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Abstract—Our goal is to be able to reproduce computationally
calligraphic traces, e.g. as found in the art practices of graffiti and
various forms of more traditional calligraphy, while mimicking
the production process of such art forms. We design our user
interfaces in a procedural generation and computer aided design
(CAD) setting. As a result, we seek to seamlessly work between
data used in design packages (without kinematics) and data easily
digitised by users (e.g. online, with kinematics). To achieve these
goals, we propose a method that allows to reconstruct kinematics
from solely the geometric trace of handwritten trace in the form
of parameters of the Sigma-Lognormal model. We purposely
ignore the kinematics possibly embedded in the data in order to
treat online data and vector patterns with the same procedure.

Index Terms—graphonomics, graffiti, calligraphy, curvature,
symmetry, kinematic theory, sigma-lognormal

I. INTRODUCTION

Many handwriting analysis methods rely on a prior segmen-
tation of the handwriting trace into constituent primitives or
strokes. Some methods exploit the kinematics of the movement
and segment the trajectory in correspondence with minima of
velocity. Accordingly with the stereotypical inverse relation
between speed and curvature of handwriting traces, other
methods rely on the identification of curvature extrema along
the pen-trace. This fits with a modelization of handwriting
in the form of ballistic stroke primitives, in which curvature
extrema will typically correspond with velocity minima and
are indicative of the initiation of a new stroke.

A robust identification of curvature extrema can be difficult,
since curvature is a second order differential quantity which
tends to amplify the effects of noise in the input as an outcome
of the digitisation process. One popular method to overcome
this problem is to first smooth the digitised signal using a
filter (e.g convolving with a Gaussian) or interpolating with
some analytic function (e.g. smoothing splines). However,
smoothing risks to remove (perceptually) important features
of an outline and choosing reasonable parameters remains
a difficult task. To overcome this fundamental issue, one
possible avenue is to generate an intermediate scale-space in
which features are identified and tracked at different scales
[1]. Such a scale-space is very often produced by iterative
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Gaussian filtering in the spatial domain, or via the frequency
domain using wavelets [2]. An alternative to such traditional
filtering (which tends to blur away details) is to use a structural
notion of scale, e.g. by associating a support metric along a
contour with each curvature feature being tracked, such as
when performing morphological operations on the curvature
function [3]. Nevertheless, such methods operating directly
on the curvature function (along a contour) suffer from poor
localisation, and do not capture well singularities which can
be perceptually significant, such as curvature breaks (typical
of corner features). Also, such methods are usually developed
and implemented for closed contours, which is not typical of
handwritten traces, and further do not behave well with loops
or other singular behaviours which are common in calligraphy.

An alternative to working directly with the curvature func-
tion is to exploit the correspondence existing between sym-
metry axes and the curvature behavior of a contour [4].
Originally pioneered by Harry Blum in the 1960’s for the
study of biological shape [5], the Symmetry Axis Transform
(SAT) – also known as Medial Axis or simply skeleton for
closed contours – is a shape representation that provides a
bridge between geometry and topology. The SAT is commonly
viewed as the set of centers of “maximally inscribed” disks, or
with the “prairie grassfire” or wave-front analogy, in which the
symmetry axes are given by the “quench” points at which fire
fronts or waves propagating from the object boundary meet
and stop expanding. Contrary to a common misinterpretation,
the SAT is not only defined for closed shapes, but is valid also
for open contours or even point samplings [6] — in the latter
case becoming similar to the Voronoi graph very popular in
computational geometry and computer aided design (CAD).

In this paper, as a starting point, we make use of the duality
between curvature and symmetry axes [4] in order to extract
more robustly curvature features, such as extrema along a
handwriting or drawing trace. The method is also directly
adaptable to open contours, to contours with breaks in cur-
vature, and can further be used to identify loops. Each feature
is also explicitly paired with corresponding contact circles
and a support region — where curvature is approximately
monotonic. Given such a robust and rich feature description
of a handwritten trace, we show how to exploit this spatial
and structural geometric representation to infer the kinematics



of a likely generative movement. To do so, we rely on the
Kinematic Theory of Rapid Human Movements [7], [8], a
family of models of reaching and handwriting motions, in
which a movement is described as the result of the parallel
and hierarchical interaction of a large number of coupled
neuromuscular components.

