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stress is on the methodological aspects that include parametric flow techniques and methods for solv- 

ing mathematical programming problems with submodular constraints. We show that the use of these 

methodologies yields fast algorithms for solving problems on single machine or parallel machines, with 

either one or several objective functions. For a wide range of problems with controllable processing times 

we report algorithms with the running times which match those known for the corresponding problems 

with fixed processing times. As a by-product, we present the best possible algorithms for a number of 

problems on parallel machines that are traditionally studied within the body of research on scheduling 

with imprecise computation. 
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. Introduction 

Scheduling with controllable processing times ( SCPT ) is an active

rea within scheduling research. It reflects the modern trend that,

nlike the classical scheduling models, the processing times of

he jobs are not given constants. One type of models that treat

cheduling problems with changing times are those that allow dy-

amic changes of the processing times depending on the state

f the processing machines, including various deterioration and/or

earning effects, as well as machine maintenance. Another type of

odels, which is the topic of this review, gives the decision-maker

he power of selecting the processing times from given intervals. 

Finding a solution to an SCPT problem involves two decisions:

i) selecting actual processing times for all jobs, and (ii) allocat-

ng and sequencing the jobs on the machines in order to achieve

 required level of quality. The first decision incurs a penalty that

epends on compression amounts of the jobs, i.e., on the reduction

f a job’s processing time from its given value. The second decision

ffects the system performance measured in terms of a scheduling

bjective depending on job completion times, e.g., the makespan. 

The SCPT research has been active for more than 35 years. What

s unusual is that during all these years there has been a parallel
∗ Corresponding author. 
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tream of research, termed Scheduling with Imprecise Computation

 SIC ). In the range of models studied within the SIC research the

rocessing machines are seen as processors, the jobs are compu-

ational tasks, and these tasks are allowed to be processed par-

ially, thereby generating errors of computation. No close exami-

ation is needed to observe that the SIC models are versions or,

ore precisely, particular meaningful interpretations of the SCPT

odels. Both the SCPT and the SIC studies address essentially the

ame range of problems, and often apply the same methods. 

The word “parallel” used in the previous paragraph very well

escribes a surprising fact that until very recently the SCPT re-

earch and SIC research existed almost independently of each

ther, with almost no interaction or cross-referencing. For exam-

le, a rather comprehensive survey on the SCPT models by Shabtay

nd Steiner (2007) does not mention the results obtained by re-

earchers who study the SIC models. Similarly, only a single para-

raph in the survey on the SIC models by Leung (2004) admits a

ink between that area and SCPT. As we show in Section 2 , the

CPT and SIC models are exactly the same. Throughout this paper,

e normally adopt the term SCPT as the main one relevant for all

cenarios, and refer to SIC whenever we refer to the context of im-

recise computation and review the results obtained within the SIC

ody of research. 

Bringing together and establishing the true relations between

he SCPT and the SIC models is an important, but secondary goal
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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of this survey. Our main task is to review major changes that have

taken place during the last decade, since the most recent reviews

by Shabtay and Steiner (2007) and Leung (2004) were published. 

From the historical perspective, it can be observed that most

of earlier publications employed a range of rather straightforward

approaches. These include simple reformulations of the SCPT prob-

lems in terms of finding either the maximum flow or the mini-

mum cost flow in a special network. Many other papers supplied

greedy-like procedures, normally accompanied by lengthy justifi-

cation proofs, full of cumbersome details. Applicability of these

methods was exhausted by the early 20 0 0s, and new theoretical

results on the SCPT models became rather rare. 

Major components that have extended the toolkit of the SCPT

techniques include the methods for solving parametric flow prob-

lems and methods for solving submodular optimization problems,

i.e., mathematical programming problems with submodular con-

straints. Both of these components have been known for about 30

years, but the attempts to apply them in the SCPT context have

been rather limited. Among noticeable examples is the paper by

McCormick (1999) who developed a fast method for finding the

maximum flow in networks with parametric capacities of some

arcs and applied this method for solving quite general SCPT prob-

lems. With respect to the submodular optimization methodology,

Nemhauser and Wolsey were among the first who noticed that the

SCPT models could be handled by methods of submodular opti-

mization; see, e.g., Example 6.1 (Section 6 of Chapter III.3) of their

book Nemhauser and Wolsey (1988) . 

Thus, the methods that we discuss in this paper, strictly speak-

ing, are not new. We want to demonstrate that their systematic

use, correct adaptation and appropriate further development lead

to a range of efficient solution algorithms. This produces a general

framework for handling the SCPT problems, which (i) replaces a

collection of scattered purpose-built algorithms by providing faster

and easier justifiable techniques; (ii) is able to solve problems

which have not been addressed earlier; (iii) often supplies algo-

rithms with the running times that cannot be improved, at least at

the current stage of knowledge. 

The paper is organized as follows. The SCPT model is formally

introduced in Section 2 , where we also review its applications to

various problem areas, including the SIC and late work models. The

main focus is on the problems of finding deadline-feasible preemp-

tive schedules on either a single machine or on parallel machines. 

Section 3 introduces the processing capacity function, a crucial

concept for solving the SCPT problems, as well as their counter-

parts with fixed processing times. 

Section 4 presents various network flow techniques, which con-

stitute the first of methodologies discussed in this paper. Among

reviewed techniques are those for finding parametric maximum

flow by Gallo, Grigoriadis, and Tarjan (1989) and their multipara-

metric extension by McCormick (1999) . Since most of the SCPT ap-

plications of the network flow techniques deal with unbalanced

bipartite network, we also review the speeding-up techniques by

Ahuja, Orlin, Stein, and Tarjan (1994) . 

Section 5 illustrates the use of Methodology 1 for solving feasi-

bility scheduling problems with fixed processing times. In particu-

lar, we revise a perception widely accepted in the SIC community

regarding the running time needed for finding a deadline-feasible

schedule on identical parallel machines. Section 6 elaborates on

Methodology 1 by applying it to the SCPT problems of minimiz-

ing total compression cost on parallel machines, where multipara-

metric network flow techniques by McCormick (1999) give the best

results. 

Section 7 overviews what we call Methodology 2: solving lin-

ear programming problems over a submodular polyhedron inter-

sected with a box. Such a problem, that we call Problem (LP), is

the main model for various SCPT problems that involve minimizing
otal compression cost. In particular, in Section 7.2 . Problem (LP)

nd Methodology 2 are used to solve bicriteria problems on paral-

el machines to simultaneously minimize (in the Pareto sense) the

aximum completion time and the total compression cost. 

Methodology 3 presented in Section 8 can be seen as further

evelopment of Methodology 2. There we present a decomposition

lgorithm for solving Problem (LP) designed by Shioura, Shakhle-

ich, and Strusevich (2015 , 2016) . In Sections 8.2 and 8.3 we de-

cribe how to adapt Methodology 3 to solving a range of SCPT

roblems to minimize the total compression cost. 

Sections 9 and 10 address the problems that involve minimizing

he maximum compression cost. Such problems are traditionally

onsidered within the SIC body of research. We develop new re-

ults that are based on application of Methodology 1, in particular

n solving problems of lexicographic flow sharing which is done by

dapting parametric flow techniques of Gallo et al. (1989) . Result-

ng algorithms solve the problems on parallel machines to mini-

ize the maximum cost as well as to minimize both the maximum

ost and total cost (in the lexicographic sense). The running times

f these algorithms are the best possible. 

New results also appear in Section 11 , where we study a

uadratic cost function, either alone or in combination with an-

ther cost function, total or maximum. The algorithms of this sec-

ion are natural adaptations of those from Sections 9 and 10 due

o a link known in submodular optimization between the problems

f minimizing a quadratic function and finding a parametric flow. 

Conclusions are summarized in Section 12 . 

. Models and applications 

In this paper, we mainly address scheduling problems of the

ollowing type. The jobs of set N = { 1 , 2 , . . . , n } have to be pro-

essed either on a single machine M 1 or on parallel machines

 1 , M 2 , . . . , M m 

, where m ≥ 2. 

In the classical scheduling setting, each job j ∈ N is given its pro-

essing time p ( j ). In the SCPT setting, the actual processing time

 ( j ) of job j ∈ N is not given in advance but has to be chosen by a

ecision-maker from a given interval [ p ( j) , p ( j)] . Such a decision

esults in compression of the longest processing time p ( j) down

o p ( j ), and the value x ( j) = p ( j) − p( j) is called the compression

mount of job j . Compression may decrease the completion time of

ach job j but incurs additional cost. 

Given m parallel machines, we distinguish between the identical

achines and the uniform machines. In the former case, the ma-

hines have the same speed, so that for a job j with an actual pro-

essing time p ( j ) the total length of the time intervals in which this

ob is processed in a feasible schedule is equal to p ( j ). If the ma-

hines are uniform, then it is assumed that machine M i has speed

 i , 1 ≤ i ≤ m . If for job j the value p ( j) is compressed to p ( j ) and

his job is assigned to machine M i alone then the duration of such

rocessing is p ( j )/ s i . Throughout this paper, the uniform machines

re numbered in non-increasing order of their speeds, i.e., 

 1 ≥ s 2 ≥ · · · ≥ s m 

. (1)

Each job j ∈ N is given a release date r ( j ), before which it is not

vailable, and a deadline d ( j ), by which its processing must be com-

leted. In the processing of any job, preemption is allowed, so that

he processing can be interrupted on any machine at any time and

esumed later, possibly on another machine (in the case of paral-

el machines). It is not allowed to process a job on more than one

achine at a time, and a machine processes at most one job at a

ime. 

Let C ( j ) denote the completion time of job j ∈ N , provided that

ts processing time is equal to p ( j ). A schedule is called feasible

f no job j is processed outside the time interval [ r ( j ), d ( j )]. To

olve a problem with fixed processing times means either to find a
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easible schedule for the corresponding machine environment if it

xists or to report that such a schedule does not exist. Adapting

tandard notation for scheduling problems by Lawler, Lenstra, Kan,

nd Shmoys (1993) , we denote a generic feasibility problem with

xed processing times by α| r ( j ), C ( j ) ≤ d ( j ), pmtn |−. Here, in the

rst field α we write “1” for a single machine, “P ” in the case of

 ≥ 2 identical machines and “Q ” in the case of m ≥ 2 uniform ma-

hines. In the middle field, the item “r ( j ) ” implies that the jobs

ave individual release dates; this parameter is omitted if the re-

ease dates are equal. The condition “C ( j ) ≤ d ( j )” reflects the fact

hat in a feasible schedule the deadlines should be respected; we

rite “C ( j ) ≤ d ” , if all jobs have a common deadline d . The abbre-

iation “pmtn ” is used to point out that preemption is allowed. 

Solving a typical problem from the SCPT range requires two

ecisions: (i) finding the compression amounts x ( j ) for all jobs

nd (ii) determining a deadline-feasible preemptive schedule with

ctual processing times p( j) = p ( j) − x ( j) . The objective is to

inimize a certain penalty function � that depends on compres-

ion amounts x ( j ). For the range of problems traditionally consid-

red in the SCPT literature, the most studied objective function

epresents the total compression cost and we denote it by �� =
 

j∈ N w T ( j) x ( j) , where w T ( j) is the unit cost, i.e., the cost of com-

ressing job j ∈ N by one unit of time, and given by a non-negative

eal number. Problems of minimizing the maximum compression

ost are mainly studied within the SIC body of research; we de-

ote such an objective function by �max = max { x ( j) /w M 

( j) | j ∈ N} ,
here for a given positive weight w M 

( j ) the fraction 1 /w M 

( j ) rep-

esents the unit cost. Our choice of writing out function �max 

n terms of converting costs into weights will become clear in

ection 9 . 

To refer to an SCPT problem, we use the generic nota-

ion α| r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d ( j ) , pmtn | �. Here, we write

p( j) = p ( j) − x ( j) ” to indicate that the processing times are con-

rollable and x ( j ) is the compression amount to be found. Besides,

n the third field we indicate that � is a penalty function to be

inimized. While the notation above is used to denote SCPT prob-

ems with a single criterion, it can be adjusted to refer to the mul-

icriteria problems. We also look at the constrained problems, in

hich one type of the penalties, e.g., the total cost, is minimized

n the class of the schedules with the minimum value of the other

enalty function (such as minmax cost), or vice versa. Problems of

he latter type are traditionally studied in the SIC literature; see

o (2004) . 

We illustrate several scenarios of interpretation of the SCPT

odel α| r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d ( j ) , pmtn | � in various

pplication areas. 

Resource-dependent times. Janiak and Kovalyov (1996) argue

hat the processing times are resource-dependent , so that the more

nits of a single additional resource is given to a job, the more it

an be compressed. In their model, a job j ∈ N has a ‘normal’ pro-

essing time b ( j ) (no resource used), and its actual processing time

ecomes p( j) = b( j) − a ( j ) u ( j ) , provided that u ( j ) units of the re-

ource are allocated to the job, where a ( j ) is interpreted as a com-

ression rate. The amount of the resource to be allocated to a job

s limited by 0 ≤ u ( j ) ≤ τ ( j ), where τ ( j ) is a known job-dependent

pper bound. The cost of using one unit of the resource for com-

ressing job j is denoted by v ( j) , and it is required to minimize

he total cost of resource consumption. This interpretation of the

esource-dependent times is essentially equivalent to that adopted

n our paper, which can be seen by setting 

p ( j) = b( j) , p ( j) = b( j) − a ( j) τ ( j) , x ( j) = a ( j) u ( j) , 

 ( j) = v ( j) /a ( j) , j ∈ N. 

Chen–McCormick model. A very similar model for schedul-

ng with controllable processing times is due to Chen (1994) ,

ater studied by McCormick (1999) . In particular, McCormick
1999) gives algorithms for finding a preemptive schedule for par-

llel machines that is feasible with respect to arbitrary release

ates and deadlines. The actual processing time of a job is de-

ermined by p( j) = max { b( j) − a ( j ) λ( j ) , 0 } and the objective is to

inimize the function �j ∈ N λ( j ). This is also similar to our inter-

retation due to 

p ( j) = b( j) , p ( j) = 0 , x ( j) = min { a ( j) λ( j) , b( j) } , 
 ( j) = 1 /a ( j) , j ∈ N. (2) 

Make-or-buy decision making. Manufacturing companies often 

o not fulfill the whole order internally but delegate a part of it to

ubcontractors. Then p( j) = p ( j) − x ( j) is understood as the cho-

en actual time for internal manufacturing of order j , where x ( j )

hows how much of the order is subcontracted and w ( j) x ( j) is the

ost of this subcontracting. For example, in problem 1 | r( j) , p( j) =
p ( j) − x ( j ) , C( j ) ≤ d ( j ) , pmtn | �� the goal is to minimize the to-

al subcontracting cost and to find a deadline-feasible schedule for

nternally manufactured orders; see Shakhlevich, Shioura, and Stru-

evich (2009) . 

Imprecise computation. The SCPT problems can be interpreted

n terms of SIC as follows. The jobs are seen as computational tasks

o be processed with preemption in a computing system that con-

ists either of one processor or of several parallel processors (ma-

hines). In computing systems that support imprecise computation,

ome computations (image processing programs, implementations

f heuristic algorithms) can be run partially, producing less pre-

ise results. In our notation, a task with processing requirement

p ( j) can be split into a mandatory part which takes p ( j ) time,

nd an optional part that may take up to p ( j) − p ( j) additional

ime units. To produce a result of reasonable quality, the manda-

ory part must be completed in full, while an optional part im-

roves the accuracy of the solution. If instead of an ideal computa-

ion time p ( j) a task is executed for p( j) = p ( j) − x ( j) time units,

hen computation is imprecise and x ( j ) corresponds to the error of

omputation. In this settings, the objectives �� and �max are un-

erstood as the total weighted error and the maximum weighted

rror, respectively. A popular research direction in SIC is related to

he lexicographic optimization of the two criteria; see Ho (2004) . If

he maximum weighted error �max should be minimized first and

hen further optimization is performed in the obtained class of so-

utions to minimize the total weighted error �� , then the relevant

roblem is generically denoted by α| r( j) , p( j) = p ( j) − x ( j) , C( j) ≤
 ( j ) , pmtn | Lex ( �max , ��). In the counterpart with Lex ( �� , �max ),

he goal is to find a schedule that minimizes maximum weighted

rror among all schedules with the smallest total weighted error. 

Late work model. This model was introduced as the informa-

ion loss model by Blazewicz (1984) in the context of informa-

ion processing. The term “late work” was coined later on to re-

ect broader application areas. In a typical information process-

ng scenario, processing any job j ∈ N implies producing some out-

ut which is meaningful if it is obtained before its due date d ( j ),

hile the part produced after d ( j ) has no usage and therefore is

ost. An alternative term for late work is the number of tardy job

nits as in Hochbaum and Shamir (1990) . If job j with the pro-

essing time p ( j ) is processed before its due date for z ( j ) time

nits, then the late work of job j in such a schedule can be de-

ned as Y ( j ) = p ( j ) − z ( j ) . The objective is to minimize the total

ate work �j ∈ N Y ( j ), or in a more general case the total weighted

ate work 
∑ 

j∈ N w ( j) Y ( j) . Clearly, in the preemptive version of the

roblem, all late parts can be placed at the end of the schedule

r even removed from it. Thus, the preemptive late work model

ecomes a special case of the more general SCPT model if we in-

erpret the given processing times p ( j ) as upper bounds p ( j) and

efine p ( j) = 0 , j ∈ N , so that the late work Y ( j ) becomes compres-

ion x ( j ). The objective function 

∑ 

j∈ N w ( j) Y ( j) turns to total com-

ression cost � . A comprehensive review of the late work stud-
�
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ies is given in Sterna (2011) . Interestingly, the link between late

work scheduling and SIC is well recognized, with mutual cross-

references in publications, but the link to SCPT is generally missing.

3. Processing capacity functions 

Each SCPT problem can be seen as an extension of the

corresponding problem with fixed processing times p( j) = p ( j) ,

1 ≤ j ≤ n , where no job compression is allowed. Problems with fixed

processing times are of interest in their own right, and algorithms

for their solution are used within the algorithms for the corre-

sponding SCPT problems for finding an optimal schedule. 

In this section, we introduce an important notion of the process-

ing capacity function that is widely used not only for the problems

with fixed processing times, but also for the SCPT problems. 

