure 40 shows the Altitude estimation of the quadrotor 

while descending. The measurements of the ultrasonic sensor of 

the PX4FLOW were considered for the altitude estimation. The 

AFKF has shown accurately adapted altitude estimation. It 

adapts its performance as the ultrasonic updates the altitude 

measurements.      

 
Figure 37: Altitude estimation 

B. Descending from 1.5m  

This section illustrate the state estimation of the attitude, body 

velocities and position states while descending from height of 

1.5 m.  

1) Attitude estimation  

Figures 38-40 show the attitude estimation of the quadrotor. 

Both estimators shows an agreement with the measurement of 

the roll, pitch and the heading states. The AFKF exhibits a faster 

dynamic response and better coincidence with the measured 

attitude changes of the vehicle while landing is being carried 

out.  

 
Figure 38: Roll state estimation 

 
Figure 39: Pitch state estimation 

 
Figure 40: Heading state estimation 

2) Velocity estimation  

Figures 41-44 presents the body velocity states estimation of 

the vehicle while landing. According to these figures, the AFKF 

adapts its performance throughout the flight in order to ensure 

its agreement with the measured velocity states.  



 

 

 
Figure 41: X body velocity estimation 

 
Figure 42: Y body velocity estimation 

 
Figure 43: Z body velocity estimation 

3) Position estimation  

The position estimation is shown in Figures 44-46. The AFKF 

has estimated the slight motion in X and Y while landing from 

1.5 is performed. Moreover, the AFKF has estimated the 

gradual descending of the vehicle. In figure 49, the AFKF 

shows better coincidence with ultrasonic measurement. 

 
Figure 44: X position estimation 

 
Figure 45: Y body position estimation 

 
Figure 46: Z body position estimation 

C. Descending from 2m  

The section addresses the precision landing estimation results 

at higher height. The Quadrotor’s state estimation has been 

performed while landing from 2m height is being conducted.  

  

1) Attitude estimation  

Figures 47-49 represent the estimation of the quadrotor’s 

attitude while landing from 2m.The AFKF has succeeded in 

following the measurement updates of the roll, pitch and 

heading states. 

  

2) Velocity estimation  

The velocity estimation is shown in Figures 50-52. The AFKF 

has estimated the small changes in the X and Y velocities while 

landing from 2m is performed. As shown in figure 52, the AFKF 

has estimated the gradual descending of the vertical velocity of 

the vehicle.  

 

 

 
Figure 47: Roll state estimation 



 

 

 
Figure 48: Pitch state estimation 

 
Figure 49: Heading state estimation 

3) Position estimation   

The position states are estimated as shown in Figures 53-55. The 

AFKF has estimated the small displacements in X and Y while 

landing from 2m is performed. In Figure 55, the AFKF shows 

better coincidence with ultrasonic measurement. 

 

 
Figure 50: X body velocity estimation 

 
Figure 51: Y body velocity estimation 

 
Figure 52: Z body velocity estimation 

 
Figure 53: X body position estimation 

 
Figure 54: Y body position estimation 

 
Figure 55: Z body position estimation 

VI. CONCLUSION  

The problem of precise terminal landing phase of multi-rotor 

UAV’s using low cost adaptive fuzzy multisensor data fusion 

architecture has been addressed in this paper. This low cost 

adaptive architecture can be used for vertical landings in areas 

where GPS outages might happen or in GPS denied areas. A 

model-based sensor fusion algorithm between the body linear 

velocities coming from the OF sensor, the attitude 

measurements of the INS unit and the altimeter readings is 



 

 

proposed. The conventional estimator has exhibited a rigorous 

performance in estimating the quadrotor states throughout the 

landing flights phases. For more precise states estimation and, 

more specifically, altitude estimation, an adaptive fuzzy data 

fusion algorithm has been developed. The presented AFKF 

results demonstrate the superiority of the Adaptive Fuzzy fusion 

technique in estimating the dynamic states over the 

conventional KF. The proposed AFKF shows an accurate 

adaptive altitude estimation and improves the estimation 

accuracy by 34.87% compared with the conventional KF. The 

accuracy of the obtained results allows the utilization of the 

proposed algorithm in the landing applications of quadrotor 

platforms in GPS-denied environments. As a future work of this 

research, a disturbance rejection capability along with a fault 

detection and recovery algorithm will be implemented to 

improve the accuracy of the proposed precision landing 

technique.  
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