The resulting method allows the reconstruction of physio-
logically plausible velocity profiles for the geometric trace of
an input movement given as an ordered sequence of points.
While state of the art methods exist for the parameter recon-
struction of Kinematic Theory based models from digitised
traces of handwriting [8]–[10], we design our method with
the goal of targeting applications in both graphonomics and
CAD/computer graphics. As a result, we purposely ignore the
kinematics of the input in order to seamlessly handle online
handwriting with arbitrary sampling quality as well as vector
art in which only the sequential ordering of points may be
available. We also choose this approach with the future aim
of combining our method with one that recovers temporal
information from bitmap images such as the one presented
by Plamondon and Privitera [11].

In the following sections we first summarise the Sigma
Lognormal (ΣΛ) model (Section II), which we use to describe
the motions of a pen-tip. We then describe the trajectory seg-
mentation method (Section III), which is used as a preprocess
for the reconstruction of ΣΛ parameters from geometry only
(Section IV).

II. THE SIGMA LOGNORMAL (ΣΛ) MODEL

On the basis of the Kinematic Theory [7], we describe
the kinematics of a handwriting/drawing movement via the
the Sigma Lognormal (ΣΛ) model [8]. The ΣΛ model de-
scribes complex handwriting trajectories via the vectorial
superimposition of N time shifted stroke primitives. The speed
of each stroke is given by a lognormal

Λi(t) =
1

σi
√

2π(t− t0i)
exp

(
− (ln(t− t0i)− µi)2

2σi2

)
(1)

which describes impulse response of each stroke to a centrally
generated command occurring at time t0i. The parameters µi
and σi respectively describe the stroke delay and response
time in a logarithmic time scale, and determine the shape
and asymmetry of the lognormal. With the assumption that
handwriting movements are made with rotations of the elbow
or wrist, the curvilinear evolution of a stroke can be described
by a circular arc. The angular evolution of a stroke is described
by using the time integral of eq. 1:

φi(t) = θi −
δi
2

+ δi

∫ t

0

Λi(u)du (2)

= θi −
δi
2

+
δi
2

[
1 + erf

(
log (t− t0i)− µi

σi
√

2

)]
, (3)

where θi is the direction of the stroke and δi is the stroke
curvature parameter which determines the internal angle of

the circular arc. The planar pen-tip velocity is then calculated
with:

ẋ =

N∑
i=1

D̂iΛ(t)icos(φi(t)) and ẏ =

N∑
i=1

D̂iΛ(t)isin(φi(t))

(4)
where D̂i = Dih(θi) is the length Di of the stroke scaled by

h(θi) =

{
2θi

2sinθi
if |sinθi| > 0,

1 otherwise,
(5)

which compensates for the stroke curvature based on the ratio
between the perimeter and the chord length of a circular arc.
The acceleration components of the lognormal trajectory are
then given by [12]:

ẍ =

N∑
i=1

D̂iΛ̇i(t) cos(φi(t))− D̂iδiΛ
2
i (t) sin(φi(t)) (6)

ÿ =

N∑
i=1

D̂iΛ̇i(t) sin(φi(t)) + D̂iδiΛ
2
i (t) cos(φi(t)). (7)

with

Λ̇i(t) = Λi(t)
µi − σ2

i − log (t− t0i)
σ2(t− t0i)

(8)

which allows us to compute the curvature at time t with the
well known formula:

κ(t) = (ẋÿ − ẏẍ)/(ẋ2 + ẏ2)3/2. (9)

The sequence of curvilinear strokes describes an action plan
consisting of an initial position p0 followed by a sequence
of N virtual targets p1, . . . ,pN each corresponding to an
imaginary aiming locus per stroke (Fig. 5). The degree of
time overlap between lognormal components then defines the
degree of smoothness of the trajectory in correspondence
with each virtual target, where a greater time overlap results
in a smoother trajectory. In order to facilitate interactive
applications [13] and to simplify the subsequently described
parameter reconstruction method, we compute the directions
θi and length Di for each pair of consecutive virtual tar-
gets (pi−1,pi). Furthermore, we explicitly define the time
overlap of each lognormal through an intermediate parameter
∆ti ∈ [0, 1] where t0i = t0i−1 + ∆ti sinh(3σi) if i > 1 and
t01 = 0.