A set function is a function whose argument is a set. For a

subset X ⊆ N = { 1 , 2 , . . . , n } , let R 

X denote the set of all vectors p

with real components p ( j ), where j ∈ X . For a vector p ∈ R 

N , define

p(X ) = 

∑ 

j∈ X p( j) for every set X ∈ 2 N . 

For a set of jobs X ⊆N , let ϕ( X ) be a set function that represents

the total production capacity available for processing the jobs of

set X . If we ignore the machine speeds, then ϕ( X ) is essentially

equal to the length of all time intervals within which the jobs of

set X can be processed. This means that for a problem with fixed

processing times if a feasible schedule exists then the inequality 

p(X ) ≤ ϕ(X ) (3)

holds for all sets X ⊆N . In fact, the opposite statement is also true. 

We illustrate the notion of a processing capacity function for

several problems and review algorithms for their solution. 

Let us start with a single machine problem 1| r ( j ), C ( j ) ≤ d ( j ),

pmtn |−. Divide the interval [min j ∈ N r ( j ), max j ∈ N d ( j )] into subinter-

vals by using the release dates r ( j ) and the deadlines d ( j ) for j ∈ N

as breakpoints. Let τ0 , τ1 , . . . , τγ , where 1 ≤ γ ≤ 2 n − 1 , be the in-

creasing sequence of distinct numbers in the list ( r ( j ), d ( j ) | j ∈ N ) .

Introduce the intervals I h = [ τh −1 , τh ] , 1 ≤ h ≤ γ , and define the

set of all intervals I = { I h | 1 ≤ h ≤ γ } . Denote the length of inter-

val I h by 	h = τh − τh −1 . Interval I h is available for processing job j

if r( j) ≤ τh −1 and d ( j ) ≥ τ h . For a job j , denote the set of the avail-

able intervals by 
( j ), i.e., 


( j) = { I h ∈ I | I h ⊆ [ r( j ) , d ( j )] } . (4)

For a set of jobs X ⊆N , introduce the set function 

ϕ 1 (X ) = 

∑ 

I k ∈∪ j∈ X 
( j) 

	k , (5)

where the right-hand side represents the lengths of all time inter-

vals available for processing the jobs of set X . Thus, for problem

1 | r( j) , C( j) ≤ d( j) , pmtn |− a feasible schedule exists if and only if

(3) holds for all sets X ⊆N and ϕ(X ) = ϕ 1 ( X ) . Such a statement

(in different terms) was first formulated by Gordon and Tanaev

(1973) and Horn (1974) . Checking the conditions (3) for problem

1| r ( j ), C ( j ) ≤ d ( j ), pmtn |− can be done in O ( n log n ) time by an al-

gorithm that is due to Horn (1974) . That algorithm, often called

Algorithm EDF (Earliest Deadline First), at any time when either

a job arrives or a job completes, assigns for processing the unfin-

ished job with the smallest deadline. The running time reduces to

O ( n ), provided that a sorted sequence of distinct release dates and

deadlines is available. 

In the rest of this section, we turn to problems with a common

deadline, i.e., d ( j ) = d, j ∈ N . Assume that if the jobs have different

release dates, they are renumbered to satisfy 

r(1) ≤ r(2) ≤ . . . ≤ r(n ) . (6)

Notice that problem α| r ( j ), C ( j ) ≤ d , pmtn |− is closely related to

problem α| r ( j ), pmtn | C max of minimizing the maximum comple-
ion time C max = max { C ( j ) | j ∈ N } , also known as the makespan . In-

eed, the optimal value of C max for an instance of problem α| r ( j ),

mtn | C max delivers the smallest value of d such that a feasible

chedule exists in the corresponding instance of problem α| r ( j ),

 ( j ) ≤ d , pmtn |−. 

In the case of a single machine, problem 1 | r( j) , C( j) ≤
, pmtn |− with a common deadline d is solvable by Algorithm EDF.

ince the algorithm still requires that the jobs are sorted in accor-

ance with (6) , it follows that problem 1 | r( j) , C( j) ≤ d, pmtn |− is

olvable in O ( n log n ) time. 

Even in the case of parallel machines, the processing capacity

unction can also be easily derived. We illustrate this for problem

| C( j) ≤ d, pmtn |− with zero release dates. Recall that the uniform

achines are numbered in accordance with (1) . We denote 

 0 = 0 , S k = s 1 + s 2 + · · · + s k , 1 ≤ k ≤ m. (7)

 k represents the total speed of k fastest machines; if the machines

re identical, S k = k holds. 

It is well known that for problem Q| C( j) ≤ d, pmtn |− a feasible

reemptive schedule exists if and only if the following conditions

old, which we quote in accordance with Brucker (2007) : d is large

nough to guarantee a processing capacity that is sufficient for 

• any job to be completed by time d if it is processed on the

fastest machine M 1 , 
• for any u , 2 ≤ u ≤ m − 1 , any subset of u jobs to be completed

by d on the u fastest machines M 1 , M 2 , ���, M u , 
• all jobs to be completed by d on all m machines. 

Given a set X ⊆N of jobs, define 

 X = min { m, | X | } , (8)

hich specifies the largest possible number of machines for pro-

essing the jobs from X . Then the processing capacity functions for

roblems α| C( j) ≤ d, pmtn |− can be written as 

(X ) = dS m X 
, for α = Q; (9)

(X ) = dm X , for α = P. (10)

Using this fact, problem Q| C( j) ≤ d, pmtn |− can be solved in

 ( n + m log m ) time, which reduces to O ( n ) time for the prob-

em with identical machines; see Gonzales and Sahni (1978) and

cNaughton (1959) , respectively. 

For the models with distinct release dates, given a set X ⊆N

f jobs, define r i ( X ) to be the i th smallest release date in

et X , 1 ≤ i ≤ | X |. The processing capacity functions for problems

| r ( j ) , C( j) ≤ d, pmtn |− can be written as 

(X ) = dS m X 
−

m X ∑ 

i =1 

s i r i (X ) , for α = Q; (11)

(X ) = dm X −
m X ∑ 

i =1 

r i (X ) , for α = P. (12)

Formula (11) is shown in Martel (1982) and in Shakhlevich

nd Strusevich (2008) in a different (but equivalent) form. Prob-

em Q| r ( j ) , C( j) ≤ d, pmtn |− can be solved in O (nm + n log n ) time,

hich reduces to O ( n log n ) time for the problem on identical ma-

hines; see Sahni and Cho (1980) and Sahni (1979) , respectively. 

The running times of the relevant algorithms are summarized

n Table 1 . Additionally, that table also presents the results on par-

llel machine feasibility problems with distinct deadlines. Handling

he problems of the latter type requires the use of algorithms for

nding flows in networks. We classify these techniques as Method-

logy 1 and review them in the following section. Their application

or solving problems α| r ( j ) , C( j) ≤ d ( j ) , pmtn |− with α ∈ { P , Q } is

escribed in Section 5 . 
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Table 1 

Complexity results for problems with fixed processing times. 

Problems Results 

1 | r( j) , C( j) ≤ d|− O ( n log n ) Horn (1974) 

1 | r( j) , C( j) ≤ d( j) , pmtn |− O ( n log n ) Horn (1974) 

P| C( j) ≤ d, pmtn |− O ( n ) McNaughton (1959) 

P| r( j) , C( j) ≤ d, pmtn |− O ( n log n ) Sahni (1979) 

P| r( j) , C( j) ≤ d( j) , pmtn |− O ( n 3 ) ∗ Horn (1974) 

Q| C( j) ≤ d, pmtn |− O (n + m log m ) Gonzales and Sahni (1978) 

Q| r( j) , C( j) ≤ d, pmtn |− O (nm + n log n ) Sahni and Cho (1980) 

Q| r( j) , C( j) ≤ d( j) , pmtn |− O ( mn 3 ) ∗ Federgruen and Groenevelt (1986) 

∗ max-flow algorithm by Ahuja et al. (1994) . 

Fig. 1. Network G = ( V, A ) . 
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. Methodology 1: Flows in networks 

Various network flow techniques form an essential part of the

CPT toolkit. In this section, we briefly review relevant techniques,

ncluding those that handle networks with parametric capacities.

urther details on this topic can be found in the monograph by

huja, Magnanti, and Orlin (1993) . 

Scheduling problems under consideration, with fixed and con-

rollable processing times, can be reformulated in terms of various

ow problems in networks of a particular structure. Introduce a

eneric network G = (V, A ) , schematically shown in Fig. 1 . The re-

ults presented in this section normally hold for more general net-

orks; however, for our purposes, we give an exposition of these

esults in relation to network G , as the most relevant to our review.

The set V = { s, t} ∪ N ∪ W of nodes consists of the source s , the

ink t and two subsets N = { 1 , 2 , . . . , n } and W . The set A of arcs

ontains the arcs ( s , j ) for each node j ∈ N , but s is neither directly

inked to the sink t nor to a node of set W . There are arcs from the

odes of set N to those of set W ; arcs are also possible between

he nodes of set W . The arcs entering the sink t only come from

ome nodes of set W . 

The capacity of arc (v , v ′ ) is denoted by μ(v , v ′ ) , which can be

nfinite for some arcs. A flow f is a function f : A → R that assigns

eal numbers to arcs. We say that a flow f : A → R is feasible if it

atisfies the capacity constraint 

 ≤ f (v , v ′ ) ≤ μ(v , v ′ ) , (v , v ′ ) ∈ A, (13)

nd the flow balance constraint ∑ 

 

′ ∈ V, (v , v ′ ) ∈ A 
f (v , v ′ ) = 

∑ 

v ′ ∈ V, (v ′ , v ) ∈ A 
f (v ′ , v ) , v ∈ V \ { s, t} . (14)

n the maximum flow problem, it is required to find a feasible flow

f the maximum value, where the value of a flow f is the total flow
n the arcs that leave the source (or, equivalently, enter the sink): 

he value of flow f = 

∑ 

v ′ ∈ N, (s, v ′ ) ∈ A 
f (s, v ′ ) = 

∑ 

v ∈ W, (v ,t) ∈ A 
f (v , t) . 

In the case of network G = (V, A ) , an algorithm due to Karzanov

1974) finds the maximum flow in O (| V | 3 ) time, while one of the

astest strongly polynomial algorithms due to Goldberg and Tarjan

1988) takes O (| V || A |log (| V | 2 /| A |)) time; see rows 1 and 2 of Table 2 .

A partition ( S , T ) of the node set V such that s ∈ S and t ∈ T is

alled an s −t cut . The capacity μ( S , T ) of an s −t cut ( S , T ) is defined

s the total capacity of the arcs that go from nodes of set S to

odes of set T , i.e., 

(S, T ) = 

∑ 

(v , v ′ ) ∈ A (S,T ) 

μ(v , v ′ ) , 

here A (S, T ) = { (v , v ′ ) ∈ A | v ∈ S, v ′ ∈ T } . An s −t cut ( S , T ) is

alled a minimum s −t cut if its capacity μ( S , T ) is the minimum

mong all s −t cuts in G . The maximum-flow minimum-cut theo-

em, the most well-known statement of network optimization, as-

erts that the value of the maximum flow is equal to the capacity

f a minimum s −t cut. 

In the minimum-cost flow problem , each arc (v , v ′ ) ∈ A is asso-

iated with a cost c(v , v ′ ) of one unit of flow on that arc. It is re-

uired to find a feasible flow of a given value that has the smallest

ost. In this paper, we will mainly be interested in the minimum-

ost maximum flow problem , i.e., the problem of finding the maxi-

um flow of the smallest cost. The problem can be solved by an

lgorithm by Orlin (1988) , which is currently the fastest strongly

olynomial algorithm; in the case of network G the algorithm re-

uires O (| A | log | V | (| A | + | V | log | V | )) time; see row 3 of Table 2 . 

A range of network flow problems closely related to schedul-

ng applications with variable processing times contains the prob-

ems of finding a parametric maximum flow . The work by Gallo

t al. (1989) presents fast algorithms for solving the parametric
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Table 2 

Running times of flow algorithms applied to network G = (V, A ) . 

# Flow problem General network G Bipartite network G , 

| N | ≤ | W | 

1 Max-flow O (| V | 3 ) O (| N|| A | + | N| 3 ) 
Karzanov (1974) Ahuja et al. (1994) 

2 Max-flow O (| V || A |log (| V | 2 /| A |)) O (| N|| A | log (| N| 2 / | A | + 2)) 

Goldberg and Tarjan (1988) Ahuja et al. (1994) 

3 Min-cost max-flow O (| A | log | V | (| A | + | V | log | V | )) 
Orlin (1988) 

4 Parametric max-flow (single parameter, parametric 

capacities only on arcs leaving source/entering sink) 

O (| V | 3 ) 

Gallo et al. (1989) 

O (| N| 2 | W | + | N| 3 ) 
Ahuja et al. (1994) 

5 O (| V || A |log (| V | 2 /| A |)) 

Gallo et al. (1989) 

O (| N|| A | log (| N| 2 / | A | + 2)) 

Ahuja et al. (1994) 

6 Parametric max flow (multiple parameters, parametric 

capacities only on arcs leaving source/entering sink) 

O (| V | 3 ) 

McCormick (1999) 

O (| N| 2 | W | + | N| 3 ) 
Ahuja et al. (1994) 

7 O (| V || A |log (| V | 2 /| A |)) O (| N|| A | log (| N| 2 / | A | + 2)) 

McCormick (1999) Ahuja et al. (1994) 

8 Min-cost max flow (non-zero costs only on arcs leaving 

source/entering sink) 

O (| V | 3 ) 

McCormick (1999) 

O (| N| 2 | W | + | N| 3 ) 
Ahuja et al. (1994) 

9 O (| V || A |log (| V | 2 /| A |)) O (| N|| A | log (| N| 2 / | A | + 2)) 

McCormick (1999) Ahuja et al. (1994) 

Hochbaum and Hong (1995) 
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h h 
maximum flow problem, provided that the capacities of all arcs

are constant, except for the capacities of the arcs that leave the

source (or enter the sink) which depend on a single parameter

λ. More precisely, the capacity of an arc ( s , j ), j ∈ N , is given by

μλ( s , j ), which is a non-decreasing function of λ. There are sev-

eral algorithms presented by Gallo et al. (1989) that find the max-

imum flow for all values of the parameter λ; for our purposes, we

are interested in two of them, with the running times of O (| V | 3 )

and O (| V || A |log (| V | 2 /| A |)), respectively; see rows 4 and 5 of Table 2 .

These algorithms are adaptations of the algorithms by Karzanov

(1974) and Goldberg and Tarjan (1988) , respectively, and require

the same running times as in the non-parametric case; see rows 1

and 2 of Table 2 . 

Among network flow problems considered by McCormick

(1999) there is a parametric maximum flow problem, which can

be stated with respect to our network G as follows. Suppose that

on each arc ( s , j ), j ∈ N , with the source s the capacity is given as

non-increasing linear function b( j) − a ( j ) λ( j ) , where b ( j ) and a ( j )

are given constants, while λ( j ) is a non-negative parameter. It is

required to find such values of λ( j ) that �j ∈ N λ( j ) is minimum and

there exists a flow saturating the arcs from s . The problem reduces

to finding a maximum flow, provided the capacity on an arc ( s , j )

leaving the source depends on an individual parameter λ( j ), rather

than on a single parameter λ, common for all these arcs, as in the

models studied by Gallo et al. (1989) . It is essentially proved in

McCormick (1999) that for solving this multi-parameter problem

the algorithms from Gallo et al. (1989) can be adapted without in-

creasing their running times. For network G this means that the

multi-parameter maximum flow can be found either in O (| V | 3 ) or

in O (| V || A |log (| V | 2 /| A |)) time; see rows 6 and 7 of Table 2 . 

Notice that Gallo et al. (1989) consider the problem of finding

the maximum flow for all values of a single parameter λ and al-

low the capacity functions to be arbitrary monotone functions of λ.

McCormick (1999) allows multiple parameters but considers only

linear capacity functions and aims at finding the flow that corre-

sponds to the minimum sum of the parameters, not the maximum

flow for all values of the parameters. 

McCormick (1999) also establishes the equivalence (with re-

spect to the time complexity) between the problem of finding a

maximum flow in a network with parametric capacities on the

arcs leaving the source and the minimum-cost flow problem in a
etwork with non-zero costs on some arcs entering the sink. In

rder to solve a more general version of the latter problem with

 quadratic cost function, Hochbaum and Hong (1995) adapt the

lgorithms of Gallo et al. (1989) without increasing their running

imes; see rows 8 and 9 of Table 2 . The results stated above also

old in a symmetric case, i.e., when the parametric capacities are

pplied to only the arcs that enter the sink and non-zero costs are

ssigned to the arcs that leave the source. 

Notice that if there are no arcs between the nodes of W , then

etwork G is bipartite. Moreover, in virtually all scheduling appli-

ations, network G is not balanced, i.e., | N | ≤ | W |. It is demonstrated

y Ahuja et al. (1994) that many network flow algorithms can be

un faster on unbalanced bipartite networks, so that the running

ime depends not on the total number of nodes but rather on the

umber of nodes in the part of the lower cardinality. This is re-

ected in the last column of Table 2 . 

. Fixed processing times. Parallel machines. Distinct release 

ates and deadlines 

In this section, we discuss problems α| r ( j ), C ( j ) ≤ d ( j ), pmtn |−
ith α ∈ { P , Q } of checking the existence of a feasible schedule,

rovided that the processing times are known and fixed. We il-

ustrate how these problems reduce to the network flow problems,

o that Methodology 1 can be used for their solution. In partic-

lar, we clarify that the fastest known correct algorithm for solv-

ng problem P | r ( j ), C ( j ) ≤ d ( j ), pmtn |− requires O ( n 3 ) time, and not

 ( n 2 log 2 n ), as is often assumed in the literature on the SIC models;

ee Leung (2004) and Ho (2004) . 

We start with the feasibility problem P | r ( j ), C ( j ) ≤ d ( j ), pmtn |−
n m identical parallel machines and with its special case 1| r ( j ),

 ( j ) ≤ d ( j ), pmtn |− on a single machine. Introduce network G P =
(V, A ) and define it as the following version of the generic network

 = (V, A ) outlined in Fig. 1 . The node set V consists of the source

 , the sink t , set N of job nodes and set W = I = { I 1 , I 2 , . . . , I γ } of

he interval nodes. The set A of arcs is defined as A = A 

s ∪ A 

0 ∪ A 

t ,

here 

A 

s = { (s, j) | j ∈ N} , 
 

0 = { ( j, I h ) | j ∈ N, I h ∈ 
( j) } , 
A 

t = { (I , t) | I ∈ I} . 
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Fig. 2. Network G P = ( V, A ) . 
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hus, in G P the source is connected to each job node, each inter-

al node is connected to the sink, and each job node is connected

o the nodes associated with the intervals during which the corre-

ponding job can be processed; see Fig. 2 . 