III. TRAJECTORY SEGMENTATION AND ANALYSIS

The proposed trajectory reconstruction method exploits a
prior feature analysis of the input which is based on the SAT
together with the Symmetry Curvature Duality (SCD) theorem
[4], a result presented by Leyton which links the symmetry
axes of a shape to its curvature extrema and states [4]:

Any segment of a smooth planar curve, bounded by
two consecutive curvature extrema of the same type,
has a unique symmetry axis, and the axis terminates
at the curvature extremum of the opposite type.

Following the SCD theorem, given a symmetry axis, it is
then possible to identify a curvature extrema at one end (tip).



In a traditional setting, the SAT is computed at once for a
given final contour or written trace (in our case). This however
does not allow to identify all perceptually significant curvature
extrema, as part of a contour may forbid the existence of
a symmetry axis that would otherwise end near a curvature
extremum.1 Berio and Fol Leymarie have recently developed
an alternative way to compute symmetry axes which avoids
this masking effect2 In summary, a symmetry axis is evaluated
as one travels along a written trace. Once a significant axis
is found, its existence ends once another significant axis
emerge, and the previous written trace already traversed is
”forgotten” (so as to not mask other potential extrema of
curvature associated to later parts of the trace).

A. Feature analysis

The input to our method is a curve z(s) parameterised by
arc length s and with total arc length l. For each curvature
extrema, the feature segmentation outputs a sequence of disks
{Ωi} centered at c(Ωi), with radius r(Ωi) and corresponding
with the circle of curvature osculating the extrema. Each disk
has contact with the input curve along a region P (Ωi) at which
curvature is approximately constant, which we refer to as the
disk’s projection and is delimited between two anchor points
defined by their respective arc lengths s0(Ωi) and s1(Ωi). The
location of the curvature curvature extrema s(Ωi) is then given
by the midpoint of the projection (s0(Ωi) + s1(Ωi))/2. The
curvature of the extrema is then simply κ(Ωi) = ±1/r(Ωi),
where the sign is computed using the signed area of the
triangle [z(s0(Ωi)), c(Ωi), z(s1(Ωi))].

B. Trajectory segmentation

The symmetry axis extraction process results in the identi-
fication of a set of curvature extrema, where each extrema is
paired with the corresponding osculating circle of curvature.
The projection at which the disk has contact with the curve
describes a trajectory segment where curvature is approxi-
mately constant. Given the estimate of curvature extrema we
proceed with the evaluation of a curvilinear profile for the
trajectory by fitting Euler spirals to contour segments bounded
by consecutive curvature extrema (Section III-B1). Each Euler
spiral segment is then decomposed into one or two circular arc
segments, depending on the presence or not of an inflection
(Section III-B2). This results in a sequence of circular arc
segments that are then used in the subsequent estimation of
ΣΛ curvature parameters {δi} (Section IV).

1) Euler spiral fitting: Euler spirals (also known as Cornu
spirals, or clothoids) [15] are an interesting type of curve in
which curvature varies linearly with arc length, permitting the
description of variably curved segments which may contain

1One way to prove this masking effect, is by considering the behavior of
cusps of evolutes in relation to a symmetry axis. Belyaev and Yoshizawa [14]
prove that an evolute cusp correspond with a symmetry axis branch only when
the segment going from the cusp to the associated curvature extrema, does
not intersect the remaining skeleton of the shape.

2This work is being detailed and submitted as a separate publication as it
is more generic in application than solely to written traces, and as it requires
more space to present it in sufficient detail.

Fig. 1. An Euler spiral, its inflection point (circle) and a Euler spiral segment
(black).

one inflection (Fig. 1). An Euler spiral is commonly parame-
terised by arc length s using the cosine (C(s)) and sine (S(s))
Fresnel integrals:

C(s) + iS(s) =

∫ s

0

eiπt
2/2du. (10)

The curve is then defined between an initial (ss0) and final
(ss1) parameter and can be conveniently computed in an
efficient manner using an approximation method developed
by Heald in [16].

In order to fit an Euler spiral, we first compute approximate
tangent directions along the trajectory in correspondence with
the initial and final points of the segment under examination.
This allows to compute a first estimate of the spiral’s initial
and final parameters rapidly using a secant method described
in [15]. On the other hand, the tangent estimate is likely not
to be precise due to noise in the input so we then proceed
to refine the fit with a least squares optimisation using the
Gauss-Newton method. In order to do so we parameterise a
spiral segment scaled by a factor α and rotated by an amount
ω with:

ps(s) =

[
α cos(ω)C0(s)− α sin(ω)S0(s)
α sin(ω)C0(s) + α cos(ω)S0(s)

]
, where (11)

C0(s) = C(s)− C(ss0) and S0(s) = S(s)− S(ss0).
(12)

We then transform the input curve segment so that its end
points match the end points of the spiral in its canonical form
with α = 1 and ω = 0, and then proceed with the minimisation

min
ss0,ss1,α,ω

1

2

n∑
i=1

‖ ps(ss[i])− z(ŝ[i]) ‖2 (13)

where ss[i] and ŝ[i] respectively give n equally spaced points
(i) sampled along the spiral ps(s) between ss0 and ss1 and
(ii) along the input curve z(s).

2) Inflections and Circular Arc Decomposition: Inflections
are directly found by checking the signs of the two spiral
parameters s0 and s1. If the parameters have different sign the
position along the spiral at which the arc length parameter s =
0 determines the location of the inflection. For each inflection,
we check if the ratio min(|s0|, |s1|)/|s1 − s0| is less than a
user defined threshold εinfl (which we empirically set to 0.2
in the accompanying examples), in which case we discard it
as a degenerate case (being too close to one spiral end point).

Depending on the presence of an inflection we fit either one
or two circular arcs to each Euler spiral segment. The internal
angle of the circular arcs is easily estimated by integrating the
curvature of the spiral and distinguishing between 3 cases.



(a) For the case of two arcs the internal angles are given
by s|s| for each parameter s0 and s1 (Fig. 2a). (b) In the
case of a degenerate inflection, we use the same method
to fit a single arc and choose only the parameter with the
greatest absolute value and consequently higher curvature. (c)
When no inflection is present the internal angle is given by
|(s1|s1| − s0|s0|)| sgn(s0). For each arc, we then check if the
absolute internal angle is greater than (3/4)π, in which case
we subdivide the arc in two (Fig. 2b).

(a) (b)

Fig. 2. Decomposing Euler spirals (stippled grey) into arcs. (a) two arcs
delimiting an inflection. (b) one segment with angle > (3/4)π divided into
two arcs.

These final steps produce an ordered sequence of N circular
arcs with internal angles θ̂i

N

i=1, center c(θ̂i) and radius r(θ̂i).
The circular arcs are delimited by N+1 feature points {ŝi}Ni=0,
each defining a distance along the contour and with {ŝ0, ŝN}
indicating the initial and final points. Each feature point
corresponding with a curvature extrema is also paired with its
corresponding osculating circle with radius r(ŝi) and curvature
κ(ŝi). Thus the projection p(ŝi) for each extremum also
defines a circular arc, at which the curvature κ(ŝi) is constant
(Fig. 3). Extrema at which the trajectory is smoother will
result in a larger radius of curvature and a larger projection.
As a result, it is then possible to produce an approximate
reconstruction of the original trajectory in the form of circular
arc segments, similarly to the method originally proposed
in [17], but with the difference that each curvature extremum
is also paired with a supporting arc, which results in a more
accurate reconstruction of the original trace.