Given an instance of a feasibility problem P | r ( j ), C ( j ) ≤ d ( j ),

pmtn |− on m identical parallel machines (or of problem 1| r ( j ),

 ( j ) ≤ d ( j ), pmtn |− on a single machine), define the arc capacity

unction μ : A → R by 

μ(s, j) = p( j) , (s, j) ∈ A 

s , 

μ( j, I h ) = 	h , ( j, I h ) ∈ A 

0 , 

μ(I h , t) = m 	h , (I h , t) ∈ A 

t . 

Recall that solving a feasibility scheduling problem reduces to

esting the inequality (3) for each set X ⊆ N of jobs, where ϕ is

 suitably defined processing capacity function. In the case un-

er consideration, such a testing can be translated in terms of the

etwork flow problem, as independently shown by Gordon and

anaev (1973) and Horn (1974) . 

emma 1 (cf. Gordon and Tanaev (1973) ; Horn (1974) ) . For positive

eal numbers p ( j ), j ∈ N , there exists a feasible schedule for processing

he jobs of set N on m parallel identical machines (or on a single ma-

hine if m = 1 ) such that job j ∈ N has the actual processing time of

 ( j ) if and only if there exists a feasible flow f : A → R + in network

 P satisfying f (s, j) = p( j) for all j ∈ N. 

Hence, problem P | r ( j ), C ( j ) ≤ d ( j ), pmtn |− can be tested by solv-

ng the maximum flow problem in network G P : if the value of the

aximum flow is equal to �j ∈ N p ( j ), then problem P | r ( j ), C ( j ) ≤ d ( j ),

pmtn |− is feasible; otherwise it is infeasible. 

A feasible flow f ( j , I h ) on arc ( j , I h ) defines for how long job j is

rocessed in the time interval I h . On a single machine, a feasible

ow easily translates into a feasible schedule and vice versa, since

here is a one-to-one correspondence between the flow incoming

nto an interval node I h and durations of jobs processed within the

orresponding time interval on a single machine. In the case of m

dentical parallel machines, the link between a feasible flow and a

easible schedule is less evident. To know the flow values f ( j , I h ) is

nsufficient to define a schedule. We need a linear time algorithm

y McNaughton (1959) to find a feasible preemptive schedule for

ach interval I h , and then the overall schedule can be found as a

oncatenation of these schedules. 

Network G P contains O ( n ) nodes. For such a network, finding a

aximum flow requires O ( n 3 ) time by Karzanov’s algorithm; see

ow 2 of Table 2 . The running time of O ( n 3 ) does not depend on

he number of machines in the scheduling problem, and remains

alid if the described flow approach is used for the single machine

roblem. However, the single machine feasibility problem 1| r ( j ),
 ( j ) ≤ d ( j ), pmtn |− can be solved much faster, in O ( n log n ) time by

lgorithm EDF; see Section 3 . 

For a single machine, an algorithm that is based on the net-

ork flow reasoning but runs faster than in O ( n 3 ) time is devel-

ped by Chung, Shih, Liu, and Gillies (1989) and Shih, Liu, Chung,

nd Gillies (1989) . The idea is to transform the original network

 P shown in Fig. 2 , replacing the set of the interval nodes by a

alanced binary tree, in which the original interval nodes are the

eaves at the lowest level. The tree is created recursively starting

rom the leaves, so that each pair of nodes of the same height that

epresent two adjacent intervals become children of a node of the

igher level that represents the union of these intervals. The tree is

ompleted with creating the root that is associated with the inter-

al [ τ 0 , τγ ]. The arc capacities are redistributed accordingly. With-

ut going into technical details, which can be found in Chung et al.

1989) and Shih et al. (1989) , here we just illustrate this approach

ith a small size example. 

Consider an instance of problem 1| r ( j ), C ( j ) ≤ d ( j ), pmtn |− with

hree jobs and the set I of intervals consisting of four intervals

 h = [ τh −1 , τh ] , h ∈ {1, 2, 3, 4}, such that the intervals [ τ 0 , τ 4 ], [ τ 1 ,

3 ] and [ τ 2 , τ 4 ] are available for processing job 1, job 2 and

ob 3, respectively. See Fig. 3 for the corresponding network G P ,

ith the arcs capacities shown explicitly. The modified network

 

′ 
P , with the interval nodes organized as a binary tree, is shown

n Fig. 4 . 

For problem 1| r ( j ), C ( j ) ≤ d ( j ), pmtn |− with γ intervals in set

, there are O ( γ ) nodes in the binary tree of the modified net-

ork G 

′ 
P . At most 2log γ arcs leave each job node. Thus, given that

= O (n ) , we deduce that in the network G 

′ 
P 

associated with prob-

em 1| r ( j ), C ( j ) ≤ d ( j ), pmtn |− there are O ( n ) nodes and O ( n log n )

rcs. This network is not bipartite, but still is a version of the

eneric network G shown in Fig. 1 . We apply the algorithm by

oldberg and Tarjan (1988) ; see row 2 of Table 2 . Since | A | ≥ n , we

educe that a maximum flow in G 

′ 
P can be found in O ( n 2 log 2 n )

ime. 

Chung et al. (1989) and Shih et al. (1989) claim that this ap-

roach can be extended to parallel identical machines, but give

o implementation details. That claim is known in the imprecise

omputation research community, and several authors, assuming

hat the claim is true, assert that problem P | r ( j ), C ( j ) ≤ d ( j ), pmtn |−,

nd even its extension with controllable processing times P | r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� is solvable in O ( n 2 log 2 n )

ime; see, e.g., surveys by Leung (20 04) and Ho (20 04) . 

We, on the other hand, are confident that the claim that prob-

em P | r ( j ), C ( j ) ≤ d ( j ), pmtn |− with m ≥ 2 can be solved by finding

 maximum flow in the modified network G 

′ 
P 

does not hold. To

andle multiple machines, each interval that is contained in the

inary tree of the interval nodes should be made available for all

 machines. To achieve this, the capacity of each arc that leaves

n interval node has to be multiplied by m (as is done in network

 P ). But in this case a feasible flow does not necessarily translate

nto a feasible schedule. To illustrate this, for the example above

ssume that m = 2 , p(1) = 6 , 	1 = 3 , 	2 = 2 . Then the capac-

ty of the arc that enters node [ τ 0 , τ 2 ] should become equal to

 × (	1 + 	2 ) = 10 , while the capacity of the arc that enters node

 τ 0 , τ 1 ] to m × 	1 = 6 . A feasible flow may be equal to 6 on each

f these two arcs, but such a flow admits no scheduling interpre-

ation, since it would imply that job 1 is processed during 6 time

nits in the interval [ τ 0 , τ 1 ] of length 3, i.e., it is processed simul-

aneously on both machines. 

A possible alternative attempt to reduce problem P | r ( j ),

 ( j ) ≤ d ( j ), pmtn |− to the maximum flow problem that is based on

he binary tree representation of the interval nodes is to introduce

 copies of the tree on interval nodes, one tree for each machine.

owever, a feasible flow again may lead to an infeasible schedule,
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Fig. 3. Network G P for the three-job example with a single machine ( m = 1 ). 

Fig. 4. Network G ′ P for the three-job example with a single machine ( m = 1 ). 
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since there is no mechanism to stop assigning one job to the same

time interval on several machines. 

The example given above shows that reducing the feasibility

problem to the maximum flow problem in the network that uses

a binary tree representation of the interval nodes works only for a

single machine. 

Remark 1. The fastest correct algorithm for solving problem P | r ( j ),

C ( j ) ≤ d ( j ), pmtn |− requires O ( n 3 ) time. In the literature on impre-

cise computation, solving problems P | r ( j ), C ( j ) ≤ d ( j ), pmtn |− and

P | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� is often used as a

subroutine for various problems on identical parallel machines,

and the reported running times are derived under the assumption

that each of these problems can be solved in O ( n 2 log 2 n ) time. In

the subsequent sections, we will correct the estimates of earlier

known algorithms that use that assumption, increasing the running

time of the subroutine to O ( n 3 ) and making the reference to this

remark. 

We now pass to the feasibility problem Q | r ( j ), C ( j ) ≤ d ( j ), pmtn |−
on m uniform machines. For simplicity of exposition, assume

that the machine speeds are pairwise distinct and the ma-

chines are numbered in the decreasing order of their speeds, i.e.,

s 1 > s 2 > ��� > s m 

. For completeness, define s m +1 = 0 . Taking into
onsideration the speed of each machine, notice that in an inter-

al I h total processing that could be done on machine M 1 is s 1 	h ,

n machine M 2 is s 2 	h , and so on. 

Federgruen and Groenevelt (1986) reduce the feasibility prob-

em Q | r ( j ), C ( j ) ≤ d ( j ), pmtn |− to the maximum flow problem in

 special network, which we call network G Q ; for illustration see

ig. 5 . This network is also a variant of the generic network G . In

 Q , the set of nodes contains the set N of job nodes, and the set

 consists of machine-interval nodes ( I h , M h ). The set A of arcs is

efined as A = A 

s ∪ A 

0 ∪ A 

t , where 

A 

s = { (s, j) | j ∈ N} , 
 

0 = { ( j, (I h , M i )) | j ∈ N, I h ∈ 
( j) , 1 ≤ i ≤ m } , 
A 

t = { ((I h , M i ) , t) | I h ∈ I, 1 ≤ i ≤ m } . 
he capacities on the arcs are as follows: 

μ(s, j) = p( j) , (s, j) ∈ A 

s , 

μ( j, (I h , M i )) = 	h (s i − s i +1 ) , ( j, (I h , M i )) ∈ A 

0 , 

μ((I h , M i ) , t) = i 	h (s i − s i +1 ) , (I h , M i ) ∈ A 

t . 

Again, the feasibility scheduling problem can be reduced to the

aximum flow problem: as shown by Federgruen and Groenevelt

1986) the statement of Lemma 1 holds for the case of uniform

achines, with network G P replaced by G Q . For this problem we
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Fig. 5. An illustration of network G Q = (V, A ) for three uniform machines. 
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an apply Karzanov’s algorithm adapted to an unbalanced bipar-

ite network (row 1 of Table 2 ) to finding the maximum flow in

he network G Q . Since | N| = n and | A | = O (mn 2 ) , such an algorithm

ill solve problem Q | r ( j ), C ( j ) ≤ d ( j ), pmtn |− in O ( mn 3 ) time. 

See Table 1 for the summary of the results from Sections 3 and

 for various versions of the feasibility problem α| r( j) , C( j) ≤
 ( j ) , pmtn |− with fixed processing times. 

The running times in Table 1 establish lower bounds on the

unning times of algorithms for solving problems with control-

able processing times. One of the achievements reported in this

aper is that almost all problems of the range α| r( j) , p( j) =
p ( j) − x ( j ) , C( j ) ≤ d ( j ) , pmtn | � with controllable processing times

nd distinct release dates and deadlines are not harder computa-

ionally than their counterparts with fixed processing times. The

ools needed for this purpose include parametric flow problems

Methodology 1) and/or techniques of submodular optimization

hat are reviewed further on. 

. Total cost. Parallel machines. Distinct release dates and 

eadlines 

In this section, we discuss the algorithms for solving prob-

ems α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� , where α ∈ { P ,

 }, to minimize the total cost �� = 

∑ 

j∈ N w T ( j) x ( j) on identical

nd uniform parallel machines. We assume that all weights w T ( j)

re non-negative. Notice that most of the previously known results

n these problems are derived within the body of research of the

IC models. Below, we provide a critical review of these results by

i) clarifying the running time needed to solve problem P | r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� based on Remark 1 of

ection 5 ; (ii) demonstrating that the use of advanced techniques

f Methodology 1, such as finding parametric flows, yields solu-

ion algorithms for problems α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

mtn | �� which have the same running times as the best known

or the counterparts of these problems with fixed processing

imes; see Table 1 . 
We start with the problems of minimizing the total compres-

ion or the unweighted compression cost �u = 

∑ 

j∈ N x ( j) , which

s often considered in the SIC literature as a special case of the

eighted error function; see Leung (2004) . Clearly, minimizing

j ∈ N x ( j ) is equivalent to maximizing the sum of the actual pro-

essing times �j ∈ N p ( j ). As demonstrated in Section 5 , the latter

roblem reduces to finding the maximum flow in either network

 P (if the machines are identical) or in G Q (if the machines are

niform). The networks G P and G Q are of the same structure as

escribed in Section 5 , except each arc ( s , j ), j ∈ N , that leaves

he source has an upper bound p ( j) and a lower bound p ( j ) on

ts capacity. The resulting problems are computationally equiva-

ent to problems P | r ( j ), C ( j ) ≤ d ( j ), pmtn |− and Q | r ( j ), C ( j ) ≤ d ( j ),

pmtn |−, and can be solved by Karzanov’s algorithm adapted to an

nbalanced bipartite network; see row 1 of Table 2 . Thus, prob-

ems α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �u , α ∈ { P , Q }, to

inimize the unweighted function �j ∈ N x ( j ), can be solved in O ( n 3 )

ime and in O ( mn 3 ) time, respectively. 

Further in this section, we show that minimizing the to-

al weighted compression cost �� = 

∑ 

j∈ N w T ( j) x ( j) for problems

| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� , α ∈ { P , Q }, is compu-

ationally no harder than their unweighted counterparts. Note that

roblems α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� , α ∈ { P , Q },

re among the most popular problems studied within the body of

esearch on SIC. The main solution approach has been based on

he reduction of the problem to finding a minimum-cost maximum

ow in a special network. 

We start with illustrating this approach for problem P | r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� with identical machines.

he corresponding network, denoted by H P , is shown in Fig. 6 .

t can be described as an extension of network G P , introduced in

ection 5 for the feasibility problem with fixed processing times:

he second set of nodes W is enlarged by adding nodes X =
 X 1 , X 2 , . . . , X n } . For every job j ∈ N , we introduce a so-called “com-

ression” node X j , with a single incoming arc ( j , X j ) and a single

utgoing arc ( X j , t ), both having capacity θ ( j) = p ( j) − p ( j ). For

 feasible flow in H P , the amount of flow passing via nodes X j 
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Fig. 6. Network H P = (V, A ) for the problem of minimizing total cost on identical machines. 
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corresponds to the compression amounts x ( j ) of jobs j ∈ N , while

the flow via nodes in I specifies the actual schedule. The flow

costs are zero except for arcs connecting the X -nodes and t : the

cost of one unit of flow via arc ( X j , t ) is w T ( j) . For the corre-

sponding minimum-cost maximum flow problem, the total cost is

�� = 

∑ 

j∈ N w T ( j) x ( j) , where x ( j ) is the flow on arc ( X j , t ). No-

tice that network H P is slightly different from the one used in the

literature on imprecise computation; see, e.g., Leung (2004 , Fig.

34.3). These differences are minor, and the numbers of arcs and

nodes in both networks are of the same order, i.e., | V | = O (n ) and

| A | = O (n 2 ) . 

The minimum-cost maximum flow problem in network H P can

be solved by an algorithm by Orlin (1988) (row 3 of Table 2 ). Its di-

rect application solves problem P | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

pmtn | �� in O ( n 4 log n ) time. Notice that in the latter problem

we cannot use a modified network H P with the interval nodes

arranged in a balanced binary tree. Thus, in accordance with

Remark 1 of Section 5 , the estimate of O ( n 4 log n ) should replace

the running time of O ( n 2 log 3 n ) reported in Leung (2004) . 

Consider now problem Q | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

pmtn | �� with uniform machines. The corresponding network, de-

noted by H Q , is shown in Fig. 7 . It is an extension of network G Q

from Section 5 obtained by adding the set of compression nodes

X = { X 1 , X 2 , . . . , X n } in the same way, as set X is added to G P re-

sulting in H P . 

Again, the introduced network H Q is only slightly different from

the one often used in the imprecise computation literature; see,

e.g., Leung (2004 , Fig. 34.4), while the major characteristics, such

as | V | = O (mn ) and | A | = O (mn 2 ) , are the same for both networks.

The running time for solving problem Q | r ( j ), p( j) = p ( j) − x ( j) ,

C ( j ) ≤ d ( j ), pmtn | �� reported in Leung (2004) is derived from ap-

plying Orlin’s algorithm (row 3 of Table 2 ) to the network H Q and

is equal to O ( m 

2 n 4 log mn ). A faster algorithm for problem Q | r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� is given by Shakhlevich and

Strusevich (2008) ; it requires O ( mn 4 ) time. 

As seen, the quoted best times known for problems α| r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | � , α ∈ { P , Q }, exceed those
�
nown for solving the corresponding feasibility problems α| r ( j ),

 ( j ) ≤ d ( j ), pmtn |−; see Table 1 . Below we show that using an

lternative approach, the times needed to solve problems α| r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� can be reduced to match

hose for problems α| r ( j ), C ( j ) ≤ d ( j ), pmtn |−, as stated in Table 3 . 

We present the parametric maximum flow approach that re-

ults from adapting the methods developed by Chen (1994) and

cCormick (1999) . In those papers, a scheduling problem with

ontrollable processing times is addressed, and the actual pro-

essing time of a job j is determined by p( j) = max { b( j) −
 ( j) λ( j) , 0 } , where b ( j ) and a ( j ) are given constants while λ( j ) is a

on-negative parameter, and the objective is to minimize �j ∈ N λ( j ).

his scheduling problem is equivalent to a special case of prob-

em α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� with zero lower

ounds on processing times; see (2) . Notice that the parametric

ow algorithms by McCormick (1999) are developed for the flow

roblems with zero lower bounds on the arc capacities; in schedul-

ng terms that means zero lower bounds on processing times,

p ( j) = 0 , j ∈ N . The algorithms can be extended to deal with non-

ero lower bounds p ( j ), j ∈ N , by standard network flow techniques.

Following McCormick (1999) , to solve problem α| r ( j ), p( j) =
p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� , where α ∈ { P , Q }, consider the

roblem of finding the maximum flow in network G α , defined in

ection 5 , provided that the fixed capacity p ( j) of each arc ( s , j ),

 ∈ N , is replaced by a parametric capacity max { p ( j) − x ( j) , 0 } =
ax { b( j) − a ( j ) λ( j ) , 0 } . Suppose that f ( a ), a ∈ A , is the found max-

mum flow. Then for the arcs ( s , j ) entering the job-nodes the flow

 ( s , j ) determines p ( j ), the actual processing time of job j . For net-

ork G P , the flow on an arc ( j , I h ) defines for how long job j is

rocessed in the time interval I h , while for network G Q , the flow

n an arc ( j , ( I h , M i )) defines for how long job j is processed in the

ime interval I h on machine M i . 

Thus, problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | ��

an be solved by McCormick’s algorithms for solving the multi-

arametric maximum flow problem; see rows 6 and 7 of Table 2 .

n important requirement, satisfied for both networks G P and G Q ,

hat makes McCormick’s techniques applicable, is the common tail



A. Shioura et al. / European Journal of Operational Research 266 (2018) 795–818 805 

Fig. 7. Network H Q = (V, A ) for the problem of minimizing total cost on m = 3 uniform machines. 

Table 3 

Complexity of problems with different deadlines. 

Problem Previously known Methodology 1: 

Multiparametric flow 

P| r( j) , p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� O ( n 4 log n ) ∗ O ( n 3 ) 

Blazewicz and Finke (1987) McCormick (1999) 

Chung et al. (1989) Section 6 

Shih, Liu, and Chung (1991) ; Shih et al. (1989) 

Leung (2004) 

Q| r( j) , p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� O ( m 

2 n 4 log mn ) O ( mn 3 ) 

Blazewicz and Finke (1987) McCormick (1999) 

Leung (2004) Section 6 

O ( mn 4 ) 

Shakhlevich and Strusevich (2008) 

∗After correcting a faulty claim that problem P| r( j) , C( j) ≤ d( j) , pmtn |− is solvable in O ( n 2 log 2 n ) time, see Remark 1 of 

Section 5. 
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 of the parametric arcs. Besides, since each network G P and G Q 

s bipartite, the running time of the algorithms can be sped-up by

he techniques of Ahuja et al. (1994) . 

We apply the adapted McCormick’s algorithm with the running

ime O (| N| 2 | W | + | N| 3 ) ; see row 6 of Table 2 . In network G P , we

ave that | V | = | N| + | W | ≤ 3 n ; thus, the algorithm solves prob-

em P | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� in O ( n 3 ) time.

n network G Q , we have that | W | ≤ 2 mn , so that problem Q | r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� is solved in O ( mn 3 ) time. 

Applying the other version of McCormick’s algorithm of time

omplexity O (| N|| A | log (| N| 2 / | A | + 2)) (row 7 of Table 2 ) proves

o be less efficient. In the case of network G P , we have that

 ≤ | A | ≤ 2 n 2 , while for network G Q the inequalities mn ≤ | A | ≤ 2 mn 2 

old. Using the stated lower bounds on | A |, we deduce that | N | 2 /| A |

s O ( n ) for the identical machines, and is O ( n / m ) for the uni-

orm machines. Thus, the algorithm solves problem P | r ( j ), p( j) =
p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� in O ( n 3 log n ) time, while the

ime required to solve problem Q | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

mtn | �� is no less than O ( mn 3 log ( n / m )). 

The main conclusion of this section is that the running times

 ( n 3 ) and O ( mn 3 ) that are required to solve the problems of min-
 s  
mizing the total cost on parallel identical and uniform machines,

espectively, coincide with those reported in Table 3 . 

. Methodology 2: Optimization over submodular polyhedra 

nd its applications 

In this section, we show how SCPT problems reduce to linear

rogramming problems with submodular constrains. The key tool

n designing the corresponding efficient algorithms is the greedy

lgorithm that solves linear programming problems over submod-

lar polyhedra. 

.1. Linear programming over submodular polyhedra 

We start with some terminology and an overview of impor-

ant facts related to optimization with submodular constraints. We

ainly follow a comprehensive monograph on submodular opti-

ization by Fujishige (2005) , see also Katoh and Ibaraki (1998) and

chrijver (2003) . 

For a positive integer n , let N = { 1 , 2 , . . . , n } be a ground

et, and let 2 N denote the family of all subsets of N . As in
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Section 3 , for a subset X ⊆N , let R 

X denote the set of all vec-

tors p with real components p ( j ), where j ∈ X . For two vectors p =
(p(1) , p(2) , . . . , p(n )) ∈ R 

N and q = (q (1) , q (2) , . . . , q (n )) ∈ R 

N , we

write p ≤ q if p ( j ) ≤ q ( j ) for each j ∈ N . For a vector p ∈ R 

N , define

p(X ) = 

∑ 

j∈ X p( j) for every set X ∈ 2 N . 

A set function ϕ : 2 N → R is called submodular if the inequal-

ity 

ϕ(X ) + ϕ(Y ) ≥ ϕ(X ∪ Y ) + ϕ(X ∩ Y ) 

holds for all sets X , Y ∈ 2 N . For a submodular function ϕ defined

on 2 N such that ϕ(∅ ) = 0 , the pair (2 N , ϕ) is called a submodular

system on N , while ϕ is referred to as its rank function . 

For a submodular system (2 N , ϕ), define two polyhedra 

P (ϕ) = { p ∈ R 

N | p(X ) ≤ ϕ(X ) , X ∈ 2 

N };
B (ϕ) = { p ∈ R 

N | p ∈ P (ϕ) , p(N) = ϕ(N) } , 
called the submodular polyhedron and the base polyhedron , respec-

tively, associated with the submodular system. 

The main problem of our interest is as follows: 

(LP) : max 
∑ 

j∈ N 
w ( j) p( j) 

s . t . p(X ) ≤ ϕ(X ) , X ∈ 2 

N , 

p ( j) ≤ p( j) ≤ p ( j) , j ∈ N, 

(15)

where ϕ : 2 N → R is a submodular function with ϕ(∅ ) = 0 , p ∈ R 

N 

is a vector of decision variables, w ∈ R 

N + is a non-negative weight

vector, and p , p ∈ R 

N are vectors of upper and lower bounds on the

components of vector p , respectively. Further in this survey, we re-

fer to (15) as Problem (LP). This problem serves as a mathematical

model for many SCPT problems, as demonstrated below. 

Problem (LP) can be classified as a problem of maximizing a

linear function over a submodular polyhedron intersected with a

box. As shown in Shakhlevich et al. (2009) , Problem (LP) can be

reduced to optimization over a base polyhedron. 

Theorem 2 (cf. Shakhlevich et al. (2009) ) . If Problem (LP) has a fea-

sible solution, then the set of its maximal feasible solutions is a base

polyhedron B ( ̃  ϕ ) associated with the submodular system (2 N , ˜ ϕ ) ,

where the rank function ˜ ϕ : 2 N → R is given by 

˜ ϕ (X ) = min 

Y ∈ 2 N 
{ ϕ(Y ) + p (X \ Y ) − p (Y \ X ) } . (16)

Notice that in (16) computing the value ˜ ϕ (X ) for a given

X ∈ 2 N reduces to minimization of a submodular function. It is well

known that an arbitrary submodular function can be minimized

in polynomial time; see Schrijver (20 0 0) and Iwata, Fleischer, and

Fujishige (2001) . However, the running time of these general al-

gorithms is fairly large. In many special cases of Problem (LP), in-

cluding its applications to the SCPT problems, the value ˜ ϕ (X ) can

be computed more efficiently, as shown later. 

Throughout this paper, we assume that Problem (LP) has a fea-

sible solution, which is equivalent to the conditions p ∈ P ( ϕ) and

p ≤ p ; see, e.g., Fujishige (2005) . Theorem 2 implies that Problem

(LP) reduces to the following problem: 

max 
∑ 

j∈ N 
w ( j) p( j) (17)

s . t . p ∈ B ( ̃  ϕ ) , 

where the rank function ˜ ϕ : 2 N → R is given by (16) . 

An advantage of the reduction of Problem (LP) to a problem of

the form (17) is that the solution vector can be obtained essentially

in a closed form by a greedy algorithm. To determine an optimal

vector p 

∗, the algorithm starts with p 

∗ = p , considers the compo-

nents of the current p 

∗ in non-increasing order of their weights

and gives the current component the largest possible increment

that keeps the vector feasible. 
Let σ = ( σ ( 1 ) , σ ( 2 ) , . . . , σ ( n ) ) be a permutation of elements

n N = { 1 , 2 , . . . , n } such that w (σ (1)) ≥ w (σ (2)) ≥ · · · ≥ w (σ (n )) ,

nd define N t (σ ) = { σ (1) , . . . , σ (t) } for t = 1 , 2 , . . . , n, where, for

ompleteness, N 0 (σ ) = ∅ . 
heorem 3 (cf. Fujishige (2005) ) . Vector p 

∗ ∈ R 

N given by 

p ∗(σ (t)) = ˜ ϕ ( N t (σ ) ) − ˜ ϕ ( N t−1 (σ ) ) , t = 1 , 2 , . . . , n, 

s an optimal solution to problem (17) (and also to the problem (15) ).

We now demonstrate that the SCPT problems to minimize the

otal weighted compression cost can be reformulated in terms of

olving Problem (LP) of the form (15) , where the rank function

( X ) is a suitable processing capacity function defined in Section 3 .

Take a generic problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

mtn | �� , for which ϕ( X ) is the corresponding processing capac-

ty function. Notice that function ϕ( X ) is submodular; see, e.g.,

hakhlevich and Strusevich (20 05, 20 08) . Intuitively, submodular-

ty of the processing capacity function can be naturally explained

y using an equivalent definition of a submodular function, known

s the law of diminishing returns: a set function ϕ is submodular

f and only if the inequality 

 ( X ∪ { j } ) − ϕ ( X ) ≥ ϕ ( Y ∪ { j } ) − ϕ ( Y ) 

olds for all sets X ⊂ Y ⊆ N and all j ∈ N �Y . Since in our case ϕ( X )

s the total duration of all time intervals available for processing

he jobs of set X , the value ϕ ( X ∪ { j } ) − ϕ ( X ) is the length of all

ntervals in which the job j can be processed, while none of the

obs of set X can. The inequality above holds due to X ⊂ Y . 

Recall that in problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

mtn | �� , it is required to find a feasible schedule with the

ob processing times p( j) = p ( j) − x ( j) , j ∈ N , that minimizes the

otal compression cost �� = 

∑ 

j∈ N w T ( j ) x ( j ) . As follows from

ection 3 (see (3) ), a feasible schedule exists if and only if

he inequality p ( X ) ≤ϕ( X ) holds for each set X ⊆N . Moreover,

inimizing the total compression cost �� = 

∑ 

j∈ N w T ( j ) x ( j) is

quivalent to maximizing the total weighted processing time

 = 

∑ 

j∈ N w T ( j) p( j) . Hence, problem α| r ( j ), p( j) = p ( j) − x ( j) ,

 ( j ) ≤ d ( j ), pmtn | �� can be reformulated as Problem (LP) of the

orm (15) . 

heorem 4. In order to solve problem α| r ( j ), p( j) = p ( j) − x ( j) ,

 ( j ) ≤ d ( j ), pmtn | �� it suffices to solve Problem (LP), where ϕ( X )

s the corresponding processing capacity function and w ( j) = w T ( j) ,

 ∈ N. 

By Theorems 3 and 4 , optimal processing times p ∗( j ), j ∈ N ,

f the problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� are

iven as 

p ∗(σ (t)) = ˜ ϕ ( N t (σ ) ) − ˜ ϕ ( N t−1 (σ ) ) , t = 1 , 2 , . . . , n, 

nd the optimal total weighted processing time is W =
 n 
t=1 w T (σ (t)) p ∗(σ (t)) . We can also obtain optimal compres-

ion amounts x ∗( j ), j ∈ N , by x ∗(σ (t)) = p (σ (t)) − p ∗(σ (t)) ,

 = 1 , 2 , . . . , n, and the optimal total compression cost �� is given

s 

� = 

n ∑ 

t=1 

w T (σ (t))( p (σ (t)) − p ∗(σ (t))) 

= 

n ∑ 

t=1 

w T (σ (t)) p (σ (t)) −
n ∑ 

t=1 

w T (σ (t)) p ∗(σ (t)) 

= 

n ∑ 

t=1 

w T (σ (t)) p (σ (t)) − W. (18)

As far as we are aware, the first observation of the link between

he SCPT problems and Problem (LP) was made by Nemhauser and

olsey (1988) , who considered a single machine problem with
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o lower and upper bounds on the processing times. Since 2005,

ur team has performed a systematic exploration of that link and

emonstrated how useful such a link is, bringing a powerful toolkit

f submodular optimization into the study of SCPT. 

If one reads earlier papers on SCPT, e.g., those reviewed in

owicki and Zdrzalka (1990) and Shabtay and Steiner (2007) , most

f them have a common feature. An algorithm based on the greedy

deas is offered and its correctness is proved usually from the

rst principles using a problem-dependent scheduling argument.

n immediate advantage of Theorem 4 is that many single crite-

ion SCPT problems admit a solution by the greedy algorithm. 

Other advantages include a possibility of solving efficiently bi-

riteria problems without using a scheduling argument, as demon-

trated in Sections 7.2 and 7.3 . We review recent results on solving

he SCPT problems in which it is required to simultaneously min-

mize two objective functions, e.g., F 1 and F 2 . In problems of this

ype, we need to find the set of Pareto-optimal schedules. Recall

hat a schedule S ′ is called Pareto-optimal if there exists no sched-

le S ′ ′ such that F 1 ( S 
′ ′ ) ≤ F 1 ( S 

′ ) and F 2 ( S 
′ ′ ) ≤ F 2 ( S 

′ ), where at least

ne of these inequalities is strict. A comprehensive exposition of

ulti-criteria scheduling problems is contained in T’kindt and Bil-

aut (2006) . 

We demonstrate that Methodology 2 provides the foundation

o an approach to solving a range of bicriteria SCPT problems. In

articular, for these problems Theorems 3 and 4 allow finding the

fficiency frontier in a closed form. 

Notice that for the problems of the range under consideration

reviously known algorithms are usually based on scheduling rea-

oning: typically, they enumerate the breakpoints of the efficiency

rontier one by one, constructing the next breakpoint from the

revious one by changing the underlying schedule by compress-

ng/decompressing a job. 

.2. Bicriteria problems on parallel machines 

We start with problems Q| p( j) = p ( j) − x ( j) , pmtn | ( C max , ��)
nd α| r( j) , p( j) = p ( j) − x ( j) , pmtn | ( C max , ��) with α ∈ { P , Q }. In

he third field of the above notation, we write ( C max , ��) to indi-

ate that it is required to find the set of Pareto-optimal solutions

ith respect to two criteria, the makespan C max and the total com-

ression cost �� . The material of this section is mainly based on

hioura, Shakhlevich, and Strusevich (2013) . 

Given an instance of a bicriteria problem of the indicated range,

onsider a schedule with a makespan C max = d that minimizes the

otal compression cost �� = ��(d) . Note that ��( d ) depends on

he makespan d and is a piecewise-linear function in d represent-

ng the efficiency frontier. In a bicriteria problem, our task is to

ompute the piecewise-linear function ��( d ). 

As discussed in Section 7 , the value ��( d ) for a given d can be

ound by solving an appropriate problem of the form (15) . Since in

his case the rank functions ϕ( X ) and ˜ ϕ (X ) of the form (16) should

e seen not only as functions of set X but also as functions of d , in

his section we may write ϕ( X , d ) and ˜ ϕ (X, d) whenever we want

o stress that dependence on d . In particular, the value ��( d ) can

e obtained by solving the problem 

ax 
∑ 

j∈ N 
w T ( j) p( j) 

s . t . p(X ) ≤ ϕ(X, d) , X ∈ 2 

N , 

p ( j) ≤ p( j) ≤ p ( j) , j ∈ N, (19) 

here ϕ( X , d ) is a suitably chosen processing capacity function

hat guarantees that the jobs of set X can be completed by time d .

his problem is a parametric version of Problem (LP), and the sec-

nd line of its constraints describes a parametric submodular poly-

edron. As in Section 7 , let σ = ( σ ( 1 ) , σ ( 2 ) , . . . , σ ( n ) ) be a per-
utation of elements in N = { 1 , 2 , . . . , n } such that w T (σ (1)) ≥
 T (σ (2)) ≥ · · · ≥ w T (σ (n )) , and define N t (σ ) = { σ (1) , . . . , σ (t) } ,
 ≤ t ≤ n , where, for completeness, N 0 (σ ) = ∅ . Then, an optimal so-

ution p ∗( j , d ), j ∈ N , to problem (19) is given as 

p ∗(σ (t) , d) = ˜ ϕ (N t (σ ) , d) − ˜ ϕ (N t−1 (σ ) , d) , t = 1 , 2 , . . . , n, (20)

nd the optimal value W ( d ) of problem (19) is given by 

 (d) = 

n ∑ 

t=1 

w T (σ (t)) p ∗(σ (t) , d) . (21)

ence, the total compression cost ��(d) is represented as 

�(d) = 

n ∑ 

t=1 

w T (σ (t)) p (σ (t)) − W (d) ; (22)

ee Eq. (18) . It should be noted that the term
 n 
t=1 w T (σ (t)) p (σ (t)) in (22) is independent of the makespan

 and is a constant for all d . Therefore, the function ��(d) can

e easily obtained from the piecewise-linear function W ( d ) by

 simple transformation (22) , and it suffices to compute W ( d )

nstead of ��(d) . 

Given a value of d , define a function 

 t (d) = ˜ ϕ (N t (σ ) , d) , 1 ≤ t ≤ n. (23)

y (20) and (21) , the value W ( d ) is represented as 

 (d) = 

n ∑ 

t=1 

w T ( σ (t) ) ( ψ t (d) − ψ t−1 (d) ) 

= 

n −1 ∑ 

t=1 

( w T ( σ (t) ) − w T ( σ (t + 1) ) ) ψ t (d) + w T (σ (n )) ψ n (d) .

(24)

Thus, the piecewise-linear function W ( d ) can be obtained by

rst computing the functions ψ t ( d ), 1 ≤ t ≤ n , and then comput-

ng their weighted sum according to (24) . It is shown in Shioura

t al. (2013 , Section 2) that once these functions ψ t ( d ), 1 ≤ t ≤ n ,

re found, their weighted sum (24) can be computed in O ( nm log n )

ime, provided that each function ψ t ( d ) has at most O ( m ) break-

oints. Below we explain how to compute functions ψ t ( d ) for all

 = 1 , 2 , . . . , n . 