Features Euler spiral fit Circular arcs

Fig. 3. Feature extraction (left) followed by Euler spiral fitting (middle)
and arc decomposition (right) of a sample from the UJI handwritten character
dataset. The arcs in red indicate regions with approximately constant curvature
corresponding with curvature extrema.

IV. ITERATIVE RECONSTRUCTION OF ΣΛ PARAMETERS

Given the previous trajectory segmentation step and a
number of simplifying assumptions, we have the information
necessary to reconstruct the input trajectory given its geometry
only, in terms of the shape features previously indentified (i.e.
curvature extrema, inflections, interpolating arcs of spirals).
The method is a development and improvement over our
prior efforts [18], [19] in a similar direction. While a number

(b)(a)

Fig. 4. Key-points (cyan circles) and peak-points (red crosses) overlaid on
the trace (a) and speed profile (b) of a trajectory with two strokes.

of state of the art methods exist [8]–[10] for the accurate
reconstruction of ΣΛ parameters from digitised traces, these
methods require the kinematics of the original trajectory. In
our method, we sacrifice to some extent the accuracy of
the reconstruction in order to seamlessly deal with online
handwriting data as well as vector art in which only the
time/sequential ordering of points may be available.

An initial estimation of the trajectory parameters is given by
a virtual target sequence pi = z(ŝi), stroke curvature param-
eters δi = θ(ŝi) and time overlap parameters ∆ti = 0.5. For
the sake of simplicity, we consider the remaining parameters
σi and µi as typical properties of the neuromuscular system of
a writer and keep these set to a user configurable value. The
initial trajectory estimate is likely to differ from the original
and to possess a reduced scale due to the smoothing effect of
the lognormal stroke overlap (Fig. 5a).

To improve the reconstruction, we adopt an iterative re-
finement scheme (Fig. 5b) in which we adjust the curvature
and time overlap parameters together with the virtual target
positions in order to minimise the difference between the
reconstructed and original trajectories. At each iteration, we
rely on the estimation of a series of feature points along
the generated lognormal trajectory. We compute N + 1 key-
points {τi}Ni=0 along the trajectory (Fig. 4) where τ1, . . . , τN−1

indicates the time occurrence at which the influence of one
stroke exceeds the previous one and curvature is maximal,
while τ0 and τN are respectively the starting and ending
time of the trajectory. In addition we compute N peak-points
{γi}Ni=1, which indicate the approximate time occurrence of
the maximum speed for each stroke (Fig. 4), which for each
stroke is given by the mode of the corresponding lognormal
t0i + exp(µi − σ2

i ).
The iterative refinement scheme is based on 3 observations:

Observation 1. The time parameter ∆ti is proportional to
the curvature κ(τi) at the time of the corresponding key-
point. Thus, a higher value of ∆ti will decrease the amount
of overlap of successive lognormals. This will result in a
lower speed and higher curvature κ(τi) at the time occurrence
of the key-point. Since we have a good approximation of
the curvature κ(ŝi) in the original trajectory, the relation
between the two can be exploited in order to adjust ∆ti
proportionally at each iteration. We observe that changes in
∆ti are not linearly related to changes in the curvature κ(τi)
at the corresponding key-point. In order to compensate for
this, we assume a 1/3 power relation [20] which has been



often observed in human movement and particularly holds for
elliptical portions of the trajectory [12], which is often the
case near key-points. The reasoning is that given the relations

∆t ∝ κ and ∆t ∝ 1/v

where v denotes speed, we have the proportions relating
desired and generated curvature/velocity:

ρκ = κ̂/κ and ρv = v̂/v.

As a result, given the power law v = κ1/3 [20] and because
velocity and ∆t are inversely proportional, we finally get the
relation:

ρκv = v/v̂ = (κ/κ̂)−1/3 = (κ̂/κ)1/3.

Observation 2. Shifting a virtual target pi in a given
direction, will cause the generated trajectory point p(τi) to
move in a similar direction. As a result, shifting the virtual
target pi along the vector z(ŝi) − p(τi) will decrease the
distance between curvature extrema in the generated and
original trajectories.

Observation 3. The distance Di between successive virtual
targets pi and pi−1 will influence the curvature of the stroke.
In fact, augmenting this distance will increase the radius of
curvature of the circular arc defined by the parameter δi and
will result in a decrease of curvature for the stroke. While the
trajectory tends to depart from the circular arc near the key-
points at t = τi due to the smoothing effect of the lognormal
time overlap, it tends to pass closer to the circular arc at t = γi
where the amplitude of the lognormal is maximal. As a result,
we utilise this locus to evaluate the deviation from the desired
arc θ̂i and correct the parameter δi accordingly.

As a result of these observations, we define each iteration
of our method that consists of the following steps:

∆ti ←

{
∆ti(κ(ŝi)/κ(τi))

1/3 if r(ŝi) 6=∞
∆tmin otherwise

, (14)

δi ← δi + λδ(δ̂i − δi) and (15)
pi ← pi + λp(c(ŝi)− p(τi)), (16)

where λδ and λp are damping parameters that we experimen-
tally tune to 0.1 and 0.5 to avoid excessive adjustments at each
iteration, and

δ̂i = 4 tan−1

[
h

a
tan

(
δi
4

)]
with (17)

a =‖ pi − pi−1 ‖ and (18)

h =
(
r(θ̂i)− ‖ p(γi)− c(θ̂i) ‖

)
sgn(θ̂i). (19)

The term h determines the amount to shift the curvature
parameter δi by comparing the radius of the circular arc θ̂i
initially fitted to the input to the distance between its center
and the lognormal peak point p(γi). Note that for the case of
inflection points (r(ŝi) = ∞), where the curvature is 0, we
force ∆ti to a user-defined minimum value. This results in a
maximal overlap between lognormal components and gives a
smooth transition between strokes in the generated trajectory.

(b)

(c) (d)

(a)

Fig. 5. ΣΛ parameter reconstruction from shape features. (a) First guess
of the parameters from features. (b) Iterative refinement steps and the SNR
for each iteration, computed from 300 position samples along the generated
and original trajectories. (c) The reconstructed trajectory. (d) Kinematics and
strokes profiles of the generated trajectory, normalised and overlaid over the
(smoothed) kinematics of the input.

Fig. 6. Reconstruction and parametric variations of a graffiti instance from
the Graffiti Analysis database.

V. DISCUSSION AND APPLICATIONS

We tested the iterative refinement on different inputs ranging
from online data (e.g. Graffiti Analysis database [21] and UJI
handwritten character dataset [22]) to vector traces with no
kinematic information, and it consistently produces visually
accurate reconstructions of the input. We observe that, while
fluctuations may appear during the iteration, the refinement
scheme consistently and rapidly converges towards a reduction
of the error between the input and the generated trajectories.



The reconstructed ΣΛ parameters provide a concise and
easily manipulable representation of a geometric trace. This
can be exploited in a number of applications that are relevant
to our desired use cases in CAD [13] and procedural content
generation [19]. For example, new instances of a given trace
can be generated by randomly perturbing the virtual target po-
sitions and scaling the curvature and time overlap parameters,
which results in variations that evoke multiple instances of
writing by the same or multiple authors (Fig. 6). Furthermore,
the ΣΛ parameterisation is well suited for interactive editing
applications [13]. As a result a user can easily adjust the
output of the reconstruction in real time using a point and
click procedure that is similar to the ones traditionally used in
CAD software packages.

VI. CONCLUSION

We demonstrated a simple method to reconstruct ΣΛ param-
eters from solely the geometric trace (left by handwriting),
which relies on a prior segmentation at perceptually salient
points. The proposed method produces an accurate kinematic
and geometric reconstruction of an input given just an ordered
sequence of points. On the other hand, we consider this still
as a stepping stone towards the development of more accurate
and physiologically plausible methods, which exploit the same
feature extraction and preprocessing steps. In future work, we
intend to develop more sophisticated methods of choosing the
ΣΛ parameters µi and σi, which are currently experimentally
set, and plan to explore in depth how the inferred kinematics
relate to human data.
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