It follows from (16) applied to X = N t (σ ) that 

 t (d) = min 

Y ∈ 2 N 
{
ϕ(Y, d) + p (N t (σ ) \ Y ) − p (Y \ N t (σ )) 

}
= p (N t (σ )) + min 

Y ∈ 2 N 
{
ϕ(Y, d) −p (N t (σ ) ∩ Y ) −p (Y \ N t (σ )) 

}
.

(25)

or the problem Q| p( j) = p ( j) − x ( j) , pmtn | ( C max , ��) , the value

( Y , d ) is given by ϕ(Y, d) = dS m Y 
with m Y = min { m, | Y | } ; see (9) .

sing Eq. (25) and the fact that S m Y 
takes at most m + 1 values, we

an show that ψ t ( d ) is represented as a piecewise-linear (concave)

unction with m + 1 pieces. For the other two scheduling problems

nder consideration, due to (11) and (12) , we can still show that

 t ( d ) is represented as a piecewise-linear (concave) function with

 + 1 pieces. 

Computing functions ψ t ( d ), 1 ≤ t ≤ n , for all relevant values of

 is a problem dependent procedure. As shown in Shioura et al.

2013) , such a procedure requires O ( n log n + nm ) time for pr ob-

em Q| p( j) = p ( j) − x ( j) , pmtn |( C max , ��), and the overall time

omplexity for solving that problem is O ( nm log m ). For problems

| r( j) , p( j) = p ( j) − x ( j) , pmtn | ( C max , ��) with non-zero release

ates, computing functions ψ t ( d ), 1 ≤ t ≤ n , takes O ( n 2 log m ) time

nd O ( n 2 m ) time for α = P and α = Q, respectively, and these val-

es determine the running times needed for solving the corre-

ponding problems. 
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Table 4 

Complexity of bicriteria problems. 

Problem Previously known Methodology 2 

1 | r ( j ) , p( j) = p ( j) − x ( j) , pmtn |( C max , �� ) N/A O ( n log n ) 

Shakhlevich and Strusevich (2005) 

1 | r ( j ) , p( j) = p ( j) − x ( j) , pmtn |( L max , �� ) N/A O ( n 2 ) 

Shakhlevich and Strusevich (2005) 

1 | p( j) = p ( j) − x ( j) | (max j ∈ N f j ( C ( j )), �� ) O ( n 4 L 2 ) ∗ O ( n 3 L ) ∗

Hoogeveen and Woeginger (2001) Shakhlevich et al. (2009) 

P| p( j) = p ( j) − x ( j) , pmtn |( C max , �� ) O ( n 2 ) O ( n log n ) 

Nowicki and Zdrzalka (1995) Shakhlevich and Strusevich (2005) 

P| r( j) , p( j) = p ( j) − x ( j) , pmtn |( C max , �� ) N/A O ( n 2 log m ) 

Shioura et al. (2013) 

Q| p( j) = p ( j) − x ( j) , pmtn |( C max , �� ) O (n log n + nm 

4 ) O ( nm log m ) 

Shakhlevich and Strusevich (2008) Shioura et al. (2013) 

Q| r( j) , p( j) = p ( j) − x ( j) , pmtn |( C max , �� ) N/A O ( n 2 m ) 

Shioura et al. (2013) 

∗ L is the total number of pieces of all functions f j , j ∈ N . 
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We conclude this subsection by considering problem P | p( j) =
p ( j) − x ( j) , pmtn | (C max , ��) . In principle, it can be solved us-

ing the approach outlined above for a more general problem

Q| r ( j ) , p( j) = p ( j) − x ( j) , pmtn | (C max , ��) . However, even if all

release dates are zero, we are not aware how to implement the

approach faster than in O ( n 2 ) time. A more efficient approach pre-

sented in Shakhlevich and Strusevich (2005) uses the submodular

optimization reasoning to justify the use of the greedy algorithm

and is based on the following property of optimal solutions. For

any fixed value d , there is a subset of decompressed jobs N t ( σ )

with the processing times min { p ( j ) , d } , while each remaining job

j ∈ N \ N t ( σ ) remains fully compressed, with the processing time p ( j ).

Within the set N �N t ( σ ), the preference for decompression is al-

ways given to the jobs with the largest weights w T ( j ) . It is demon-

strated in Shakhlevich and Strusevich (2005) that the solution with

the smallest C max -value can be found in O ( n log n ) time. Starting

from it, each next breakpoint of the efficiency frontier can be con-

structed in O (log n ) time from the previous one. With the total

number of breakpoints bounded by 2 n + 1 , the overall time com-

plexity of that approach is O ( n log n ). 

7.3. Bicriteria problems on a single machine 

Below, we briefly review the results on single machine bicriteria

SCPT problems. 

Problem 1 | r ( j ) , p( j) = p ( j) − x ( j) , pmtn | (C max , ��) is a special

case of problem P | p( j) = p ( j) − x ( j) , pmtn | (C max , ��) considered

in the previous subsection, and therefore can be solved in O ( n log n )

time; see Shakhlevich and Strusevich (2005) . 

Problem 1 | r ( j ) , p( j) = p ( j) − x ( j) , pmtn | (L max , ��) , where

job j ∈ N has a due date d ( j ) (not a deadline) and L max =
max { C ( j ) − d ( j ) | j ∈ N } is the maximum lateness, is also studied

in Shakhlevich and Strusevich (2005) . Recall that in scheduling the

difference between the deadlines and the due dates is that the

latter can be violated, which is usually associated with a penalty

to be paid for a late completion of jobs. The submodular optimiza-

tion reasoning is applied to justify and develop a version of the

greedy algorithm, and the resulting algorithm requires O ( n 2 ) time. 

Consider now problem 1 | p( j) = p ( j) − x ( j) | ( F max , ��) , where

the first objective represents the schedule quality measured in the

terms of the maximum processing cost F max = max j∈ N f j (C ( j ) ) . For

job j ∈ N , function f j ( C ( j )) is a non-decreasing piecewise-linear func-

tion that penalizes the completion of job j at time C ( j ) and consists

of l j linear pieces. 

This problem is among historically the first SCPT problems (see

Van Wassenhove and Baker (1982) ), and admits a natural interpre-

tation in terms of the make-or-buy decision-making; see Section 2 .
ere the machine is seen as the internal production facility. The

ost function f j ( C j ) is the work-in-process cost of order j , so that

 max is the processing cost, i.e., represents the maximum cost of

rocessing those orders and their parts that are accepted for inter-

al manufacturing. The other objective function �� expresses the

otal subcontracting cost. 

The algorithm presented in Shakhlevich et al. (2009) com-

ines the reformulations in terms of linear programming prob-

ems over parametric submodular polyhedra with computational

eometry techniques. It starts with a pre-processing step, that re-

uires O ( nL log n ) time with L = 

∑ 

j∈ N l j , and is aimed at splitting

he whole range of possible values of f j ( C j ) into intervals [ y � −1 , y � ]

uch that within each interval the functions f j ( t ) do not intersect

nd do not change their linear shape. Such a splitting ensures that

or every interval the job sequence is fixed, and the approach simi-

ar to that outlined in Section 7.2 is applicable to each of the O ( nL )

ntervals of the form [ y � −1 , y � ] . Since the time complexity of find-

ng ��( d ) in a single interval is O ( n 2 ) and the total number of the

elevant intervals is O ( nL ), the overall time complexity is O ( n 3 L ),

hich is better than the previously known running time reported

n Hoogeveen and Woeginger (2001) . 

It is clear that the algorithm for solving problem 1 | p( j) =
p ( j) − x ( j) | ( F max , ��) delivers an optimal solution to a single cri-

erion problem of minimizing one of the objectives F max or �� ,

rovided that the other one is bounded. However, as shown in

hakhlevich et al. (2009) , these single criterion problems can be

olved faster by specialized algorithms. The problem of minimiz-

ng the total compression cost �� subject to a bounded maxi-

um processing cost F max requires O ( n log n + λ) time with λ =
 

j∈ N log l j . On the other hand, minimizing the maximum pro-

essing cost F max subject to a bounded total compression cost

� takes O 

(
L + n 2 + ( λ + n log n ) log L 

)
time. If each l j is bounded

y a constant, the above estimates reduce to O ( n log n ) and

 

(
n 2 + n log 

2 
n 

)
, respectively. 

The summary of the results on the bicriteria problems and their

omparison are presented in Table 4 . 

. Methodology 3: Submodular optimization via decomposition 

lgorithm and its applications 

Due to Theorems 3 and 4 , Problem (LP) can be solved by a

reedy algorithm in at most n iterations, each of which involves

inimization of a submodular function. In this section, we present

 recursive decomposition algorithm that solves Problem (LP) with

 depth of recursion O (log n ). We also show how to adapt the algo-
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ithm to solving several SCPT problem to minimize the total com-

ression cost. 

Our algorithm is different from a well-known decomposition al-

orithm from Fujishige (1980, 2005) which minimizes a separable

onvex function over a base polyhedron. Even for a linear objec-

ive function, the depth of recursion of Fujishige’s algorithm in the

orst case is n . A detailed comparison of Fujishige’s algorithm and

ur decomposition algorithm is provided in Shioura et al. (2015) . 

.1. Decomposition algorithm 

Our presentation of the decomposition algorithm for Problem

LP) is based on Shioura et al. (2015 , 2016) . Given Problem (LP) of

he form (15) , a subset ˆ N ⊆ N is called a heavy-element subset of N

ith respect to the weight vector w if it satisfies the condition 

in 

j∈ ̂ N 

w T ( j) ≥ max 
j∈ N\ ̂ N 

w T ( j) . 

or completeness, we also regard the empty set as a heavy-element

ubset of N . For a given set X ⊆N , in accordance with (16) define a

et Y ∗⊆N such that the equality 

˜  (X ) = ϕ(Y ∗) + p (X \ Y ∗) − p (Y ∗ \ X ) (26)

olds. In the remainder of this paper, we call Y ∗ an instrumental

et for set X . 

The statement below explains an important role that the instru-

ental set plays in solving Problem (LP). 

emma 5 (cf. Shioura et al. (2015 , 2016) ) . Let ˆ N ⊆ N be a heavy-

lement subset of N with respect to w , and Y ∗⊆N be an instrumental

et for set ˆ N . Then there exists an optimal solution p 

∗ of Problem (LP)

uch that 

(a) p ∗(Y ∗) = ϕ(Y ∗) , (b) p ∗( j) = p ( j) , j ∈ 

ˆ N \ Y ∗, 
(c) p ∗( j) = p ( j) , j ∈ Y ∗ \ ˆ N . 

In what follows, we use two fundamental operations on a sub-

odular system (2 N , ϕ), as defined in Fujishige (2005 , Section 3.1).

or a set A ∈ 2 N , define a set function ϕ 

A : 2 A → R by ϕ 

A (X ) =
(X ) , X ∈ 2 A . Then, (2 A , ϕA ) is a submodular system on A and it

s called a restriction of (2 N , ϕ) to A . On the other hand, for a set

 ∈ 2 N define a set function ϕ A : 2 
N\ A → R by ϕ A (X ) = ϕ(X ∪ A ) −

(A ) , X ∈ 2 N\ A . Then, (2 N �A , ϕA ) is a submodular system on N �A

nd it is called a contraction of (2 N , ϕ) by A . 

heorem 6 (cf. Shioura et al. (2015, 2016) ) . Let ˆ N ⊆ N be a heavy-

lement subset of N with respect to w , and Y ∗ be an instrumental

et for set ˆ N . Let p 1 ∈ R 

Y ∗ and p 2 ∈ R 

N\ Y ∗ be optimal solutions of the

inear programs (LPR) and (LPC), respectively, given by 

(LPR) : max 
∑ 

j∈ Y ∗
w ( j) p( j) 

s . t . p(X ) ≤ ϕ(X ) , X ∈ 2 

Y ∗ , 

p ( j) ≤ p( j) ≤ p ( j) , j ∈ Y ∗ ∩ 

ˆ N , 

p( j) = p ( j) , j ∈ Y ∗ \ ˆ N , 

(LPC) : max 
∑ 

j∈ N\ Y ∗
w ( j) p( j) 

s . t . p(X ) ≤ ϕ(X ∪ Y ∗) − ϕ(Y ∗) , X ∈ 2 

N\ Y ∗ , 
p ( j) ≤ p( j) ≤ p ( j) , j ∈ (N \ Y ∗) \ ( ̂  N \ Y ∗)
p( j) = p ( j) , j ∈ 

ˆ N \ Y ∗. 
hen, the vector p 

∗ ∈ R 

N given by the direct sum p 

∗ = p 1 � p 2 ,

here 

(p 1 � p 2 )( j) = 

{
p 1 ( j) , if j ∈ Y ∗, 
p 2 ( j) , if j ∈ N \ Y ∗, 

s an optimal solution of Problem (LP). 
Notice that Problem (LPR) is obtained from Problem (LP) as a

esult of restriction to Y ∗ and the values of components p( j) , j ∈
 ∗ \ ˆ N , are fixed to their lower bounds in accordance with Property

c) of Lemma 5 . Similarly, Problem (LPC) is obtained from Problem

LP) as a result of contraction by Y ∗ and the values of components

 ( j ), j ∈ 

ˆ N \ Y ∗, are fixed to their upper bounds in accordance with

roperty (b) of Lemma 5 . 

Now we explain how the original problem (LP) can be decom-

osed recursively based on Theorem 6 , until we obtain a collection

f trivially solvable problems with no non-fixed variables. As de-

cribed in Shioura et al. (2015, 2016) , in each stage of the recursive

rocedure, we need to solve a subproblem that can be written in

he following generic form: 

LP(H , F , K , l , u ) : 

max 
∑ 

j∈ H 
w T ( j) p( j) 

s . t . p(X ) ≤ ϕ 

H 
K (X ) = ϕ(X ∪ K) − ϕ(K) , X ∈ 2 

H , 

l( j) ≤ p( j) ≤ u ( j) , j ∈ H \ F , 
p( j) = u ( j) = l( j) , j ∈ F , 

(27) 

here H ⊆N is the index set of components of vector p ; l = (l( j) |
j ∈ H) and u = (u ( j) | j ∈ H) are, respectively, the current vectors

f the lower and upper bounds on variables p ( j ), j ∈ H ; F ⊆H is the

ndex set of fixed components, i.e., l( j) = u ( j) holds for each j ∈ F ;

 ⊆N �H is the set that defines the rank function ϕ 

H 
K 

: 2 H → R such

hat ϕ 

H 
K (X ) = ϕ(X ∪ K) − ϕ(K) , X ∈ 2 H . 

If in Problem LP( H , F , K , l , u ) all variables are fixed, their values

orm an optimal solution of the problem. Otherwise, function 

˜ ϕ 

H 
K 

:

 

H → R is defined by ˜ 

 

H 
K (X ) = min 

Y ∈ 2 H 
{ ϕ 

H 
K (Y ) + u (X \ Y ) − l(Y \ X ) } . (28)

y Theorem 2 , the set of maximal feasible solutions of Prob-

em LP( H , F , K , l , u ) is given as a base polyhedron B ( ̃  ϕ 

H 
K 
) associated

ith the rank function 

˜ ϕ 

H 
K . 

For Problem LP( H , F , K , l , u ), a solution vector p 

∗ ∈ R 

H is found

ecursively by Procedure Decomp ( H , F , K , l , u ) that is designed in

hioura et al. (2015, 2016) . Without going into technical details, the

rocedure works as follows. At the lowest level of recursion, i.e., if

 \ F = { j ′ } , each component p ∗( j ) of vector p 

∗ is equal to its upper

ound u ( j ), except p ∗( j ′ ), which is set equal to ˜ ϕ 

H 
K ({ j ′ } ) . 

Suppose that | H �F | ≥ 2. Procedure Decomp ( H , F , K , l , u ) deter-

ines a set ˆ H ⊆ H, which is a heavy-element subset of H with re-

pect to the vector (w ( j) | j ∈ H) . Let Y ∗⊆H be an instrumental set

or set ˆ H , i.e., ˜ 

 

H 
K ( ̂  H ) = ϕ 

H 
K (Y ∗) + u ( ̂  H \ Y ∗) − l(Y ∗ \ ˆ H ) . (29)

After that, in accordance with Theorem 6 , Problem LP( H , F , K ,

 , u ) is decomposed into two subproblems, Problem LP ( Y ∗ , F 1 , K ,

 1 , u 1 ) and Problem LP( H �Y ∗ , F 2 , K ∪ Y ∗ , l 2 , u 2 ), with appropriately

djusted lower and upper bounds l 1 , u 1 and l 2 , u 2 . Each of these

ubproblems is solved recursively by applying Procedure Decomp .

he solution vector of Problem LP( H , F , K , l , u ) is the direct sum of

he solution vectors found for the two subproblems. 

The original problem (LP) is solved by calling Procedure De-

omp ( N , ∅ , ∅ , p , p ) . Its actual running time depends on the choice

f a heavy-element subset ˆ H in Step 2 and on the time complex-

ty of finding an instrumental set Y ∗ . As proved in Shioura et al.

2015) , if at each level of recursion a heavy-element set is cho-

en to contain roughly a half of the non-fixed variables, then the

verall depth of recursion of Procedure Decomp applied to Prob-

em LP (N, ∅ , ∅ , p , p ) is O (log n ). 

For a typical iteration of Procedure Decomp applied to Prob-

em LP( H , F , K , l , u ) with | H| = h and | H \ F | = g, let T Y ∗ (h ) de-

ote the running time for computing the value ˜ ϕ 

H 
K 
( ̂  H ) for a given

et ˆ H ⊆ H and finding an instrumental set Y ∗ in Step 2. In Steps 3
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and 4, Procedure Decomp splits Problem LP( H , F , K , l , u ) into two

subproblems: one with h 1 variables among which g 1 ≤ min { h 1 ,

 g /2 � } variables are not fixed, and the other one with h 2 = h − h 1
variables, among which g 2 ≤ min { h 2 , � g /2 � } variables are not fixed.

Let T Split ( h ) denote the time complexity for setting up the instances

of these two subproblems. It is shown in Shioura et al. (2015,

2016) that Problem (LP) can be solved by Procedure Decomp in

O ((T Y ∗ (n ) + T Split (n )) log n ) time. 

Further in this section, we demonstrate the power of Method-

ology 3 by adapting the decomposition algorithm to solving the

SCPT problems with the total compression cost objective. We split

our consideration into two parts, depending on a particular way of

finding an instrumental set Y ∗ . 

8.2. Minimizing total cost on parallel machines. Common deadline 

In this subsection, we assume that all jobs have a common

deadline. We exclude from consideration problem P | p( j) = p ( j) −
x ( j ) , C ( j ) ≤ d , pmtn | ��, since this problem, the simplest of the

range under consideration, admits a linear time algorithm. Indeed,

as pointed out in Jansen and Mastrolilli (2004) , the problem re-

duces to the continuous knapsack problem. 

Thus, in this subsection, we focus on the problems Q| p( j) =
p ( j) − x ( j ) , C ( j ) ≤ d , pmtn | �� and α| r( j) , p( j) = p ( j) − x ( j) , C ( j )
≤ d, pmtn | �� with α ∈ { P , Q }. Of course, each of these problems

can be solved by adapting an output of the corresponding algo-

rithm for the relevant bicriteria problem; see Section 7.2 . However,

as shown below, each of these problems can be solved faster by

applying the decomposition algorithm from Section 8.1 . The mate-

rial is this subsection is based on Shioura et al. (2015) . 

In accordance with Theorem 4 , each of these three problems re-

duces to Problem (LP). The corresponding rank functions are given

by (9) for problem Q| p( j) = p ( j) − x ( j ) , C ( j ) ≤ d , pmtn | ��, by

(12) for problem P | r( j) , p( j) = p ( j) − x ( j) , C ( j ) ≤ d, pmtn | �� and

by (11) for problem Q| r( j) , p( j) = p ( j) − x ( j) , C ( j ) ≤ d, pmtn | �� . 

In line with the decomposition algorithm for Problem (LP), take

an initial Problem LP( N , ∅ , ∅ , l , u) , associated with one of the three

scheduling problems above, where l ( j ) = p ( j) and u ( j ) = p ( j) ,

j ∈ N . Assume that the following preprocessing is done in O ( n log n )

time before calling Procedure Decomp ( N , ∅ , ∅ , l , u ): the jobs are

numbered in non-decreasing order of their release dates in accor-

dance with (6) ; the machines are numbered in non-increasing or-

der of their speeds in accordance with (1) , and the partial sums

S v are computed for all v , 0 ≤ v ≤ m, by (7) , the lists ( l ( j ) | j ∈ N )

and ( u ( j ) | j ∈ N ) are formed and their elements are sorted in non-

decreasing order. 

For each of the three problems under consideration, the rank

functions are relatively simple, so that the instrumental set Y ∗ can

be found directly, as a minimizer of a certain submodular func-

tion. In a typical iteration of Procedure Decomp applied to Prob-

lem LP( H , F , K , l , u ) of the form (27) with the rank function

ϕ 

H 
K 
(Y ) = ϕ(Y ∪ K) − ϕ(K) , it is shown in Shioura et al. (2015) that

for a given set X ⊆ H the function 

˜ ϕ 

H 
K : 2 H → R can be computed

as ˜ ϕ 

H 
K (X ) = u (X ) − ϕ(K) + min 

Y ∈ 2 H 
{ ϕ(Y ∪ K) − b(Y ) } , (30)

where ϕ is the initial rank function associated with the scheduling

problem under consideration, and 

b( j) = 

{
u ( j) , if j ∈ X, 

l( j) , if j ∈ H \ X. 
(31)

Notice that if the minimum in the right-hand side of (30) is

achieved for Y = Y ∗, then Y ∗ is an instrumental set for set X . 

To illustrate this, consider, e.g., problem Q| p( j) = p ( j) − x ( j) ,

pmtn , C ( j ) ≤ d | � . For Problem LP( H , F , K , l , u ) associated with that
�
roblem it follows from (9) and (30) that 

˜ 

 

H 
K (X ) = u (X ) − dS min { m,k } + min { �′ , �′′ } , (32)

here k = | K| , 

′ = 

⎧ ⎨ ⎩ 

min 

0 ≤v ≤min { h,m −k −1 } 
{ dS v + k −

v ∑ 

i =1 

b i } , if m > k, 

+ ∞ , otherwise , 

ith b i being the i th largest value in the list ( b ( j ) | j ∈ H ), and 

′′ = 

{
dS m 

− b(H) , if h > m − k − 1 , 

+ ∞ , otherwise . 

n any case, in terms of the notions introduced in Section 8 we de-

uce that T Y ∗ (h ) = T Split (h ) = O ( h ) , so that the overall running time

eeded to solve problem Q| p( j) = p ( j) − x ( j) , pmtn, C ( j ) ≤ d| ��

y the decomposition algorithm based on recursive applications of

rocedure Decomp is O ( n log n ). An alternative implementation of

he same approach, also presented in Shioura et al. (2015) , does

ot involve a full preprocessing and requires O (n + m log m log n )

ime. 

When Methodology 3 is applied to problems P | r( j) , p( j) =
p ( j) − x ( j ) , C( j ) ≤ d, pmtn | �� and Q | r ( j ), p( j) = p ( j) −
 ( j) , C( j) ≤ d, pmtn | ��, the decomposition algorithm can be

mplemented in O ( n log n log m ) time and in O ( mn log n ) time,

espectively. 

The summary of the results for the single criterion parallel ma-

hine problems with a common deadline is presented in Table 5 . 

.3. Minimizing total cost on a single machine. Arbitrary deadlines 

Problem 1 | r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn | �� for

any years has been an object of intensive study, mainly within

he body of research on SIC. The history of studies on this problem

s a race for developing an O ( n log n )-time algorithm, matching

he best possible estimate of O ( n log n ) achieved for a simpler

easibility problem 1 | r( j) , C( j) ≤ d( j) , pmtn |−, see Table 6 . 

The time complexity of problem 1 | r( j) , p( j) = p ( j) −
 ( j) , C( j) ≤ d( j) , pmtn | �� is finally settled in Shioura, Shakhle-

ich, and Strusevich (2016) , where an O ( n log n )-time algorithm

s produced using Methodology 3. The algorithm is based on

he decomposition algorithm for Problem (LP) and uses an al-

orithm from Hochbaum and Shamir (1990) as a subroutine for

olving auxiliary problems with the unweighted penalty function

u = 

∑ 

x ( j) . 

The efficient implementation of the decomposition algorithm

eveloped in Shioura et al. (2016) is based on the following state-

ent. 

heorem 7 (cf. Fujishige, 2005 , Corollary 3.4) . For a submodular

ystem (2 H , ϕ) and a vector b ∈ R 

H , the equality 

in 

Y ∈ 2 H 
{ ϕ(Y ) + b(H \ Y ) } = max { p(H) | p ∈ P (ϕ) , p ≤ b } 

olds. In particular, if b ≥ 0 and ϕ( X ) ≥ 0 for all X ⊆N , then the right-

and side is equal to max { p ( H ) | p ∈ P ( ϕ), 0 ≤ p ≤ b } . 

Given Problem LP( H , F , K , l , u ) of the form (27) , for a set X ⊆H

efine the vector b ∈ R 

H 
b y (31) , and for a set X ⊆H represent

˜  H 
K 
(X ) in the form 

˜  H K (X ) = min 

Y ∈ 2 H 
{ ϕ 

H 
K (Y ) + u (X \ Y ) − l(Y \ X ) } 

= −l(H \ X ) + min 

Y ∈ 2 H 
{ ϕ 

H 
K (Y ) + b(H \ Y ) } . 

Since −l(H \ X ) is a constant, in order to find an instrumen-

al set Y ∗ that defines ˜ ϕ 

H (X ) it suffices to find a minimizer for

K 
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Table 5 

Complexity of problems with a common deadline. 

Problem Previously known Methodology 3: 

Decomposition algorithm 

P| p( j) = p ( j) − x ( j) , C ( j ) ≤ d , pmtn | �� O ( n ) N/A 

Jansen and Mastrolilli (2004) 

P| r( j) , p( j) = p ( j) − x ( j) , C ( j ) ≤ d , pmtn | �� O (n 
4 
log n ) 

∗, # 
O ( n log n log m ) 

Blazewicz and Finke (1987) Shioura et al. (2015) 

Chung et al. (1989) 

Shih et al. (1991 , 1989) 

Leung (2004) 

O ( n 2 log m ) † 

Shioura et al. (2013) 

Q| p( j) = p ( j) − x ( j) , C ( j ) ≤ d , pmtn | � O (mn + n log n ) O (min { n log n , 

Nowicki and Zdrzalka (1995) n + m log m log n } ) 
Shakhlevich and Strusevich (2008) Shioura et al. (2015) 

O ( mn log m ) † 

Shioura et al. (2013) 

Q| r( j) , p( j) = p ( j) − x ( j) , C ( j ) ≤ d , pmtn | � O ( mn 4 ) ∗ O ( mn log n ) 

Wan et al. (2007) Shioura et al. (2015) 

Shakhlevich and Strusevich (2008) 

O ( mn 2 ) † 

Shioura et al. (2013) 

∗ Derived for the problem with arbitrary deadlines. 
# After correcting a faulty claim that problem P| r( j) , C( j) ≤ d( j) , pmtn |− is solvable in O ( n 2 log 2 n ) time, see Remark 1 

of Section 5. 

† Methodology 2: bicriteria problems via submodular optimization, Section 7.2. 

Table 6 

Results for the single machine problem. 

Problem Previously known Methodology 3 

Decomposition algorithm 

1 | r( j) , p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� O ( n 2 log 2 n ) O ( n log n ) 

Chung et al. (1989) , Shioura et al. (2016) 

Shih et al. (1989) 

O ( n 2 ) for �� = 

∑ 

w T ( j) x ( j ) 

O ( n log n ) for �u = 

∑ 

x ( j) 

Hochbaum and Shamir (1990) 

O (n log n + κn ) 
∗

Leung et al. (1994) 

O (n log 
2 
n ) 

# 

Shih, Lee, and H. (20 0 0) 

∗ κ is the number of distinct weights w T ( j) . 
# for integer input data. 
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T  
in Y ∈ 2 H { ϕ 

H 
K (Y ) + b(H \ Y ) } . By Theorem 7 , the latter minimization

roblem is equivalent to the following auxiliary problem: 

(AuxLP) : max 
∑ 

j∈ H 
q ( j) 

s . t . 
q (Y ) ≤ ϕ 

H 
K (Y ) , Y ∈ 2 

H ;
0 ≤ q ( j) ≤ b( j) , j ∈ H. 

(33) 

Let q ∗ ∈ R 

H be an optimal solution to Problem (AuxLP) with

he values b ( j ) defined with respect to a set X ⊆H . It is proved in

hioura et al. (2016) that a set Y ∗ is an instrumental set that de-

nes ˜ ϕ 

H 
K (X ) if and only if 

 ∗(Y ∗) = ϕ 

H 
K (Y ∗) ; q ( j) = b( j) , j ∈ H \ Y ∗. 

Problem 1 | r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn | �� re-

uces to Problem (LP) with the rank function ϕ = ϕ 1 defined by

5) . Consider a typical iteration of Procedure Decomp applied to

roblem LP( H , F , K , l , u ) of the form (27) related to the rank func-

ion ϕ 

H 
K 
(Y ) = ϕ(Y ∪ K) − ϕ(K) . For a set X ⊆H of jobs, a meaningful

nterpretation of ϕ 

H 
K 
(X ) is the total length of the time intervals

riginally available for processing the jobs of set X ∪ K after the

ntervals for processing the jobs of set K have been completely

sed up. 

Select a heavy-element set ˆ H and define the values b ( j ) by

31) applied to X = 

ˆ H . Our goal is to find an instrumental set Y ∗
or set ˆ H . As described above, for this purpose we may solve the

uxiliary Problem (AuxLP). 

Problem (AuxLP) can be seen as a version of a scheduling prob-

em 1 | r( j) , q ( j) = b( j) − x ( j) , C( j) ≤ d( j) , pmtn | ∑ 

x ( j) , in which

t is required to determine the actual processing times q ( j ) of jobs

f set H to maximize the total (unweighted) actual processing time,

rovided that 0 ≤ q ( j ) ≤ b ( j ) for each j ∈ H . It can be solved by an al-

orithm developed by Hochbaum and Shamir (1990) , which uses

he UNION-FIND technique and finds the actual processing times

f all jobs and the corresponding optimal schedule in O ( h ) time,

rovided that the jobs are renumbered in non-increasing order of

heir release dates. The algorithm is based on the latest-release-

ate-first rule. Informally, the jobs are taken one by one, in the

rder of their numbering, and each job j ∈ H is placed into the cur-

ent partial schedule to fill the available time intervals consecu-

ively, from right to left, starting from the right-most available in-

erval. The assignment of a job j is completed either if its actual

rocessing time q ( j ) reaches its upper bound b ( j ) or if no available

nterval is left. Only a slight modification of the Hochbaum–Shamir

lgorithm is required to find not only the optimal values q ∗ ( j ) of

he processing times, but also the associated instrumental set. The

unning time of the modified algorithm is still O ( h ). 

In terms of the notions introduced in Section 8 we deduce that

 Y ∗ (h ) = T Split (h ) = O ( h ) , so that the overall running time needed
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Table 7 

Complexity of problems with maximum cost. 

Problem Previously known Methodology 1: 

parametric flow 

1 | r( j) , p( j) = p ( j) − x ( j) , O ( n 2 ) N/A 

C ( j ) ≤ d ( j ), pmtn | �max Ho et al. (1994) 

Ho (2004) 

P| r( j) , p( j) = p ( j) − x ( j) , O ( n 4 ) ∗ O ( n 3 ) 

C ( j ) ≤ d ( j ), pmtn | �max Ho et al. (1994) Section 9 

Ho (2004) 

Q| p( j) = p ( j) − x ( j) , O ( m 

2 n 4 log mn ) O ( mn 3 ) 

C ( j ) ≤ d ( j ), pmtn | �max Wan et al. (2007) Section 9 

∗After correcting a faulty claim that problem P| r( j) , C( j) ≤ d( j) , 

pmtn |− is solvable in O ( n 2 log 2 n ) time, see Remark 1 of Section 5. 
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to solve problem 1 | r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn | ��

by the decomposition algorithm based on recursive applications of

Procedure Decomp is O ( n log n ) . 

We conclude this section by reviewing the results for

the special case of problem 1 | r( j) , p( j) = p ( j) − x ( j) , C( j) ≤
d ( j ) , pmtn | �� with a common due date d , which is probably

one of the most studied SCPT problems; see, e.g., Hoogeveen

and Woeginger (2001) , Janiak and Kovalyov (1996) , Nowicki and

Zdrzalka (1990) , Vickson (1980) and Shakhlevich and Struse-

vich (2005) . Problem 1 | r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d, pmtn | ��

is known to be solvable in O ( n log n ) time. The algorithms

by Hoogeveen and Woeginger (2001) , Janiak and Kovalyov

(1996) and Shakhlevich and Strusevich (2005) are justified by

a schedule-based reasoning and the running time of O ( n log n )

is achieved by using special data structures, such as heaps

or 2–3-trees. On the other hand, Methodology 2 delivers

the same result for problem 1 | r( j) , p( j) = p ( j) − x ( j) , C( j) ≤
d, pmtn | �� as a direct consequence of the fact that the bicri-

teria problem 1 | r( j) , p( j) = p ( j) − x ( j) , pmtn | ( C max , ��) is solv-

able in O ( n log n ) time; see Shakhlevich and Strusevich (2005) and

Section 7.3 . 

9. Maximum cost 

In this section, we consider problems α| r ( j ), p( j) = p ( j) − x ( j) ,

C ( j ) ≤ d ( j ), pmtn | �max , α ∈ {1, P , Q }, of minimizing the function

�max = max j∈ N { x ( j) /w M 

( j) } , where w M 

( j) are positive weights.

Problems of this type have been extensively studied in the SIC lit-

erature; see Ho (2004) and Wan, Leung, and Pinedo (2007) for re-

views; see also Table 7 . In the discussion in the forthcoming sec-

tions we may use the SIC terminology, i.e., to refer to jobs as tasks

and to the compression costs (total or maximum) as errors. 

Similarly to Section 6 , below we provide a critical review of the

earlier results by (i) clarifying the running time needed to solve

problem P | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �max based on

Remark 1 of Section 5 ; (ii) demonstrating that using advanced

techniques of Methodology 1, such as solving the flow sharing

problems by parametric flows methods, yields solution algorithms

for problems α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �max which

have the same running times as the best algorithms known for the

counterparts of these problems with fixed processing times; see

Table 1 . 

Note that for identical parallel machines, the best algorithm

known within SIC implements an idea of an appropriate redis-

tribution of the minimum total compression amount �j ∈ N x ( j );
see Ho, Leung, and Wei (1994) and Leung, Yu, and Wei (1994) .

The algorithm is iterative, and each of its n steps requires find-

ing the minimum total cost for a modified system of tasks. It

is claimed that such a step can be done in O ( n 2 log 2 n ) time, by

solving an appropriate problem P | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

pmtn | �x ( j ) with the unweighted total cost function. However, as
ollows from our consideration in Section 6 , solving such a problem

equires O ( n 3 ) time, even for the unweighted case. Thus, in accor-

ance with Remark 1 of Section 5 , we deduce that the previously

nown approaches are able to solve problem P | r ( j ), p( j) = p ( j) −
 ( j) , C ( j ) ≤ d ( j ), pmtn | �max only in O ( n 4 ) time, not in O ( n 3 log 2 n )

ime, as claimed in Ho et al. (1994) and Ho (2004) . For prob-

em 1| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �max the algorithm

n Ho (2004) requires O ( n 2 ) time and remains the fastest. 

In the case of uniform machines, the best known algorithm for

roblem Q | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �max is due to

an et al. (2007) . The algorithm requires O ( mn 4 ) time and is based

n the algorithm for problem Q | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

mtn | �� by Shakhlevich and Strusevich (2008) . 

We now present more efficient algorithms for parallel machines

hat are based on Methodology 1, in particular on solving the flow

haring problems in networks H P and H Q , which are solved by

arametric maximum flow algorithms, as described in Gallo et al.

1989) . 

In the flow sharing problems, we consider a network that is

tructurally similar to network H P or H Q , introduced in Section 6 ,

here each arc a = (v , t) ∈ A 

t entering the sink t has a positive

eight w (a ) , and it is required to find a maximum flow f that

uarantees certain properties of the ratios f (a ) /w (a ) . In particular,

or our purposes we are interested in three versions of the flow

haring problems: 

• minimax sharing : find a maximum flow f ( a ), a ∈ A 

t , that mini-

mizes the largest ratio f (a ) /w (a ) ; 
• lexicographic sharing : find a maximum flow f ( a ), a ∈ A 

t , such that

the sequence of the ratios f (a ) /w (a ) , a ∈ A 

t , arranged in the

non-decreasing order 

f (a 1 ) 

w (a 1 ) 
≤ f (a 2 ) 

w (a 2 ) 
≤ · · · ≤ f (a g ) 

w (a g ) 

is lexicographically maximum (here g = | A 

t | ); 
• co-lexicographic sharing : find a maximum flow f ( a ), a ∈ A 

t , such

that the sequence of the ratios f (a ) /w (a ) , a ∈ A 

t , arranged in

the non-increasing order 

f (a 1 ) 

w (a 1 ) 
≥ f (a 2 ) 

w (a 2 ) 
≥ · · · ≥ f (a g ) 

w (a g ) 

is lexicographically minimum . 

Clearly, an optimal solution to the co-lexicographic sharing

roblem delivers an optimal solution to the minimax sharing prob-

em, although the converse does not necessarily hold. It is known

cf. Fujishige, 2005 , Section 9.1) that the lexicographic and the co-

exicographic sharing problems are equivalent; more precisely, a

aximum flow is an optimal solution to the lexicographic shar-

ng problem if and only if it is an optimal solution to the co-

exicographic sharing problem. Hence, in the remainder of this pa-

er, we will use the term “the lexicographic sharing problem” to

efer to the co-lexicographic sharing problem. As demonstrated by

allo et al. (1989) , all flow sharing problems listed above can be

educed to finding a parametric maximum flow. 

For α ∈ { P , Q }, take a network H α and for each arc a j = (X j , t) ,

 ∈ N , define the weight w (a j ) = w M 

( j) ; for all other arcs a ∈ A 

t en-

ering t prescribe infinitely large weights w (a ) . Then a solution

o problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �max can be

erived from a solution to either the minimax sharing problem or

he lexicographic sharing problem for the network H α introduced

bove. 

For network H α , define the capacity of each arc a j = (X j , t) ,

 ∈ N , to be equal to w (a j ) λ, where λ is a non-negative param-

ter. Below we remind how that reduction works for the lexico-

raphic sharing problem, since (i) solving this problem suffices for

olving the associated problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),
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(  
mtn | �max , and (ii) as shown later in Section 11 , a solution to

he lexicographic sharing problem also helps solving problems

| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �quad with a quadratic

ost function. 

Suppose that f ( a ), a ∈ A , is a maximum flow in network H α with

he modified capacities of the arcs entering the sink t . Let κ( λ)

epresent the capacity of a minimum cut, as a function of λ. It fol-

ows from Gallo et al. (1989) that κ( λ) is a piecewise-linear func-

ion of λ and has n breakpoints, one for each arc a j = (X j , t) , j ∈ N .

oreover, Gallo et al. (1989) present an algorithm that finds all

hese breakpoints. For an arc a j , let λj be the breakpoint at which

ode X j moves from the source side of a minimum cut to the sink

ide. Change the capacity of each arc a j = (X j , t) , j ∈ N , to w (a j ) λ j ,

nd find a maximum flow f ∗ in the resulting network. It is proved

y Gallo et al. (1989) , that flow f ∗ solves the lexicographic sharing

roblem. 

Once the flow f ∗ is found, it determines an optimal solution to

roblem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �max . For j ∈ N ,

he flow f ∗( s , j ) on the arc ( s , j ) entering the job-node j determines

he value p ( j ), the actual processing time of job j , while the flow

 

∗( X j , t ) on the arc ( X j , t ) entering the sink determines x ( j ), the

ompression amount of job j . Similarly to Section 6 , for network

 P the flow on an arc ( j , I h ) defines for how long job j is processed

n the time interval I h , while for network H Q the flow on an arc ( j ,

 I h , M i )) defines for how long job j is processed in the time interval

 h on machine M i . 

Since network H α , α ∈ { P , Q }, is bipartite, the techniques by

huja et al. (1994) can be used to speed up the algorithm by

allo et al. (1989) ; see row 4 of Table 2 . Thus, problem P | r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �max can be solved in O ( n 3 )

ime, and problem Q | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �max 

n O ( mn 3 ) time, as stated in Table 7 . 

0. Lexicographic minimization of total cost and maximum 

ost criteria 

In this section, we consider SCPT problems of lexicographical

inimization. Each job j ∈ N is associated with two weights: w T ( j)

hat defines the total compression cost �� = 

∑ 

w T ( j) x ( j) and

 M 

( j) that determines the maximum compression cost �max =
ax { x ( j) /w M 

( j) } . Problems of this range are known in the SIC

iterature as the ‘doubly weighted’ problems. Under the SIC inter-

retation �� is called the total error, while �max is called the

aximum error. A review of the previously known results on the

oubly weighted SIC problems is contained in Ho (2004) , where

he focus is on the lexicographically ordered objective functions.

ne of these objectives (the primary function �1 ) is minimized

nd then the minimum of the other objective (the secondary func-

ion �2 ) is sought among the schedules that are optimal with

espect to the primary function. To denote the problems of lexi-

ographic minimization, in the three-field scheduling notation we

rite Lex ( �1 , �2 ). 

As in Sections 6 and 9 , below we present improved algorithms

or identical parallel machines and uniform parallel machines ob-

ained by advanced techniques of Methodology 1. In particular, we

how that the doubly-weighted problems with the lexicographi-

ally ordered objectives Lex ( �max , ��) and Lex ( �� , �max ) can

e solved in a similar way and within the same running time as

he singly-weighted problems α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

mtn | �, where α ∈ { P , Q } and �∈ { �� , �max }, see Table 8 . For

ompleteness, the table also contains the previously known results

n the relevant single machine problems. It remains to be seen

hether the running times for these single machine problems can

e reduced. The approaches to solving parallel machine problems

ith the objectives Lex ( �max , ��) and Lex ( �� , �max ) are pre-

ented in Sections 10.1 and 10.2 , respectively. 
0.1. Lexicographic minimization with maximum cost as primary 

bjective 

Consider problems α| r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn

 Lex (�max , ��) for α ∈ { P , Q }, where the goal is to minimize

he total cost �� in the class of schedules with the smallest

aximum cost �max . The previously known algorithms are based

n the following idea: find an optimal schedule for problem α| r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �max , redefine the durations

f the mandatory and optional parts for each task and output a

chedule that delivers the minimum total cost for the modified

ask system. For identical parallel machines, the best previously

nown algorithm is due to Ho et al. (1994) and Ho (2004) . Solving

roblem P | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �max is the

ost time-consuming part of the algorithm, which should be

stimated as O ( n 4 ) (again, due to Remark 1 , the running time of

 ( n 3 log 2 n ) claimed in Ho et al. (1994) and Ho (2004) is incor-

ect). For a single machine, the algorithm requires O ( n 2 ) time.

or uniform parallel machines, the described approach can be

mplemented in O ( mn 4 ) time; see Wan et al. (2007) . 

Below, we outline a straightforward approach to solving prob-

ems α| r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn | Lex (�max , ��) ,

here α ∈ { P , Q }, which leads to faster algorithms. Let ξmin be the

inimum value of �max (with respect to weights w M 

( j) , j ∈ N )

btained by solving problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

mtn | �max . It is clear that the problem α| r ( j ), p( j) = p ( j) − x ( j) ,

 ( j ) ≤ d ( j ), pmtn | Lex ( �max , ��) is nothing else but problem α| r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� with additional upper

ounds on the x -values: 

 ( j) ≤ ξmin w M 

( j) , j ∈ N. 

s discussed in Section 6 , the resulting problem, and there-

ore the original problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

mtn | Lex ( �max , ��) can be solved in O ( n 3 ) time for α = P and in

 ( mn 3 ) time for α = Q . 

0.2. Lexicographic minimization with total cost as primary objective 

We now consider problem α| r( j) , p( j) = p ( j) − x ( j) , C( j) ≤
 ( j ) , pmtn | Lex (��, �max ) for α ∈ { P , Q }, where the goal is to min-

mize the maximum cost �max in the class of schedules with the

mallest total error cost �� . The previously known algorithms are

ased on the following approach. The algorithm consists of k itera-

ions, where k is the number of distinct weights w T ( j) , j ∈ N. In an

teration j , a modified task system is treated, in which the manda-

ory parts p ( j ) are set to zero, except for those tasks whose w T -

eight is the j th largest. For such a system a schedule that delivers

he minimum total cost is found, and the durations of mandatory

arts are appropriately adjusted to be used in the next iteration. 

For identical parallel machines, an algorithm that imple-

ents this idea is due to Ho and Leung (2004) . The running

ime of such an algorithm should be estimated as O ( kn 4 ) (again

he claimed running time of O ( kn 3 log 2 n ) time is incorrect, see

emark 1 ). In the worst case, all w T -weights are distinct, and

ence the algorithm solves problem P | r ( j ), p( j) = p ( j) − x ( j) ,

 ( j ) ≤ d ( j ), pmtn | Lex ( �� , �max ) in O ( n 5 ) time. For a single ma-

hine, the algorithm requires O ( n 2 log n ) time, since problem 1| r ( j ),

p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� is solvable in O ( n log n )

ime; see Section 8.3 . For uniform machines, Wan et al. (2007) give

n implementation of this approach in O ( kmn 4 ) time, which in the

orst case of k = O (n ) leads to O ( mn 5 ). An alternative approach to

olving problem Q | r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | Lex ( �� ,

max ) requires O ( kcmn 3 ), where c is not a strongly polynomial

arameter that depends on the problem’s input; see Wan et al.

2007) . Below, we describe an approach that leads to faster
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Table 8 

Complexity of problems with ordered criteria. 

Problem Previously known Methodology 1: 

parametric flow 

1 | r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn | Lex ( �max , �� ) O ( n 2 ) N/A 

Ho et al. (1994) , 

Ho (2004) 

1 | r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn | Lex ( �� , �max ) O ( n 3 ) N/A 

Ho and Leung (2004) 

Ho (2004) ; 

O ( n 2 log n ) 

Section 8.3 

P| r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn | Lex ( �max , �� ) O ( n 4 ) ∗ O ( n 3 ) 

Ho et al. (1994) Section 10.1 

Ho (2004) 

P| r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn | Lex ( �� , �max ) O ( n 5 ) ∗ O ( n 3 ) 

Ho and Leung (2004) Section 10.2 

Ho (2004) 

Q| r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn | Lex ( �max , �� ) O ( mn 4 ) O ( mn 3 ) 

Wan et al. (2007) Section 10.1 

Q| r( j) , p( j) = p ( j) − x ( j) , C( j) ≤ d( j) , pmtn | Lex ( �� , �max ) O ( mn 5 ) O ( mn 3 ) 

Wan et al. (2007) Section 10.2 

∗ After correcting a faulty claim that problem P| r( j) , C( j) ≤ d( j) , pmtn |− is solvable in O ( n 2 log 2 n ) time, see Remark 1 of 

Section 5. 
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algorithms for solving problems α| r ( j ), p( j) = p ( j) − x ( j) ,

C ( j ) ≤ d ( j ), pmtn | Lex ( �� , �max ) for α ∈ { P , Q }. 

Recall that problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

pmtn | �� can be solved as a minimum-cost maximum flow

problem for the underlying network H α = (V, A ) , in which an

upper bound on the capacity of an arc a ∈ A is denoted by μ( a ),

and an arc ( X j , t ) has the cost w T ( j) , j ∈ N , while the weights of

all other arcs are zero; see Section 6 . Hence, feasible schedules

for problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | Lex ( �� ,

�max ) correspond to minimum-cost maximum flows in H α , and

our scheduling problem reduces to the problem of finding a

minimum-cost maximum flow f that minimizes the maximum

cost 

�max = max 

{
f (X j , t) 

w M 

( j) 

∣∣∣∣ j ∈ N, f is a min-cost max-flow in H α

}
.

Notice that compression amounts x ( j ) correspond to f ( X j , t ), j ∈ N . 

To perform the search over the minimum-cost maximum flows

f in H α , we use their characterization in terms of node poten-

tials and reduced costs; see, e.g., Ahuja et al. (1993 , Theorem

9.4). For node potentials π(v ) , v ∈ V, the reduced cost of an arc

a = (v ′ , v ′′ ) ∈ A is defined as 

c π (a ) = w T (a ) − π(v ′ ) + π(v ′′ ) . 

We denote by f � a minimum-cost maximum flow in network H α ,

which is fixed in the following discussion. The lemma formulated

below can be seen as the complementary slackness theorem for

linear programming problems applied to the minimum-cost maxi-

mum flow problem. 

Lemma 8. There exist node potentials π(v ) , v ∈ V, such that a max-

imum flow f in H α is a minimum-cost maximum flow if and only if it

satisfies the following conditions: 

if c π (a ) > 0 , then f (a ) = 0 (= f �(a )) , 
if 0 < f (a ) < μ(a ) , then c π (a ) = 0 , 

if c π (a ) < 0 , then f (a ) = μ(a ) (= f �(a )) . 

} 

(34)

Moreover, such node potentials can be computed by solving a specially

defined shortest path problem in a residual network associated with

f � . 

Let us call the arcs a with c π ( a ) � = 0 fixed arcs . If for some j ∈ N ,

only one arc of the pair ( j , X j ) and ( X j , t ) is fixed and the other
s not, then we treat the other arc also as fixed. This can be done

ince f ( j, X j ) = f (X j , t) holds for all feasible flows f . 

The discussion above implies that problem α| r ( j ), p( j) = p ( j) −
 ( j) , C ( j ) ≤ d ( j ), pmtn | Lex ( �� , �max ) reduces to the minimax shar-

ng (or lexicographic sharing) problem (with weights w M 

( j) ) in the

etwork H α with an additional condition that 

f (a ) = f �(a ) for all fixed arcs a ∈ A. (35)

e will find an optimal flow f ∗ of this problem by using the al-

orithm by Gallo et al. (1989) as in Section 5 , adjusting it to han-

le the additional condition (35) . Namely, we find f ∗ as the sum of

wo flows f ′ and f ′ ′ , such that for each arc ( X j , t ) at most one value

 

′ ( X j , t ) or f ′ ′ ( X j , t ) is positive. 

Flow f ′ is a feasible flow in network H α that is responsible for

eeping the flow on fixed arcs a to f �( a ). It satisfies the following

onditions: 

(i) for any fixed arc a , the equality f ′ (a ) = f �(a ) holds; 

ii) for any non-fixed arc ( X j , t ), the equality f ′ (X j , t) = 0 holds. 

Flow f ′ ′ delivers the optimal flow on non-fixed arcs ( X j , t ). It

atisfies the conditions: 

ii) for any fixed arc a , the equality f ′′ (a ) = 0 holds; 

v) for any non-fixed arc ( X j , t ), flow f ′ ′ ( X j , t ) is part of an optimal

flow f ∗, i.e., f ′′ (X j , t) = f ∗(X j , t) . 

Flow f ′ can be found as follows. Recall that for each j ∈ N , the

rcs of each pair ( j , X j ) and ( X j , t ) are either both fixed or both

on-fixed. For each pair of non-fixed arcs ( j , X j ) and ( X j , t ), de-

ne f ′ ( j, X j ) = f ′ (X j , t) = 0 and f ′ (s, j) = p ( j) − f �(X j , t) . For the

emaining arcs a of network H α , define f ′ (a ) = f �(a ) . It is easy to

erify that f ′ satisfies the properties (i) and (ii) above. 

In order to find flow f ′ ′ , we need to solve the lexicographic

haring problem in a residual network. Let R α( f ′ ) be the residual

etwork associated with the flow f ′ . Since the amount of flow on

xed arcs in H α must be fixed, we delete all (forward and reverse)

rcs in R α( f ′ ) that are associated with fixed arcs in H α . In the ob-

ained network, which we still denote R α( f ′ ), for each non-fixed

rc ( X j , t ) the forward arc has capacity θ ( j ), while the reverse arc

oes not exist since f ′ (X j , t) = 0 . Flow f ′ ′ can be determined by

nding a lexicographically optimal flow in network R α( f ′ ). Notice

hat the algorithm by Gallo et al. (1989) is applicable, since every

rc has zero lower bound for the amount of flow. Hence, condi-

ions (iii) and (iv) are satisfied, and the flow f ∗ = f ′ + f ′′ gives an
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ptimal flow of the lexicographic sharing problem in the network

 α with the additional condition (35) . 

To summarize, the algorithm for solving problem α| r ( j ), p( j) =
p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | Lex ( �� , �max ) performs the following

teps. 

Algorithm Total-Max 

Step 1. Find a minimum-cost maximum flow f � in network H α .

Step 2. Compute the node potentials and the reduced costs that

satisfy the conditions (34) , and determine fixed and non-

fixed arcs in H α . 

Step 3. Find flow f ′ . 
Step 4. Create the residual network R α( f ′ ) and find flow f ′ ′ by

solving the lexicographic sharing problem in that network. 

Step 5. Set f ∗ = f ′ + f ′′ . Output the vector x given by x ( j) =
f ∗(X j , t) , j ∈ N , as an optimal solution to α| r ( j ), p( j) = p ( j) −
x ( j) , C ( j ) ≤ d ( j ), pmtn | Lex ( �� , �max ). 

We now analyze the time complexity of the Algorithm Total-

ax. Step 1 requires solving the minimum-cost maximum flow

roblem and can be done in O ( n 3 ) time for α = P and in O ( mn 3 )

ime for α = Q by adapting McCormick’s algorithm, as demon-

trated in Section 6 . In Step 2, we create and process the resid-

al network associated with flow f � . It is known that for the

inimum-cost maximum flow problem, the node potentials and

he associated reduced costs that satisfy (34) can be found by solv-

ng the shortest path problem in the residual network (see, e.g.,

huja et al. (1993 , Section 9.3)), which requires O (| V | · | A |) time, so

hat Step 2 can be implemented in O ( n 3 ) time for H P and in O ( mn 3 )

ime for H Q . Step 3 can be done easily in O (| A |) time. Step 4 solves

he lexicographic sharing problem and hence requires O ( n 3 ) and

 ( mn 3 ) time for α = P and α = Q, respectively. Step 5 can be done

n O (| A |) time in a straightforward way. Thus, we conclude that

roblem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | Lex ( �� , �max )

an be solved in O ( n 3 ) time for α = P and in O ( mn 3 ) time for

= Q . 

1. Quadratic costs 

In this section, we turn to the SCPT problems with quadratic

ost functions. Notice that the cost functions of this type have not

een earlier studied in the context of SCPT and SIC, although the

mallest weighted sum of squares is a very natural measure, often

sed in mathematics and statistics. We demonstrate that again ad-

anced techniques of Methodology 1 allow us to handle the whole

ange of relevant problems. 

Consider problems α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ),

mtn | �quad with α ∈ { P , Q }, in which the objective function is

he weighted sum of squares of compression amounts 

quad = 

∑ 

j∈ N 
w 

′ 
T ( j) x ( j) 2 , (36)

here w 

′ 
T ( j) , j ∈ N , are positive weights. For problems of these

ange, each job j ∈ N may be associated with up to three weights:

 T ( j) used for computing total error �� , w M 

( j) used for comput-

ng the maximum error �max , and w 

′ 
T ( j ) used for computing the

otal quadratic error (36) . Below, we demonstrate that for all ver-

ions of the problem involving �quad , even in combination with

� and �max , the running times of the algorithms remain the

ame as for the problems with fixed processing times. 

Optimizing quadratic functions is a popular topic of research

ithin submodular optimization; see, e.g., Fujishige (1980) and

ochbaum and Hong (1995) . It appears that the SCPT problems de-

ned as the network flow problems in networks H P and H Q belong

o the class of optimization problems over submodular polyhedra.

ndeed, for a network H α , α ∈ { P , Q }, let V t be the set of nodes con-

ected to the sink t . Assume that the value of a maximum flow
n H α is equal to 
∑ 

j∈ N p ( j) , i.e., there exists a feasible flow f such

hat f (s, j) = p ( j) for all j ∈ N . For α ∈ { P , Q }, consider the polyhe-

ron 

 α = { y ∈ R 

V t | there exists a maximum flow f in H α

such that y (v ) = f (v , t) for v ∈ V t } . (37) 

t is known (see, e.g., Lemma 4.1 from Megiddo (1974) , Hochbaum

nd Hong (1995) , and Section 2.2 from Fujishige (2005) , where

ow problems in a similar network are considered) that B α is the

ase polyhedron with the rank function ϕ α : 2 V t → R given by 

 α(X ) = max 

{ ∑ 

v ∈ X 
f (v , t) | f is a feasible flow in H α

} 

, X ⊆ V t . 

The problems considered in Sections 6 and 9 can be respec-

ively reformulated as the following optimization problems ��( α)

nd �max ( α) over the corresponding base polyhedra: 

�(α) : minimize 
∑ 

j∈ N 
w T ( j) x ( j) subject to x ∈ B α, (38)

max (α) : minimize max 
j∈ N 

x ( j) 

w M 

( j) 
subject to x ∈ B α, (39)

hile the problem under consideration can be formulated as 

quad (α) : minimize 
∑ 

j∈ N 
w 

′ 
T ( j) x ( j) 2 subject to x ∈ B α, 

here x ( j) = x (X j ) for j ∈ N . Adapting a general result from

ujishige (1980) and from Section 9.2 of Fujishige (2005) on the

quivalence of quadratic and lexicographic optimization with sub-

odular constraints, we deduce the following statement. 

emma 9. For network H α , let f ∗( a ), a ∈ A , be a maximum flow that

s lexicographically optimal with respect to the ratios f ∗(X j , t) /w 

′ 
T ( j) ,

 ∈ N. Then, the flow f ∗ minimizes the quadratic objective function
 

j∈ N w 

′ 
T 
( j) f ∗(X j , t) 

2 among all maximum flows in H α , and the val-

es x ( j) = f ∗(X j , t) , j ∈ N , define an optimal solution to problem

quad ( α) . 

Using the algorithm for solving the lexicographic sharing prob-

em discussed in Section 9 , we deduce that problem �quad ( α) can

e solved in O ( n 3 ) time for α = P and in O ( mn 3 ) time for α = Q . 

We now pass to considering various constrained versions

f scheduling problems of imprecise computation that involve

uadratic cost. Let parameters ηmin and ξmin denote the minimum

alue of the total cost and the minimum value of the maximum

ost, respectively; in other words, ηmin is the optimal value of the

bjective function for problem (38) , while ξmin is that for problem

39) . 

We start with the constrained problem �Lex (max , quad) ( α), in

hich the optimal value of �quad is to be found among the so-

utions with the smallest maximum cost ξmin . The corresponding

roblem is of the form: 

Lex ( max , quad ) (α) : minimize 
∑ 

j∈ N 
w 

′ 
T ( j) x ( j) 2 

subject to x ∈ B α, 
x ( j) 

w M 

( j) 
≤ ξmin , j ∈ N. 

his problem can be treated in a similar way as the problems with

ex ( �max , ��) objective considered in Section 10.1 . That is, prob-

em �Lex (max , quad) ( α) reduces to problem �quad ( α) with the addi-

ional upper bounds x ( j) ≤ ξmin w M 

( j) on variables x ( j ). 

Consider the constrained problem �Lex ( �, quad) ( α), in which the

ptimal value of function �quad is to be found among the solutions

ith the minimum total weighted cost η . This can be expressed
min 
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as 

�Lex (�, quad ) (α) : minimize 
∑ 

j∈ N 
w 

′ 
T ( j) x ( j) 2 

subject to x ∈ B α, 
∑ 

j∈ N 
w T ( j) x ( j) = ηmin . 

Finding ηmin requires solving problem ��( α), and the set of

the optimal solutions is a face of the base polyhedron B α , which in

turn is a base polyhedron itself (with a different rank function). 

Problem α| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | Lex ( �� ,

�max ) presented in Section 10.2 has the same feasible region as

problem �Lex ( �, quad) ( α). This implies that the first three steps of

Algorithm Total-Max, which manipulate the feasible region, are

applicable to problem �Lex ( �, quad) ( α). As a result of these steps,

problem �Lex ( �, quad) ( α) is reduced to problem �quad ( α), similarly

to the reduction of problem �Lex ( �, max ) ( α) to problem �max ( α)

presented in Section 10.2 . An optimal solution to problem �quad ( α)

is delivered by solving the corresponding problem of lexicographic

flow sharing. 

Finally, consider the constrained problems �Lex (quad, �) ( α) and

�Lex (quad,max ) ( α), in which �� and �max are respectively min-

imized subject to the minimum value of �quad . The problems

�Lex (quad, �) ( α) and �Lex (quad,max ) ( α) have the same feasible region 

x ∈ B α, 
∑ 

j∈ N 
w 

′ 
T ( j) x ( j) 2 = ζmin , 

where ζ min is the minimum value of �quad . 

In order to find ζ min , we solve problem �quad ( α), which is

done by solving the lexicographic sharing problem, as shown in

Lemma 9 . Notice that an optimal solution to the lexicographic

sharing problem is unique (see Fujishige, 1980 , Theorem 3.1).

This implies that for the original problems �Lex (quad, �) ( α) and

�Lex (quad,max ) ( α), their feasible regions consist of a single solution.

This leaves no freedom for optimizing �� and �max . Thus, the

solution to problem �Lex (quad, �) ( α) and problem �Lex (quad,max ) ( α)

does not depend on the weights w T ( j) and w M 

( j) of the objective

functions �� and �max and remains the same for any of these

two functions. 

Hochbaum and Hong (1995) deal with a quadratic function with

a linear term: 

�Quad = 

∑ 

j∈ N 
w 

′ 
T ( j) x ( j) 2 + 

∑ 

j∈ N 
w T ( j) x ( j) , (40)

in addition to a quadratic function �quad without a linear term.

It is demonstrated in Hochbaum and Hong (1995) that the tech-

niques by Gallo et al. (1989) cannot be applied directly to solve

the problem of minimizing �Quad with a linear term. They

also show how to adjust the parametric flow algorithms by

Gallo et al. (1989) to make them handle this problem without

increasing their running times. Hence, we deduce that all re-

sults mentioned in this section remain valid if a quadratic func-

tion without a linear term is extended to the one with a linear

term (informally, if the subscript “quad” is replaced by “Quad”

in the notation of the problem). Thus, we can conclude that for

all SCPT problems which involve a quadratic objective function,

with or without a linear term, time complexities O ( n 3 ) and O ( mn 3 )

hold for the parallel machine models with α = P and α = Q,

respectively. 

It is clear that all results discussed in this section for the prob-

lems on parallel machines carry on for a single machine counter-

part. It remains to be seen whether for the single machine prob-

lems that involve minimization of a quadratic cost function it is

possible to develop an algorithm of the running time lower than

O ( n 3 ). Methodology 1 cannot be used for this purpose. Indeed, if

such an algorithm existed it would be based on the ideas different

from finding the parametric flow, since for the latter problem the
astest known algorithm requires O ( n 3 ) time. The use of Methodol-

gy 2 seems to be more promising, as we demonstrate below for

he problem of minimizing function (40) , provided that the jobs

ave a common deadline d . 

Using compressions x ( j ), j ∈ N , problem 1| r ( j ), p( j) = p ( j) − x ( j) ,

 ( j ) ≤ d , pmtn | �Quad can be written as a quadratic programming

roblem with submodular constraints: 

in 

∑ 

j∈ N 
w 

′ 
T ( j) x ( j) 2 + 

∑ 

j∈ N 
w T ( j) x ( j) 

 . t . p (X ) − x ( X ) ≤ d − min 

h ∈ X 
r(h ) , X ∈ 2 

N , 

0 ≤ x ( j) ≤ p ( j) − p ( j) , j ∈ N. 

f the jobs are renumbered in accordance with (6) then the prob-

em above simplifies to 

in 

∑ 

j∈ N 
w 

′ 
T ( j) x ( j) 2 + 

∑ 

j∈ N 
w T ( j) x ( j) 

 . t . 

n ∑ 

j= k 
( p ( j) − x ( j ) ) ≤ d − r(k ) , k = 1 , . . . , n ;

0 ≤ x ( j) ≤ p ( j) − p ( j) , j ∈ N. 

Now we change the decision variables to the actual processing

imes p ( j ) = p ( j) − x ( j ) , j ∈ N . The objective function becomes ∑ 

j∈ N 
w 

′ 
T ( j)( p ( j) − p( j)) 2 + 

∑ 

j∈ N 
w T ( j) ( p ( j) − p ( j ) ) 

= 

∑ 

j∈ N 
w 

′ 
T ( j ) p ( j ) 

2 −
∑ 

j∈ N 

(
2 p ( j ) w 

′ 
T ( j ) + w T ( j) 

)
p( j ) + L, 

here 

 = 

∑ 

j∈ N 
w 

′ 
T ( j) p ( j) 2 + 

∑ 

j∈ N 
w T ( j) p ( j) . 

If the constant L is removed, problem 1| r ( j ), p( j) = p ( j) − x ( j) ,

 ( j ) ≤ d , pmtn | �Quad reduces to 

in 

∑ 

j∈ N 
w 

′ 
T ( j ) p ( j ) 

2 −
∑ 

j∈ N 

(
2 p ( j ) w 

′ 
T ( j ) + w T ( j) 

)
p( j ) 

 . t . 

n ∑ 

j= k 
p ( j ) ≤ d − r ( k ) , k = 1 , . . . , n ;

p ( j) ≤ p( j) ≤ p ( j) , j ∈ N. 

his problem can be classified as the resource allocation problem

ith a separable quadratic function under nested constraints. Such

 problem can be solved in O ( n log n ) time, as proved in Hochbaum

nd Hong (1995) . 

2. Conclusions 

To conclude, we summarize the main points addressed in the

urvey. 

1. The term “scheduling with controllable processing times” and

associated terminology are sufficiently abstract and general to

provide a unified framework for all associated models in which

the actual processing time is to be selected from a given inter-

val. The models of scheduling with imprecise computation and

of late work minimization (with preemption) should be seen as

meaningful interpretations of the general SCPT models, driven

by particular applications. We hope that a correct positioning

of these and other specialized models within the body of re-

search on SCPT will help avoiding potential rediscoveries and

duplications. Besides, such a positioning will allow merging the

corresponding toolkits to attack joint research challenges. 

2. Processing capacity set functions ϕ introduced in Section 3 are

crucial for solving problems with fixed and controllable data.

Their submodularity links SCPT to optimization with submodu-

lar constraints. 
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3. Methodology 1 based on the network flow methods is useful

for the most general models with multiple parallel machines

(models P and Q ) and arbitrary r ( j ) and d ( j ), j ∈ N . 

(a) For fixed data, standard max-flow techniques deliver a solu-

tion as presented in Section 5 . 

(b) Multiparametric network flow methods by McCormick

(1999) are useful in handling SCPT problems that involve

minimizing the total compression cost ��; see Section 6 . 

(c) Single-parameter flow algorithms by Gallo et al. (1989) form

the basis for solving SCPT problems that involve minimizing

the maximum compression cost �max and/or the quadratic

cost; see Sections 9 –11 . 

For the networks that have a structure relevant to this study,

the running times of the parametric flow algorithms match

those developed for solving the problems on networks with

fixed arc capacities, see Table 2 . This is the main reason why

the whole range of the SCPT problems on parallel machines

with different release dates and deadlines require the same

running times as their feasibility counterparts with fixed data:

O ( n 3 ) in the case of identical machines and O ( mn 3 ) in the

case of uniform machines. The range of these problems include

not only problems with a single objective (total, maximum, or

quadratic cost), but also all problems with two lexicographically

ordered criteria. The reported running times should be seen as

the best possible and can only be improved if faster algorithms

are found for solving the feasibility problems with fixed data. 

4. In Section 5 , we demonstrate that checking the existence of a

feasible schedule on identical parallel machines requires O ( n 3 )

time, and not O ( n 2 log 2 n ) as has been claimed in the SIC litera-

ture. This leads to repairing of the running times of algorithms

previously known for solving the corresponding SCPT problems;

see Remark 1 and the references to that remark throughout. 

5. Methodology 2 makes use of the important property of pro-

cessing capacity functions ϕ, their submodularity. It provides

a rather direct way to finding Pareto-optimal solutions to bi-

criteria problems with �� being one of the objectives; see

Sections 7.2 and 7.3 . The feasible region of the relevant prob-

lems is a parametric submodular polyhedron intersected with

a box, and this allows deducing an analytical description of

the efficiency frontier. The power of this analytical approach

can be seen from the fact that among the problems, that are

handled that way, there are those on parallel machines with

distinct release dates, which were previously open. The ana-

lytical approach appears to be more efficient and less tedious

than the traditional one, based on generating breakpoints of the

frontier one after another by tracing changes in the structure

of schedules subject to compression/decompression of some

jobs. 

On the other hand, Section 7.2 gives examples of bicriteria

problems for which fast algorithms are derived based on the

traditional approach, since those problems are relatively sim-

ple and the corresponding efficiency frontier has a rather small

number of breakpoints. But even then Methodology 2 provides

a natural justification of actions taken by these algorithms. 

6. Methodology 3 is a further development of Methodology 2; see

Section 8 . The decomposition algorithm is applicable to solving

linear programming problems for which the feasible region is

the intersection of an arbitrary submodular polyhedron and a

box. In Section 8.2 , we discuss its adaptation for solving SCPT

problems to minimize the total compression cost �� . Those

problems can be solved by a straightforward application of the

greedy algorithm (Methodology 2), but the application of the

decomposition algorithm delivers solutions faster. In particular,

for problem 1| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d ( j ), pmtn | �� the

best possible running time of O ( n log n ) is achieved, which has

been a long-standing goal. 
7. Sections 9 and 10 contain new results on the SCPT problems

which involve minimizing the maximum cost �max . The prob-

lems of this type form the main direction in the SIC research.

We demonstrate that an appropriate use of Methodology 1, i.e.,

an application of the single-parameter flow techniques, pro-

duces a collection of algorithms with the best possible running

times. 

8. Section 11 addresses the problems that involve minimizing a

quadratic cost function. Such SCPT problems have not been

studied before. It appears to be fairly easy to extend the meth-

ods developed in Sections 9 and 10 to achieve the best pos-

sible algorithms for the parallel machine problems of that

range. 

ow we state several open questions that might motivate fur-

her studies in the area of scheduling with controllable processing

imes. 

1. For the SCPT problems with a common deadline that involve

minimizing the maximum or quadratic cost functions there is

a need for developing algorithms with the running times bet-

ter than those available in the case of arbitrary deadlines. In

Section 11 , we present an O ( n log n )-time algorithm for problem

1| r ( j ), p( j) = p ( j) − x ( j) , C ( j ) ≤ d , pmtn | �Quad and expect that

algorithms with a similar performance can be developed for the

remaining problems. 

2. For the SCPT problems with arbitrary release dates and dead-

lines that involve minimizing the maximum or quadratic cost

functions on a single machine there is still a complexity gap

between the running times of the best known algorithms and

O ( n log n ), i.e., the time needed to solve the feasibility problem

with fixed data. We hope that the existing gaps could be even-

tually closed, as has happened to all problems of minimizing

the total compression cost �� . 

3. There are no results on finding Pareto-optimal solutions to the

SCPT problems in which one of the objectives is either the max-

imum cost or quadratic cost. 

4. There is a lack of results on finding Pareto-optimal solutions

to the SCPT problems with arbitrary due dates in which one

of the objective is the maximum lateness L max . In Section 7.3 ,

we mention the solved problem 1| r ( j ), p( j) = p ( j) − x ( j) ,

pmtn |( L max , ��) and expect that similar bicriteria problems

will be addressed. 

5. In our recent paper Shioura, Shakhlevich and Strusevich (2017) ,

we demonstrate how the flow and submodular optimization

techniques can be applied to the off-line problems of speed

scaling. These problems reduce to minimizing convex separable

functions under submodular constraints. The algorithms that

we develop outperform those previously known in the area and

also are able to tackle problems with more general objectives

than studied before. We hope that a systematic methodological

study, similar to that done for the SCPT problem, can also be

performed in the area of speed scaling. 

6. We are interested in finding other areas, even not related to

scheduling, in which the described methodologies can be use-

ful. In particular, we would like to find out practical situations

that give rise to Problem (LP) so that the decomposition algo-

rithm can be applied. 
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